JP2010132558A - Treating agent for polysaccharides - Google Patents

Treating agent for polysaccharides Download PDF

Info

Publication number
JP2010132558A
JP2010132558A JP2007067933A JP2007067933A JP2010132558A JP 2010132558 A JP2010132558 A JP 2010132558A JP 2007067933 A JP2007067933 A JP 2007067933A JP 2007067933 A JP2007067933 A JP 2007067933A JP 2010132558 A JP2010132558 A JP 2010132558A
Authority
JP
Japan
Prior art keywords
polysaccharide
ionic liquid
polysaccharides
cellulose
treating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067933A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ono
弘幸 大野
Yukinobu Fukaya
幸信 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Nisshinbo Holdings Inc
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Nisshinbo Holdings Inc
Priority to JP2007067933A priority Critical patent/JP2010132558A/en
Priority to PCT/JP2008/053370 priority patent/WO2008114584A1/en
Publication of JP2010132558A publication Critical patent/JP2010132558A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B16/00Regeneration of cellulose
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating agent for polysaccharides that dissolves various kinds of polysaccharides such as cellulose and the like at around room temperature and has low viscosity to allow good handleability as a liquid and good treatability of items to be treated. <P>SOLUTION: The treating agent for polysaccharides comprises an ionic liquid constituted of an imidazolium-based cation represented by formula (1) and (CH<SB>3</SB>O)(R<SP>3</SP>)PO<SB>2</SB><SP>-</SP>(wherein R<SP>3</SP>is a hydrogen atom, a methyl group or a methoxy group). In formula (1), R<SP>1</SP>and R<SP>2</SP>are the same or different and are each a 1-12C linear or branched alkyl group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、多糖類の処理剤に関し、さらに詳述すると、ジアルキルイミダゾリウム系カチオンと、リン酸系アニオンとからなる多糖類の処理剤に関する。   The present invention relates to a polysaccharide treating agent, and more specifically, to a polysaccharide treating agent comprising a dialkylimidazolium cation and a phosphate anion.

従来、イオン液体に、セルロース、絹、ウール等の高分子物質が溶解することが知られている(非特許文献1:JACS, 2002, vol.124, p.4274-4275、非特許文献2:JACS, 2004, vol.126, p.14350-14351、非特許文献3:Green Chem., 2005, vol.7, p.606-608参照)。
中でも、セルロースについては、セルロースのイオン液体溶液を利用した再生や、化学修飾、表面処理などが試みられている。
Conventionally, it is known that polymer substances such as cellulose, silk, and wool dissolve in an ionic liquid (Non-patent Document 1: JACS, 2002, vol.124, p.4274-4275, Non-patent Document 2: JACS, 2004, vol. 126, p. 14350-14351, Non-Patent Document 3: Green Chem., 2005, vol. 7, p. 606-608).
In particular, for cellulose, attempts have been made to regenerate, chemically modify, surface-treat, etc. using an ionic liquid solution of cellulose.

例えば、特許文献1(特表2005−506401号公報)には、実質的に水を含まない1−ブチル−3−メチルイミダゾリウムクロライドなどのイオン液体中にセルロースを溶解させてセルロース溶液を調製し、これに水を加えてセルロースを再生させる方法が開示されている。
特許文献2(国際公開第2005/054298号パンフレット)には、1−ブチル−3−メチルイミダゾリウムクロライドに代表されるイオン液体にセルロースを溶解し、セルロースの水酸基をエーテル化する手法が開示されている。
特許文献3(特表2005−530910号公報)には、イオン液体を含む布地処理剤で処理されたセルロース系布地は、機能的または美観的に優れた外観を示し、繊維強化効果が発揮され得ることが開示されている。
For example, in Patent Document 1 (Japanese Patent Publication No. 2005-506401), a cellulose solution is prepared by dissolving cellulose in an ionic liquid such as 1-butyl-3-methylimidazolium chloride substantially free of water. A method for regenerating cellulose by adding water is disclosed.
Patent Document 2 (International Publication No. 2005/054298) discloses a technique in which cellulose is dissolved in an ionic liquid typified by 1-butyl-3-methylimidazolium chloride, and the hydroxyl group of cellulose is etherified. Yes.
In patent document 3 (Japanese translations of PCT publication No. 2005-530910 gazette), the cellulosic fabric processed with the fabric processing agent containing an ionic liquid shows the functional or aesthetic appearance outstanding, and the fiber reinforcement effect can be exhibited. It is disclosed.

特許文献4(特開2002−3478号公報)には、窒素原子上にアルコキシアルキル基を有するイミダゾリウム系イオン液体が、合成高分子、蛋白質、多糖、糖誘導体の溶解能を有することが開示されている。
特許文献5(特開2006−137677号公報)には、カルボン酸系アニオンを有する高極性非ハロゲン系イオン液体が、セルロース、キチン、キトサン等の難溶性多糖類の溶解能を有することが開示されている。
Patent Document 4 (Japanese Patent Laid-Open No. 2002-3478) discloses that an imidazolium-based ionic liquid having an alkoxyalkyl group on a nitrogen atom has the ability to dissolve synthetic polymers, proteins, polysaccharides, and sugar derivatives. ing.
Patent Document 5 (Japanese Patent Application Laid-Open No. 2006-137777) discloses that a highly polar non-halogen ionic liquid having a carboxylic acid anion has the ability to dissolve poorly soluble polysaccharides such as cellulose, chitin, and chitosan. ing.

しかしながら、上記各文献に開示されているような、セルロース等の多糖類の溶解能を有するイオン液体のほとんどが室温で固体であるため、多糖類を室温で処理することは困難である。このため、イオン液体が溶融するような比較的高い温度で処理する必要があり、エネルギーコストが大きくなるという問題がある。しかも、処理温度を高くすると、被処理物である多糖類の分子量が著しく低下し、その結果、処理後の多糖類の物性が低下するという問題もある。
また、従来のイオン液体は、粘度が高いため、液体としての取扱い性に劣るうえに、被処理物との接触およびその後の被処理物内部への浸透などに時間を要するという問題もある。
However, since most of the ionic liquids having the ability to dissolve polysaccharides such as cellulose as disclosed in the above documents are solid at room temperature, it is difficult to treat the polysaccharide at room temperature. For this reason, it is necessary to perform the treatment at a relatively high temperature at which the ionic liquid melts, and there is a problem that the energy cost increases. In addition, when the treatment temperature is increased, the molecular weight of the polysaccharide to be treated is remarkably lowered, and as a result, there is a problem that the physical properties of the treated polysaccharide are lowered.
In addition, since the conventional ionic liquid has a high viscosity, it is inferior in handleability as a liquid and has a problem that it takes time for contact with the object to be processed and subsequent penetration into the object to be processed.

なお、特許文献6(仏国特許出願公開第2486079号明細書)には、イミダゾリウムカチオンと、特定のリン酸系アニオンとからなるイオン液体が開示されているが、このイオン液体がセルロースなどの溶解能を有することについては開示されていない。   Patent Document 6 (French Patent Application Publication No. 2486079) discloses an ionic liquid composed of an imidazolium cation and a specific phosphate anion. It is not disclosed that it has solubility.

