JP5339452B2 - Ionic liquid and polymer treatment agent comprising this ionic liquid - Google Patents

Ionic liquid and polymer treatment agent comprising this ionic liquid Download PDF

Info

Publication number
JP5339452B2
JP5339452B2 JP2009511883A JP2009511883A JP5339452B2 JP 5339452 B2 JP5339452 B2 JP 5339452B2 JP 2009511883 A JP2009511883 A JP 2009511883A JP 2009511883 A JP2009511883 A JP 2009511883A JP 5339452 B2 JP5339452 B2 JP 5339452B2
Authority
JP
Japan
Prior art keywords
polymer
ionic liquid
group
cellulose
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009511883A
Other languages
Japanese (ja)
Other versions
JPWO2008133269A1 (en
Inventor
弘幸 大野
幸信 深谷
現 増田
裕次 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Nisshinbo Holdings Inc
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Nisshinbo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Nisshinbo Holdings Inc filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2009511883A priority Critical patent/JP5339452B2/en
Publication of JPWO2008133269A1 publication Critical patent/JPWO2008133269A1/en
Application granted granted Critical
Publication of JP5339452B2 publication Critical patent/JP5339452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • C07F9/1411Esters of phosphorous acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl

Description

本発明は、イオン液体およびこのイオン液体からなるポリマー処理剤に関し、さらに詳述すると、4級窒素原子およびこの窒素原子上にアルコキシアルキル基を有するカチオンと、リン酸系アニオンとからなるイオン液体およびこのイオン液体からなるポリマー処理剤に関する。   The present invention relates to an ionic liquid and a polymer treating agent comprising the ionic liquid. More specifically, the present invention relates to an ionic liquid comprising a quaternary nitrogen atom, a cation having an alkoxyalkyl group on the nitrogen atom, and a phosphate anion, and The present invention relates to a polymer treating agent comprising this ionic liquid.

従来、イオン液体に、セルロース、絹、ウール等の高分子物質が溶解することが知られている(非特許文献1:JACS, 2002, vol.124, p.4274-4275、非特許文献2:JACS, 2004, vol.126, p.14350-14351、非特許文献3:Green Chem., 2005, vol.7, p.606-608参照)。
中でも、セルロースについては、セルロースのイオン液体溶液を利用した再生や、化学修飾、表面処理などが試みられている。
Conventionally, it is known that polymer substances such as cellulose, silk, and wool dissolve in an ionic liquid (Non-patent Document 1: JACS, 2002, vol.124, p.4274-4275, Non-patent Document 2: JACS, 2004, vol. 126, p. 14350-14351, Non-Patent Document 3: Green Chem., 2005, vol. 7, p. 606-608).
In particular, for cellulose, attempts have been made to regenerate, chemically modify, surface-treat, etc. using an ionic liquid solution of cellulose.

例えば、特許文献1(特表2005−506401号公報)には、実質的に水を含まない1−ブチル−3−メチルイミダゾリウムクロライドなどのイオン液体中にセルロースを溶解させてセルロース溶液を調製し、これに水を加えてセルロースを再生させる方法が開示されている。
特許文献2(国際公開第2005/054298号パンフレット)には、1−ブチル−3−メチルイミダゾリウムクロライドに代表されるイオン液体にセルロースを溶解し、セルロースの水酸基をエーテル化する手法が開示されている。
特許文献3(特表2005−530910号公報)には、イオン液体を含む布地処理剤で処理されたセルロース系布地は、機能的または美観的に優れた外観を示し、繊維強化効果が発揮され得ることが開示されている。
For example, in Patent Document 1 (Japanese Patent Publication No. 2005-506401), a cellulose solution is prepared by dissolving cellulose in an ionic liquid such as 1-butyl-3-methylimidazolium chloride substantially free of water. A method for regenerating cellulose by adding water is disclosed.
Patent Document 2 (International Publication No. 2005/054298) discloses a technique in which cellulose is dissolved in an ionic liquid typified by 1-butyl-3-methylimidazolium chloride, and the hydroxyl group of cellulose is etherified. Yes.
In patent document 3 (Japanese translations of PCT publication No. 2005-530910 gazette), the cellulosic fabric processed with the fabric processing agent containing an ionic liquid shows the functional or aesthetic appearance outstanding, and the fiber reinforcement effect can be exhibited. It is disclosed.

特許文献4(特開2002−3478号公報)には、窒素原子上にアルコキシアルキル基を有するイミダゾリウム系イオン液体が、合成高分子、蛋白質、多糖、糖誘導体の溶解能を有することが開示されている。
特許文献5(特開2006−137677号公報)には、カルボン酸系アニオンを有する高極性非ハロゲン系イオン液体が、セルロース、キチン、キトサン等の難溶性多糖類の溶解能を有することが開示されている。
Patent Document 4 (Japanese Patent Laid-Open No. 2002-3478) discloses that an imidazolium-based ionic liquid having an alkoxyalkyl group on a nitrogen atom has the ability to dissolve synthetic polymers, proteins, polysaccharides, and sugar derivatives. ing.
Patent Document 5 (Japanese Patent Application Laid-Open No. 2006-137777) discloses that a highly polar non-halogen ionic liquid having a carboxylic acid anion has the ability to dissolve poorly soluble polysaccharides such as cellulose, chitin, and chitosan. ing.

しかしながら、上記各文献に開示されているような、セルロース等のポリマーの溶解能を有するイオン液体のほとんどが室温で固体であるため、ポリマーを室温で処理することは困難である。このため、イオン液体が溶融するような比較的高い温度で処理する必要があり、エネルギーコストが大きくなるという問題がある。しかも、処理温度を高くすると、被処理物であるポリマーの分子量が低下する場合があり、その結果、処理後のポリマーの物性が低下するという問題もある。
また、従来のセルロースを溶解するイオン液体は、室温で液体であっても粘度が高いため、液体としての取扱い性に劣るうえに、被処理物との接触およびその後の被処理物内部への浸透などに時間を要するという問題もある。
However, since most of the ionic liquids having the ability to dissolve polymers such as cellulose as disclosed in the above documents are solid at room temperature, it is difficult to treat the polymer at room temperature. For this reason, it is necessary to perform the treatment at a relatively high temperature at which the ionic liquid melts, and there is a problem that the energy cost increases. In addition, when the treatment temperature is increased, the molecular weight of the polymer to be treated may decrease, and as a result, there is a problem that the physical properties of the polymer after treatment are lowered.
In addition, conventional ionic liquids that dissolve cellulose have high viscosity even at room temperature, so that they are not easy to handle as liquids. In addition, they come into contact with the object to be processed and then penetrate into the object to be processed. There is also a problem that it takes time.

なお、特許文献6(仏国特許出願公開第2486079号明細書)および非特許文献4(Green Chem., 2007, vol.9, p.233-242)には、イミダゾリウムカチオンと、特定のリン酸系アニオンとからなるイオン液体が開示されているが、このイオン液体がセルロースなどの溶解能を有することについては開示されていない。   Patent Document 6 (French Patent Application Publication No. 2486079) and Non-Patent Document 4 (Green Chem., 2007, vol. 9, p.233-242) include an imidazolium cation and a specific phosphorus. Although an ionic liquid composed of an acid anion is disclosed, it is not disclosed that the ionic liquid has a dissolving ability such as cellulose.

特表2005−506401号公報JP 2005-506401 A 国際公開第2005/054298号パンフレットInternational Publication No. 2005/054298 Pamphlet 特表2005−530910号公報JP 2005-530910 A 特開2002−3478号公報JP 2002-3478 A 特開2006−137677号公報JP 2006-137777 A 仏国特許出願公開第2486079号明細書French Patent Application Publication No. 2486079 JACS, 2002, vol.124, p.4274-4275JACS, 2002, vol.124, p.4274-4275 JACS, 2004, vol.126, p.14350-14351JACS, 2004, vol.126, p.14350-14351 Green Chem., 2005, vol.7, p.606-608Green Chem., 2005, vol.7, p.606-608 Green Chem., 2007, vol.9, p.233-242Green Chem., 2007, vol.9, p.233-242

本発明は、このような事情に鑑みてなされたものであり、室温付近で天然高分子等の各種ポリマーを溶解することが可能であり、かつ、粘度が比較的低く液体としての取扱い性および被処理物の処理性の良好なイオン液体およびこのイオン液体からなるポリマー処理剤を提供することを目的とする。   The present invention has been made in view of such circumstances, and is capable of dissolving various polymers such as natural polymers near room temperature, has a relatively low viscosity, and is easy to handle as a liquid. It is an object of the present invention to provide an ionic liquid having a good treatability of a treated product and a polymer treating agent comprising the ionic liquid.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、4級窒素原子およびこの窒素原子上にアルコキシアルキル基を有するカチオンと、リン酸系アニオンとからなるイオン液体が、室温(25℃)付近の温度で液体であり、かつ、この温度で比較的低粘度であること、および室温(25℃)付近でセルロースなどのポリマーを溶解し得ることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an ionic liquid comprising a quaternary nitrogen atom, a cation having an alkoxyalkyl group on the nitrogen atom, and a phosphate anion is room temperature ( The present invention was completed by finding that it is liquid at a temperature around 25 ° C.) and has a relatively low viscosity at this temperature and that it can dissolve polymers such as cellulose around room temperature (25 ° C.).

