JP5339648B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP5339648B2
JP5339648B2 JP2012287858A JP2012287858A JP5339648B2 JP 5339648 B2 JP5339648 B2 JP 5339648B2 JP 2012287858 A JP2012287858 A JP 2012287858A JP 2012287858 A JP2012287858 A JP 2012287858A JP 5339648 B2 JP5339648 B2 JP 5339648B2
Authority
JP
Japan
Prior art keywords
propeller
wind
partition wall
type
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012287858A
Other languages
Japanese (ja)
Other versions
JP2013083264A (en
Inventor
勇 松田
Original Assignee
勇 松田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勇 松田 filed Critical 勇 松田
Priority to JP2012287858A priority Critical patent/JP5339648B2/en
Publication of JP2013083264A publication Critical patent/JP2013083264A/en
Application granted granted Critical
Publication of JP5339648B2 publication Critical patent/JP5339648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • B60K2016/006Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind wind power driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/90Energy harvesting concepts as power supply for auxiliaries' energy consumption, e.g. photovoltaic sun-roof

Description

風力発電用の風車は、横軸のプロペラ型風車が多用されている。本発明者は、風車の回転面がタワーの風上に位置するアップウインド型のプロペラ風車を提案したが、それを改良してダウンウインド型の風車にも、縦軸型の風車としても機能できる風車並びに風力発電装置に関する。 As a wind turbine for wind power generation, a propeller type wind turbine with a horizontal axis is often used. The present inventor has proposed an upwind type propeller windmill in which the rotating surface of the windmill is located on the windward side of the tower, but can be improved to function as a downwind type windmill or a vertical axis type windmill. The present invention relates to a windmill and a wind power generator.

アップウインド方式は、羽根車がタワーの風上側に位置するので、タワーによる風の乱れを受けない、という利点がある反面、羽根車が風上側に位置するので強制的に羽根車を風に対し正対するように制御するヨーコントロール駆動装置が必要となる。
あるいは、特許文献1に記載のような方向舵を尾端に設ける必要がある。しかし、プロペラと方向舵との距離分に相当する遅れが生じるだけでなく、回転が上がると風車の回転面が壁となってしまい、方向舵が機能し難く、風向きの変化に対応しきれなくなる。
また、前記のようなヨーコントロール装置を装備した大型の風車でも、風向に対するタイムラグは避けられず、突風には対応できないという欠点がある。
The upwind method has the advantage that the impeller is located on the windward side of the tower, so that it is not affected by the wind turbulence by the tower, but the impeller is located on the windward side, so the impeller is forced against the wind. A yaw control drive device is required to control to face each other.
Alternatively, it is necessary to provide a rudder as described in Patent Document 1 at the tail end. However, not only does the delay corresponding to the distance between the propeller and the rudder occur, but if the rotation increases, the rotating surface of the windmill becomes a wall, making the rudder difficult to function and unable to cope with changes in the wind direction.
In addition, even a large windmill equipped with the yaw control device as described above has a drawback that a time lag with respect to the wind direction is unavoidable and cannot cope with a gust of wind.

特開2005−299523JP2005-299523

本発明の技術的課題は、このような問題に着目し、プロペラ型風車は前方に障害物が有ると効率が落ちると言われているアップウインド方式における、方向舵やヨーコントロール装置の問題を解決することにある。
また、自家発電の必要性が高まったことに伴い、ダウンウインド型の風車にも、縦軸型の風車にも適用可能とし、建物の屋上や屋外、そして、車などの移動体や工作物にも設置可能な風車並びに風力発電装置を実現する。
The technical problem of the present invention pays attention to such a problem, and solves the problem of the rudder and yaw control device in the upwind system in which the propeller type windmill is said to be less efficient if there is an obstacle ahead. There is.
In addition, as the need for in-house power generation has increased, it can be applied to downwind type wind turbines and vertical type windmills. A wind turbine and a wind power generator that can be installed are also realized.

請求項1は、プロペラ正面が上向きの縦軸型の風車に側面方向から風を受ける構造の風力発電装置において、
水平方向に配置した仕切り壁は、前記プロペラが、前記仕切り壁の下側の背風室の中に沈降できるようにプロペラ外径より大径の円穴が開いているか又は前記背風室の中に沈降不能なようにプロペラ外径より小径か同等程度の円穴が開いており、
回転軸の側面方向に到来する風圧の一部はプロペラの側面に当たり、他の一部はプロペラの背面すなわち下面に当たるようにガイドされる構造であることを特徴とするプロペラ型風力発電装置である。
Claim 1 is a wind turbine generator having a structure that receives wind from a side surface of a wind turbine of a vertical axis type with a propeller front facing upward .
The partition wall arranged in the horizontal direction has a circular hole with a diameter larger than the outer diameter of the propeller or is settling in the back wind chamber so that the propeller can sink into the back wind chamber below the partition wall. A circular hole with a diameter smaller than or equal to the outer diameter of the propeller is opened so that it is impossible,
The propeller type wind power generator is characterized in that a part of the wind pressure coming in the side direction of the rotating shaft hits the side surface of the propeller and the other part is guided so as to hit the back surface, ie, the lower surface of the propeller.

請求項2は、前記仕切り壁の上側には、プロペラの回転方向に対する逆風を阻止する防風壁を設け、
前記仕切り壁の下側には、プロペラ側に風を集めるための前開きのガイドを設けると共に、前記背風室の底面は前下がりの傾斜面とし、前記背風室の後方周辺は風をプロペラ側に導く立ち上がりガイド壁を有していることを特徴とする請求項1に記載のプロペラ型風力発電装置である。なお、それぞれの形態は平面でも曲面でもよい。
Claim 2 is provided with a windbreak wall on the upper side of the partition wall for preventing backwind against the rotation direction of the propeller,
A front opening guide for collecting wind on the propeller side is provided below the partition wall, and the bottom surface of the back wind chamber is an inclined surface with a downward slope, and the rear periphery of the back wind chamber is directed to the propeller side. The propeller-type wind turbine generator according to claim 1, further comprising a rising guide wall for guiding. Each form may be flat or curved.

請求項3は、前記仕切り壁の下側には、プロペラ下面に取り込む風量を調節する開閉手段を設けてなることを特徴とする請求項1又は請求項2に記載のプロペラ型風力発電装置である。 The propeller type wind power generator according to claim 1 or 2, wherein an opening / closing means for adjusting an amount of air taken into a lower surface of the propeller is provided below the partition wall. .

請求項4は、風向を検出して、手動又は自動で前記のプロペラ型風力発電装置全体が風向に向くように構成してなることを特徴とする請求項1、請求項2又は請求項3に記載のプロペラ型風力発電装置である。 According to a fourth aspect of the present invention, the propeller type wind turbine generator is configured to detect the wind direction so that the entire propeller-type wind power generator is directed to the wind direction manually or automatically. It is a propeller type wind power generator of a statement .

