JP5339326B2 - Fluorene-containing polyurethane and efficient production method thereof - Google Patents

Fluorene-containing polyurethane and efficient production method thereof Download PDF

Info

Publication number
JP5339326B2
JP5339326B2 JP2007314837A JP2007314837A JP5339326B2 JP 5339326 B2 JP5339326 B2 JP 5339326B2 JP 2007314837 A JP2007314837 A JP 2007314837A JP 2007314837 A JP2007314837 A JP 2007314837A JP 5339326 B2 JP5339326 B2 JP 5339326B2
Authority
JP
Japan
Prior art keywords
group
molecular weight
reaction
formula
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007314837A
Other languages
Japanese (ja)
Other versions
JP2009138073A (en
Inventor
浩 山下
一亮 廣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007314837A priority Critical patent/JP5339326B2/en
Publication of JP2009138073A publication Critical patent/JP2009138073A/en
Application granted granted Critical
Publication of JP5339326B2 publication Critical patent/JP5339326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

本発明は、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン等のフルオレン誘導体(以下、「BPEF類」とする。)とジイソシアネートから製造されるフルオレン含有ポリウレタンの効率的製造方法に関するものである。   The present invention relates to an efficient process for producing a fluorene-containing polyurethane produced from a fluorene derivative such as 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (hereinafter referred to as “BPEFs”) and a diisocyanate. It is about.

フルオレン環とジオール構造を有するBPEF類から製造されるポリエステル、ポリウレタン、エポキシ樹脂等は、透明性、高屈折性、耐熱性、高強度性等に優れた高機能材料として、光学レンズ、光学フィルム、光ファイバー、高強度材料等への応用が期待されている。
この中のフルオレン含有ポリウレタンの製造方法としては、BPEF類とジイソシアネートを反応させる方法が知られているが(たとえば特許文献1、2)、高分子量のポリウレタン類を得るために長時間の加熱(たとえば100℃以上で数時間)が必要であり、工業的に有利な方法とはいえなかった。
特開2000−44645号公報 特開2001−2751号公報
Polyesters, polyurethanes, epoxy resins, etc. produced from BPEFs having a fluorene ring and a diol structure are optical lenses, optical films, high-performance materials excellent in transparency, high refraction, heat resistance, high strength, etc. Applications to optical fibers and high-strength materials are expected.
As a method for producing a fluorene-containing polyurethane in this, a method of reacting BPEFs with a diisocyanate is known (for example, Patent Documents 1 and 2). This is not an industrially advantageous method.
Japanese Unexamined Patent Publication No. 2000-44645 Japanese Patent Laid-Open No. 2001-2751

本発明は、以上のような事情に鑑みてなされたものであって、BPFE類とジイソシアネートから、高分子量のフルオレン含有ポリウレタンを、短時間でより効率的に製造することを目的とするものである。   This invention is made | formed in view of the above situations, Comprising: It aims at manufacturing a high molecular weight fluorene containing polyurethane more efficiently in a short time from BPFEs and diisocyanate. .

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、上記反応についても、マイクロ波照射により著しく加速されることを見いだし、本発明を完成させるに至った。
すなわち、本発明は、下記の一般式(I)

Figure 0005339326
(式中、Rは水素原子又はメチル基を示し、環上の水素原子の一部が反応に関与しない置換基で置換されていてもよい。)
で表されるフルオレン誘導体を、下記の一般式(II)
O=C=N−R’−N=C=O (II)
(式中、R’は、アルキレン基、アリーレン基、アルキレンアリーレンアルキレン基、又はアリーレンアルキレンアリーレン基を示し、これら基の水素原子の一部が反応に関与しない置換基で置換されていてもよい。)
で表されるジイソシアネートと、マイクロ波を照射して反応させることを特徴とする、下記の一般式(III)
Figure 0005339326
(式中、R及びR”は前記と同じ意味であり、nは2以上の整数である。)
で表されるポリウレタンの製造方法、及びそれにより得られる下記の一般式(IV)
Figure 0005339326
(式中、Rは水素原子又はメチル基を示し、R”はメチレンシクロヘキシレンメチレン基を示す。nは2以上の整数である。)
で表される新規なポリウレタンである。 As a result of intensive studies to solve the above problems, the present inventors have found that the above reaction is also significantly accelerated by microwave irradiation, and have completed the present invention.
That is, the present invention provides the following general formula (I)
Figure 0005339326
(In the formula, R represents a hydrogen atom or a methyl group, and a part of the hydrogen atoms on the ring may be substituted with a substituent that does not participate in the reaction.)
A fluorene derivative represented by the following general formula (II)
O = C = N-R'-N = C = O (II)
(In the formula, R ′ represents an alkylene group, an arylene group, an alkylenearylenealkylene group, or an arylenealkylenearylene group, and a part of hydrogen atoms of these groups may be substituted with a substituent that does not participate in the reaction. )
The following general formula (III), characterized by reacting with a diisocyanate represented by the formula:
Figure 0005339326
(In the formula, R and R ″ have the same meaning as described above, and n is an integer of 2 or more.)
And the following general formula (IV) obtained thereby:
Figure 0005339326
(In the formula, R represents a hydrogen atom or a methyl group, R ″ represents a methylenecyclohexylenemethylene group, and n is an integer of 2 or more.)
It is a novel polyurethane represented by