特表2005−506401号公報JP 2005-506401 A 国際公開第2005/054298号パンフレットInternational Publication No. 2005/054298 Pamphlet 特表2005−530910号公報JP 2005-530910 A 特開2002−3478号公報JP 2002-3478 A 特開2006−137677号公報JP 2006-137777 A 仏国特許出願公開第2486079号明細書French Patent Application Publication No. 2486079 JACS, 2002, vol.124, p.4274-4275JACS, 2002, vol.124, p.4274-4275 JACS, 2004, vol.126, p.14350-14351JACS, 2004, vol.126, p.14350-14351 Green Chem., 2005, vol.7, p.606-608Green Chem., 2005, vol.7, p.606-608

本発明は、このような事情に鑑みてなされたものであり、室温付近でセルロース等の各種多糖類を溶解することが可能であり、かつ、粘度が低く液体としての取扱い性および被処理物の処理性の良好な多糖類の処理剤を提供することを目的とする。   The present invention has been made in view of such circumstances, is capable of dissolving various polysaccharides such as cellulose at around room temperature, has low viscosity, and is easy to handle as a liquid and to be processed. It aims at providing the processing agent of the polysaccharide with favorable processability.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ジアルキルイミダゾリウム系カチオンと、リン酸系アニオンとからなるイオン液体が、30℃付近の温度で液体であり、かつ、この温度で比較的低粘度であること、および30℃付近でセルロースなどの多糖類を溶解し得ることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have found that an ionic liquid composed of a dialkylimidazolium cation and a phosphate anion is a liquid at a temperature around 30 ° C., and this The present invention was completed by finding that the viscosity is relatively low at temperature and that polysaccharides such as cellulose can be dissolved at around 30 ° C.

すなわち、本発明は、
1. 式(1)で示されるイミダゾリウム系カチオンおよび(CH3O)(R3)PO2 -(R3は、水素原子、メチル基、またはメトキシ基を示す。)から構成されるイオン液体からなることを特徴とする多糖類の処理剤、

Figure 2010132558
(式中、R1およびR2は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖または分岐のアルキル基を示す。)
2. 前記R1およびR2が、互いに同一でも異なっていてもよい、炭素数1〜8の直鎖アルキル基である1の多糖類の処理剤、
3. 前記イミダゾリウム系カチオンが、式(2)で示される2の多糖類の処理剤、
Figure 2010132558
4. 表面処理剤、膨潤剤または溶解剤である1〜3のいずれかの多糖類の処理剤、
5. 1〜4のいずれかの多糖類の処理剤を用いる多糖類の処理方法、
6. 1〜4のいずれかの多糖類の処理剤に、1種または2種以上の多糖類が溶解してなるドープ、
7. 6のドープから再生された多糖類、
8. 6のドープに、前記イオン液体に相溶し、かつ、前記多糖類の溶解能を実質的に有しない媒体を加え、または6のドープを、前記イオン液体に相溶し、かつ、前記多糖類の溶解能を実質的に有しない媒体に加えることを特徴とする再生多糖類の製造方法、
9. 式(1)で示されるイミダゾリウム系カチオンと、(CH3O)(CH3)PO2 -、または(CH3O)2PO2 -とからなることを特徴とするイオン液体、
Figure 2010132558
(式中、R1およびR2は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖または分岐のアルキル基を示す。)
10. 前記R1およびR2が、互いに同一でも異なっていてもよい、炭素数1〜8の直鎖アルキル基である9のイオン液体、
11. 前記イミダゾリウム系カチオンが、式(2)で示される9または10のイオン液体
Figure 2010132558
を提供する。 That is, the present invention
1. It consists of an ionic liquid composed of an imidazolium cation represented by the formula (1) and (CH 3 O) (R 3 ) PO 2 (R 3 represents a hydrogen atom, a methyl group or a methoxy group). A polysaccharide treating agent,
Figure 2010132558
(In the formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 12 carbon atoms, which may be the same as or different from each other.)
2. The treating agent for one polysaccharide, wherein R 1 and R 2 are linear alkyl groups having 1 to 8 carbon atoms, which may be the same or different from each other;
3. The imidazolium-based cation is a treating agent for the polysaccharide of 2 represented by the formula (2):
Figure 2010132558
4). A treating agent for any one of 1 to 3 which is a surface treating agent, swelling agent or solubilizer;
5). A method for treating a polysaccharide using the polysaccharide treating agent of any one of 1 to 4,
6). A dope formed by dissolving one or more polysaccharides in the treatment agent for any one of polysaccharides 1 to 4,
7). Polysaccharides regenerated from 6 dopes,
8). A medium compatible with the ionic liquid and having substantially no ability to dissolve the polysaccharide is added to the dope of 6, or the dope of 6 is compatible with the ionic liquid and the polysaccharide A method for producing a regenerated polysaccharide, characterized in that it is added to a medium having substantially no dissolution ability of
9. An ionic liquid characterized by comprising an imidazolium cation represented by the formula (1) and (CH 3 O) (CH 3 ) PO 2 or (CH 3 O) 2 PO 2 .
Figure 2010132558
(In the formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 12 carbon atoms, which may be the same as or different from each other.)
10. 9 ionic liquids in which R 1 and R 2 are linear alkyl groups having 1 to 8 carbon atoms, which may be the same or different from each other;
11. The imidazolium-based cation is 9 or 10 ionic liquid represented by the formula (2)
Figure 2010132558
I will provide a.

本発明に係る多糖類の処理剤は、ジアルキルイミダゾリウム系カチオンと、リン酸系アニオンとから構成されており、室温付近で液体状態を示し、かつ、低粘度である。したがって、本発明の多糖類の処理剤を用いることで、従来のイオン液体では不可能であった室温付近での多糖類の処理が可能となる。
また、本発明の多糖類の処理剤は、粘度が低いことから取扱い性に優れるばかりでなく、セルロースをはじめとする各種多糖類の溶解性に優れるとともに、セルロースを溶解した場合の分子量低下がほとんどない。
さらに、本発明の多糖類の処理剤は、各種多糖類の溶解能を有しているため、この多糖類の処理剤と複数種の多糖類とを含むドープを調製し、これから、多糖類を再生させることで、従来にないブレンド物の調製が可能となる。
The polysaccharide treating agent according to the present invention is composed of a dialkylimidazolium-based cation and a phosphate-based anion, exhibits a liquid state near room temperature, and has a low viscosity. Therefore, by using the polysaccharide treating agent of the present invention, it is possible to treat the polysaccharide near room temperature, which is impossible with conventional ionic liquids.
The polysaccharide treatment agent of the present invention is not only excellent in handleability because of its low viscosity, but also excellent in solubility of various polysaccharides including cellulose, and almost no decrease in molecular weight when cellulose is dissolved. Absent.
Furthermore, since the polysaccharide treating agent of the present invention has the ability to dissolve various polysaccharides, a dope containing this polysaccharide treating agent and a plurality of types of polysaccharides is prepared. Regeneration makes it possible to prepare an unprecedented blend.