請求項5は、プロペラ正面が上向きの縦軸型の風車に側面方向から風を受ける構造の風力発電装置を駆動する際に、
水平方向に配置した仕切り壁は、前記プロペラが、前記仕切り壁の下側の背風室の中に沈降できるようにプロペラ外径より大径の円穴を開けておき又は背風室の中に沈降不可能なようにプロペラ外径より小径か同等程度の円穴を開けておくとともに、
回転軸の側面方向から前記仕切り壁のプロペラ側に到来する風圧はプロペラの側面に当たってプロペラを回転させ、前記仕切り壁の側に到来する風圧はプロペラの面に当たってプロペラを回転させるようにガイドすることを特徴とするプロペラ型風力発電方法である。
When driving a wind power generator having a structure that receives wind from the side surface of a vertical wind turbine with the propeller front facing upward ,
The partition wall arranged in the horizontal direction has a circular hole with a diameter larger than the outer diameter of the propeller so that the propeller can sink into the back wind chamber below the partition wall, or is not settling in the back wind chamber. Open a circular hole with a diameter smaller than or equal to the outer diameter of the propeller as much as possible,
Wind pressure coming from the side of the rotating shaft to the propeller side of the partition wall to rotate the propeller against the side surface of the propeller, wind pressure arriving at the lower side of the partition wall guides to rotate the propeller hits the bottom surface of the propeller This is a propeller-type wind power generation method.

請求項1のように、プロペラ正面が上向きの縦軸型の風車に側面方向から風を受ける構造の風力発電装置において、水平方向に配置した仕切り壁は、前記プロペラが、前記仕切り壁の下側の背風室の中に沈降できるようにプロペラ外径より大径の円穴が開いているか又は前記背風室の中に沈降不能なようにプロペラ外径より小径か同等程度の円穴が開いているので、回転軸の側面方向に到来する風圧の一部(前記仕切り壁より上側に到来する風圧)はプロペラの側面に当たってプロペラを回転させ、他の一部(前記仕切り壁より下側に到来する風圧)はプロペラの背面すなわち下面に当たってプロペラを回転させるので、プロペラの回転を速め発電に寄与する。なお、段落「0034」の末尾に記載のように、風車を背風室の中へ沈めて高さを調節することによって回転数のコントロールができるので台風時でも回転を止めることなく発電が可能である。 The wind turbine generator having a structure in which the propeller front face is directed upward and the wind turbine is configured to receive wind from a lateral direction, and the partition wall arranged in the horizontal direction is configured such that the propeller is below the partition wall. A circular hole with a diameter larger than the outer diameter of the propeller is opened so that it can sink into the back wind chamber, or a circular hole with a diameter smaller than or equal to the outer diameter of the propeller is opened so that it cannot settle in the back wind chamber. Therefore, a part of the wind pressure arriving in the direction of the side surface of the rotating shaft ( wind pressure arriving above the partition wall) hits the side surface of the propeller to rotate the propeller, and the other part (wind pressure arriving below the partition wall) ) Hits the back surface of the propeller, that is, the lower surface, and rotates the propeller, thereby speeding up the rotation of the propeller and contributing to power generation. As described at the end of paragraph “0034”, the rotational speed can be controlled by sinking the windmill into the back wind chamber and adjusting the height, so power generation is possible without stopping the rotation even during a typhoon. .

請求項2のように、前記仕切り壁の上側には、プロペラの回転方向に対する逆風を阻止する防風壁を設けたので、追い風だけを受けることにより、高速回転に寄与できる。また、前記仕切り壁の下側には、プロペラ側に風を集めるための前開きのガイドを設けると共に、前記背風室の底面は前下がりの傾斜面とし、前記背風室の後方周辺は風をプロペラ側に導く立ち上がりガイド壁を有しているので、前記円穴からの風圧をプロペラ背面に集めることができる。 According to the second aspect of the present invention, since the windbreak wall for preventing the reverse wind with respect to the rotation direction of the propeller is provided on the upper side of the partition wall, it can contribute to high-speed rotation by receiving only the tailwind. In addition, a front opening guide for collecting wind on the propeller side is provided below the partition wall, the bottom surface of the back wind chamber is an inclined surface that is lowered forward, and the rear periphery of the back wind chamber is a propeller. Since the rising guide wall that leads to the side is provided, the wind pressure from the circular hole can be collected on the back surface of the propeller .

請求項3のように、前記仕切り壁の下側には、プロペラ下面に取り込む風量を調節する開閉手段を設けて、プロペラの背部に取り込む風量調節ができるので、プロペラの回転数を制御できる。 According to a third aspect of the present invention, opening / closing means for adjusting the amount of air taken into the lower surface of the propeller is provided on the lower side of the partition wall, and the amount of air taken into the back of the propeller can be adjusted, so that the number of revolutions of the propeller can be controlled.

請求項4のように、風向を検出して、手動又は自動で前記のプロペラ型風力発電装置全体が風向に向くように構成してあるので、段落「0034」に記載のように、図8〜図14の装置全体が常に風向に向く。 Since the propeller type wind power generator is configured to be directed to the wind direction manually or automatically by detecting the wind direction as in claim 4, as described in paragraph “0034”, FIG. The entire apparatus of FIG. 14 is always directed to the wind direction.

請求項5のように、プロペラ正面が上向きの縦軸型の風車に側面方向から風を受ける構造の風力発電装置を駆動する際に、
水平方向に配置した仕切り壁は、前記プロペラが、前記仕切り壁の下側の背風室の中に沈降できるようにプロペラ外径より大径の円穴を開けておき又は背風室の中に沈降不可能なようにプロペラ外径より小径か同等程度の円穴を開けておく。その結果、回転軸の側面方向から前記仕切り壁のプロペラ側に到来する風圧はプロペラの側面に当たってプロペラを回転させ、前記仕切り壁の側に到来する風圧はプロペラの面に当たってプロペラを回転させる。従って、プロペラの回転を速め発電に寄与する。
When driving a wind power generator having a structure that receives wind from a side surface direction on a vertical-axis type windmill with the propeller front facing upward as in claim 5,
The partition wall arranged in the horizontal direction has a circular hole with a diameter larger than the outer diameter of the propeller so that the propeller can sink into the back wind chamber below the partition wall, or is not settling in the back wind chamber. Make a circular hole with a diameter smaller than or equal to the outer diameter of the propeller as much as possible. As a result, wind pressure coming from the side of the rotating shaft to the propeller side of the partition wall rotates the propeller against the side surface of the propeller, wind pressure arriving at the lower side of the partition wall to rotate the propeller hits the bottom surface of the propeller. Therefore, the rotation of the propeller is accelerated to contribute to power generation.