すなわち、本発明は、
1. 式(1)で示される4級アンモニウムカチオンと、(CH3O)(R)PO2 -(Rは、水素原子、メチル基、またはメトキシ基を示す。)とからなるイオン液体、
1234+ ・・・(1)
〔式中、R1、R2、R3およびR4は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖もしくは分岐のアルキル基、または−(CH2n−OR5で示されるアルコキシアルキル基(R5は、メチル基またはエチル基を示し、nは、1または2である。)を示し(ただし、R1、R2、R3およびR4の少なくとも1つは前記アルコキシアルキル基である。)、これらR1、R2、R3およびR4のいずれか2個の基が窒素原子とともに環(当該環中にその他のヘテロ原子を含んでいてもよい。)を形成していてもよい。〕
2. 前記R1、R2、R3およびR4が、互いに同一でも異なっていてもよい、炭素数1〜8の直鎖アルキル基、または−(CH2n−OR5で示されるアルコキシアルキル基(R5はメチル基またはエチル基を示し、nは1または2である。)を示し(ただし、R1、R2、R3およびR4の少なくとも1つは前記アルコキシアルキル基である。)、これらR1、R2、R3およびR4のいずれか2個の基が窒素原子とともに環(当該環中にその他のヘテロ原子を含んでいてもよい。)を形成していてもよい1のイオン液体、
3. 前記カチオンが、式(2)で示される1または2のイオン液体、

Figure 0005339452
(式中、R1、R2、R3、R5およびnは、前記と同じ意味を表す。)
4. 前記カチオンが、式(3)で示される1または2のイオン液体、
Figure 0005339452
(式中、R1、R5およびnは、前記と同じ意味を表す。)
5. 1〜4のいずれかのイオン液体からなるポリマー処理剤
6. 天然高分子化合物の処理剤である5のポリマー処理剤、
7. 前記天然高分子化合物が、セルロースである6のポリマー処理剤、
8. 表面処理剤、膨潤剤または溶解剤である5〜7のいずれかのポリマー処理剤、
9. 5〜8のいずれかのポリマー処理剤を用いるポリマー処理方法
10. 1〜4のいずれかのイオン液体と、1種または2種以上のポリマーとを含み、このポリマーが前記イオン液体に溶解しているドープ
11. 5のポリマー処理剤と、1種または2種以上のポリマーとを含み、このポリマーが前記ポリマー処理剤に溶解しているドープ
12. 10もしくは11のドープに、前記イオン液体に相溶し、かつ、前記ポリマーの溶解能を実質的に有しない媒体を加え、または10もしくは11のドープを、前記イオン液体に相溶し、かつ、前記ポリマーの溶解能を実質的に有しない媒体に加えることを特徴とする再生ポリマーの製造方法
を提供する。
That is, the present invention
1. An ionic liquid comprising a quaternary ammonium cation represented by the formula (1) and (CH 3 O) (R) PO 2 (R represents a hydrogen atom, a methyl group or a methoxy group);
R 1 R 2 R 3 R 4 N + (1)
[Wherein R 1 , R 2 , R 3 and R 4 may be the same as or different from each other, a linear or branched alkyl group having 1 to 12 carbon atoms, or — (CH 2 ) n —OR 5. (Wherein R 5 represents a methyl group or an ethyl group, and n is 1 or 2), provided that at least one of R 1 , R 2 , R 3 and R 4 is Any one of R 1 , R 2 , R 3 and R 4 together with a nitrogen atom in a ring (other heteroatoms may be contained in the ring). May be formed. ]
2. R 1 , R 2 , R 3 and R 4 may be the same as or different from each other, a linear alkyl group having 1 to 8 carbon atoms, or an alkoxyalkyl group represented by — (CH 2 ) n —OR 5 (R 5 represents a methyl group or an ethyl group, and n is 1 or 2.) (However, at least one of R 1 , R 2 , R 3, and R 4 is the alkoxyalkyl group.) , Any two groups of R 1 , R 2 , R 3 and R 4 may form a ring (which may contain other heteroatoms in the ring) together with the nitrogen atom 1 Ionic liquid,
3. The cation is 1 or 2 ionic liquid represented by formula (2),
Figure 0005339452
(In the formula, R 1 , R 2 , R 3 , R 5 and n have the same meaning as described above.)
4). The cation is 1 or 2 ionic liquid represented by formula (3),
Figure 0005339452
(In the formula, R 1 , R 5 and n represent the same meaning as described above.)
5. A polymer treatment agent comprising any one of ionic liquids 1 to 4 ;
6). 5 polymer treatment agents that are treatment agents for natural polymer compounds ,
7). 6. The polymer treatment agent, wherein the natural polymer compound is cellulose ,
8). A polymer treatment agent according to any one of 5 to 7 which is a surface treatment agent, a swelling agent or a solubilizer ;
9. A polymer treatment method using any of the polymer treating agents of 5 to 8 ,
10. A dope comprising any one of ionic liquids 1 to 4 and one or more polymers, wherein the polymer is dissolved in the ionic liquid ;
11. A dope comprising 5 polymer treating agents and one or more polymers, wherein the polymer is dissolved in the polymer treating agent ,
12 Adding a medium compatible with the ionic liquid to the 10 or 11 dope and having substantially no ability to dissolve the polymer, or compatible with the 10 or 11 dope in the ionic liquid; and Provided is a method for producing a regenerated polymer, which is added to a medium having substantially no ability to dissolve the polymer .

本発明に係るイオン液体は、4級窒素原子およびこの窒素原子上にアルコキシアルキル基を有するカチオンと、リン酸系アニオンとからなるものであるため、室温付近で液体状態を示し、かつ、比較的低粘度である。したがって、従来のイオン液体では不可能であった室温付近でのポリマーの処理が可能となる。
また、このイオン液体は、カルボン酸系アニオンからなるイオン液体に比べて熱安定性および保存安定性に優れているとともに、合成が容易であるという利点もある。
本発明のイオン液体は、従来のセルロース溶解可能なイオン液体よりも比較的粘度が低いことから取扱い性に優れるばかりでなく、セルロースをはじめとする各種ポリマーの溶解性に優れる。
さらに、本発明のイオン液体は、各種ポリマーを溶解し得るため、このイオン液体と複数種の高分子物質とを含むドープを調製し、これから、ポリマーを再生させることで、従来にないブレンドポリマーの調製が可能となる。
Since the ionic liquid according to the present invention is composed of a quaternary nitrogen atom, a cation having an alkoxyalkyl group on the nitrogen atom, and a phosphate anion, it exhibits a liquid state near room temperature and is relatively Low viscosity. Therefore, it becomes possible to process the polymer near room temperature, which is impossible with conventional ionic liquids.
In addition, this ionic liquid is superior in thermal stability and storage stability as compared to an ionic liquid composed of a carboxylic acid anion, and has an advantage that synthesis is easy.
Since the ionic liquid of the present invention has a relatively lower viscosity than the conventional ionic liquid capable of dissolving cellulose, it not only has excellent handleability but also excellent solubility of various polymers including cellulose.
Furthermore, since the ionic liquid of the present invention can dissolve various polymers, a dope containing this ionic liquid and a plurality of types of polymer substances is prepared, and from this, the polymer is regenerated, so that an unprecedented blend polymer can be obtained. Preparation becomes possible.

合成例1で得られたイオン液体の1H−NMRスペクトルを示す図である。2 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 1. FIG. 合成例2で得られたイオン液体の1H−NMRスペクトルを示す図である。4 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 2. FIG. 合成例3で得られたイオン液体の1H−NMRスペクトルを示す図である。6 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 3. FIG. 合成例4で得られたイオン液体の1H−NMRスペクトルを示す図である。6 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 4. FIG. 合成例5で得られたイオン液体の1H−NMRスペクトルを示す図である。6 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 5. FIG. 合成例6で得られたイオン液体の1H−NMRスペクトルを示す図である。6 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 6. FIG. 合成例7で得られたイオン液体の1H−NMRスペクトルを示す図である。6 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 7. FIG. 実施例1〜7におけるセルロースの溶解量と温度を記録したグラフを示す図である。It is a figure which shows the graph which recorded the dissolution amount and temperature of the cellulose in Examples 1-7.

以下、本発明についてさらに詳しく説明する。
本発明に係るイオン液体は、4級窒素原子およびこの窒素原子上にアルコキシアルキル基を有する所定のカチオンと、(CH3O)(R)PO2 -(Rは、水素原子、メチル基、またはメトキシ基を示す。)からなるものである。
一般的にイオン液体とは、100℃以下で流動性があり、完全にイオンから成る液体をいうが、本発明のアニオンを有する四級塩はそのほとんどが室温(25℃)付近で液状を示す。
Hereinafter, the present invention will be described in more detail.
The ionic liquid according to the present invention includes a quaternary nitrogen atom and a predetermined cation having an alkoxyalkyl group on the nitrogen atom, and (CH 3 O) (R) PO 2 (R is a hydrogen atom, a methyl group, or A methoxy group).
In general, an ionic liquid is a liquid that is fluid at 100 ° C. or lower and is completely composed of ions, but most of the quaternary salts having anions of the present invention are liquid at room temperature (25 ° C.). .

本発明のイオン液体を構成するカチオンとしては、4級窒素原子およびこの窒素原子上にアルコキシアルキル基を有するカチオンであればよく、例えば、式(1)で示されるものが挙げられる。
1234+ ・・・(1)
〔式中、R1、R2、R3およびR4は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖もしくは分岐のアルキル基、または−(CH2n−OR5で示されるアルコキシアルキル基(R5は、メチル基またはエチル基を示し、nは、1または2である。)を示し(ただし、R1、R2、R3およびR4の少なくとも1つは前記アルコキシアルキル基である。)、これらR1、R2、R3およびR4のいずれか2個の基が窒素原子とともに環(当該環中にその他のヘテロ原子を含んでいてもよい。)を形成していてもよい。〕
The cation constituting the ionic liquid of the present invention may be a cation having a quaternary nitrogen atom and an alkoxyalkyl group on the nitrogen atom, and examples thereof include those represented by the formula (1).
R 1 R 2 R 3 R 4 N + (1)
[Wherein R 1 , R 2 , R 3 and R 4 may be the same as or different from each other, a linear or branched alkyl group having 1 to 12 carbon atoms, or — (CH 2 ) n —OR 5. (Wherein R 5 represents a methyl group or an ethyl group, and n is 1 or 2), provided that at least one of R 1 , R 2 , R 3 and R 4 is Any one of R 1 , R 2 , R 3 and R 4 together with a nitrogen atom in a ring (other heteroatoms may be contained in the ring). May be formed. ]

式(1)において、炭素数1〜12の直鎖または分岐のアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、2−メチルプロピル基、1,1−ジメチルエチル基、n−ペンチル基、s−ペンチル基、t−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基等が挙げられる。
これらの中でも、ポリマーの溶解・膨潤能を高めるためには、炭素数1〜8の直鎖アルキル基が好ましく、特に、メチル基、エチル基、n−プロピル基、n−ブチル基等の炭素数1〜5の直鎖アルキル基が好適である。
In the formula (1), specific examples of the linear or branched alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, and s-butyl group. T-butyl group, 2-methylpropyl group, 1,1-dimethylethyl group, n-pentyl group, s-pentyl group, t-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, Examples include 2,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group and the like.
Among these, in order to improve the dissolution / swelling ability of the polymer, a linear alkyl group having 1 to 8 carbon atoms is preferable, and in particular, the number of carbon atoms such as a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. 1-5 linear alkyl groups are preferred.

