JP2006017093A - Wing manufacturing method for both end-fixed wind force prime mover - Google Patents

Wing manufacturing method for both end-fixed wind force prime mover Download PDF

Info

Publication number
JP2006017093A
JP2006017093A JP2004220925A JP2004220925A JP2006017093A JP 2006017093 A JP2006017093 A JP 2006017093A JP 2004220925 A JP2004220925 A JP 2004220925A JP 2004220925 A JP2004220925 A JP 2004220925A JP 2006017093 A JP2006017093 A JP 2006017093A
Authority
JP
Japan
Prior art keywords
wing
blade
prime mover
view
wind force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004220925A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
穣 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOOPWING KK
Original Assignee
LOOPWING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOOPWING KK filed Critical LOOPWING KK
Priority to JP2004220925A priority Critical patent/JP2006017093A/en
Publication of JP2006017093A publication Critical patent/JP2006017093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wing manufacturing method for a wind force prime mover having both ends fixed to a shaft. <P>SOLUTION: This wind force prime mover is fixed to both ends of a wing. A high strength material having the thickness of a 1.5 rate or less of a maximum wing width, is arranged in the singular number or a plurality on the front edge side of the wing, and a wing surface material is arranged in the wing width direction with this material as a strength base material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、翼の両端を軸に固定する風力原動機の翼製作方法に関するものである。  The present invention relates to a method of manufacturing a blade of a wind power prime mover in which both ends of the blade are fixed to a shaft.

従来の翼は平板整形や樹脂成型によって製作されてきた。また、従来翼は一方の端のみを固定する形状で、強度母材は捩れを防止するため、通常、揚力中心付近となる前縁から30%付近に配置されていた。Conventional blades have been manufactured by flat plate shaping or resin molding. Further, the conventional blade has a shape in which only one end is fixed, and the strength base material is usually arranged in the vicinity of 30% from the leading edge near the center of lift in order to prevent torsion.

自然風は時間および空間において速度や方向が激しく変動している。小形風車では翼の回転位置での風速風向変動は少ないが、直径が60m以上の大形風車では翼の回転位置で風速や風向が変化し、翼はピッチ方向に捩れながら回転している。定格以上の風速域では可変ピッチ機構で翼全体を捩り出力調整を行っている。しかし、大型化が進むにつれて要求される捩り強度が大きくなり翼根元を大きく強じんにすることが要求され、製作コストが増大する。
また、小形風車は居住区域内の乱流の多い場所に設置されるケースが多い。このような場所では堅い材料で製作された風車の破損や羽根飛散による人災の危険も懸念されていた。
Natural winds vary rapidly in speed and direction in time and space. In a small windmill, fluctuations in wind speed and wind direction at the rotational position of the blade are small, but in a large windmill having a diameter of 60 m or more, the wind speed and the wind direction change at the rotational position of the blade, and the blade rotates while twisting in the pitch direction. In the wind speed range above the rating, the entire blade is torsionally adjusted with a variable pitch mechanism. However, as the size increases, the required torsional strength increases, and the blade root is required to be greatly strengthened, resulting in an increase in manufacturing cost.
Small windmills are often installed in turbulent places in residential areas. In such a place, there were concerns about the danger of man-made disasters due to breakage of windmills made of hard materials and flying blades.

小形風車において、本発明ではピアノ線など十分な強度を持つ材料の両端を固定し、これを羽根の前縁に配置し、これを強度母材として、翼面を樹脂板やリブに膜材を張って形成することで軽量で柔軟な翼にすることができる。
また、大形風車において、本発明ではアーチ状に両端を固定した強度母材はこれまでの一端固定のプロペラ型よりも軽量化が可能であり、この強度母材から翼板やリブと膜材を用いた翼面を形成すればよく、従来翼のように一体にする必要がなく、複数に分割することも可能となる。
後縁には翼面を形成する為の補助材として針状材料を配置することができる。針状材料は紐、針金、パイプなどが上げられる。
In a small windmill, in the present invention, both ends of a material having sufficient strength, such as a piano wire, are fixed and placed on the front edge of the blade, and this is used as a strength base material, and the blade surface is a resin plate or rib with a film material. It can be made light and flexible by forming it with tension.
Further, in a large wind turbine, in the present invention, the strength base material in which both ends are fixed in an arch shape can be lighter than the conventional one-end fixed propeller type. From this strength base material, the blade plate, the rib and the membrane material It is only necessary to form a blade surface using, and it is not necessary to be integrated as in the conventional blade, and it is possible to divide into a plurality of blades.
A needle-like material can be arranged on the trailing edge as an auxiliary material for forming the blade surface. The needle-shaped material can be a string, a wire, a pipe or the like.