本発明による横軸風車の第1の実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the horizontal axis windmill by this invention. スリットで2分された1対のプロペラを有する実施形態の斜視図である。FIG. 6 is a perspective view of an embodiment having a pair of propellers that are bisected by a slit. 図3〜図5はプロペラの形状をデザイン化した実施形態で、図3は正面から見た斜視図である。3 to 5 are embodiments in which the shape of the propeller is designed, and FIG. 3 is a perspective view seen from the front. 打ち抜き前の形態を示す平面図である。It is a top view which shows the form before punching. 図3の風車を背面から見た斜視図である。It is the perspective view which looked at the windmill of FIG. 3 from the back surface. 本発明の風車をアップウインド型、ダウンウインド型、縦軸型の風力発電装置に実施した例を示す斜視図である。It is a perspective view which shows the example which implemented the windmill of this invention to the wind generator of an upwind type, a downwind type, and a vertical axis | shaft type. ダウンウインド型特有のアシスト手段を示す斜視図である。It is a perspective view which shows the assist means peculiar to a down window type | mold. 車載型の縦軸型風車を示す平面図である。It is a top view which shows a vehicle-mounted vertical axis | shaft type windmill. 図8の装置の正面図である。It is a front view of the apparatus of FIG. 図8の装置の風の流れを示す断面図である。It is sectional drawing which shows the flow of the wind of the apparatus of FIG. 車載状態を示す模式側面図である。It is a model side view which shows a vehicle-mounted state. 半ドーム型の実施形態を示す平面図である。It is a top view which shows embodiment of a half dome shape. 半ドーム型の正面図である。It is a front view of a half dome shape. 半ドーム型の風の流れを示す右側面図である。It is a right view which shows the flow of a half dome shape wind. 半ドーム型の車載状態を示す模式側面図である。It is a schematic side view which shows a semi-dome shape vehicle-mounted state. 半ドーム型の車載状態の別の実施形態を示す模式側面図である。It is a model side view which shows another embodiment of a semi-dome shape vehicle-mounted state.

次に本発明によるプロペラ型風車の風向追尾が実際上どのように具体化されるか実施形態を詳述する。図1は本発明によるプロペラ型風車の第1の実施形態を示す斜視図であり、正面方向から見ている。1が風車軸であり、横軸を成している。直径方向に伸びた2枚のプロペラP1、P2の外端に風向追尾用の翼W1、W2を一体に備えている。
この実施例では、風向追尾用の翼W1、W2を、細いプロペラP1、P2の外端に備えており、しかもその径方向の寸法m1よりも円周方向の寸法m2が大きい。2が風向追尾用の曲面であり、翼W1、W2の外端にかつ矢印a1で示す回転方向の前端寄りに形成されている。
この曲面2は、風車の背部に向かって曲がっており、しかも円周方向に対し前端寄りが角度αだけ風車軸1側に偏倚した形状をしている。
Next, an embodiment of how the wind direction tracking of the propeller type windmill according to the present invention is actually realized will be described in detail. FIG. 1 is a perspective view showing a first embodiment of a propeller-type windmill according to the present invention, as viewed from the front. Reference numeral 1 denotes a wind turbine shaft, which forms a horizontal axis. Wind propellers W1 and W2 are integrally provided at the outer ends of two propellers P1 and P2 extending in the diameter direction.
In this embodiment, the wind direction tracking blades W1 and W2 are provided at the outer ends of the thin propellers P1 and P2, and the circumferential dimension m2 is larger than the radial dimension m1. Reference numeral 2 denotes a curved surface for wind direction tracking, which is formed at the outer ends of the blades W1 and W2 and closer to the front end in the rotational direction indicated by the arrow a1.
The curved surface 2 is bent toward the back portion of the windmill, and the front end side of the circumferential direction is biased toward the windmill shaft 1 by an angle α.

このようにプロペラP1、P2の外端に風向追尾用の翼W1、W2を備えており、しかも翼W1、W2の前端寄りが風車の背部に向かって曲がっているため、前面から受けた風力でプロペラP1、P2が矢印a1方向に連続回転すると、曲面2・2によって、風下側に曲がった筒状の回転面が形成される。
その結果、前面から風が吹き込んだとき、その風を円滑に後方に逃がすべく、風車の正面が常に来風と正対することになる。
プロペラP1、P2の回転中心で谷状Vに曲げることによって迎え角だけ傾けたプロペラP1、P2の外端に、さらに風向追尾用の翼W1、W2が形成されているため、前記曲面2・2の風車軸1寄りの内側は、広い面積の機能翼fの寸法m2の領域がプロペラP1、P2と同じ向きに傾斜していることにより、揚力発生の作用をすることで、回転速度が速くなる。
In this way, the wings W1 and W2 for wind direction tracking are provided at the outer ends of the propellers P1 and P2, and the front ends of the wings W1 and W2 are bent toward the back of the windmill. When the propellers P1 and P2 are continuously rotated in the direction of the arrow a1, the curved surfaces 2 and 2 form a cylindrical rotating surface bent to the leeward side.
As a result, when wind blows from the front, the front of the windmill always faces the incoming wind in order to allow the wind to escape smoothly backward.
Since the wings W1 and W2 for wind direction tracking are further formed on the outer ends of the propellers P1 and P2 that are inclined by the angle of attack by bending them into a valley V at the rotation center of the propellers P1 and P2, the curved surfaces 2 and 2 are formed. On the inner side of the wind turbine shaft 1, the area of the dimension m2 of the large functional blade f is inclined in the same direction as the propellers P1 and P2, and the rotational speed is increased by the action of lift generation. .

図1のプロペラP1、P2は風車軸1寄りの幅が大で風向追尾翼W1、W2寄りが小のため、風向追尾翼W1、W2寄りが凸状に湾曲し易いが、逆に破線で示すように風車軸1寄りの幅を小さくした場合は、風車軸1寄りが凸状に湾曲し易くなる。このように、プロペラP1、P2の形状によって、凸状に湾曲し易い部位は異なる。もちろん、プロペラP1、P2の全長にわたって前面が凸となるように湾曲する場合も有りうる。 The propellers P1 and P2 in FIG. 1 are large near the wind turbine shaft 1 and small near the wind direction tracking wings W1 and W2, so that the wind direction tracking wings W1 and W2 are likely to be convexly curved, but they are indicated by broken lines. Thus, when the width near the wind turbine shaft 1 is reduced, the wind turbine shaft 1 is easily curved convexly. Thus, the part which is easy to curve convexly changes with the shapes of propellers P1 and P2. Of course, the propellers P1 and P2 may be curved so that the front surface is convex over the entire length.