5O−(CH2n−で表されるアルコキシアルキル基としては、メトキシまたはエトキシメチル基、メトキシまたはエトキシエチル基が挙げられる。
特に、R1、R2、R3およびR4の少なくとも1つが、−(CH2n−OR5で示されるアルコキシアルキル基(R5およびnは上記と同じ。)であることが好ましく、特にメトキシメチル基、メトキシエチル基が好ましい。
好適なカチオンとしては、例えば、下記式(2)〜(4)で示されるものが挙げられる。
Examples of the alkoxyalkyl group represented by R 5 O— (CH 2 ) n — include a methoxy or ethoxymethyl group and a methoxy or ethoxyethyl group.
In particular, at least one of R 1 , R 2 , R 3 and R 4 is preferably an alkoxyalkyl group represented by — (CH 2 ) n —OR 5 (R 5 and n are as defined above), A methoxymethyl group and a methoxyethyl group are particularly preferable.
As a suitable cation, what is shown by following formula (2)-(4) is mentioned, for example.

Figure 0005339452
(式中、R1、R2、R3、R5およびnは、上記と同じ意味を表す。)
Figure 0005339452
(Wherein R 1 , R 2 , R 3 , R 5 and n represent the same meaning as described above.)

式(2)で示されるカチオンの中でも、比較的低融点になること、ポリマーの溶解・膨潤能に優れていることから、N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウムカチオン、N,N−ジエチル−N−メチル−N−2−メトキシメチルアンモニウムカチオン、N−エチル−N,N−ジメチル−N−2−メトキシエチルアンモニウムカチオン、N−エチル−N,N−ジメチル−N−2−メトキシメチルアンモニウムカチオンなどが好適である。   Among the cations represented by the formula (2), the N, N-diethyl-N-methyl-N-2-methoxyethylammonium cation has a relatively low melting point and is excellent in the ability to dissolve and swell the polymer. N, N-diethyl-N-methyl-N-2-methoxymethylammonium cation, N-ethyl-N, N-dimethyl-N-2-methoxyethylammonium cation, N-ethyl-N, N-dimethyl-N A 2-methoxymethylammonium cation or the like is preferable.

Figure 0005339452
(式中、R1、R5およびnは、上記と同じ意味を表す。)
Figure 0005339452
(In the formula, R 1 , R 5 and n represent the same meaning as described above.)

式(3)で示されるカチオンの中でも、比較的低融点になること、ポリマーの溶解・膨潤能に優れていることから、N−メチル−N−2−メトキシエチルピロリジニウムカチオン、N−エチル−N−2−メトキシエチルピロリジニウムカチオン、N−メチル−N−2−メトキシメチルピロリジニウムカチオン、N−エチル−N−2−メトキシメチルピロリジニウムカチオンなどが好適である。   Among the cations represented by the formula (3), the N-methyl-N-2-methoxyethylpyrrolidinium cation, N-ethyl has a relatively low melting point and is excellent in the ability to dissolve and swell the polymer. -N-2-methoxyethylpyrrolidinium cation, N-methyl-N-2-methoxymethylpyrrolidinium cation, N-ethyl-N-2-methoxymethylpyrrolidinium cation and the like are preferable.

Figure 0005339452
(式中、X、R1、R5およびnは、上記と同じ意味を表す。)
Figure 0005339452
(In the formula, X, R 1 , R 5 and n have the same meaning as described above.)

式(4)で示されるカチオンの中でも、比較的低融点になること、ポリマーの溶解・膨潤能に優れていることから、N−メチル−N−2−メトキシエチルピペリジニウムカチオン、N−メチル−N−2−メトキシエチルモルホリニウムカチオンなどが好適である。   Among the cations represented by the formula (4), N-methyl-N-2-methoxyethylpiperidinium cation, N-methyl has a relatively low melting point and is excellent in the ability to dissolve and swell the polymer. -N-2-methoxyethylmorpholinium cation and the like are preferable.

また、本発明のイオン液体を構成する4級窒素原子およびこの窒素原子上にアルコキシアルキル基を有するカチオンとしては、下記式(5)で示されるものも挙げられる。   Moreover, what is shown by following formula (5) is mentioned as a quaternary nitrogen atom which comprises the ionic liquid of this invention, and a cation which has an alkoxyalkyl group on this nitrogen atom.

Figure 0005339452
(式中、R1、R5およびnは、上記と同じ意味を表す。)
Figure 0005339452
(In the formula, R 1 , R 5 and n represent the same meaning as described above.)

式(5)で示されるカチオンの中でも、比較的低融点になること、ポリマーの溶解・膨潤能に優れていることから、1−(2−メトキシエチル)−3−メチルイミダゾリウムカチオン、1−メトキシメチル−3−メチルイミダゾリウムカチオン、1−エチル−3−(2−メトキシエチル)イミダゾリウムカチオン、1−エチル−3−メトキシメチル)イミダゾリウムカチオンなどが好適である。   Among the cations represented by the formula (5), a 1- (2-methoxyethyl) -3-methylimidazolium cation, 1- (2-methoxyethyl) -3-methylimidazolium cation, Methoxymethyl-3-methylimidazolium cation, 1-ethyl-3- (2-methoxyethyl) imidazolium cation, 1-ethyl-3-methoxymethyl) imidazolium cation and the like are preferable.

本発明のイオン液体を構成するアニオンは、(CH3O)(R)PO2 -(Rは、水素原子、メチル基、またはメトキシ基を示す。)であるが、セルロースなどの溶解能に優れることから、Rは、水素原子またはメチル基であることが好ましい。The anion constituting the ionic liquid of the present invention is (CH 3 O) (R) PO 2 (wherein R represents a hydrogen atom, a methyl group, or a methoxy group), but is excellent in solubility of cellulose and the like. Therefore, R is preferably a hydrogen atom or a methyl group.

本発明のポリマー処理剤は、上述したイオン液体からなるものであり、各種ポリマーの表面処理剤、溶解剤、膨潤剤などとして好適に用いることができる。なお、イオン液体は、1種単独で、または2種以上混合してポリマー処理剤とすることができる。
また、上記イオン液体以外のイオン液体や有機溶媒と混合してポリマーの処理剤とすることも可能であり、これらは1種または2種以上添加することも可能である。上記イオン液体以外のイオン液体としては特に制限はなく、また、有機溶媒としてはジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン等の非プロトン性溶媒がセルロース等のポリマーの溶解を妨げる程度が低いため好ましい。これらの添加量は、セルロース等のポリマーの溶出を供しない程度であれば特に制限は無く、処理剤の粘度低下の度合等を勘案して決めるのが良い。
The polymer treatment agent of the present invention comprises the ionic liquid described above, and can be suitably used as a surface treatment agent, a solubilizing agent, a swelling agent, etc. for various polymers. In addition, an ionic liquid can be used individually by 1 type or in mixture of 2 or more types as a polymer processing agent.
Moreover, it is also possible to mix with ionic liquids other than the said ionic liquid, or an organic solvent, and to make a polymer processing agent, and these can also be added 1 type (s) or 2 or more types. The ionic liquid other than the ionic liquid is not particularly limited, and an organic solvent is preferably an aprotic solvent such as dimethylformamide, dimethyl sulfoxide or N-methylpyrrolidone because it has a low degree of hindering dissolution of a polymer such as cellulose. . These addition amounts are not particularly limited as long as they do not cause elution of polymers such as cellulose, and are preferably determined in consideration of the degree of viscosity reduction of the treatment agent.

本発明において、溶解とは、ポリマーが媒体中に均一相として存在するように視認されることをいう。膨潤とは、媒体がポリマーの凝集分子鎖中に浸入し、分子鎖同士の相互作用が緩和されているが、完全に分子鎖の凝集が解かれるまでには至っていない状態をいう。   In the present invention, dissolution means that the polymer is visually recognized as a homogeneous phase in the medium. Swelling refers to a state in which the medium has penetrated into the polymer aggregate molecular chain and the interaction between the molecular chains has been relaxed, but the molecular chain aggregation has not been completely solved.

ポリマー処理剤の粘度は、低い程好ましいが、処理剤のポリマーへの浸透の容易さや、液体としての取扱いの容易さ、連続工程の場合に洗浄層への処理剤の混入を少なくすることなどを考慮すると、30℃で5000Pa・s以下であることが好ましく、2000Pa・s以下であることがより好ましく、1000Pa・s以下であることが好適である。
なお、本発明のポリマー処理剤には、その効果を発現させる限度においてその他の成分を添加することもできる。その他の成分としては、香料、染料、撥水剤、撥油剤、抗菌剤、防カビ剤などが挙げられる。
The viscosity of the polymer treatment agent is preferably as low as possible, but the ease of penetration of the treatment agent into the polymer, the ease of handling as a liquid, and the reduction of contamination of the treatment agent into the cleaning layer in the case of continuous processes, etc. In consideration, it is preferably 5000 Pa · s or less at 30 ° C., more preferably 2000 Pa · s or less, and more preferably 1000 Pa · s or less.
It should be noted that other components can be added to the polymer treating agent of the present invention as long as the effect is exhibited. Examples of other components include fragrances, dyes, water repellents, oil repellents, antibacterial agents, and fungicides.