本発明の製法方法を用いることにより、従来の通常加熱に比べ、極めて短時間で高分子量のフルオレン含有ポリウレタンが得られるという利点がある。   By using the production method of the present invention, there is an advantage that a high-molecular-weight fluorene-containing polyurethane can be obtained in an extremely short time as compared with conventional normal heating.

以下、本発明について詳細に説明する。
本発明の製造方法では、BPEF類とジイソシアネートを、マイクロ波を照射して反応させることを特徴とする。
本発明において使用されるBPEF類は、下記の一般式(I)

Figure 0005339326
で表されるもので、式中、Rは水素原子又はメチル基を示し、環上の水素原子の一部が反応に関与しない置換基で置換されていてもよい。
BPEF類の具体例としては、9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン、9,9−ビス[4−(2−ヒドロキシプロポキシ)フェニル]フルオレン等を挙げることができる。 Hereinafter, the present invention will be described in detail.
The production method of the present invention is characterized in that BPEFs and diisocyanate are reacted by irradiation with microwaves.
The BPEFs used in the present invention are represented by the following general formula (I)
Figure 0005339326
In the formula, R represents a hydrogen atom or a methyl group, and a part of the hydrogen atoms on the ring may be substituted with a substituent that does not participate in the reaction.
Specific examples of BPEFs include 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxypropoxy) phenyl] fluorene, and the like.

また、本発明において使用されるジイソシアネートは、下記の一般式(II)
O=C=N−R’−N=C=O (II)
で表されるもので、式中、R’は、アルキレン基、アリーレン基、アルキレンアリーレンアルキレン基、又はアリーレンアルキレンアリーレン基を示し、それら基の水素原子の一部が反応に関与しない置換基で置換されていても差し支えない。
アルキレン基、アリーレン基、アルキレンアリーレンアルキレン基、又はアリーレンアルキレンアリーレン基の具体例としては、ヘキサメチレン基、ペンタメチレン基、シクロヘキシレン−1,3−又は−1,4−ジメチレン基、ビス(1,4−シクロヘキシレン)メチレン基、1,3−又は1,4−フェニレン基、2,4−トルイレン基、1,4−,1,5−,2,6−,又は2,7−ナフチレン基、4,4’−ジフェニレン基、1,3−又は1,4−フェニレンジメチレン基、ビス(1,4−フェニレン)メチレン基等を挙げることができ、それらの基を有するジイソシアネートの具体例としては、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、シクロヘキシレン−1,3−ジメチレンジイソシアネート、ビス(1,4−シクロヘキシレン)メチレンジイソシアネート、イソホロンジイソシアネート、フェニレン−1,3−ジイソシアネート、トルイレン−2,4−ジイソシアネート、4,4’−ジフェニレンジイソシアネート、1,5−ナフチレンジイソシアネート、フェニレン−1,3−ジメチレンジイソシアネート、ビス(1,4−フェニレン)メチレンジイソシアネート等を挙げることができる。
本発明で製造されるポリウレタンは、下記の一般式(III)