図2の実施形態はスリット付きであり、プロペラP1、P2に直径方向のスリットS1、S2を有している。その結果、プロペラP1、P2は直径方向のスリットS1、S2によって2分され2段構造になると共に、回転中心を谷状Vに曲げた迎え角の作用で、プロペラP1、P2が矢印a1方向に回転したときの気流の下流側すなわち後段P12、P22が、風車軸1の発電機側(プロペラP1、P2の背部側)に、段違いにずれている。しかも、風車の回転軸1の位置、すなわち回転中心で連結軸1’を挟んで一体に連結されている。 The embodiment of FIG. 2 has slits, and the propellers P1 and P2 have diametrical slits S1 and S2. As a result, the propellers P1 and P2 are divided into two stages by the slits S1 and S2 in the diametrical direction, and the propellers P1 and P2 are moved in the direction of the arrow a1 by the action of the angle of attack with the center of rotation bent into a valley shape V. The downstream side of the airflow when rotating, that is, the rear stages P12 and P22 are shifted in a stepwise manner to the generator side of the wind turbine shaft 1 (the back side of the propellers P1 and P2). Moreover, they are integrally connected with the connecting shaft 1 ′ at the position of the rotating shaft 1 of the windmill, that is, the center of rotation.

このように、プロペラP1、P2がスリットS1、S2で分離し、かつ前段と後段とに段違いになり、かつ回転中心で連結軸1’で一体に連結されていると、2段構造のプロペラP11、P12とP21、P22それぞれに揚力が発生するので、回転速度が速くなる。また、2分したプロペラP11、P12とP21、P22それぞれの内端すなわち、回転中心寄りの部位同士が一体に連結されているので、プロペラが2分されても強度は維持されるが、スリットを設けたことによるプロペラの表面強度の低下は否めないので、スリットを塞いでリブのように強度増加もできる。なお、理論上は3分割、4分割も可能である。 As described above, when the propellers P1 and P2 are separated by the slits S1 and S2, the front and rear stages are stepped, and the propeller P11 having a two-stage structure is integrally connected by the connecting shaft 1 'at the center of rotation. , P12, P21, and P22 generate lift, so that the rotational speed increases. Also, since the inner ends of the two divided propellers P11, P12 and P21, P22, that is, the portions near the rotation center are integrally connected, the strength is maintained even if the propeller is divided into two, but the slits Since the decrease in the surface strength of the propeller due to the provision is undeniable, the strength can be increased like a rib by closing the slit. Theoretically, three divisions and four divisions are possible.

図3〜図5はプロペラの形状をデザイン化した例であり、複雑な形状をしている。図3は正面図、図4は打ち抜いた形態を示す平面図、図5は背面図である。このような複雑な形状のプロペラを製造するには、先ず板金を図4のようにスリットS1、S2付き形状に打ち抜いた後に、曲げ加工を行なって、図3、図5のような前段プロペラP11、P21を回転中心で谷状Vに曲げて揚力発生用の迎え角を形成したり、風向追尾翼W1、W2を背面方向に曲げて曲面2・2を形成する。
そして、気流の下流側の後段プロペラP12、P22の内端すなわち、回転中心寄りの部位同士を一体に連結する。加えて、前記後段プロペラP12、P22間の回転中心と気流の上流側の前段プロペラP11、P21の内端すなわち、回転中心寄りの部位同士を連結軸1’で一体に連結する。風車軸1は、前記前段側プロペラと後段側プロペラの回転中心位置に取付ける。
3 to 5 are examples of designing the shape of the propeller and have a complicated shape. 3 is a front view, FIG. 4 is a plan view showing a punched form, and FIG. 5 is a rear view. In order to manufacture a propeller having such a complicated shape, first, a sheet metal is punched into a shape with slits S1 and S2 as shown in FIG. 4, and then bending is performed to obtain a front stage propeller P11 as shown in FIGS. , P21 is bent into a valley V at the rotation center to form an angle of attack for generating lift, or the wind direction tracking blades W1 and W2 are bent in the back direction to form curved surfaces 2 and 2.
Then, the inner ends of the rear stage propellers P12 and P22 on the downstream side of the air flow, that is, the portions near the rotation center are integrally connected. In addition, the rotation center between the rear propellers P12 and P22 and the inner ends of the upstream propellers P11 and P21 on the upstream side of the air flow, that is, the portions near the rotation center are integrally connected by a connecting shaft 1 ′. The wind turbine shaft 1 is attached to the rotation center position of the front stage propeller and the rear stage propeller.

このようにプロペラP1、P2を板状にできるため、プロペラP1、P2の全部又は一部を肉厚が一定の材料で形成できる。従って、全体の形状を打ち抜いた後に、曲げ加工や接続加工を行なうだけで製造でき、少ない工程で製造できる。そして、もちろん鋳型形成も可能である。
風向追尾翼W1、W2の後端に曲面2に代わる曲面を形成することもできる。この場合は、機能翼fの風向追尾翼W1、W2の後端の外側ではなく、回転中心寄りRを風車背部に曲げて曲面にする。このように風向追尾翼W1、W2の後端の内側Rに曲面を形成した場合も、円筒状の回転面が形成され、かつ通過抵抗が少なくなるように来風が通過するので、プロペラの風向追尾が可能となる。
なお、一つの風車において、風向追尾翼W1、W2の前端外側の曲面2と、後端内側Rに設ける曲面とを併用することも可能である。また、風向追尾翼W1、W2の形状やプロペラ外端との連結位置は自由であり、特に制限されない。
Thus, since the propellers P1 and P2 can be formed into a plate shape, all or part of the propellers P1 and P2 can be formed of a material having a constant thickness. Therefore, after punching out the entire shape, it can be manufactured simply by bending and connecting, and can be manufactured with fewer steps. Of course, mold formation is also possible.
A curved surface in place of the curved surface 2 can also be formed at the rear ends of the wind direction tracking wings W1, W2. In this case, not the outside of the rear end of the wind direction tracking wings W1 and W2 of the functional wings f, but the rotation center side radius R is bent to the windmill back to make a curved surface. Even when a curved surface is formed on the inner side R of the rear end of the wind direction tracking wings W1 and W2 in this way, a cylindrical rotating surface is formed and the incoming wind passes so as to reduce the passage resistance. Tracking is possible.
In one windmill, it is also possible to use the curved surface 2 outside the front end of the wind direction tracking blades W1 and W2 and the curved surface provided inside the rear end R at the same time. Further, the shape of the wind direction tracking blades W1 and W2 and the connection position with the outer end of the propeller are arbitrary and are not particularly limited.