本発明のポリマー処理剤で処理されるポリマーとしては、上述したイオン液体に溶解または膨潤するものであれば特に限定はなく、例えば、糖鎖もしくはタンパク質等の天然高分子化合物、またはこれらの混合物が挙げられる。
糖鎖としては、セルロース、キチン、キトサンなどが挙げられる。
セルロースとしては、植物由来セルロース、動物由来セルロース、バクテリア由来セルロース、再生セルロースが挙げられる。具体的には、綿、麻、竹、バナナ、月桃、ハイビスカスローゼル、ケナフ、広葉樹パルプ、針葉樹パルプ、ホヤセルロース、バクテリアセルロース、レーヨン、キュプラ、テンセル、イオン液体による再生セルロースなどが挙げられ、イオン液体に溶解,膨潤し得る限り、それらの誘導体でもよい。誘導体としては、例えばセルロースの水酸基をエーテル化またはエステル化した誘導体や、シアノエチル化した誘導体や、カーバメート化した誘導体などが挙げられる。
また、上記ポリマー以外に本発明の処理剤に溶解または膨潤する他成分を含むものであってもよく、例えば、セルロース以外の他成分を含んだ木質系セルロース等も本発明の処理剤で処理できる。その場合は、木質系セルロース等を天然のまま処理してもよいし、予め脱リグニン処理等を行ったものを処理してもよい。
なお、セルロースの結晶構造は任意であり、I型、II型、III型、IV型、非晶のいずれか1つの構造またはそれらの組合せからなる構造を有するセルロースを採用できる。また、セルロースの結晶化度に関わらず用いることができる。
タンパク質としては、絹、羊毛、コラーゲン、ケラチン、セリシン、フィブロイン、カゼイン等が挙げられる。
上記ポリマーの構造は任意であり、糸,織物,編物,不織布,紙等の繊維構造物、フィルム、ビーズ、板、ブロックなどの各種構造を採用できる。
The polymer to be treated with the polymer treating agent of the present invention is not particularly limited as long as it dissolves or swells in the ionic liquid described above. For example, natural polymer compounds such as sugar chains or proteins, or mixtures thereof Can be mentioned.
Examples of sugar chains include cellulose, chitin, chitosan and the like.
Examples of cellulose include plant-derived cellulose, animal-derived cellulose, bacterial-derived cellulose, and regenerated cellulose. Specific examples include cotton, hemp, bamboo, banana, moon peach, hibiscus rozel, kenaf, hardwood pulp, conifer pulp, squirt cellulose, bacterial cellulose, rayon, cupra, tencel, regenerated cellulose with ionic liquid, etc. Their derivatives may be used as long as they can be dissolved and swelled in a liquid. Examples of the derivative include a derivative obtained by etherifying or esterifying a hydroxyl group of cellulose, a cyanoethylated derivative, a carbamate derivative, and the like.
In addition to the polymer, it may contain other components that dissolve or swell in the treatment agent of the present invention. For example, woody cellulose containing other components other than cellulose can be treated with the treatment agent of the present invention. . In that case, the woody cellulose or the like may be treated as it is, or the one subjected to delignification treatment in advance may be treated.
The crystal structure of cellulose is arbitrary, and cellulose having a structure composed of any one of I-type, II-type, III-type, IV-type, and amorphous structure or a combination thereof can be employed. Further, it can be used regardless of the crystallinity of cellulose.
Examples of proteins include silk, wool, collagen, keratin, sericin, fibroin, and casein.
The structure of the polymer is arbitrary, and various structures such as a fiber structure such as a yarn, a woven fabric, a knitted fabric, a non-woven fabric, and paper, a film, a bead, a plate, and a block can be employed.

また、上記ポリマーは、当該処理剤に溶解または膨潤しない物質を含んでいてもよい。
このような物質としては、アクリル樹脂、ポリカーボネート樹脂、ABS樹脂、ポリ乳酸、ポリカプロラクトン、ポリアミド(ナイロン)、ポリスチレンなどの高分子化合物や、ガラス繊維、金属繊維、炭素繊維、ロックウールなどが挙げられる。
なお、これらの物質の含有量は任意であるが、イオン液体に膨潤または溶解するポリマー全体に対して、5〜95質量%程度が好適である。
The polymer may contain a substance that does not dissolve or swell in the treatment agent.
Examples of such substances include acrylic resins, polycarbonate resins, ABS resins, polylactic acid, polycaprolactone, polyamide (nylon), high molecular compounds such as polystyrene, glass fibers, metal fibers, carbon fibers, rock wool, and the like. .
In addition, although content of these substances is arbitrary, about 5-95 mass% is suitable with respect to the whole polymer which swells or melt | dissolves in an ionic liquid.

以上で説明したポリマー処理剤を用いたポリマー処理方法は、当該ポリマー処理剤を、イオン液体に膨潤または溶解するポリマーや、当該ポリマーを含む被処理物と接触させて、(被処理物中の)ポリマーを膨潤または溶解させたり、表面処理したりするものである。
接触方法としては特に制限はなく、ポリマー処理剤中へポリマー(被処理物)を浸漬させたり、ポリマー処理剤を含む槽内にポリマー(被処理物)を通過させたりする方法や、ポリマー(被処理物)へポリマー処理剤を噴霧する方法などが挙げられる。
In the polymer processing method using the polymer processing agent described above, the polymer processing agent is brought into contact with a polymer that swells or dissolves in an ionic liquid or a processing object containing the polymer (in the processing object). A polymer is swollen or dissolved, or surface-treated.
There is no particular limitation on the contact method, and a method of immersing a polymer (object to be treated) in a polymer treatment agent or passing a polymer (object to be treated) into a tank containing the polymer treatment agent, or a polymer (object to be treated). For example, a method of spraying a polymer treatment agent onto the treated product) may be used.

接触時間は、所望の効果に応じて適宜決定すればよく、例えば、上記ポリマーを、本発明のポリマー処理剤と長時間接触させることにより、ポリマーは、その内部まで膨潤または溶解する。
この時の接触時間は処理するポリマー(被処理物)の種類にもよるので一概には規定できないが、例えば、微結晶セルロースのような比較的低分子量のセルロースを溶解する場合は、1分から600分間程度の範囲で適宜調節すればよい。また、木質系セルロースのような他成分を含むセルロースを溶解する場合は、溶解にある程度時間がかかるため、1時間から数週間、場合によっては数ヶ月程度が好ましい。
一方、ポリマーを当該処理剤と短時間接触させることにより、ポリマーはその表面近傍のみが膨潤もしくは溶解する。このような表面処理を行う場合には、所望する表面処理の性状、度合いに応じ、接触時間を0.01秒から180分間程度の範囲で適宜調節すればよい。
接触温度は、ポリマー処理剤が液体状である温度領域であればよい。本発明のイオン液体のほとんどが室温付近で液体であることから、加熱なしにポリマー(被処理物)の処理が可能でエネルギー的に有利である。また、低温であるほどポリマーの分子量低下も少ないと予想され、ポリマーの物性低下を最小限に食い止めることが期待できる。0〜150℃程度が好ましく、15〜60℃程度がより好ましい。
What is necessary is just to determine a contact time suitably according to the desired effect, for example, a polymer swells or melt | dissolves to the inside by making the said polymer contact the polymer processing agent of this invention for a long time.
The contact time at this time cannot be defined unconditionally because it depends on the type of polymer (object to be treated) to be treated. However, for example, when dissolving a relatively low molecular weight cellulose such as microcrystalline cellulose, 1 minute to 600 What is necessary is just to adjust suitably in the range of about minutes. Further, when dissolving cellulose containing other components such as woody cellulose, it takes some time to dissolve, so it is preferably 1 hour to several weeks, and in some cases about several months.
On the other hand, when the polymer is brought into contact with the treatment agent for a short time, only the vicinity of the surface of the polymer swells or dissolves. When such surface treatment is performed, the contact time may be appropriately adjusted within a range of about 0.01 seconds to 180 minutes depending on the desired property and degree of the surface treatment.
The contact temperature may be a temperature range in which the polymer treatment agent is in a liquid state. Since most of the ionic liquids of the present invention are liquids around room temperature, it is possible to treat the polymer (object to be treated) without heating, which is advantageous in terms of energy. In addition, the lower the temperature, the lower the molecular weight of the polymer is expected, and it can be expected that the physical properties of the polymer are reduced to a minimum. About 0-150 degreeC is preferable and about 15-60 degreeC is more preferable.

接触処理後のポリマー(処理物)に残存したポリマー処理剤は、ポリマー処理剤と相溶でかつ処理後のポリマーを溶解・膨潤させない溶液で洗浄することで容易に除去することができる。
このような溶媒としては、例えば、水、メタノール,エタノール等のアルコール類、テトラヒドロフラン,ジオキサン等のエーテル類、アセトン,メチルエチルケトン等のケトン類、アセトニトリル、クロロホルム等が挙げられ、これらは1種単独で、または2種以上混合して用いることができる。
接触処理および必要に応じて行われる洗浄処理後、処理後のポリマー(処理物)を適宜乾燥させればよい。乾燥手法は任意であり、公知の各種方法を用いることができる。具体例としては、ヒートドラム、熱風、赤外線、天日による方法などが挙げられる。
The polymer treating agent remaining in the polymer (treated product) after the contact treatment can be easily removed by washing with a solution that is compatible with the polymer treating agent and does not dissolve or swell the treated polymer.
Examples of such a solvent include water, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, ketones such as acetone and methyl ethyl ketone, acetonitrile, chloroform, and the like. Alternatively, two or more kinds can be mixed and used.
After the contact treatment and the washing treatment performed as necessary, the polymer after the treatment (processed product) may be appropriately dried. Any drying method can be used, and various known methods can be used. Specific examples include a heat drum, hot air, infrared rays, and a method using sunlight.

本発明に係るドープは、上述したイオン液体と、ポリマーとを含み、ポリマーがイオン液体に溶解しているものである。この場合、ポリマーは2種以上用いてもよい。
このドープ中のポリマーの含有量は、使用するポリマーの種類にもよるため一概には規定できないが、本発明のドープにおいては、0.1〜50質量%程度とすることができる。
本発明のドープの調製法は特に限定されるものではなく、上述したイオン液体にポリマーを添加・溶解して調製しても、ポリマーにイオン液体を添加・溶解して調製してもよい。
なお、溶解時に適宜加熱してもよい。
The dope according to the present invention includes the ionic liquid described above and a polymer, and the polymer is dissolved in the ionic liquid. In this case, two or more polymers may be used.
The content of the polymer in the dope cannot be defined unconditionally because it depends on the type of polymer used, but in the dope of the present invention, it can be about 0.1 to 50% by mass.
The method for preparing the dope of the present invention is not particularly limited, and the dope may be prepared by adding and dissolving the polymer in the ionic liquid described above or by adding and dissolving the ionic liquid in the polymer.
In addition, you may heat suitably at the time of melt | dissolution.