以下、本発明についてさらに詳しく説明する。
本発明に係る多糖類の処理剤は、式(1)で示されるイミダゾリウム系カチオンおよび(CH3O)(R3)PO2 -(R3は、水素原子、メチル基、またはメトキシ基を示す。)から構成されるイオン液体からなるものである。
一般的にイオン液体とは、100℃以下で流動性があり、完全にイオンから成る液体をいうが、本発明の多糖類の処理剤を構成するイオン液体は30℃で液状である。
Hereinafter, the present invention will be described in more detail.
The polysaccharide treating agent according to the present invention includes an imidazolium cation represented by the formula (1) and (CH 3 O) (R 3 ) PO 2 (R 3 represents a hydrogen atom, a methyl group, or a methoxy group. It is made of an ionic liquid composed of
In general, an ionic liquid refers to a liquid which is fluid at 100 ° C. or lower and is completely composed of ions, but the ionic liquid constituting the polysaccharide treating agent of the present invention is liquid at 30 ° C.

Figure 2010132558
(式中、R1およびR2は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖または分岐のアルキル基を示す。)
Figure 2010132558
(In the formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 12 carbon atoms, which may be the same as or different from each other.)

式(1)において、炭素数1〜12の直鎖または分岐のアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、2−メチルプロピル基、1,1−ジメチルエチル基、n−ペンチル基、s−ペンチル基、t−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、2,2−ジメチルプロピル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基等が挙げられる。
これらの中でも、多糖類の溶解・膨潤能を高めるため、および化合物の融点を下げるという観点から、炭素数1〜8の直鎖アルキル基が好ましく、特に、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基等の炭素数1〜5の直鎖アルキル基が好適である。
In the formula (1), specific examples of the linear or branched alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, and s-butyl group. T-butyl group, 2-methylpropyl group, 1,1-dimethylethyl group, n-pentyl group, s-pentyl group, t-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, Examples include 2,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group and the like.
Among these, a linear alkyl group having 1 to 8 carbon atoms is preferable in order to increase the solubility / swelling ability of the polysaccharide and to lower the melting point of the compound, and in particular, a methyl group, an ethyl group, and an n-propyl group. A linear alkyl group having 1 to 5 carbon atoms such as n-butyl group and n-pentyl group is preferred.

また、化合物の融点を低くするという観点から、カチオンとして非対称な形状であること、すなわち、R1およびR2が異なるアルキル基であることが好ましい。この場合、原料の入手が容易であり、合成も簡便であることから、R1およびR2どちらか一方がメチルまたはエチル基であることが、特に好適である。
具体的なカチオンとしては、1−メチル−3−(n−ペンチル)イミダゾリウムイオン、1−(n−ブチル)−3−メチルイミダゾリウムイオン、1−メチル−3−n−プロピルイミダゾリウムイオン、1−エチル−3−メチルイミダゾリウムイオン(式(2))などが挙げられる。
From the viewpoint of lowering the melting point of the compound, it is preferable that the cation has an asymmetric shape, that is, R 1 and R 2 are different alkyl groups. In this case, it is particularly preferable that one of R 1 and R 2 is a methyl or ethyl group because the raw materials are easily available and the synthesis is simple.
Specific cations include 1-methyl-3- (n-pentyl) imidazolium ion, 1- (n-butyl) -3-methylimidazolium ion, 1-methyl-3-n-propylimidazolium ion, 1-ethyl-3-methylimidazolium ion (formula (2)) and the like can be mentioned.

Figure 2010132558
Figure 2010132558

本発明の多糖類の処理剤において、イオン液体を構成するアニオンは、(CH3O)(R3)PO2 -(R3は、水素原子、メチル基、またはメトキシ基を示す。)であるが、セルロースなどの多糖類の溶解能に優れ、低粘度のイオン液体を与えることから、R3は、水素原子またはメトキシ基であることが好ましい。
上記イオン液体は、1種単独で、または2種以上混合して多糖類の処理剤とすることができる。
In the polysaccharide treating agent of the present invention, the anion constituting the ionic liquid is (CH 3 O) (R 3 ) PO 2 (R 3 represents a hydrogen atom, a methyl group, or a methoxy group). However, R 3 is preferably a hydrogen atom or a methoxy group because it has an excellent ability to dissolve polysaccharides such as cellulose and gives a low-viscosity ionic liquid.
The said ionic liquid can be used individually by 1 type or in mixture of 2 or more types as a polysaccharide processing agent.

本発明の多糖類の処理剤は、各種多糖類の表面処理剤、溶解剤、膨潤剤などとして好適に用いることができる。
本発明において、溶解とは、多糖類が媒体中に均一相として存在するように視認されることをいう。膨潤とは、媒体が多糖類の凝集分子鎖中に浸入し、分子鎖同士の相互作用が緩和されているが、完全に分子鎖の凝集が解かれるまでには至っていない状態をいう。
The polysaccharide treating agent of the present invention can be suitably used as a surface treating agent, a solubilizing agent, a swelling agent and the like for various polysaccharides.
In the present invention, dissolution means that the polysaccharide is visually recognized as a uniform phase in the medium. Swelling refers to a state in which the medium has entered the aggregated molecular chain of the polysaccharide and the interaction between the molecular chains has been relaxed, but the molecular chain has not been completely agglomerated.

多糖類の処理剤の粘度は、低い程好ましいが、処理剤の多糖類への浸透の容易さや、液体としての取扱いの容易さ、連続工程の場合に洗浄層への処理剤の混入を少なくすることなどを考慮すると、30℃で500mPa・s以下であることが好ましく、400mPa・s以下がより好ましく、200mPa・s以下であることが好適である。
なお、本発明の多糖類の処理剤には、その効果を発現させる限度においてその他の成分を添加することもできる。その他の成分としては、香料、染料、撥水剤、撥油剤、抗菌剤、防カビ剤などが挙げられる。
The lower the viscosity of the treatment agent of the polysaccharide, the better, but the ease of penetration of the treatment agent into the polysaccharide, the ease of handling as a liquid, and the mixing of the treatment agent into the cleaning layer in the case of a continuous process are reduced. Considering this, it is preferably 500 mPa · s or less at 30 ° C., more preferably 400 mPa · s or less, and preferably 200 mPa · s or less.
In addition, other components can be added to the polysaccharide treating agent of the present invention as long as the effect is exhibited. Examples of other components include fragrances, dyes, water repellents, oil repellents, antibacterial agents, and fungicides.

本発明の多糖類の処理剤で処理される多糖類としては、上述したイオン液体に溶解または膨潤するものであり、例えば、セルロース、ヘミセルロース、グリコーゲン、デンプン、キチン、キトサン、アガロース、カラギーナンなどが挙げられる。
セルロースとしては、植物由来セルロース、動物由来セルロース、バクテリア由来セルロース、再生セルロースが挙げられる。具体的には、綿、麻、竹、バナナ、月桃、ハイビスカスローゼル、ケナフ、広葉樹パルプ、針葉樹パルプ、ホヤセルロース、バクテリアセルロース、レーヨン、キュプラ、テンセル、イオン液体による再生セルロースなどが挙げられ、イオン液体に溶解,膨潤し得る限り、それらの誘導体でもよい。誘導体としては、例えばセルロースの水酸基をエーテル化またはエステル化した誘導体や、シアノエチル化した誘導体などが挙げられる。
なお、セルロースの結晶構造は任意であり、I型、II型、III型、IV型、非晶のいずれか1つの構造またはそれらの組合せからなる構造を有するセルロースを採用できる。また、セルロースの結晶化度に関わらず用いることができる。
上記多糖類の構造は任意であり、糸,織物,編物,不織布,紙等の繊維構造物、フィルム、ビーズ、板、ブロックなどの各種構造を採用できる。
The polysaccharide treated with the polysaccharide treating agent of the present invention is one that dissolves or swells in the ionic liquid described above, and examples thereof include cellulose, hemicellulose, glycogen, starch, chitin, chitosan, agarose, and carrageenan. It is done.
Examples of cellulose include plant-derived cellulose, animal-derived cellulose, bacterial-derived cellulose, and regenerated cellulose. Specific examples include cotton, hemp, bamboo, banana, moon peach, hibiscus rozel, kenaf, hardwood pulp, conifer pulp, squirt cellulose, bacterial cellulose, rayon, cupra, tencel, regenerated cellulose with ionic liquid, etc. Their derivatives may be used as long as they can be dissolved and swelled in a liquid. Examples of the derivatives include derivatives obtained by etherifying or esterifying a hydroxyl group of cellulose, and derivatives obtained by cyanoethylation.
The crystal structure of cellulose is arbitrary, and cellulose having a structure composed of any one of I-type, II-type, III-type, IV-type, and amorphous structure or a combination thereof can be employed. Further, it can be used regardless of the crystallinity of cellulose.
The structure of the polysaccharide is arbitrary, and various structures such as a fiber structure such as a yarn, a woven fabric, a knitted fabric, a non-woven fabric, and paper, a film, a bead, a plate, and a block can be employed.