図6は、本発明のプロペラ型風車を、ダウンウインド型としても、縦軸型としても使用できる例を示す斜視図であり、中抜きの矢印方向から風を受けているものとする。従って、Aがアップウインド型であり、Bがダウンウインド型、Cが縦軸型である。Eは発電機てあり、それぞれの風車A、B、Cで駆動される。増速手段は図示を省いてある。
なお、アップウインド型の風車Aが無く、ダウンウインド型の風車B及び/又は縦軸型の風車Cだけで発電機を駆動してもよい。
FIG. 6 is a perspective view showing an example in which the propeller type windmill of the present invention can be used as a downwind type or a vertical axis type, and it is assumed that wind is received from the direction of the hollow arrow. Therefore, A is an up window type, B is a down window type, and C is a vertical axis type. E is a generator and is driven by each windmill A, B, C. The speed increasing means is not shown.
The generator may be driven only by the downwind type windmill B and / or the vertical type windmill C without the upwind type windmill A.

ダウンウインド型の風車Bは、背部で受風した方が高速回転する構成となっており、従って、アップウインド型の風車Aをダウンウインド用にアシスト部を形成してある。それは、図7のように、風車Bの受風面に補助翼3を設けて、機能翼fによる回転をアシストするものであれば足り、回転軸1寄りに設けてあるので回転力は小さいが、機能翼fと同じ向きに傾斜しているので、回転の妨げにはならない。 The downwind type windmill B is configured to rotate at a higher speed when the wind is received at the back portion. Therefore, the upwind type windmill A is formed with an assist portion for the downwind. As shown in FIG. 7, it is sufficient if the auxiliary blade 3 is provided on the wind receiving surface of the windmill B and assists the rotation by the functional blade f, and the rotation force is small because it is provided closer to the rotating shaft 1. Since it is inclined in the same direction as the functional blade f, it does not hinder rotation.

縦軸型の風車Cは、アップウインド型のプロペラ風車Aを兼用するが、図8以下のように、風車の周辺を工夫した受風構造とすることにより、車などの移動体や建物の屋上、屋外、そして工作物などにも取り付けが可能となる。
図8は、車載型の縦軸型風車にした例を示す平面図であり、車の前進により中抜きの矢印方向の風を受けるものとすると、プロペラ風車Cの外径より小さな直径の円穴4の空いた仕切り壁5をプロペラの背面側(下側)に設けてある。なお、円穴4は、風車Cの外径と同等程度でもよい。
図9は前記矢印方向から見た正面図であり、仕切り壁5の風車C側に、風車Cの回転の妨げとなる向かい風を阻止する防風壁6を設けてある。すなわち、風車Cが矢印a1方向に回転するものとすると、向かい風すなわち逆風となる成分は回転を妨げるので、防風壁6を設けて阻止するのである。
この防風壁6は、車の前進方向から20±3度退避する寸法がよい。
The vertical wind turbine C is also used as the upwind type propeller wind turbine A. However, as shown in FIG. 8 and below, by adopting a wind receiving structure that devises the periphery of the wind turbine, It can be installed outdoors, and on workpieces.
FIG. 8 is a plan view showing an example of an in-car type vertical axis windmill, and if a wind in the direction of a hollow arrow is received as the vehicle advances, a circular hole having a diameter smaller than the outer diameter of the propeller windmill C Four empty partition walls 5 are provided on the back side (lower side) of the propeller. The circular hole 4 may be approximately the same as the outer diameter of the windmill C.
FIG. 9 is a front view seen from the direction of the arrow, and a windbreak wall 6 is provided on the side of the windmill C of the partition wall 5 to block the headwind that prevents the windmill C from rotating. That is, assuming that the windmill C rotates in the direction of the arrow a1, a component that becomes a head wind, that is, a reverse wind, prevents the rotation.
The wind barrier 6 is preferably sized to retract 20 ± 3 degrees from the forward direction of the vehicle.

一方風車の背面側に、風を集めるための前開きのガイド壁8・8を両側に設けてあるが、ガイド壁8・8の最も狭い部分が前記円穴4と一致するように配置するのがよい。この空間からプロペラの背面に風を当てるので、この空間を背風室と呼ぶ。
また、図10に示すように、ガイド壁8・8の後方周囲には、集めた風を前記機能翼f側に導く立ち上がりガイド壁9を設けてある。
従って、左右のガイド壁8・8間の入口iから入って来た風は、奥のガイド壁9で立ち上がって機能翼fの裏面に当たり、矢印a1方向に回転させる。また、前記仕切り壁5の上側に到来した風は、前記防風壁6で阻止されない有効成分だけがプロペラCの追い風として作用し、プロペラを効果的に回転させる。
On the other hand, front opening guide walls 8 and 8 for collecting wind are provided on both sides on the rear side of the windmill, but the narrowest part of the guide walls 8 and 8 is arranged so as to coincide with the circular hole 4. Is good. This space is called the back wind chamber because wind is applied to the back of the propeller from this space.
As shown in FIG. 10, a rising guide wall 9 is provided around the rear of the guide walls 8 and 8 to guide the collected wind toward the functional blade f.
Accordingly, the wind that has entered from the entrance i between the left and right guide walls 8 and 8 rises at the back guide wall 9, hits the back surface of the functional blade f, and rotates in the direction of the arrow a <b> 1. Further, in the wind that has reached the upper side of the partition wall 5, only the effective component that is not blocked by the windbreak wall 6 acts as a tailwind of the propeller C, and effectively rotates the propeller.

この構成を車載用としたのが図11であり、図示のようにボンネット10の下に組み込んだり、屋根に取付けてカバー11で覆ったりできる。カバー11の後方ほど間隔を大きくしておくと、カバー11に当たった風は後方に吹き飛ばされるので、何ら支障は生じない。なお、車載用風力発電装置は傾いた状態で設置することもできる。
このような要領で、車に限らず列車や船舶などの移動体に取付けて風力発電し、消費することができる。このようにプロペラ型の風車を縦軸型として実装することで偏平になるので、前記のような発電形態が可能で、今後の自家発電の用途が期待できる。
FIG. 11 shows this configuration for in-vehicle use, and it can be incorporated under the hood 10 as shown in the figure, or attached to the roof and covered with the cover 11. If the interval is increased toward the rear of the cover 11, the wind that hits the cover 11 is blown backward, so that no trouble occurs. The in-vehicle wind power generator can be installed in an inclined state.
In this way, it can be attached to a moving body such as a train or a ship, not limited to cars, and can be consumed by wind power generation. As described above, since the propeller type wind turbine is mounted as the vertical axis type, it becomes flat. Therefore, the power generation mode as described above is possible, and future use of private power generation can be expected.