翼面上の流れを滑らかに保つためには強度母材の厚みは薄くし風の流入角に合わせることが望まれるが、風速風向変動や負荷の変動によって流入角が変化してしまうためある程度の変化に対応できることも要求される。流入角の変化幅は設計値に対してプラスマイナス4度前後が最大であり、その正接の2倍程度を最大とすることで自然風の中でも高い効率を維持できることから、強度母材の厚みは最大翼幅の1.5割以下とする。In order to keep the flow on the blade surface smooth, it is desirable to reduce the strength of the base metal and adjust it to the inflow angle of the wind. It must also be able to respond to changes. The range of change of the inflow angle is about plus or minus 4 degrees relative to the design value, and since the maximum efficiency is maintained even in natural winds by maximizing twice the tangent, the thickness of the strength base material is The maximum blade width should be 1.5% or less.

小形風車において、本発明によれば、破損の少ない強じんな強度母材と軽量柔軟な翼面材を共存させた翼を製作することが可能となり、万が一の衝突事故でも強度母材が破損する危険が少なく、軽量柔軟材で構成された翼面部分が破損し飛散しても周辺に与える被害は小さく押さえることができる。
また、大形風車では翼の各部分や各回転位置で変化する風の風速風向変動を柔軟翼が自ら歪んでバランスをとることが可能になる。また、羽根の仕事量が多い中央部分を可変ピッチ式にすることで、従来の風車よりもさらに大きな風車の製作が可能になる。さらに部分的な翼のストール制御やハイドロブレーキ翼を配置することも可能になる。
In a small wind turbine, according to the present invention, it is possible to manufacture a wing in which a strong base material with little damage and a lightweight flexible wing face material coexist, and the strength base material is damaged even in the event of a collision. There is little danger, and even if the wing surface portion made of a lightweight flexible material breaks and scatters, damage to the periphery can be suppressed to a small extent.
Further, in a large windmill, the flexible blade can distort itself and balance the wind speed variation of the wind that changes at each part of the blade and at each rotational position. Further, by making the central portion where the work amount of the blades is a variable pitch type, it becomes possible to manufacture a windmill larger than the conventional windmill. Furthermore, it becomes possible to arrange partial wing stall control and hydro brake wings.

小形風車において、高力棒材を強度母材1とし、この両端を軸に固定し、中央を翼先端とするアーチ形状にする。これを前縁として比較的柔軟な樹脂板材料で整形した翼面2を接合することで柔軟で十分な強度がある翼を製作できる。高力棒材は必要に応じ、両端付近の本数を増やすことができる。
また、大形風車において、カーボン樹脂パイプや薄肉鋼管などを単数または複数使用して強度母材11としてアーチを形成し、これを前縁付近に配置して翼面9を板材やリブ12に膜材を張って形成する。
また、リブを挿入して翼面を分割することによって、分割面を駆動機でフラップのように動かす可変ピッチ機構を組み込むことが可能になり、出力調整用や、制動用として利用できる。
In a small windmill, a high-strength rod is used as a strength base material 1, and both ends thereof are fixed to shafts, and an arch shape is formed with the center as a blade tip. By using this as a leading edge and joining the blade surface 2 shaped with a relatively flexible resin plate material, a flexible blade having sufficient strength can be manufactured. If necessary, the number of high-strength bars can be increased near both ends.
Further, in a large windmill, an arch is formed as a strength base material 11 by using one or a plurality of carbon resin pipes, thin steel pipes, etc., and this is disposed in the vicinity of the leading edge so that the blade surface 9 is formed on the plate material or rib 12. Formed by stretching the material.
Further, by dividing the blade surface by inserting ribs, it becomes possible to incorporate a variable pitch mechanism for moving the divided surface like a flap with a drive unit, and it can be used for output adjustment and braking.