また、本発明の多糖類の処理剤で処理される多糖類は、当該処理剤に溶解または膨潤しない物質を含んでいてもよい。
このような物質としては、アクリル樹脂、ポリカーボネート樹脂、ABS樹脂、ポリ乳酸、ポリカプロラクトン、ポリアミド(ナイロン)、ポリスチレンなどの高分子化合物や、ガラス繊維、金属繊維、炭素繊維、ロックウールなどが挙げられる。
なお、これらの物質の含有量は任意であるが、多糖類全体に対して、5〜95質量%程度が好適である。
Moreover, the polysaccharide processed with the processing agent of the polysaccharide of this invention may contain the substance which does not melt | dissolve or swell in the said processing agent.
Examples of such substances include acrylic resins, polycarbonate resins, ABS resins, polylactic acid, polycaprolactone, polyamide (nylon), high molecular compounds such as polystyrene, glass fibers, metal fibers, carbon fibers, rock wool, and the like. .
In addition, although content of these substances is arbitrary, about 5-95 mass% is suitable with respect to the whole polysaccharide.

以上で説明した多糖類の処理剤を用いた多糖類の処理方法は、当該処理剤を、多糖類または多糖類を含む被処理物と接触させて、(被処理物中の)多糖類を膨潤または溶解させたり、表面処理したりするものである。
接触方法としては特に制限はなく、当該処理剤中へ多糖類(被処理物)を浸漬させたり、当該処理剤を含む槽内に多糖類(被処理物)を通過させたりする方法や、多糖類(被処理物)へ当該処理剤を噴霧する方法などが挙げられる。
In the polysaccharide processing method using the polysaccharide processing agent described above, the processing agent is brought into contact with the polysaccharide or the material to be processed containing the polysaccharide to swell the polysaccharide (in the material to be processed). Alternatively, it is dissolved or surface-treated.
There is no particular limitation on the contact method, and a method of immersing a polysaccharide (object to be treated) in the treatment agent or passing a polysaccharide (object to be treated) into a tank containing the treatment agent, The method of spraying the said processing agent on saccharides (to-be-processed object) etc. are mentioned.

接触時間は、所望の効果に応じて適宜決定すればよく、例えば、多糖類を、本発明の処理剤と長時間接触させることにより、多糖類は、その内部まで膨潤や溶解し、一方、当該処理剤と短時間接触させることにより、多糖類は、その表面近傍のみが膨潤や溶解する。一般的には、0.01秒から180分間程度の範囲で適宜調節すればよい。
接触温度は、多糖類の処理剤が液体状である温度領域であればよい。本発明の多糖類の処理剤は30℃で液体であることから、加熱なしに多糖類(被処理物)の処理が可能でエネルギー的に有利である。具体的には、0〜100℃程度が好ましく、20〜60℃程度がより好ましい。
The contact time may be appropriately determined according to the desired effect. For example, by bringing the polysaccharide into contact with the treatment agent of the present invention for a long time, the polysaccharide swells or dissolves to the inside thereof, By bringing the polysaccharide into contact with the treating agent for a short time, only the vicinity of the surface of the polysaccharide swells or dissolves. In general, it may be appropriately adjusted within a range of about 0.01 seconds to 180 minutes.
The contact temperature may be a temperature range in which the polysaccharide treatment agent is liquid. Since the polysaccharide treating agent of the present invention is liquid at 30 ° C., it is possible to treat the polysaccharide (object to be treated) without heating, which is advantageous in terms of energy. Specifically, about 0-100 degreeC is preferable and about 20-60 degreeC is more preferable.

接触処理後の多糖類(処理物)に残存した多糖類の処理剤は、この処理剤と相溶でかつ処理後の多糖類を溶解・膨潤させない溶液で洗浄することで容易に除去することができる。
このような溶媒としては、例えば、水、メタノール,エタノール等のアルコール類、テトラヒドロフラン,ジオキサン等のエーテル類、アセトン,メチルエチルケトン等のケトン類、アセトニトリル、クロロホルム等が挙げられる。
接触処理および必要に応じて行われる洗浄処理後、処理後の多糖類(処理物)を適宜乾燥させればよい。乾燥手法は任意であり、公知の各種方法を用いることができる。具体例としては、ヒートドラム、熱風、赤外線、天日による方法などが挙げられる。
The polysaccharide treating agent remaining in the polysaccharide (treated product) after the contact treatment can be easily removed by washing with a solution that is compatible with this treating agent and does not dissolve or swell the treated polysaccharide. it can.
Examples of such solvents include water, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, ketones such as acetone and methyl ethyl ketone, acetonitrile, and chloroform.
After the contact treatment and the washing treatment performed as necessary, the treated polysaccharide (treated product) may be appropriately dried. Any drying method can be used, and various known methods can be used. Specific examples include a heat drum, hot air, infrared rays, and a method using sunlight.

本発明に係るドープは、上述したイオン液体からなる多糖類の処理剤と、多糖類とを含み、多糖類がイオン液体に溶解しているものである。この場合、多糖類は2種以上用いてもよい。
このドープ中の多糖類の含有量は、使用する多糖類の種類にもよるため一概には規定できないが、本発明のドープにおいては、0.1〜50質量%程度とすることができる。
本発明のドープの調製法は特に限定されるものではなく、上述したイオン液体に多糖類を添加・溶解して調製しても、多糖類にイオン液体を添加・溶解して調製してもよい。
なお、溶解時に適宜加熱してもよい。
The dope according to the present invention includes the polysaccharide treating agent composed of the ionic liquid described above and the polysaccharide, and the polysaccharide is dissolved in the ionic liquid. In this case, two or more polysaccharides may be used.
The content of the polysaccharide in the dope depends on the type of polysaccharide used, and thus cannot be defined unconditionally. However, in the dope of the present invention, it can be about 0.1 to 50% by mass.
The method for preparing the dope of the present invention is not particularly limited, and it may be prepared by adding / dissolving the polysaccharide to the ionic liquid described above or by adding / dissolving the ionic liquid to the polysaccharide. .
In addition, you may heat suitably at the time of melt | dissolution.