図8〜図11の実施形態をさらに改良したのが図12以下であり、風車Cの回転の妨げとなる向かい風を阻止する防風壁6は、プロペラの前半分を覆うような半ドーム状部6’と連続的に形成するのが効果的であることが実験の結果判明した。この半ドーム状部6’を設ける場合、風の取り込み口Oが正面に開口しており、その高さ方向の寸法はプロペラCの高さの1/2〜1/3であり、水平方向の寸法は90±20度程度が効果的で、プロペラの回転数を多くできる。すなわち、半ドーム状部6’で、プロペラCの前半分を覆うことにより、正面から入る風圧で、円穴4の下から上向きに流れる風圧とぶつかるのを防ぎ、かつ風圧が当たる天井を高くしている。 The embodiment of FIGS. 8 to 11 is further improved in FIG. 12 and the following, and the windbreak wall 6 that prevents the head wind that prevents the wind turbine C from rotating is a semi-dome-shaped portion 6 that covers the front half of the propeller. The results show that it is effective to form 'and continuously. When the half dome-shaped portion 6 'is provided, the wind intake port O is open to the front, and the height direction dimension is 1/2 to 1/3 of the height of the propeller C. The effective dimension is about 90 ± 20 degrees, and the number of rotations of the propeller can be increased. That is, by covering the front half of the propeller C with the half dome-shaped portion 6 ′, the wind pressure entering from the front is prevented from colliding with the wind pressure flowing upward from the bottom of the circular hole 4, and the ceiling to which the wind pressure hits is increased. ing.

図14は、以上のような風の流れを表現した右側面図である。この図から明らかなように、背風室の底面88は前下がりの斜面になっているので、入口iから入った風は、プロペラCの背面に向かってガイドされる。
この半ドーム状部6’の下端とプロペラCの回転風が正面衝突する部位は、プロペラCの円滑な回転を妨げるので、半ドーム状部6’の下端6’’を、半径が大きくなるように膨らませるのがよい。なお、膨大部分6’’は、本来の位置より、角度βだけ後退させるのが効果的である。
FIG. 14 is a right side view expressing the wind flow as described above. As is clear from this figure, the bottom surface 88 of the back wind chamber has a slope that falls forward, so that the wind entering from the inlet i is guided toward the back surface of the propeller C.
The part where the lower wind of the semi-dome 6 'and the rotating wind of the propeller C collide frontally prevents the propeller C from rotating smoothly, so that the lower end 6''of the semi-dome 6' has a larger radius. It is better to inflate. It is effective to retract the enormous portion 6 '' by an angle β from the original position.

このような背風室から上向きの風は、ダウンウインド型風車が受ける風と同じ効果である。また、半ドーム状部6’の設置効果は、入口iから吹き込む上向きの風と仕切り壁5の上側の風がぶつかって渦ができ、風の流れが抵抗を受けて風のスピードが阻害されるのを防ぐことである。そして、半ドーム状部6’の下端の風の取り込み口Oを開くことで、機能翼の曲面に当たる風が揚力を強め、回転数を更に上げることができる。 Such an upward wind from the back wind chamber has the same effect as the wind received by the downwind wind turbine. Further, the installation effect of the semi-dome-shaped portion 6 ′ is that the upward wind blown from the inlet i and the wind on the upper side of the partition wall 5 collide with each other to form a vortex, and the wind flow is resisted and the wind speed is hindered. It is to prevent. Then, by opening the wind intake port O at the lower end of the half dome-shaped portion 6 ′, the wind hitting the curved surface of the functional wing can increase the lift and further increase the rotational speed.

半ドーム状部6’により、図15のようにボンネット10が高くなる場合は、図16のように、ボンネット10全体を高くするのでなく、半ドーム状部6’の部分のみボンネット10を高くし、風の下流側に開口部を設けて風の流出を早くすることで、回転数を更に上げることができる。 When the bonnet 10 is raised as shown in FIG. 15 by the semi-dome-shaped portion 6 ′, the bonnet 10 is raised only at the portion of the half-dome-shaped portion 6 ′ instead of raising the entire bonnet 10 as shown in FIG. The rotational speed can be further increased by providing an opening on the downstream side of the wind to accelerate the outflow of the wind.

高速道路を走行する際などに、仕切り壁5の下側の入口iから入り、上向きに流れる風圧が強過ぎる場合は、入口iから入る風量を絞って回転数を調節する必要がある。そのために、入口iの閉鎖手段12を設けて風の流入量を絞り、上向きの風圧が強過ぎないようにしている。
このように、入口iを閉じることが、プロペラすなわち発電機の回転過剰に対する制動作用をするので、閉鎖手段12は入口iの自動開閉制御が好ましい。
閉鎖手段12は、図示例ではゼンマイ状を用いて、巻き取ったり繰り出したりできる構造を採用しているが、入口iの開閉量を調節可能に水平方向に可動式の閉鎖手段であれば、ゼンマイ状以外でも差し支えない。12eは、閉鎖手段12の先端である。
When traveling on an expressway or the like, if the wind pressure entering from the lower entrance i of the partition wall 5 and flowing upward is too strong, it is necessary to adjust the rotational speed by reducing the amount of air entering from the entrance i. For this purpose, the closing means 12 for the inlet i is provided to reduce the amount of wind inflow so that the upward wind pressure is not too strong.
Thus, closing the inlet i has a braking action against excessive rotation of the propeller, that is, the generator, and therefore the closing means 12 is preferably controlled to automatically open and close the inlet i.
In the illustrated example, the closing means 12 employs a structure that can be wound or unwound using a spring shape. However, if the closing means 12 is movable in the horizontal direction so that the opening / closing amount of the inlet i can be adjusted, the spring is used. It can be other than the shape. 12 e is the tip of the closing means 12.

発電機Eは、増速手段で増速してから発電機を駆動する場合が多く、風車の出力そのままで発電機Eを駆動することはないが、高性能発電機が開発されれば、増速手段なしも可能になる。
図では、この増速手段は図示されていないが、図8以下の場合でも、増速手段を介して発電機を回すことになる。
The generator E often drives the generator after being increased by the speed increasing means, and does not drive the generator E with the output of the windmill as it is, but if a high performance generator is developed, it will increase. There is no need for speed means.
Although the speed increasing means is not shown in the figure, the generator is rotated through the speed increasing means even in the case of FIG.