本発明のドープを用いることで再生ポリマーを製造することができ、特に2種以上のポリマーを含むドープの場合には、これら各ポリマーのブレンドポリマーを製造することができる。既に述べたように、本発明のイオン液体は、室温付近で液体状であるとともに粘度が低く、ポリマーをより低温で溶解し得、ポリマーの物性低下などを起こしにくいものであるため、各種ポリマーの物性の低下が抑制されたブレンド物を容易に得ることができる。   By using the dope of the present invention, a regenerated polymer can be produced. In particular, in the case of a dope containing two or more kinds of polymers, a blend polymer of these polymers can be produced. As already described, the ionic liquid of the present invention is liquid around room temperature, has a low viscosity, can dissolve the polymer at a lower temperature, and is less likely to cause deterioration in physical properties of the polymer. It is possible to easily obtain a blend in which deterioration of physical properties is suppressed.

再生ポリマーや、ブレンドポリマーを製造する具体的手法としては、イオン液体に相溶し、かつ、ポリマーの溶解能を実質的に有しない媒体を本発明のドープに加えたり、イオン液体に相溶し、かつ、ポリマーの溶解能を実質的に有しない媒体に本発明のドープを加えたりすることで再生ポリマーやブレンドポリマーを系内で析出させる手法が挙げられる。   As a specific method for producing a recycled polymer or a blend polymer, a medium compatible with an ionic liquid and having substantially no ability to dissolve the polymer is added to the dope of the present invention, or it is compatible with the ionic liquid. And the method of depositing a reproduction | regeneration polymer and a blend polymer in a system by adding the dope of this invention to the medium which does not have a polymer dissolution ability substantially is mentioned.

ここで、イオン液体に対して相溶し、かつ、ポリマーの溶解能を実質的に有しない媒体の具体例としては、水、メタノール,エタノール等のアルコール類、テトラヒドロフラン,ジオキサン等のエーテル類、アセトン,メチルエチルケトン等のケトン類、アセトニトリル、クロロホルムなどが挙げられ、これらは1種単独で、または2種以上混合して用いることができる。これらの中でも、水、アルコール類が好ましく、環境面を配慮すると水がより好ましい。
なお、「ポリマーの溶解能を実質的に有しない媒体」とは、ポリマーを全く溶解しない媒体という意味ではなく、本発明のドープに加え、その添加量を臨界量以上に増大させた場合にポリマーを析出させることが可能な媒体を意味する。
Here, specific examples of the medium that is compatible with the ionic liquid and has substantially no polymer dissolving ability include water, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, acetone, and the like. , Ketones such as methyl ethyl ketone, acetonitrile, chloroform and the like. These may be used alone or in combination of two or more. Among these, water and alcohols are preferable, and water is more preferable in consideration of environmental aspects.
The “medium having substantially no polymer dissolving ability” does not mean a medium that does not dissolve the polymer at all. In addition to the dope of the present invention, the polymer is added when the addition amount is increased to a critical amount or more. Means a medium on which can be deposited.

本発明のドープと上記媒体との使用割合は、ポリマーが析出してくる割合であれば任意であり、また使用する媒体によっても変動するものであるため一概に規定することはできないが、効率的にポリマーを析出させるためには、媒体/ドープの液量比(体積比)は1以上が好ましく、2以上がより好ましく、5以上がさらに好ましい。
なお、ドープ中に媒体を加える方法、媒体中にドープを加える方法は任意である。
The use ratio of the dope of the present invention and the above medium is arbitrary as long as the polymer is precipitated, and also varies depending on the medium to be used. In order to precipitate the polymer, the medium / dope liquid volume ratio (volume ratio) is preferably 1 or more, more preferably 2 or more, and even more preferably 5 or more.
In addition, the method of adding a medium in dope and the method of adding dope in a medium are arbitrary.

再生ポリマーやブレンドポリマーの形態は、特に限定されるものではなく、粉状、粒状、塊状、綿状、短繊維状、長繊維状、棒状、スポンジ状、フィルム状等の各種形状とすることができる。
たとえば、ドープを上記媒体に加える手法では、Tダイなどを通してドープを媒体中に押し出すなどにより、フィルム状や、長繊維状の再生ポリマーやブレンドポリマーを連続的に得ることもできる。
The form of the recycled polymer or blend polymer is not particularly limited, and may be various shapes such as powder, granule, lump, cotton, short fiber, long fiber, rod, sponge, film, etc. it can.
For example, in the method of adding the dope to the medium, a film-like or long-fiber regenerated polymer or blend polymer can be continuously obtained by extruding the dope into the medium through a T die or the like.

以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。
なお、以下の実施例におけるイオン液体の構造確認は、1H−NMR(日本電子(株)製、AL−400)を用いて行った。
EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In addition, the structure confirmation of the ionic liquid in the following examples was performed using 1 H-NMR (manufactured by JEOL Ltd., AL-400).

[1]イオン液体の合成
[合成例1]化合物(6)の合成

Figure 0005339452
[1] Synthesis of ionic liquid [Synthesis Example 1] Synthesis of Compound (6)
Figure 0005339452

ジエチルアミン(関東化学(株)製)100mlと2−メトキシエチルクロライド(関東化学(株)製)85mlとを混合し、オートクレーブ中、100℃で24時間反応させた。このとき、内圧は1.3kgf/cm2(0.13MPa)あった。24時間後、析出した結晶と反応液との混合物に水酸化カリウム(片山化学工業(株)製)56gを溶解した水溶液200mlを加え、2層に分かれた有機層を分液ロートで分液した。さらに、塩化メチレン(和光純薬工業(株)製)100mlを加えて抽出する操作を2回行った。分液した有機層をまとめ、飽和食塩水で洗浄した後、炭酸カリウム(和光純薬工業(株)製)を加えて乾燥、減圧濾過した。得られた有機層からエバポレータにて溶媒を留去し、残留分について常圧蒸留を行った。沸点135℃付近の留分を18.9g得た。この化合物が2−メトキシエチルジエチルアミンであることを1H−NMRにより確認した。
得られた2−メトキシエチルジエチルアミン10.0gとトリメチルリン酸(東京化成工業(株)製)8.8mlとを室温下で混合し、100℃で4時間反応させた。
反応液を大量のテトラヒドロフラン(和光純薬工業(株)製)50ml中へ投入し、5分間程度激しく攪拌した後、静置した。2層に分離した上層をデカンテーションにより除去した。この操作をさらに2回繰り返した後、残留した下層について攪拌下100℃で1時間の加熱真空乾燥を行い、室温(25℃、以下同様)でワイン色を呈した液体状の化合物(6)16.45gを得た。
合成例1で得られた化合物(6)(N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム ジメチルリン酸塩:[DEME][(MeO)2PO2])の1H−NMRスペクトルを図1に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
100 ml of diethylamine (manufactured by Kanto Chemical Co., Ltd.) and 85 ml of 2-methoxyethyl chloride (manufactured by Kanto Chemical Co., Ltd.) were mixed and reacted at 100 ° C. for 24 hours in an autoclave. At this time, the internal pressure was 1.3 kgf / cm 2 (0.13 MPa). After 24 hours, 200 ml of an aqueous solution in which 56 g of potassium hydroxide (manufactured by Katayama Chemical Co., Ltd.) was dissolved was added to the mixture of the precipitated crystals and the reaction solution, and the organic layer separated into two layers was separated with a separating funnel. . Further, 100 ml of methylene chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was added and extracted twice. The separated organic layers were combined, washed with saturated brine, dried over potassium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.), and filtered under reduced pressure. The solvent was distilled off from the obtained organic layer with an evaporator, and the residue was subjected to atmospheric distillation. 18.9 g of a fraction having a boiling point near 135 ° C. was obtained. It was confirmed by 1 H-NMR that this compound was 2-methoxyethyldiethylamine.
10.0 g of the obtained 2-methoxyethyldiethylamine and 8.8 ml of trimethyl phosphoric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed at room temperature and reacted at 100 ° C. for 4 hours.
The reaction solution was put into 50 ml of a large amount of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), stirred vigorously for about 5 minutes, and allowed to stand. The upper layer separated into two layers was removed by decantation. After repeating this operation twice more, the remaining lower layer was heated and vacuum-dried at 100 ° C. for 1 hour with stirring, and a liquid compound (6) 16 having a wine color at room temperature (25 ° C., hereinafter the same). .45 g was obtained.
1 H- of the compound (6) obtained in Synthesis Example 1 (N, N-diethyl-N-methyl-N-2-methoxyethylammonium dimethyl phosphate: [DEME] [(MeO) 2 PO 2 ]) The NMR spectrum is shown in FIG. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[合成例2]化合物(7)の合成

Figure 0005339452
[Synthesis Example 2] Synthesis of Compound (7)
Figure 0005339452

ジエチルアミンをピロリジン(関東化学(株)製)に、オートクレーブでの反応温度を90℃に変更した以外は、合成例1とほぼ同様の方法で化合物(7)を合成した。化合物(7)は室温で液状であった。
合成例2で得られた化合物(7)(N−メチル−N−2−メトキシエチルピロリジニウム ジメチルリン酸塩:[MEMP][(MeO)2PO2])の1H−NMRスペクトルを図2に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
Compound (7) was synthesized in substantially the same manner as in Synthesis Example 1, except that diethylamine was changed to pyrrolidine (manufactured by Kanto Chemical Co., Inc.) and the reaction temperature in the autoclave was changed to 90 ° C. Compound (7) was liquid at room temperature.
1 H-NMR spectrum of compound (7) (N-methyl-N-2-methoxyethylpyrrolidinium dimethyl phosphate: [MEMP] [(MeO) 2 PO 2 ]) obtained in Synthesis Example 2 It is shown in 2. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[合成例3]化合物(8)の合成

Figure 0005339452
[Synthesis Example 3] Synthesis of Compound (8)
Figure 0005339452