本発明のドープを用いることで再生多糖類を製造することができ、特に2種以上の多糖類を含むドープの場合には、これら各多糖類のブレンド物を製造することができる。既に述べたように、本発明のイオン液体は、室温付近で液体状であるとともに粘度が低く、多糖類をより低温で溶解し得、多糖類の物性低下などを起こしにくいものであるため、各種多糖類の物性の低下が抑制されたブレンド物を容易に得ることができる。   By using the dope of the present invention, a regenerated polysaccharide can be produced. In particular, in the case of a dope containing two or more kinds of polysaccharides, a blend of these polysaccharides can be produced. As already mentioned, the ionic liquid of the present invention is liquid around room temperature, has a low viscosity, can dissolve polysaccharides at a lower temperature, and does not easily cause degradation of the physical properties of polysaccharides. It is possible to easily obtain a blended product in which deterioration of the physical properties of the polysaccharide is suppressed.

再生多糖類や、ブレンド物を製造する具体的手法としては、イオン液体に相溶し、かつ、多糖類の溶解能を実質的に有しない媒体を本発明のドープに加えたり、イオン液体に相溶し、かつ、多糖類の溶解能を実質的に有しない媒体に本発明のドープを加えたりすることで再生多糖類やブレンド物を系内で析出させる手法が挙げられる。   As a specific method for producing regenerated polysaccharides and blends, a medium that is compatible with an ionic liquid and has substantially no polysaccharide dissolving ability may be added to the dope of the present invention, or may be compatible with the ionic liquid. A method of precipitating regenerated polysaccharides and blends in the system by adding the dope of the present invention to a medium that dissolves and does not substantially have the ability to dissolve polysaccharides.

ここで、イオン液体に対して相溶し、かつ、多糖類の溶解能を実質的に有しない媒体の具体例としては、水、メタノール,エタノール等のアルコール類、テトラヒドロフラン,ジオキサン等のエーテル類、アセトン,メチルエチルケトン等のケトン類、アセトニトリル、クロロホルムなどが挙げられ、これらは1種単独で、または2種以上混合して用いることができる。これらの中でも、水、アルコール類が好ましく、環境面を配慮すると水がより好ましい。
なお、「多糖類の溶解能を実質的に有しない媒体」とは、多糖類を全く溶解しない媒体という意味ではなく、本発明のドープに加え、その添加量を臨界量以上に増大させた場合に多糖類やそのブレンド物を析出させることが可能な媒体を意味する。
Here, specific examples of the medium that is compatible with the ionic liquid and does not substantially have the ability to dissolve polysaccharides include water, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, Examples include ketones such as acetone and methyl ethyl ketone, acetonitrile, chloroform, and the like. These may be used alone or in combination of two or more. Among these, water and alcohols are preferable, and water is more preferable in consideration of environmental aspects.
In addition, the “medium having substantially no ability to dissolve polysaccharides” does not mean a medium that does not dissolve polysaccharides at all. In addition to the dope of the present invention, the amount added is increased to a critical amount or more. Means a medium capable of precipitating polysaccharides and blends thereof.

本発明のドープと上記媒体との使用割合は、多糖類が析出してくる割合であれば任意であり、また使用する媒体によっても変動するものであるため一概に規定することはできないが、効率的に多糖類を析出させるためには、媒体/ドープの液量比は1以上が好ましく、2以上がより好ましく、5以上がさらに好ましい。
なお、ドープ中に媒体を加える方法、媒体中にドープを加える方法は任意である。
The use ratio of the dope of the present invention and the above medium is arbitrary as long as the polysaccharide is precipitated, and also varies depending on the medium used. In order to precipitate polysaccharides, the medium / dope liquid ratio is preferably 1 or more, more preferably 2 or more, and even more preferably 5 or more.
In addition, the method of adding a medium in dope and the method of adding dope in a medium are arbitrary.

再生多糖類やブレンド物の形態は、特に限定されるものではなく、粉状、粒状、塊状、綿状、短繊維状、長繊維状、棒状、スポンジ状、フィルム状等の各種形状とすることができる。
たとえば、ドープを上記媒体に加える手法では、Tダイなどを通してドープを媒体中に押し出すなどにより、フィルム状や、長繊維状の再生多糖類やブレンド物を連続的に得ることもできる。
The form of the regenerated polysaccharide or blend is not particularly limited, and may be various forms such as powder, granule, lump, cotton, short fiber, long fiber, rod, sponge, film, etc. Can do.
For example, in the method of adding the dope to the medium, a film-like or long-fiber regenerated polysaccharide or blend can be continuously obtained by extruding the dope into the medium through a T die or the like.

以下、合成例および実施例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。
なお、以下の実施例におけるイオン液体の構造確認は、1H−NMRおよび13C−NMR(日本電子(株)製、ECX−400)を用いて行い、粘度測定は、Brookfield DV-I + Viscometerを用いて行った。
また、イオン液体に添加したセルロース(粉末)が溶解したことは、目視により、セルロース(粉末)が分散混合した状態から均一透明な溶液になることで判断した。
EXAMPLES Hereinafter, although a synthesis example and an Example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In addition, the structure confirmation of the ionic liquid in the following examples is performed using 1 H-NMR and 13 C-NMR (manufactured by JEOL Ltd., ECX-400), and the viscosity is measured using Brookfield DV-I + Viscometer. It was performed using.
Moreover, it was judged by visual observation that the cellulose (powder) added to the ionic liquid was dissolved from a state in which the cellulose (powder) was dispersed and mixed into a uniform transparent solution.

[1]イオン液体の合成
[合成例1]
N−エチルイミダゾール(東京化成工業(株)製)12gと、小過剰モル量のトリメチルリン酸(東京化成工業(株)製)とをアルゴン雰囲気下、25℃で混合した。反応溶液を60℃に加熱し、この温度で24時間攪拌した。反応後に減圧下で未反応のトリメチルリン酸を留去し、得られた溶液をジエチルエーテル(関東化学(株)製)300mlに滴下し、1時間激しく攪拌した。攪拌後に1時間静置し、上澄みのジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去し、無色透明の液体を得た。得られた液体を80℃で24時間の加熱真空乾燥を行い、1−エチル−3−メチルイミダゾリウム ジメチルリン酸塩([C2mim][(MeO)2PO2])27gを得た。このイオン液体の30℃での粘度は、182mPa・sであった。
合成例1で得られたイオン液体の1H−NMRおよび13C−NMRスペクトルを図1,2に示す。なお、測定は、重クロロホルムを溶媒として行った(以下、同様)。
[1] Synthesis of ionic liquid [Synthesis Example 1]
12 g of N-ethylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) and a small excess molar amount of trimethyl phosphoric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed at 25 ° C. in an argon atmosphere. The reaction solution was heated to 60 ° C. and stirred at this temperature for 24 hours. After the reaction, unreacted trimethyl phosphoric acid was distilled off under reduced pressure, and the resulting solution was added dropwise to 300 ml of diethyl ether (manufactured by Kanto Chemical Co., Inc.) and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the supernatant diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed to obtain a colorless and transparent liquid. The obtained liquid was heated and vacuum dried at 80 ° C. for 24 hours to obtain 27 g of 1-ethyl-3-methylimidazolium dimethyl phosphate ([C2mim] [(MeO) 2 PO 2 ]). The viscosity of this ionic liquid at 30 ° C. was 182 mPa · s.
1 H-NMR and 13 C-NMR spectra of the ionic liquid obtained in Synthesis Example 1 are shown in FIGS. The measurement was carried out using deuterated chloroform as a solvent (hereinafter the same).