建物の屋上や屋外などに設置する場合は、設置場所の状況に応じて支柱の有無を判断し、風車の周辺装置の風向追尾を方向舵やヨー制御で実施する。そのために、エーロベーン型の風向計13や方向舵を設けて、回転部にベアリングを介在させて容易に回転可能にすれば、手動又は自動で図8〜図14の装置全体が常に風向に向く構成にする。また、背風室の周辺形態は自由であり、設置場所の状態によって色々なバリエーションがある。なお、半ドーム状部6’と閉鎖手段12を撤去した状態の設置もありうる。そして、背風室及び周辺装置に設置する風車は風向追尾型にこだわらない。また、風車を背風室の中へ沈めて高さを調節することによって回転数のコントロールができるので台風時でも回転を止めることなく発電が可能である。 When installing on the rooftop of a building or outdoors, the presence / absence of a support is determined according to the situation of the installation location, and the wind direction tracking of the peripheral device of the windmill is carried out by rudder or yaw control. For this purpose, if an aero vane anemometer 13 or a rudder is provided to enable easy rotation by interposing a bearing in the rotating part, the entire apparatus shown in FIGS. 8 to 14 is always directed to the wind direction. To do. Moreover, the peripheral form of the back wind chamber is free, and there are various variations depending on the state of the installation location. In addition, the installation in the state which removed the half dome-shaped part 6 'and the closing means 12 may also be possible. And the windmill installed in a back wind chamber and a peripheral device does not stick to a wind direction tracking type. Moreover, since the rotation speed can be controlled by sinking the windmill into the back wind chamber and adjusting the height, it is possible to generate electricity without stopping the rotation even during a typhoon.

以上のように、風向追尾用として、風車の背部方向に曲がった曲面をプロペラの機能翼の外端及び/又は内端に有しているので、アップウインド方式のプロペラ型風車における方向舵やヨーコントロール装置の問題を解決する必要が無くなる。また、ダウンウインド型や縦軸型としても使用できるだけでなく、プロペラの周辺を改良することにより小型発電機や移動体型、建物の屋上型や屋外型の風力発電機も実現できる。さらに、風切音の問題に対しては、翼に当たる風圧に時間差があるため、ほとんど風切音が無いことも大きな特徴である。 As described above, the windshield has a curved surface curved in the back direction of the windmill at the outer end and / or inner end of the functional blade of the propeller, so the rudder and yaw control in the upwind type propeller type windmill Eliminates the need to solve device problems. Moreover, it can be used not only as a downwind type or a vertical axis type, but also by improving the periphery of the propeller, a small generator, a moving body type, a rooftop type of a building, and an outdoor type wind generator can be realized. In addition, with respect to the problem of wind noise, there is a significant difference in that there is almost no wind noise because there is a time difference in the wind pressure hitting the wing.

1 風車軸
1’ 連結軸
P1・P2 プロペラ
W1・W2 風向追尾用の翼
f 機能翼
2 風向追尾曲面
V 谷状折り曲げ部
S1・S2 スリット
P11・P12 2分されたプロペラP1
P21・P22 2分されたプロペラP2
R 風向追尾翼の後端内側の部分
A アップウインド型
B ダウンウインド型
C 縦軸型
E 発電機
O 風の取り込み口
i 入口
3 補助翼
4 円穴
5 仕切り壁
6 防風壁
6’ 半ドーム状部
8 前開きのガイド壁
88 背風室の底面
9 立ち上がりガイド壁
10 ボンネット
11 カバー
12閉鎖手段
12e 閉鎖手段の先端
13 風向計
1 Windmill shaft 1 'Connecting shaft
P1 / P2 propeller
W1 ・ W2 Wind direction tracking wing f Function wing 2 Wind direction tracking curved surface V Valley-shaped bent part
S1 ・ S2 Slit P11 ・ P12 Divided propeller P1
P21 / P22 Divided propeller P2
R Inside part of rear end of wind direction tracking wing A Up window type B Down window type C Vertical axis type E Generator O Wind intake i Inlet 3 Auxiliary wing 4 Circular hole 5 Partition wall 6 Windproof wall 6 'Semi-dome-shaped part
8 Front opening guide wall
88 Back surface 9 Back up guide wall
10 Bonnet
11 Cover
12 Closing means
12e Tip of closing means
13 Anemometer

Claims (5)

プロペラ正面が上向きの縦軸型の風車に側面方向から風を受ける構造の風力発電装置において、
水平方向に配置した仕切り壁は、前記プロペラが、前記仕切り壁の下側の背風室の中に沈降できるようにプロペラ外径より大径の円穴が開いているか又は前記背風室の中に沈降不能なようにプロペラ外径より小径か同等程度の円穴が開いており、
回転軸の側面方向に到来する風圧の一部はプロペラの側面に当たり、他の一部はプロペラの背面すなわち下面に当たるようにガイドされる構造であることを特徴とするプロペラ型風力発電装置。
In a wind turbine generator having a structure that receives wind from the side of a vertical wind turbine with the propeller front facing upward ,
The partition wall arranged in the horizontal direction has a circular hole with a diameter larger than the outer diameter of the propeller or is settling in the back wind chamber so that the propeller can sink into the back wind chamber below the partition wall. A circular hole with a diameter smaller than or equal to the outer diameter of the propeller is opened so that it is impossible,
A propeller-type wind power generator characterized in that a part of wind pressure coming in the side direction of the rotating shaft hits the side surface of the propeller and the other part is guided so as to hit the back surface, that is, the lower surface of the propeller.
前記仕切り壁の上側には、プロペラの回転方向に対する逆風を阻止する防風壁を設け、
前記仕切り壁の下側には、プロペラ側に風を集めるための前開きのガイドを設けると共に、前記背風室の底面は前下がりの傾斜面とし、前記背風室の後方周辺は風をプロペラ側に導く立ち上がりガイド壁を有していることを特徴とする請求項1に記載のプロペラ型風力発電装置。
Provided on the upper side of the partition wall is a windbreak wall that prevents backwind against the direction of rotation of the propeller,
A front opening guide for collecting wind on the propeller side is provided below the partition wall, and the bottom surface of the back wind chamber is an inclined surface with a downward slope, and the rear periphery of the back wind chamber is directed to the propeller side. The propeller-type wind power generator according to claim 1, further comprising a rising guide wall for guiding.
前記仕切り壁の下側には、プロペラ下面に取り込む風量を調節する開閉手段を設けてなることを特徴とする請求項1又は請求項2に記載のプロペラ型風力発電装置。 The propeller type wind power generator according to claim 1 or 2, wherein an opening / closing means for adjusting an amount of air taken into a lower surface of the propeller is provided below the partition wall. 風向を検出して、手動又は自動で前記のプロペラ型風力発電装置全体が風向に向くように構成してなることを特徴とする請求項1、請求項2又は請求項3に記載のプロペラ型風力発電装置。The propeller-type wind power according to claim 1, wherein the propeller-type wind power generator is configured to detect the wind direction and the entire propeller-type wind power generator is directed to the wind direction manually or automatically. Power generation device. プロペラ正面が上向きの縦軸型の風車に側面方向から風を受ける構造の風力発電装置を駆動する際に、
水平方向に配置した仕切り壁は、前記プロペラが、前記仕切り壁の下側の背風室の中に沈降できるようにプロペラ外径より大径の円穴を開けておき又は背風室の中に沈降不可能なようにプロペラ外径より小径か同等程度の円穴を開けておくとともに、
回転軸の側面方向から前記仕切り壁のプロペラ側に到来する風圧はプロペラの側面に当たってプロペラを回転させ、前記仕切り壁の側に到来する風圧はプロペラの面に当たってプロペラを回転させるようにガイドすることを特徴とするプロペラ型風力発電方法。
When driving a wind power generator with a structure that receives wind from the side in a vertical wind turbine with the propeller front facing upward ,
The partition wall arranged in the horizontal direction has a circular hole with a diameter larger than the outer diameter of the propeller so that the propeller can sink into the back wind chamber below the partition wall, or is not settling in the back wind chamber. Open a circular hole with a diameter smaller than or equal to the outer diameter of the propeller as much as possible,
Wind pressure coming from the side of the rotating shaft to the propeller side of the partition wall to rotate the propeller against the side surface of the propeller, wind pressure arriving at the lower side of the partition wall guides to rotate the propeller hits the bottom surface of the propeller Propeller type wind power generation method characterized by the above.
JP2012287858A 2010-12-01 2012-12-28 Wind power generator Active JP5339648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287858A JP5339648B2 (en) 2010-12-01 2012-12-28 Wind power generator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010268336 2010-12-01
JP2010268336 2010-12-01
JP2011209620 2011-09-26
JP2011209620 2011-09-26
JP2012287858A JP5339648B2 (en) 2010-12-01 2012-12-28 Wind power generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012525807A Division JP5400224B2 (en) 2010-12-01 2011-11-25 Propeller type windmill