Figure 0005339326
(式中、R及びR’は前記と同じ意味であり、nは2以上の整数である。)
で表されるもので、R及びR’の具体例としては前記のもの等が挙げられる。また、nは2以上の整数であり、好ましくは2以上100000以下、より好ましくは3以上80000以下の整数である。 The diisocyanate used in the present invention is represented by the following general formula (II)
O = C = N-R'-N = C = O (II)
In the formula, R ′ represents an alkylene group, an arylene group, an alkylenearylenealkylene group, or an arylenealkylenearylene group, and a part of the hydrogen atoms of the group is substituted with a substituent that does not participate in the reaction. It can be done.
Specific examples of the alkylene group, arylene group, alkylene arylene alkylene group, or arylene alkylene arylene group include a hexamethylene group, a pentamethylene group, a cyclohexylene-1,3- or -1,4-dimethylene group, a bis (1, 4-cyclohexylene) methylene group, 1,3- or 1,4-phenylene group, 2,4-toluylene group, 1,4-, 1,5-, 2,6-, or 2,7-naphthylene group, Examples include 4,4′-diphenylene group, 1,3- or 1,4-phenylenedimethylene group, bis (1,4-phenylene) methylene group, and specific examples of diisocyanate having these groups. , Hexamethylene diisocyanate, pentamethylene diisocyanate, cyclohexylene-1,3-dimethylene diisocyanate, bis (1 , 4-cyclohexylene) methylene diisocyanate, isophorone diisocyanate, phenylene-1,3-diisocyanate, toluylene-2,4-diisocyanate, 4,4'-diphenylene diisocyanate, 1,5-naphthylene diisocyanate, phenylene-1,3 -Dimethylene diisocyanate, bis (1,4-phenylene) methylene diisocyanate and the like can be mentioned.
The polyurethane produced in the present invention has the following general formula (III)
Figure 0005339326
(In the formula, R and R ′ have the same meaning as described above, and n is an integer of 2 or more.)
Specific examples of R and R ′ include those described above. N is an integer of 2 or more, preferably 2 or more and 100000 or less, more preferably 3 or more and 80000 or less.

本発明の反応で使用されるBPEF類とジイソシアネートとのモル比は、目的とするポリウレタンの構造や性状に応じて任意に決めることができるが、通常、BPEFを1モルに対し、ジイソシアネートを等モル用いることにより、目的とする高分子量のポリウレタンを高収率で得ることができる。   The molar ratio of the BPEFs and diisocyanate used in the reaction of the present invention can be arbitrarily determined according to the structure and properties of the target polyurethane. By using it, the target high molecular weight polyurethane can be obtained in high yield.

本発明は、通常、無触媒でも効率よく進行するが、オクチル酸スズ、三級アミンなど、従来公知の触媒を用いることも可能である。   The present invention usually proceeds efficiently even without a catalyst, but conventionally known catalysts such as tin octylate and tertiary amine can also be used.

反応の温度は、−20℃以上、好ましくは0〜300℃、より好ましくは、40〜280℃であり、反応時間は反応温度にもよるが、0.2〜120分、好ましくは0.3〜100分、より好ましくは0.5〜60分程度である。   The temperature of the reaction is −20 ° C. or higher, preferably 0 to 300 ° C., more preferably 40 to 280 ° C., and the reaction time depends on the reaction temperature, but is 0.2 to 120 minutes, preferably 0.3. -100 minutes, more preferably about 0.5-60 minutes.

また、反応は、溶媒の有無にかかわらず実施できるが、溶媒を用いる場合には、デカリン、デカン等の炭化水素、ジメチルアセトアミド等のアミド、クロロベンゼン等のハロゲン化炭化水素、炭酸プロピレン等の炭酸エステル、ジブチルエーテル等のエーテル等、原料と反応するものを除いた各種の溶媒が使用可能で、2種以上混合して用いることもできる。   The reaction can be carried out with or without a solvent. When a solvent is used, hydrocarbons such as decalin and decane, amides such as dimethylacetamide, halogenated hydrocarbons such as chlorobenzene, carbonate esters such as propylene carbonate, etc. Various solvents other than those that react with the raw material, such as ether such as dibutyl ether, can be used, and two or more solvents can be used in combination.

本発明の反応におけるマイクロ波の照射では、接触式または非接触式の温度センサーを備えた各種の市販装置等を使用できる。さらに、マイクロ波照射の出力、キャビティの種類(マルチモード、シングルモード)、照射の形態(連続的、断続的)等は、反応のスケールや種類等に応じて任意に決めることができる。   In the microwave irradiation in the reaction of the present invention, various commercially available devices equipped with a contact type or non-contact type temperature sensor can be used. Furthermore, the output of microwave irradiation, the type of cavity (multimode, single mode), the form of irradiation (continuous, intermittent), etc. can be arbitrarily determined according to the scale and type of reaction.

本発明の方法において得られるポリウレタンは、ほぼ定量的に生成するため、通常、精製を必要としないが、高分子量体を得るための精製は、再沈殿、クロマトグラフィー等の通常用いられる手段により容易に達せられる。   Since the polyurethane obtained by the method of the present invention is almost quantitatively produced, it usually does not require purification, but purification for obtaining a high molecular weight product is easy by means commonly used such as reprecipitation and chromatography. Can be reached.