[合成例2]
N−エチルイミダゾール(東京化成工業(株)製)12gと、小過剰モル量のジメチル亜リン酸(東京化成工業(株)製)とをアルゴン雰囲気下、25℃で混合した。反応溶液を70℃に加熱し、この温度で24時間攪拌した。反応後に減圧下で未反応のトリメチルリン酸を留去し、得られた溶液をジエチルエーテル(関東化学(株)製)300mlに滴下し、1時間激しく攪拌した。攪拌後に1時間静置し、上澄みのジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去し、無色透明の液体を得た。得られた液体を80℃で24時間の加熱真空乾燥を行い、1−エチル−3−メチルイミダゾリウム メチル亜リン酸塩([C2mim][(MeO)(H)PO2])24gを得た。このイオン液体の30℃での粘度は、77mPa・sであった。
合成例2で得られたイオン液体の1H−NMRおよび13C−NMRスペクトルを図3,4に示す。
[Synthesis Example 2]
12 g of N-ethylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) and a small excess molar amount of dimethyl phosphorous acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed at 25 ° C. in an argon atmosphere. The reaction solution was heated to 70 ° C. and stirred at this temperature for 24 hours. After the reaction, unreacted trimethyl phosphoric acid was distilled off under reduced pressure, and the resulting solution was added dropwise to 300 ml of diethyl ether (manufactured by Kanto Chemical Co., Inc.) and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the supernatant diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed to obtain a colorless and transparent liquid. The obtained liquid was heated and vacuum dried at 80 ° C. for 24 hours to obtain 24 g of 1-ethyl-3-methylimidazolium methyl phosphite ([C2mim] [(MeO) (H) PO 2 ]). . The viscosity of this ionic liquid at 30 ° C. was 77 mPa · s.
The 1 H-NMR and 13 C-NMR spectra of the ionic liquid obtained in Synthesis Example 2 are shown in FIGS.

[合成例3]
N−エチルイミダゾール(東京化成工業(株)製)12gと、小過剰モル量のジメチルメチルホスホン酸(東京化成工業(株)製)とをアルゴン雰囲気下、25℃で混合した。反応溶液を110℃に加熱し、この温度で72時間攪拌した。反応後に減圧下で未反応のジメチルメチルホスホン酸を留去し、得られた溶液をジエチルエーテル(関東化学(株)製)300mlに滴下し、1時間激しく攪拌した。攪拌後に1時間静置し、上澄みのジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去した。沈殿物にさらにジエチルエーテル300mlを添加して1時間激しく攪拌した。攪拌後に1時間静置し、ジエチルエーテル層を除去し、無色透明の液体を得た。得られた液体を80℃で24時間の加熱真空乾燥を行い、1−エチル−3−メチルイミダゾリウム メチルジメチルホスホン酸塩([C2mim][(MeO)(Me)PO2])25gを得た。このイオン液体の30℃での粘度は、331mPa・sであった。
合成例3で得られたイオン液体の1H−NMRおよび13C−NMRスペクトルを図3,4に示す。
[Synthesis Example 3]
12 g of N-ethylimidazole (manufactured by Tokyo Chemical Industry Co., Ltd.) and a small excess molar amount of dimethylmethylphosphonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed at 25 ° C. in an argon atmosphere. The reaction solution was heated to 110 ° C. and stirred at this temperature for 72 hours. After the reaction, unreacted dimethylmethylphosphonic acid was distilled off under reduced pressure, and the resulting solution was added dropwise to 300 ml of diethyl ether (manufactured by Kanto Chemical Co., Inc.) and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the supernatant diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed. 300 ml of diethyl ether was further added to the precipitate and stirred vigorously for 1 hour. After stirring, the mixture was allowed to stand for 1 hour, and the diethyl ether layer was removed to obtain a colorless and transparent liquid. The obtained liquid was heated and vacuum dried at 80 ° C. for 24 hours to obtain 25 g of 1-ethyl-3-methylimidazolium methyldimethylphosphonate ([C2mim] [(MeO) (Me) PO 2 ]). . The viscosity of this ionic liquid at 30 ° C. was 331 mPa · s.
The 1 H-NMR and 13 C-NMR spectra of the ionic liquid obtained in Synthesis Example 3 are shown in FIGS.

[2]セルロースの溶解実験(ドープの調製)
[実施例1]
合成例1で得られた1−エチル−3−メチルイミダゾリウム ジメチルリン酸塩([C2mim][(MeO)2PO2])を、1gずつ4つの容器に分取し、窒素雰囲気下で4、6、8、10質量%量のセルロース(Aldrich社製、微結晶セルロース(Micro Crystalline Cellulose)、分子量=重合度200〜300)と個々に混合し、密閉した。
25℃から5℃毎に加熱し、各温度で30分間攪拌しながらセルロースの溶解温度を記録した。その結果、4、6、8、10質量%量のセルロース(粉末)が完全に溶解する温度はそれぞれ、50、55、60、65℃であった。
[2] Cellulose dissolution experiment (preparation of dope)
[Example 1]
1-Ethyl-3-methylimidazolium dimethyl phosphate ([C2mim] [(MeO) 2 PO 2 ]) obtained in Synthesis Example 1 is dispensed into 4 containers of 1 g each, and 4 in a nitrogen atmosphere. 6, 8, and 10% by weight of cellulose (Aldrich, Micro Crystalline Cellulose, molecular weight = degree of polymerization 200-300) were individually mixed and sealed.
Heating was performed every 25 ° C. to 5 ° C., and the dissolution temperature of cellulose was recorded while stirring at each temperature for 30 minutes. As a result, the temperatures at which 4, 6, 8, and 10% by mass of cellulose (powder) were completely dissolved were 50, 55, 60, and 65 ° C., respectively.

[実施例2]
合成例2で得られた1−エチル−3−メチルイミダゾリウム メチル亜リン酸塩([C2mim][(MeO)(H)PO2])を1gずつ4つの容器に分取し、窒素雰囲気下で4、6、8、10質量%量のセルロース(Aldrich社製、微結晶セルロース(Micro Crystalline Cellulose)、分子量=重合度200〜300)と個々に混合し、密閉した。
25℃から5℃毎に加熱し、各温度で30分間攪拌しながらセルロースの溶解温度を記録した。その結果、4、6、8、10質量%量のセルロース(粉末)が完全に溶解する温度はそれぞれ、30、35、40、45℃であった。
[Example 2]
1 g of 1-ethyl-3-methylimidazolium methyl phosphite ([C2mim] [(MeO) (H) PO 2 ]) obtained in Synthesis Example 2 was dispensed into 4 containers, each under a nitrogen atmosphere. 4, 6, 8, and 10% by mass of cellulose (manufactured by Aldrich, Micro Crystalline Cellulose, molecular weight = degree of polymerization 200-300) and individually mixed and sealed.
Heating was performed every 25 ° C. to 5 ° C., and the dissolution temperature of cellulose was recorded while stirring at each temperature for 30 minutes. As a result, the temperatures at which 4, 6, 8, and 10% by mass of cellulose (powder) were completely dissolved were 30, 35, 40, and 45 ° C., respectively.