トリメチルリン酸をジメチルメチルホスホン酸(シグマ−アルドリッチジャパン(株)製)に変更した以外は、合成例1とほぼ同様の方法で化合物(8)を合成した。化合物(8)は室温で液状であった。
合成例3で得られた化合物(8)(N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム メチルジメチルホスホン酸塩:[DEME][(MeO)(Me)PO2])の1H−NMRスペクトルを図3に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
Compound (8) was synthesized in substantially the same manner as in Synthesis Example 1, except that trimethyl phosphoric acid was changed to dimethylmethylphosphonic acid (manufactured by Sigma-Aldrich Japan). Compound (8) was liquid at room temperature.
Compound (8) obtained in Synthesis Example 3 (N, N-diethyl-N-methyl-N-2-methoxyethylammonium methyldimethylphosphonate: [DEME] [(MeO) (Me) PO 2 ]) The 1 H-NMR spectrum is shown in FIG. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[合成例4]化合物(9)の合成

Figure 0005339452
[Synthesis Example 4] Synthesis of Compound (9)
Figure 0005339452

トリメチルリン酸をジメチルメチルホスホン酸(シグマ−アルドリッチジャパン(株)製)に変更した以外は、合成例2とほぼ同様の方法で化合物(9)を合成した。化合物は室温で液状であった。
合成例4で得られた化合物(9)(N−メチル−N−2−メトキシエチルピロリジニウム メチルジメチルホスホン酸塩:[MEMP][(MeO)(Me)PO2])の1H−NMRスペクトルを図4に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
Compound (9) was synthesized in substantially the same manner as in Synthesis Example 2 except that trimethyl phosphoric acid was changed to dimethylmethylphosphonic acid (manufactured by Sigma-Aldrich Japan Co., Ltd.). The compound was liquid at room temperature.
1 H-NMR of compound (9) (N-methyl-N-2-methoxyethylpyrrolidinium methyldimethylphosphonate: [MEMP] [(MeO) (Me) PO 2 ]) obtained in Synthesis Example 4 The spectrum is shown in FIG. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[合成例5]化合物(10)の合成

Figure 0005339452
[Synthesis Example 5] Synthesis of Compound (10)
Figure 0005339452

トリメチルリン酸をジメチル亜リン酸(シグマ−アルドリッチジャパン(株)製)に変更した以外は、合成例1とほぼ同様の方法で合成を行った。化合物は室温で液状であった。
合成例5で得られた化合物(10)(N,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム メチル亜リン酸塩:[DEME][(MeO)(H)PO2])の1H−NMRスペクトルを図5に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
The synthesis was performed in substantially the same manner as in Synthesis Example 1 except that trimethyl phosphoric acid was changed to dimethyl phosphorous acid (manufactured by Sigma-Aldrich Japan Co., Ltd.). The compound was liquid at room temperature.
Compound (10) obtained in Synthesis Example 5 (N, N-diethyl-N-methyl-N-2-methoxyethylammonium methyl phosphite: [DEME] [(MeO) (H) PO 2 ]) The 1 H-NMR spectrum is shown in FIG. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[合成例6]化合物(11)の合成

Figure 0005339452
[Synthesis Example 6] Synthesis of Compound (11)
Figure 0005339452

トリメチルリン酸をジメチル亜リン酸(シグマ−アルドリッチジャパン(株)製)に変更した以外は、合成例2とほぼ同様の方法で合成を行った。化合物は室温で液状であった。
合成例6で得られた化合物(11)(N−メチル−N−2−メトキシエチルピロリジニウム メチル亜リン酸塩:[MEMP][(MeO)(H)PO2])の1H−NMRスペクトルを図6に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
Synthesis was performed in substantially the same manner as in Synthesis Example 2 except that trimethyl phosphoric acid was changed to dimethyl phosphorous acid (manufactured by Sigma-Aldrich Japan Co., Ltd.). The compound was liquid at room temperature.
1 H-NMR of compound (11) (N-methyl-N-2-methoxyethylpyrrolidinium methyl phosphite: [MEMP] [(MeO) (H) PO 2 ]) obtained in Synthesis Example 6 The spectrum is shown in FIG. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[合成例7]化合物(12)の合成

Figure 0005339452
[Synthesis Example 7] Synthesis of Compound (12)
Figure 0005339452

オートクレーブにイミダゾール270g(東京化成工業(株)製)、クロロホルム(関東化学(株)製)400ml、2−メトキシエチルクロライド(関東化学(株)製)188gの順で加え、300rpmで攪拌して溶解した後、90℃、250rpmで14時間反応させた。このとき、内圧は0.12kgf/cm2(0.012MPa)であった。
エバポレータにて反応液からクロロホルムを留去後、減圧蒸留にて3mmHg/cm2における沸点100℃付近の留分を分取した。この留分はN−2−メトキシエチルイミダゾールとイミダゾールとの混合物であったため、留分の一部を取り、シリカゲルクロマトグラフィー(クロロホルム:メタノール=50:1)で精製し、N−2−メトキシエチルイミダゾール35gを得た。構造は1H−NMRで確認した。
以後は2−メトキシエチルジエチルアミンを上記で得られたN−2−メトキシエチルイミダゾールに、トリメチルリン酸をジメチル亜リン酸にそれぞれ変更した以外は、合成例1とほぼ同様の方法で化合物(12)を合成した。化合物は室温で液状であった。
合成例7で得られた化合物(12)(1−メトキシエチル−3−メチルイミダゾリウム メチル亜リン酸塩:[MEMIm][(MeO)(H)PO2])の1H−NMRスペクトルを図7に示す。なお、測定は、重ジメチルスルホキシドを溶媒として行った。
Add 270 g of imidazole (manufactured by Tokyo Chemical Industry Co., Ltd.), 400 ml of chloroform (manufactured by Kanto Chemical Co., Ltd.), 188 g of 2-methoxyethyl chloride (manufactured by Kanto Chemical Co., Ltd.) to the autoclave in this order, and dissolve by stirring at 300 rpm. Then, the reaction was carried out at 90 ° C. and 250 rpm for 14 hours. At this time, the internal pressure was 0.12 kgf / cm 2 (0.012 MPa).
Chloroform was distilled off from the reaction solution with an evaporator, and a fraction having a boiling point of about 100 ° C. at 3 mmHg / cm 2 was collected by vacuum distillation. Since this fraction was a mixture of N-2-methoxyethylimidazole and imidazole, a part of the fraction was taken and purified by silica gel chromatography (chloroform: methanol = 50: 1). 35 g of imidazole was obtained. The structure was confirmed by 1 H-NMR.
Thereafter, compound (12) was prepared in substantially the same manner as in Synthesis Example 1 except that 2-methoxyethyldiethylamine was changed to N-2-methoxyethylimidazole obtained above and trimethylphosphoric acid was changed to dimethylphosphorous acid. Was synthesized. The compound was liquid at room temperature.
1 H-NMR spectrum of compound (12) (1-methoxyethyl-3-methylimidazolium methyl phosphite: [MEMIm] [(MeO) (H) PO 2 ]) obtained in Synthesis Example 7 7 shows. The measurement was performed using heavy dimethyl sulfoxide as a solvent.

[2]セルロースの溶解
[実施例1]
合成例1で得られたN,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム ジメチルリン酸塩([DEME][(MeO)2PO2])を、攪拌子を入れた20mlサンプル瓶に2g分取し、1質量%量のセルロース(Aldrich社製、微結晶セルロース(Micro Crystalline Cellulose)、分子量=重合度200〜300)と混合した。
この混合物を乾燥機(Yamato CONSTANT TEMPERATURE OVEN DN−42)内に投入し、25℃で30分間保持した。この際、時々、サンプル瓶を取り出しては、スターラ(IWAKI HIGH−POWER STIRRER BS−1000)で攪拌した。イオン液体に添加したセルロースが溶解したことは、目視により、セルロースが分散混合した状態から均一透明な溶液になることで判断した。
また、30分間でセルロースが溶解しなかった場合は5℃刻みで昇温し、30分間でセルロースが溶解した場合は1質量%刻みで、セルロース量を増加させた。この操作を100℃まで繰り返し、セルロースの溶解量と温度を記録した。
[2] Dissolution of cellulose [Example 1]
A 20 ml sample containing a stirring bar of N, N-diethyl-N-methyl-N-2-methoxyethylammonium dimethyl phosphate ([DEME] [(MeO) 2 PO 2 ]) obtained in Synthesis Example 1 2 g was collected in a bottle and mixed with 1% by mass of cellulose (manufactured by Aldrich, Micro Crystalline Cellulose, molecular weight = degree of polymerization 200-300).
This mixture was put into a drier (Yamato CONSTANT TEMPERATURE OPEN DN-42) and held at 25 ° C. for 30 minutes. At this time, the sample bottle was taken out from time to time and stirred with a stirrer (IWAKI HIGH-POWER STIRRE BS-1000). The dissolution of the cellulose added to the ionic liquid was judged by visual observation from a state in which the cellulose was dispersed and mixed into a uniform transparent solution.
Moreover, when the cellulose did not melt | dissolve in 30 minutes, it heated up in steps of 5 degreeC, and when the cellulose melt | dissolved in 30 minutes, the amount of cellulose was increased in 1 mass% increments. This operation was repeated up to 100 ° C., and the amount of cellulose dissolved and the temperature were recorded.

[実施例2]
[DEME][(MeO)2PO2]を合成例2で得られたN−メチル−N−2−メトキシエチルピロリジニウム ジメチルリン酸塩([MEMP][(MeO)2PO2])に変更した以外は、実施例1と同様に行った。
[Example 2]
[DEME] [(MeO) 2 PO 2 ] to N-methyl-N-2-methoxyethylpyrrolidinium dimethyl phosphate ([MEMP] [(MeO) 2 PO 2 ]) obtained in Synthesis Example 2. The procedure was the same as in Example 1 except for the change.

[実施例3]
[DEME][(MeO)2PO2]を合成例3で得られたN,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム メチルジメチルホスホン酸塩([DEME][(MeO)(Me)PO2])に変更した以外は、実施例1と同様に行った。
[Example 3]
[DEME] [(MeO) 2 PO 2 ] was synthesized from N, N-diethyl-N-methyl-N-2-methoxyethylammonium methyldimethylphosphonate ([DEME] [(MeO) ( Me) Performed in the same manner as in Example 1 except that it was changed to PO 2 ]).