以下、本発明の実施形態例を、図面を参照して説明する。
図1は、両端固定翼型風力原動機の正面図
図中の矢印は回転方向を示す。
図2は、両端固定翼型風力原動機の側面図
図3は、両端固定翼のA−A’断面図
図4は、複数の強度母材を使用した両端固定翼の斜図
図5は、図4のリブ部詳細図
図6は、分割された翼面を持つ両端固定翼の斜図
図7は、一部に可変ピッチ機構を組み込んだ翼の斜図
図8は、可変ピッチ機構でピッチを失速状態にした翼の斜図
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of a both-end fixed wing type wind power generator. The arrow in the figure indicates the direction of rotation.
2 is a side view of a both-end fixed wing type wind power generator. FIG. 3 is a cross-sectional view taken along the line AA ′ of the both-end fixed wing. FIG. 4 is a perspective view of the both-end fixed wing using a plurality of strength base materials. FIG. 6 is a perspective view of a both-end fixed wing having a divided blade surface. FIG. 7 is a perspective view of a wing in which a variable pitch mechanism is partially incorporated. FIG. Slope view of stalled wing

本発明は風力原動機の過回転防止方法として有効である。The present invention is effective as a method for preventing excessive rotation of a wind power generator.

両端固定翼型風力原動機の正面図「両端固定翼型風力原動機の正面図で図中の矢印は回転方向を示す。」Front view of a both-end fixed wing type wind power generator “The front view of a both-end fixed wing type wind power generator indicates the direction of rotation”. 両端固定翼型風力原動機の側面図「両端固定翼型風力原動機の側面図である。」Side view of a double-end fixed wing type wind power prime mover. 両端固定翼のA−A’断面図「図1に示されている両端固定翼のA−A’断面図である。」A-A ′ sectional view of a both-end fixed wing “A-A ′ sectional view of a both-end fixed wing shown in FIG. 1”. 複数の強度母材を使用した両端固定翼の斜図「複数の強度母材を使用した両端固定翼の斜図である。」An oblique view of a both-end fixed wing using a plurality of strength base materials "It is an oblique view of a both-end fixed wing using a plurality of strength base materials." 図4のリブ部詳細図「図4のリブ部詳細を示す。」Detailed view of rib part in FIG. 4 “Details of rib part in FIG. 4 are shown.” 分割された翼面を持つ両端固定翼の斜図「分割された翼面を持つ両端固定翼の斜図である。」An oblique view of a both-end fixed wing having a divided blade surface “An oblique view of a both-end fixed wing having a divided blade surface.” 一部に可変ピッチ機構を組み込んだ翼の斜図「分割された翼面を持つ両端固定翼の一部に可変ピッチ機構を組み込んだ翼の斜図である。」A perspective view of a wing incorporating a variable pitch mechanism in part "A perspective view of a wing incorporating a variable pitch mechanism in a part of a both-end fixed wing having a divided blade surface." 可変ピッチ機構でピッチを失速状態にした翼の斜図「分割された翼面を持つ両端固定翼の一部に可変ピッチ機構を組み込みピッチを失速状態にした翼の斜図である。」Slope view of a wing whose pitch is stalled by a variable pitch mechanism "It is a perspective view of a wing whose pitch is stalled by incorporating a variable pitch mechanism into a part of a fixed wing with split blade surfaces."