[実施例3]
合成例3で得られた1−エチル−3−メチルイミダゾリウム メチルジメチルホスホン酸塩([C2mim][(MeO)(Me)PO2])を1gずつ4つの容器に分取し、窒素雰囲気下で4、6、8、10質量%量のセルロース(Aldrich社製、微結晶セルロース(Micro Crystalline Cellulose)、分子量=重合度200〜300)と個々に混合し、密閉した。
25℃から5℃毎に加熱し、各温度で30分間攪拌しながらセルロースの溶解温度を記録した。その結果、4、6、8、10質量%量のセルロース(粉末)が完全に溶解する温度はそれぞれ、40、45、50、55℃であった。
[Example 3]
1 g of 1-ethyl-3-methylimidazolium methyldimethylphosphonate ([C2mim] [(MeO) (Me) PO 2 ]) obtained in Synthesis Example 3 was dispensed into 4 containers each in a nitrogen atmosphere. 4, 6, 8, and 10% by mass of cellulose (manufactured by Aldrich, Micro Crystalline Cellulose, molecular weight = degree of polymerization 200-300) and individually mixed and sealed.
Heating was performed every 25 ° C. to 5 ° C., and the dissolution temperature of cellulose was recorded while stirring at each temperature for 30 minutes. As a result, the temperatures at which 4, 6, 8, and 10% by mass of cellulose (powder) were completely dissolved were 40, 45, 50, and 55 ° C., respectively.

[実施例4]
合成例1、2、3で得られた1−エチル−3−メチルイミダゾリウム ジメチルリン酸塩([C2mim][(MeO)2PO2])、1−エチル−3−メチルイミダゾリウム メチル亜リン酸塩([C2mim][(MeO)(H)PO2])、1−エチル−3−メチルイミダゾリウム メチルジメチルホスホン酸塩([C2mim][(MeO)(Me)PO2])をそれぞれ1g分取し、窒素雰囲気下で4質量%量のセルロース(Aldrich社製、微結晶セルロース(Micro Crystalline Cellulose)、分子量=重合度200〜300)を混合し、密閉した。
混合溶液を25℃で攪拌し、セルロースが完全に溶解するまでの時間を記録した。その結果、4質量%量のセルロース(粉末)が25℃で完全に溶解する時間はいずれも5時間であった。
[Example 4]
1-ethyl-3-methylimidazolium dimethyl phosphate ([C2mim] [(MeO) 2 PO 2 ]) obtained in Synthesis Examples 1, 2, and 3, 1-ethyl-3-methylimidazolium methyl phosphite 1 g each of acid salt ([C2mim] [(MeO) (H) PO 2 ]) and 1-ethyl-3-methylimidazolium methyldimethylphosphonate ([C2mim] [(MeO) (Me) PO 2 ]) In a nitrogen atmosphere, 4 mass% of cellulose (manufactured by Aldrich, Micro Crystalline Cellulose, molecular weight = degree of polymerization 200 to 300) was mixed and sealed.
The mixed solution was stirred at 25 ° C., and the time until the cellulose was completely dissolved was recorded. As a result, the time for completely dissolving 4% by mass of cellulose (powder) at 25 ° C. was 5 hours.

[3]セルロースの再生
[実施例5]
実施例1〜3で調製した微結晶セルロースを10質量%量溶解した各種イオン液体溶液に、過剰量のメタノールまたはエタノールを添加し、氷浴中で攪拌した。沈殿物(再生セルロース)を分取したあと、過剰量の温メタノールまたは温エタノールで繰り返し洗浄した。得られた粉末を室温で風乾し、更に減圧下室温で12時間乾燥し、再生セルロースを得た。
[3] Regeneration of cellulose [Example 5]
An excess amount of methanol or ethanol was added to various ionic liquid solutions in which 10% by mass of the microcrystalline cellulose prepared in Examples 1 to 3 was dissolved, and the mixture was stirred in an ice bath. After the precipitate (regenerated cellulose) was collected, it was repeatedly washed with an excess amount of warm methanol or warm ethanol. The obtained powder was air-dried at room temperature and further dried under reduced pressure at room temperature for 12 hours to obtain regenerated cellulose.

合成例1で得られたイオン液体の1H−NMRスペクトルを示す図である。2 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 1. FIG. 合成例1で得られたイオン液体の13C−NMRスペクトルを示す図である。3 is a diagram showing a 13 C-NMR spectrum of an ionic liquid obtained in Synthesis Example 1. FIG. 合成例2で得られたイオン液体の1H−NMRスペクトルを示す図である。4 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 2. FIG. 合成例2で得られたイオン液体の13C−NMRスペクトルを示す図である。6 is a diagram showing a 13 C-NMR spectrum of an ionic liquid obtained in Synthesis Example 2. FIG. 合成例3で得られたイオン液体の1H−NMRスペクトルを示す図である。6 is a diagram showing a 1 H-NMR spectrum of an ionic liquid obtained in Synthesis Example 3. FIG. 合成例3で得られたイオン液体の13C−NMRスペクトルを示す図である。It is a figure which shows the 13 C-NMR spectrum of the ionic liquid obtained in the synthesis example 3.

Claims (11)