[実施例4]
[DEME][(MeO)2PO2]を合成例4で得られたN−メチル−N−2−メトキシエチルピロリジニウム メチルジメチルホスホン酸塩([MEMP][(MeO)(Me)PO2])に変更した以外は、実施例1と同様に行った。
[Example 4]
[DEME] [(MeO) 2 PO 2 ] was obtained by synthesizing N-methyl-N-2-methoxyethylpyrrolidinium methyldimethylphosphonate ([MEMP] [(MeO) (Me) PO 2 ) obtained in Synthesis Example 4. ]) The procedure was the same as Example 1 except that the change was made.

[実施例5]
[DEME][(MeO)2PO2]を合成例5で得られたN,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム メチル亜リン酸塩([DEME][(MeO)(H)PO2])に変更した以外は、実施例1と同様に行った。
[Example 5]
[DEME] [(MeO) 2 PO 2 ] was converted to N, N-diethyl-N-methyl-N-2-methoxyethylammonium methyl phosphite ([DEME] [(MeO) ( H) Performed in the same manner as in Example 1 except that it was changed to PO 2 ]).

[実施例6]
[DEME][(MeO)2PO2]を合成例6で得られたN−メチル−N−2−メトキシエチルピロリジニウム メチル亜リン酸塩([MEMP][(MeO)(H)PO2])に変更した以外は、実施例1と同様に行った。
[Example 6]
[DEME] [(MeO) 2 PO 2 ] was converted to N-methyl-N-2-methoxyethylpyrrolidinium methyl phosphite ([MEMP] [(MeO) (H) PO 2 ] obtained in Synthesis Example 6. ]) The procedure was the same as Example 1 except that the change was made.

[実施例7]
[DEME][(MeO)2PO2]を合成例7で得られた1−メトキシエチル−3−メチルイミダゾリウム メチル亜リン酸塩([MEMIm][(MeO)(H)PO2])に変更した以外は、実施例1と同様に行った。
上記実施例1〜7におけるセルロースの溶解量と温度を記録したグラフを図8に示す。
[Example 7]
[DEME] [(MeO) 2 PO 2 ] into 1-methoxyethyl-3-methylimidazolium methyl phosphite ([MEMIm] [(MeO) (H) PO 2 ]) obtained in Synthesis Example 7. The procedure was the same as in Example 1 except for the change.
The graph which recorded the dissolution amount and temperature of the cellulose in the said Examples 1-7 is shown in FIG.

[実施例8]
合成例5で得られたN,N−ジエチル−N−メチル−N−2−メトキシエチルアンモニウム メチル亜リン酸塩([DEME][(MeO)(H)PO2])を、攪拌子を入れた5mlサンプル瓶に500mg分取し、1質量%量のセルロース(Aldrich社製、微結晶セルロース(Micro Crystalline Cellulose)、分子量=重合度200〜300)と混合した。
この混合物を室温(25℃)で15時間攪拌し、イオン液体に添加したセルロースが溶解することを、目視により確認した。溶解したことはセルロースが分散混合した状態から均一透明な溶液になることで判断した。また、15時間以内にセルロースが溶解した場合は、さらに1質量%刻みでセルロース量を増加させ、15時間以内での溶解性を調査した。この操作を繰り返し、室温(25℃)でのセルロースの溶解量を調査した。その結果、室温(25℃)でのセルロースの溶解量は1質量%であった。
[Example 8]
The N, N-diethyl-N-methyl-N-2-methoxyethylammonium methyl phosphite ([DEME] [(MeO) (H) PO 2 ]) obtained in Synthesis Example 5 was placed in a stir bar. Further, 500 mg was taken into a 5 ml sample bottle and mixed with 1% by mass of cellulose (manufactured by Aldrich, Micro Crystalline Cellulose, molecular weight = degree of polymerization 200 to 300).
This mixture was stirred at room temperature (25 ° C.) for 15 hours, and it was visually confirmed that the cellulose added to the ionic liquid was dissolved. The dissolution was judged by a uniform transparent solution from the state where cellulose was dispersed and mixed. When the cellulose was dissolved within 15 hours, the amount of cellulose was further increased in increments of 1% by mass, and the solubility within 15 hours was investigated. This operation was repeated to investigate the amount of cellulose dissolved at room temperature (25 ° C.). As a result, the dissolution amount of cellulose at room temperature (25 ° C.) was 1% by mass.

[実施例9]
[DEME][(MeO)(H)PO2]を合成例6で得られたN−メチル−N−2−メトキシエチルピロリジニウム メチル亜リン酸塩([MEMP][(MeO)(H)PO2])に変更した以外は、実施例8と同様に行った。その結果、室温(25℃)でのセルロースの溶解量は1質量%であった。
[Example 9]
[DEME] [(MeO) (H) PO 2 ] was converted to N-methyl-N-2-methoxyethylpyrrolidinium methyl phosphite ([MEMP] [(MeO) (H)) obtained in Synthesis Example 6. The same procedure as in Example 8 was performed except that PO 2 ]) was changed. As a result, the dissolution amount of cellulose at room temperature (25 ° C.) was 1% by mass.

[実施例10]
[DEME][(MeO)(H)PO2]を合成例7で得られた1−メトキシエチル−3−メチルイミダゾリウム メチル亜リン酸塩([MEMIm][(MeO)(H)PO2])に変更した以外は、実施例8と同様に行った。その結果、室温(25℃)でのセルロースの溶解量は5質量%であった。
[Example 10]
[DEME] [(MeO) (H) PO 2 ] was converted to 1-methoxyethyl-3-methylimidazolium methyl phosphite obtained in Synthesis Example 7 ([MEMIm] [(MeO) (H) PO 2 ]). The procedure was the same as in Example 8 except that the change was made to). As a result, the dissolution amount of cellulose at room temperature (25 ° C.) was 5% by mass.

[3]セルロースの再生
[実施例11]
実施例9と同様にして、セルロースを、[MEMP][(MeO)(H)PO2]に溶かし、セルロースの[MEMP][(MeO)(H)PO2]溶液(含有セルロース:1質量%)を調製した。この溶液500mgを、攪拌下で水5gに少しずつに分けて加え、最終的に全量加えた後、10分間攪拌を続けてセルロースを析出させた。
デカンテーションにより水相を捨て、新たに5gの水を加えて攪拌する操作を4回繰り返してセルロースから[MEMP][(MeO)(H)PO2]を洗い流し、塊状のセルロースを得た。乾燥後の塊状セルロースの質量は4.9mgであった。
[3] Regeneration of cellulose [Example 11]
In the same manner as in Example 9, cellulose was dissolved in [MEMP] [(MeO) (H) PO 2 ], and a [MEMP] [(MeO) (H) PO 2 ] solution of cellulose (containing cellulose: 1% by mass) ) Was prepared. 500 mg of this solution was added in portions to 5 g of water under stirring, and finally the whole amount was added, followed by stirring for 10 minutes to precipitate cellulose.
The aqueous phase was discarded by decantation, and an operation of adding 5 g of water and stirring the mixture was repeated four times to wash out [MEMP] [(MeO) (H) PO 2 ] from the cellulose to obtain bulky cellulose. The mass of the bulk cellulose after drying was 4.9 mg.

Claims (12)

式(1)で示される4級アンモニウムカチオンと、(CH3O)(R)PO2 -(Rは、水素原子、メチル基、またはメトキシ基を示す。)とからなるイオン液体。
1234+ ・・・(1)
〔式中、R1、R2、R3およびR4は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖もしくは分岐のアルキル基、または−(CH2n−OR5で示されるアルコキシアルキル基(R5は、メチル基またはエチル基を示し、nは、1または2である。)を示し(ただし、R1、R2、R3およびR4の少なくとも1つは前記アルコキシアルキル基である。)、これらR1、R2、R3およびR4のいずれか2個の基が窒素原子とともに環(当該環中にその他のヘテロ原子を含んでいてもよい。)を形成していてもよい。〕
An ionic liquid comprising a quaternary ammonium cation represented by the formula (1) and (CH 3 O) (R) PO 2 (R represents a hydrogen atom, a methyl group or a methoxy group).
R 1 R 2 R 3 R 4 N + (1)
[Wherein R 1 , R 2 , R 3 and R 4 may be the same as or different from each other, a linear or branched alkyl group having 1 to 12 carbon atoms, or — (CH 2 ) n —OR 5. (Wherein R 5 represents a methyl group or an ethyl group, and n is 1 or 2), provided that at least one of R 1 , R 2 , R 3 and R 4 is Any one of R 1 , R 2 , R 3 and R 4 together with a nitrogen atom in a ring (other heteroatoms may be contained in the ring). May be formed. ]
前記R1、R2、R3およびR4が、互いに同一でも異なっていてもよい、炭素数1〜8の直鎖アルキル基、または−(CH2n−OR5で示されるアルコキシアルキル基(R5はメチル基またはエチル基を示し、nは1または2である。)を示し(ただし、R1、R2、R3およびR4の少なくとも1つは前記アルコキシアルキル基である。)、これらR1、R2、R3およびR4のいずれか2個の基が窒素原子とともに環(当該環中にその他のヘテロ原子を含んでいてもよい。)を形成していてもよい請求項1記載のイオン液体。 R 1 , R 2 , R 3 and R 4 may be the same as or different from each other, a linear alkyl group having 1 to 8 carbon atoms, or an alkoxyalkyl group represented by — (CH 2 ) n —OR 5 (R 5 represents a methyl group or an ethyl group, and n is 1 or 2.) (However, at least one of R 1 , R 2 , R 3, and R 4 is the alkoxyalkyl group.) Any two groups of R 1 , R 2 , R 3 and R 4 may form a ring (which may contain other heteroatoms in the ring) together with the nitrogen atom. Item 5. An ionic liquid according to item 1. 前記カチオンが、式(2)で示される請求項1または2記載のイオン液体。
Figure 0005339452
(式中、R1、R2、R3、R5およびnは、前記と同じ意味を表す。)
The ionic liquid according to claim 1 or 2, wherein the cation is represented by the formula (2).
Figure 0005339452
(In the formula, R 1 , R 2 , R 3 , R 5 and n have the same meaning as described above.)
前記カチオンが、式(3)で示される請求項1または2記載のイオン液体。
Figure 0005339452
(式中、R1、R5およびnは、前記と同じ意味を表す。)
The ionic liquid according to claim 1 or 2, wherein the cation is represented by the formula (3).
Figure 0005339452
(In the formula, R 1 , R 5 and n represent the same meaning as described above.)
請求項1〜4のいずれか1項記載のイオン液体からなるポリマー処理剤 The polymer processing agent which consists of an ionic liquid of any one of Claims 1-4 . 天然高分子化合物の処理剤である請求項5記載のポリマー処理剤。 6. The polymer treatment agent according to claim 5, which is a treatment agent for a natural polymer compound . 前記天然高分子化合物が、セルロースである請求項6記載のポリマー処理剤。 The polymer treatment agent according to claim 6, wherein the natural polymer compound is cellulose . 表面処理剤、膨潤剤または溶解剤である請求項5〜7のいずれか1項記載のポリマー処理剤。 The polymer treatment agent according to any one of claims 5 to 7, which is a surface treatment agent, a swelling agent, or a dissolving agent. 請求項5〜8のいずれか1項記載のポリマー処理剤を用いるポリマー処理方法 The polymer processing method using the polymer processing agent of any one of Claims 5-8 . 請求項1〜4のいずれか1項記載のイオン液体と、1種または2種以上のポリマーとを含み、このポリマーが前記イオン液体に溶解しているドープ A dope comprising the ionic liquid according to any one of claims 1 to 4 and one or more polymers, wherein the polymer is dissolved in the ionic liquid . 請求項5記載のポリマー処理剤と、1種または2種以上のポリマーとを含み、このポリマーが前記ポリマー処理剤に溶解しているドープ A dope comprising the polymer treating agent according to claim 5 and one or more polymers, wherein the polymer is dissolved in the polymer treating agent . 請求項10もしくは11記載のドープに、前記イオン液体に相溶し、かつ、前記ポリマーの溶解能を実質的に有しない媒体を加え、または請求項10もしくは11記載のドープを、前記イオン液体に相溶し、かつ、前記ポリマーの溶解能を実質的に有しない媒体に加えることを特徴とする再生ポリマーの製造方法。 A medium compatible with the ionic liquid and having substantially no ability to dissolve the polymer is added to the dope according to claim 10 or 11, or the dope according to claim 10 or 11 is added to the ionic liquid. A method for producing a regenerated polymer, which is added to a medium which is compatible and has substantially no ability to dissolve the polymer .
JP2009511883A 2007-04-24 2008-04-23 Ionic liquid and polymer treatment agent comprising this ionic liquid Active JP5339452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009511883A JP5339452B2 (en) 2007-04-24 2008-04-23 Ionic liquid and polymer treatment agent comprising this ionic liquid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007114018 2007-04-24
JP2007114018 2007-04-24
JP2009511883A JP5339452B2 (en) 2007-04-24 2008-04-23 Ionic liquid and polymer treatment agent comprising this ionic liquid
PCT/JP2008/057836 WO2008133269A1 (en) 2007-04-24 2008-04-23 Ionic liquid, and polymer treatment agent comprising the ionic liquid