符号の説明Explanation of symbols

1 強度母材
2 翼面
3 後ハブ
4 ノーズ
5 支柱
6 旋回軸
7 尾翼
8 強度母材
9 翼面
10 リブ
11 強度母材
12 リブ
13 翼面
14 可変ピッチ機構を組み込んだ翼
DESCRIPTION OF SYMBOLS 1 Strength base material 2 Blade surface 3 Rear hub 4 Nose 5 Strut 6 Rotating shaft 7 Tail 8 Strength base material 9 Blade surface 10 Rib 11 Strength base material 12 Rib 13 Blade surface 14 Blade incorporating a variable pitch mechanism

Claims (1)

翼の両端を軸に固定する風力原動機において、最大翼幅の1.5割以下の厚みを持つ高力材を翼の前縁側に単数または複数本配置し、これを強度母材として翼幅方向に翼面材を配置することを特徴とする翼製作方法。In a wind power generator that fixes both ends of a blade to the shaft, one or more high-strength materials with a thickness of 1.5% or less of the maximum blade width are arranged on the leading edge side of the blade, and this is used as a strength base material in the blade width direction. A method for producing a wing, comprising arranging a face material.
JP2004220925A 2004-07-01 2004-07-01 Wing manufacturing method for both end-fixed wind force prime mover Pending JP2006017093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220925A JP2006017093A (en) 2004-07-01 2004-07-01 Wing manufacturing method for both end-fixed wind force prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220925A JP2006017093A (en) 2004-07-01 2004-07-01 Wing manufacturing method for both end-fixed wind force prime mover

Publications (1)

Publication Number Publication Date
JP2006017093A true JP2006017093A (en) 2006-01-19

Family

ID=35791596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220925A Pending JP2006017093A (en) 2004-07-01 2004-07-01 Wing manufacturing method for both end-fixed wind force prime mover

Country Status (1)

Country Link
JP (1) JP2006017093A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147757A1 (en) * 2008-06-06 2009-12-10 株式会社京三製作所 Wind power generating apparatus
WO2010037254A1 (en) * 2008-09-23 2010-04-08 Zhang Yulong Wind turbine rotor with venturi tube effect
KR101088175B1 (en) 2010-04-27 2011-12-02 (주)미래테크 Device for wind power generation
WO2012073813A1 (en) * 2010-12-01 2012-06-07 Matsuda Isamu Propeller type windmill and wind power generation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147757A1 (en) * 2008-06-06 2009-12-10 株式会社京三製作所 Wind power generating apparatus
JP2009293534A (en) * 2008-06-06 2009-12-17 Meiji Univ Wind turbine generator
WO2010037254A1 (en) * 2008-09-23 2010-04-08 Zhang Yulong Wind turbine rotor with venturi tube effect
KR101088175B1 (en) 2010-04-27 2011-12-02 (주)미래테크 Device for wind power generation
WO2012073813A1 (en) * 2010-12-01 2012-06-07 Matsuda Isamu Propeller type windmill and wind power generation apparatus

Similar Documents

Publication Publication Date Title
US7914259B2 (en) Wind turbine blades with vortex generators
US10012207B2 (en) Wind turbine blade noise reduction teeth with stiffening rib
AU2003237707B2 (en) Rotor blade for a wind power plant
DK178689B1 (en) Wind turbine rotor blades with curvature in the plane and devices using the same, and methods for making the same
US20110280708A1 (en) Vertical axis wind turbins
EP2682602B1 (en) Wind turbine blade and wind-powered electricity generator provided with same
CN104364517A (en) Twisted blade root
WO2003040555A1 (en) Straight wing type wind and water turbine
US10415547B2 (en) 2-D fairing for a wind turbine tower
DK2128434T3 (en) Wind turbine blades with twisted and tapered tips
DK2840256T3 (en) Wind turbine blade
CN101592122B (en) Wind turbine blade with twisted tip
JP5433554B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
CN101230834A (en) Stretching type wind mill wind wheel
US10975837B2 (en) Rotor blade shaped to enhance wake diffusion
JP2006017093A (en) Wing manufacturing method for both end-fixed wind force prime mover
WO2012053424A1 (en) Wind turbine blade, wind power generating device comprising same, and wind turbine blade design method
JP6800030B2 (en) Wings and windmills using them
CN109563804B (en) Wind turbine blade with tip serrations
JP5574915B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
CN116157597A (en) Wind turbine
WO2022054800A1 (en) Vertical-axis wind turbine and vertical-axis wind turbine power generator
AU2008201555B2 (en) Rotor blade for a wind power plant
JP2022518550A (en) Rotor blades for wind turbines
JP2021017823A (en) Wind power generation device