Publications (2)

Publication Number Publication Date
JP2013083264A JP2013083264A (en) 2013-05-09
JP5339648B2 true JP5339648B2 (en) 2013-11-13

Family

ID=46171751

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012525807A Active JP5400224B2 (en) 2010-12-01 2011-11-25 Propeller type windmill
JP2012287858A Active JP5339648B2 (en) 2010-12-01 2012-12-28 Wind power generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012525807A Active JP5400224B2 (en) 2010-12-01 2011-11-25 Propeller type windmill

Country Status (2)

Country Link
JP (2) JP5400224B2 (en)
WO (1) WO2012073813A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526122B1 (en) * 2014-09-11 2015-06-04 권현기 Small turbine with adjustable rotation speed using plastic properties and centrifugal
KR102220371B1 (en) * 2019-11-01 2021-02-25 윤차현 Rotor for generating lift force and drag force with high efficiency
JP7304529B2 (en) * 2020-09-08 2023-07-07 浩一 山田 wind generator

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149577U (en) * 1979-04-16 1980-10-28
US4379813A (en) * 1979-06-06 1983-04-12 Newnham John H Propellers and windmills
JPS5741475A (en) * 1980-08-22 1982-03-08 Hiroshi Hasegawa Propeller windmill with vertical shaft
JPS57137657A (en) * 1981-02-20 1982-08-25 Mitsubishi Heavy Ind Ltd Wind power generation system
JPS601382A (en) * 1983-06-17 1985-01-07 Hitachi Ltd Windmill with auxiliary vanes for output control
JPS6298776U (en) * 1985-12-12 1987-06-23
JPH10103216A (en) * 1996-09-27 1998-04-21 Michiaki Tsutsumi Wind power generating device with induction plate in three-dimensional layer wind catching system
JP2002266746A (en) * 2001-03-08 2002-09-18 Hiroshige Takeda Horizontal windmill
DE10119516A1 (en) * 2001-04-20 2002-10-24 Hermann Wenninger Wind power unit has pivot bearing cantilevered arm with bend or curve and rotor
JP2004084590A (en) * 2002-08-28 2004-03-18 Mitsubishi Heavy Ind Ltd Wind mill with winglet
JP3875618B2 (en) * 2002-10-15 2007-01-31 常夫 野口 Wind turbine for horizontal axis wind power generator
JP2004162668A (en) * 2002-11-15 2004-06-10 Susumu Nakaji Wind power generating device, and starting device for power generator using the same device
JP2005054642A (en) * 2003-08-01 2005-03-03 Ohbayashi Corp Wind power generating device
JP2005121001A (en) * 2003-10-16 2005-05-12 Tomoji Oikawa Large size bus propelled by wind turbine generator
JP2006017093A (en) * 2004-07-01 2006-01-19 Loopwing Kk Wing manufacturing method for both end-fixed wind force prime mover
JP4728008B2 (en) * 2005-02-15 2011-07-20 株式会社ベルシオン Horizontal axis windmill
JP4627700B2 (en) * 2005-08-09 2011-02-09 東洋セラミックス株式会社 Wind power generator

Also Published As

Publication number Publication date
JP2013083264A (en) 2013-05-09
JPWO2012073813A1 (en) 2014-05-19
JP5400224B2 (en) 2014-01-29
WO2012073813A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US8777580B2 (en) Secondary airfoil mounted on stall fence on wind turbine blade
CN101622448B (en) Vertical shaft windmill
EP2604856B1 (en) Wind turbine blade, wind power generation device provided with same, and design method for wind turbine blade
EP2432993B1 (en) A wind turbine and method
US9523279B2 (en) Rotor blade fence for a wind turbine
US9371818B1 (en) Cyclonic aeolian vortex turbine
EP2309119A1 (en) Windmill blade and wind power generator using same
US7946802B1 (en) Wind turbine utilizing wind directing slats
CN101321949A (en) Blade for a wind turbine rotor
US11156204B2 (en) Wind turbine
US8063502B1 (en) Shrouded wind turbine with dual coaxial airflow passageways
US20130017084A1 (en) High efficiency verical axis wind turbine
WO2006123951A1 (en) A wind turbine
EP3029315A1 (en) Wind power generation tower provided with gyromill type wind turbine
US20150064003A1 (en) Airflow modifying element for suppressing airflow noise
JP5339648B2 (en) Wind power generator
WO2013040600A1 (en) Wind generator hub assembly with hybrid sail blades
CN109844307B (en) Rooftop wind turbine flow improvement system
WO2001025629A1 (en) Method and apparatus for utilizing wind energy
EP2541048A2 (en) Airfoil, wind rotor and wind rotor arrangement
JP4457203B2 (en) Windshield
US9982655B2 (en) Rotor and fluid turbine with rotor
CN112703314A (en) Wind turbine with blade carrying structure with aerodynamic properties
KR200268868Y1 (en) The fan structure of wind generator
KR101328313B1 (en) Wind power generation which has the air volume adjuster

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130104

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5339648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250