Publications (2)

Publication Number Publication Date
JPWO2008133269A1 JPWO2008133269A1 (en) 2010-07-29
JP5339452B2 true JP5339452B2 (en) 2013-11-13

Family

ID=39925718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009511883A Active JP5339452B2 (en) 2007-04-24 2008-04-23 Ionic liquid and polymer treatment agent comprising this ionic liquid

Country Status (2)

Country Link
JP (1) JP5339452B2 (en)
WO (1) WO2008133269A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153782B2 (en) 2007-02-14 2012-04-10 Eastman Chemical Company Reformation of ionic liquids
US9834516B2 (en) 2007-02-14 2017-12-05 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US10174129B2 (en) 2007-02-14 2019-01-08 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US8188267B2 (en) 2008-02-13 2012-05-29 Eastman Chemical Company Treatment of cellulose esters
US9777074B2 (en) 2008-02-13 2017-10-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8158777B2 (en) 2008-02-13 2012-04-17 Eastman Chemical Company Cellulose esters and their production in halogenated ionic liquids
US8354525B2 (en) 2008-02-13 2013-01-15 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8524887B2 (en) * 2009-04-15 2013-09-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom
WO2011048609A2 (en) 2009-10-07 2011-04-28 Grasim Industries Limited A process of manufacturing low fibrillating cellulose fibers
WO2011048608A2 (en) 2009-10-07 2011-04-28 Grasim Industries Limited A process of manufacturing low-fibrillating cellulosic fibers
JP5894373B2 (en) * 2010-03-19 2016-03-30 株式会社カネカ Method for producing cellulose porous particles
JP5647820B2 (en) * 2010-06-15 2015-01-07 三洋化成工業株式会社 Method for producing phosphoric acid diester salt
JP5624820B2 (en) * 2010-07-12 2014-11-12 株式会社ブリヂストン Method for producing purified cellulose fiber
JP5578015B2 (en) * 2010-10-19 2014-08-27 Jsr株式会社 Method for producing cellulose particles, and cellulose particles
JP5874993B2 (en) * 2010-10-20 2016-03-02 国立大学法人金沢大学 Biotreatment method for biomass
WO2012081616A1 (en) * 2010-12-14 2012-06-21 Jsr株式会社 Method for producing polymer particles, and polymer particles
JP5594113B2 (en) * 2010-12-14 2014-09-24 Jsr株式会社 Method for producing crosslinked polymer particle, and crosslinked polymer particle
JP5594114B2 (en) * 2010-12-14 2014-09-24 Jsr株式会社 Method for producing polysaccharide composite particles, and polysaccharide composite particles
JP5794609B2 (en) * 2011-01-06 2015-10-14 国立大学法人鳥取大学 Cellulose biomass processing method
US8431319B2 (en) * 2011-03-22 2013-04-30 Xerox Corporation Toner wash comprising ionic liquid
US8729253B2 (en) 2011-04-13 2014-05-20 Eastman Chemical Company Cellulose ester optical films
JP2022129896A (en) * 2021-02-25 2022-09-06 ミヨシ油脂株式会社 Organic ammonium salt having phosphonate or phosphinate anion, and composition capable of forming the salt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2486079A1 (en) * 1980-07-07 1982-01-08 Rhone Poulenc Agrochimie 1,3-Alkyl or benzyl substd. imidazolium phosphite derivs. - are fungicides active against basidiomycetes, ascomycetes, phycomycetes and fungi imperfecti
JP2002003478A (en) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt
WO2004016631A1 (en) * 2002-08-16 2004-02-26 Cytec Canada Inc. Phosphonium and imidazolium salts and methods of their preparation
JP2005506401A (en) * 2001-10-03 2005-03-03 ザ ユニヴァーシティー オブ アラバマ Dissolution and processing of cellulose using ionic liquids
JP2005530910A (en) * 2002-06-28 2005-10-13 ザ プロクター アンド ギャンブル カンパニー Ionic liquid products and methods of use
WO2007049485A1 (en) * 2005-10-25 2007-05-03 Nisshinbo Industries, Inc. Process for producing cellulose solution, cellulose solution, and process for producing regenerated cellulose
JP2009520846A (en) * 2005-12-23 2009-05-28 ビーエーエスエフ ソシエタス・ヨーロピア Solvent system based on molten ionic liquid, its production and its use to produce regenerated carbohydrates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2486079A1 (en) * 1980-07-07 1982-01-08 Rhone Poulenc Agrochimie 1,3-Alkyl or benzyl substd. imidazolium phosphite derivs. - are fungicides active against basidiomycetes, ascomycetes, phycomycetes and fungi imperfecti
JP2002003478A (en) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N-alkoxyalkyl imidazolium salt and ionic liquid and ionic gel composed of the imidazolium salt
JP2005506401A (en) * 2001-10-03 2005-03-03 ザ ユニヴァーシティー オブ アラバマ Dissolution and processing of cellulose using ionic liquids
JP2005530910A (en) * 2002-06-28 2005-10-13 ザ プロクター アンド ギャンブル カンパニー Ionic liquid products and methods of use
WO2004016631A1 (en) * 2002-08-16 2004-02-26 Cytec Canada Inc. Phosphonium and imidazolium salts and methods of their preparation
WO2007049485A1 (en) * 2005-10-25 2007-05-03 Nisshinbo Industries, Inc. Process for producing cellulose solution, cellulose solution, and process for producing regenerated cellulose
JP2009520846A (en) * 2005-12-23 2009-05-28 ビーエーエスエフ ソシエタス・ヨーロピア Solvent system based on molten ionic liquid, its production and its use to produce regenerated carbohydrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013022877; Green Chemistry Vol. 9, 2006, P. 233-242 *

Also Published As

Publication number Publication date
WO2008133269A1 (en) 2008-11-06
JPWO2008133269A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5339452B2 (en) Ionic liquid and polymer treatment agent comprising this ionic liquid
JP2010132558A (en) Treating agent for polysaccharides
Onwukamike et al. Critical review on sustainable homogeneous cellulose modification: why renewability is not enough
Kaya et al. On chemistry of γ-chitin
Heinze Cellulose: structure and properties
Shang et al. Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid
AU2002347788B2 (en) Dissolution and processing of cellulose using ionic liquids
Reddy et al. Preparation and characterization of regenerated cellulose films using borassus fruit fibers and an ionic liquid
Muhammad et al. Ionic liquid—a future solvent for the enhanced uses of wood biomass
EP3110850B1 (en) Deep eutectic solvents and their use
Mundsinger et al. Multifilament cellulose/chitin blend yarn spun from ionic liquids
Meng et al. Dissolution of natural polymers in ionic liquids: A review
Nguyen et al. Natural deep eutectics as a “green” cellulose cosolvent
JP2013533916A (en) Novel cellulosic composites
JP2013522411A (en) Method for fibrillation of lignocellulosic materials, fibers and their use
AU2012362513A1 (en) Fiber composition comprising 1,3-glucan and a method of preparing same
US20210079593A1 (en) Dissolution of Cellulose in Ionic Liquids
Walther et al. Chitin foils and coatings prepared from ionic liquids
Heinze et al. Cellulose activation and dissolution
JP5534871B2 (en) Method for producing cellulose film
Chen et al. Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo
JP6195896B2 (en) Lignocellulose spinning solution, lignocellulose regenerated fiber and method for producing the same
Szabó et al. Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future
Xie et al. Preparation of degradable wood cellulose films using ionic liquids
JP2008266401A (en) Molded cellulose article and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5339452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250