式(1)で示されるイミダゾリウム系カチオンおよび(CH3O)(R3)PO2 -(R3は、水素原子、メチル基、またはメトキシ基を示す。)から構成されるイオン液体からなることを特徴とする多糖類の処理剤。
Figure 2010132558
(式中、R1およびR2は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖または分岐のアルキル基を示す。)
It consists of an ionic liquid composed of an imidazolium cation represented by the formula (1) and (CH 3 O) (R 3 ) PO 2 (R 3 represents a hydrogen atom, a methyl group or a methoxy group). A polysaccharide treating agent characterized by the above.
Figure 2010132558
(In the formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 12 carbon atoms, which may be the same as or different from each other.)
前記R1およびR2が、互いに同一でも異なっていてもよい、炭素数1〜8の直鎖アルキル基である請求項1記載の多糖類の処理剤。 The treatment agent for polysaccharides according to claim 1, wherein R 1 and R 2 are linear alkyl groups having 1 to 8 carbon atoms, which may be the same or different from each other. 前記イミダゾリウム系カチオンが、式(2)で示される請求項2記載の多糖類の処理剤。
Figure 2010132558
The polysaccharide treating agent according to claim 2, wherein the imidazolium-based cation is represented by the formula (2).
Figure 2010132558
表面処理剤、膨潤剤または溶解剤である請求項1〜3のいずれか1項記載の多糖類の処理剤。   It is a surface treating agent, a swelling agent, or a solubilizer, The processing agent of the polysaccharide of any one of Claims 1-3. 請求項1〜4のいずれか1項記載の多糖類の処理剤を用いる多糖類の処理方法。   The processing method of the polysaccharide using the processing agent of the polysaccharide of any one of Claims 1-4. 請求項1〜4のいずれか1項記載の多糖類の処理剤に、1種または2種以上の多糖類が溶解してなるドープ。   A dope comprising one or more polysaccharides dissolved in the polysaccharide treating agent according to any one of claims 1 to 4. 請求項6記載のドープから再生された多糖類。   A polysaccharide regenerated from the dope according to claim 6. 請求項6記載のドープに、前記イオン液体に相溶し、かつ、前記多糖類の溶解能を実質的に有しない媒体を加え、または請求項6記載のドープを、前記イオン液体に相溶し、かつ、前記多糖類の溶解能を実質的に有しない媒体に加えることを特徴とする再生多糖類の製造方法。   A medium compatible with the ionic liquid and having substantially no ability to dissolve the polysaccharide is added to the dope according to claim 6, or the dope according to claim 6 is compatible with the ionic liquid. And the manufacturing method of the reproduction | regeneration polysaccharide characterized by adding to the medium which does not have the dissolving ability of the said polysaccharide substantially. 式(1)で示されるイミダゾリウム系カチオンと、(CH3O)(CH3)PO2 -、または(CH3O)2PO2 -とからなることを特徴とするイオン液体。
Figure 2010132558
(式中、R1およびR2は、互いに同一でも異なっていてもよい、炭素数1〜12の直鎖または分岐のアルキル基を示す。)
An ionic liquid comprising an imidazolium cation represented by the formula (1) and (CH 3 O) (CH 3 ) PO 2 or (CH 3 O) 2 PO 2 .
Figure 2010132558
(In the formula, R 1 and R 2 represent a linear or branched alkyl group having 1 to 12 carbon atoms, which may be the same as or different from each other.)
前記R1およびR2が、互いに同一でも異なっていてもよい、炭素数1〜8の直鎖アルキル基である請求項9記載のイオン液体。 The ionic liquid according to claim 9, wherein R 1 and R 2 are each a linear alkyl group having 1 to 8 carbon atoms, which may be the same as or different from each other. 前記イミダゾリウム系カチオンが、式(2)で示される請求項9または10記載のイオン液体。
Figure 2010132558
The ionic liquid according to claim 9 or 10, wherein the imidazolium-based cation is represented by the formula (2).
Figure 2010132558
JP2007067933A 2007-03-16 2007-03-16 Treating agent for polysaccharides Pending JP2010132558A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007067933A JP2010132558A (en) 2007-03-16 2007-03-16 Treating agent for polysaccharides
PCT/JP2008/053370 WO2008114584A1 (en) 2007-03-16 2008-02-27 Treating agent for polysaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067933A JP2010132558A (en) 2007-03-16 2007-03-16 Treating agent for polysaccharides

Publications (1)

Publication Number Publication Date
JP2010132558A true JP2010132558A (en) 2010-06-17

Family

ID=39765694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067933A Pending JP2010132558A (en) 2007-03-16 2007-03-16 Treating agent for polysaccharides

Country Status (2)

Country Link
JP (1) JP2010132558A (en)
WO (1) WO2008114584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510045A (en) * 2011-12-30 2015-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Fiber composition containing 1,3-glucan and method for preparing the same
US11713517B2 (en) 2019-09-24 2023-08-01 Panasonic Holdings Corporation Group-III nitride substrate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834516B2 (en) 2007-02-14 2017-12-05 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US10174129B2 (en) 2007-02-14 2019-01-08 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a carboxylated ionic liquid process and products produced therefrom
US7919631B2 (en) 2007-02-14 2011-04-05 Eastman Chemical Company Production of ionic liquids
US8158777B2 (en) 2008-02-13 2012-04-17 Eastman Chemical Company Cellulose esters and their production in halogenated ionic liquids
US9777074B2 (en) 2008-02-13 2017-10-03 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8188267B2 (en) 2008-02-13 2012-05-29 Eastman Chemical Company Treatment of cellulose esters
US8354525B2 (en) 2008-02-13 2013-01-15 Eastman Chemical Company Regioselectively substituted cellulose esters produced in a halogenated ionic liquid process and products produced therefrom
US8067488B2 (en) 2009-04-15 2011-11-29 Eastman Chemical Company Cellulose solutions comprising tetraalkylammonium alkylphosphate and products produced therefrom
CA2786948A1 (en) * 2010-01-15 2011-07-21 Basf Se Method of chlorinating polysaccharides or oligosaccharides
JP5851418B2 (en) * 2010-11-30 2016-02-03 株式会社ブリヂストン Method for producing purified cellulose fiber, method for producing fiber-rubber composite, and method for producing tire
JP2012219018A (en) * 2011-04-04 2012-11-12 Asahi Kasei Corp Phosphorus atom-containing ionic liquid
US9096691B2 (en) 2011-04-13 2015-08-04 Eastman Chemical Company Cellulose ester optical films

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824599B2 (en) * 2001-10-03 2004-11-30 The University Of Alabama Dissolution and processing of cellulose using ionic liquids
CA2398682C (en) * 2002-08-16 2007-11-13 Cytec Technology Corp. Phosphonium and imidazolium salts and methods of their preparation
JP4951750B2 (en) * 2004-11-10 2012-06-13 国立大学法人東京農工大学 Dissolving agent for poorly soluble polysaccharide and composition comprising said dissolving agent and polysaccharide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510045A (en) * 2011-12-30 2015-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Fiber composition containing 1,3-glucan and method for preparing the same
US11713517B2 (en) 2019-09-24 2023-08-01 Panasonic Holdings Corporation Group-III nitride substrate

Also Published As

Publication number Publication date
WO2008114584A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP2010132558A (en) Treating agent for polysaccharides
JP5339452B2 (en) Ionic liquid and polymer treatment agent comprising this ionic liquid
Joseph et al. Cellulose nanocomposites: Fabrication and biomedical applications
Das et al. Synthesis and characterization of superabsorbent cellulose‐based hydrogel for agriculture application
Adewale et al. Starch modification for non-food, industrial applications: Market intelligence and critical review
Kostag et al. Sustainable biomaterials based on cellulose, chitin and chitosan composites-A review
de Oliveira et al. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging
Šimkovic Unexplored possibilities of all-polysaccharide composites
Klemm et al. Cellulose: fascinating biopolymer and sustainable raw material
Osorio-Madrazo et al. Kinetics study of the solid-state acid hydrolysis of chitosan: Evolution of the crystallinity and macromolecular structure
Kanimozhi et al. In vitro cytocompatibility of chitosan/PVA/methylcellulose–Nanocellulose nanocomposites scaffolds using L929 fibroblast cells
Ifuku et al. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers
ES2343326T3 (en) ALMIDON STERIFICATION PROCEDURE.
Ibrahim et al. Polysaccharide-based polymer gels and their potential applications
Osorio-Madrazo et al. Highly crystalline chitosan produced by multi-steps acid hydrolysis in the solid-state
Meng et al. Dissolution of natural polymers in ionic liquids: A review
Chen et al. Bioinspired hydrogels: Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation
RU2428482C2 (en) Method of preparing composition with improved rheological properties (versions) and composition obtained using said methods
US20210079593A1 (en) Dissolution of Cellulose in Ionic Liquids
Walther et al. Chitin foils and coatings prepared from ionic liquids
Soni et al. Effect of starch retrogradation on wet strength and durability of cellulose nanofiber reinforced starch film
Chen et al. Unexpected plasticization effects on the structure and properties of polyelectrolyte complexed chitosan/alginate materials
JP5024262B2 (en) Material and biocompatible material coated or impregnated with oxidized polysaccharide material
JP4846147B2 (en) Method for producing material coated or impregnated with oxidized polysaccharide material
Kadokawa et al. Chemoenzymatic preparation of amylose-grafted chitin nanofiber network materials