さらに、本発明により、下記の一般式(IV)

Figure 0005339326
(式中、Rは水素原子又はメチル基を示し、R”はメチレンシクロヘキシレンメチレン基を示す。nは2以上の整数である。)
で表される新規なポリウレタンが提供される。R”の具体例としては、シクロヘキシレン−1,3−ジメチレン基、又はシクロヘキシレン−1,4−ジメチレン基を挙げることができる。また、nは2以上の整数であり、好ましくは2以上100000以下、より好ましくは3以上80000以下の整数である。
Furthermore, according to the present invention, the following general formula (IV)
Figure 0005339326
(In the formula, R represents a hydrogen atom or a methyl group, R ″ represents a methylenecyclohexylenemethylene group, and n is an integer of 2 or more.)
A novel polyurethane represented by the formula: Specific examples of R ″ include cyclohexylene-1,3-dimethylene group or cyclohexylene-1,4-dimethylene group. N is an integer of 2 or more, preferably 2 or more and 100,000. Hereinafter, it is preferably an integer of 3 or more and 80000 or less.

次に、本発明を実施例および比較例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
9,9−ビス[4−(2−ヒドロキシエトキシ)フェニル]フルオレン(Ia) 1.2mmol、ヘキサメチレンジイソシアネート(IIa) 1.2mmol、デカリン 0.5mlの混合物を、放射温度計を備えたマイクロ波照射装置(CEM社製、Discover、シングルモード型)を用いて、200℃で5分撹拌しながら反応を行った。
得られた固体生成物をGPC(ゲル浸透クロマトグラフィー、ポリスチレン標準)で分析した結果、重量平均分子量30700(数平均分子量5800)のポリウレタン(IIIa)がほぼ定量的に生成したことがわかった。
その固体状ポリウレタンをテトラヒドロフランに溶解し、2−プロパノールで再沈殿させると、高分子量成分のIIIaが86%の収率で得られた。その分子量は、GPCで分析した結果、重量平均分子量36200(数平均分子量7000)であった。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples.
Example 1
A mixture of 1.2 mmol of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (Ia), 1.2 mmol of hexamethylene diisocyanate (IIa) and 0.5 ml of decalin was microwaved with a radiation thermometer The reaction was carried out using an irradiation apparatus (CEM, Discover, single mode type) while stirring at 200 ° C. for 5 minutes.
As a result of analyzing the obtained solid product by GPC (gel permeation chromatography, polystyrene standard), it was found that polyurethane (IIIa) having a weight average molecular weight of 30700 (number average molecular weight of 5800) was produced almost quantitatively.
When the solid polyurethane was dissolved in tetrahydrofuran and reprecipitated with 2-propanol, the high molecular weight component IIIa was obtained in a yield of 86%. As a result of analysis by GPC, the molecular weight was a weight average molecular weight 36200 (number average molecular weight 7000).

(実施例2)
ヘキサメチレンジイソシアネート(IIa)のかわりにシクロヘキシレン−1,3−ジメチレンジイソシアネート(IIb)を用いる他は、実施例1と同様に反応及び分析を行った結果、重量平均分子量20300(数平均分子量4800)の固体状ポリウレタン(IIIb)がほぼ定量的に生成したことがわかった。
(Example 2)
As a result of conducting the reaction and analysis in the same manner as in Example 1 except that cyclohexylene-1,3-dimethylene diisocyanate (IIb) was used instead of hexamethylene diisocyanate (IIa), a weight average molecular weight of 20300 (number average molecular weight of 4800) was obtained. It was found that the solid polyurethane (IIIb) was produced almost quantitatively.

(実施例3)
ヘキサメチレンジイソシアネート(IIa)のかわりにフェニレン−1,3−ジメチレンジイソシアネート(IIc)を用い、反応温度を160℃とする他は実施例1と同様に反応及び分析を行った結果、重量平均分子量62300(数平均分子量5800)の固体状ポリウレタン(IIIc)がほぼ定量的に生成したことがわかった。
その固体状ポリウレタンをテトラヒドロフランに溶解し、2−プロパノールで再沈殿させると、高分子量成分のIIIcが84%の収率で得られた。その分子量は、GPCで分析した結果、重量平均分子量74100(数平均分子量9000)であった。
(Example 3)
As a result of conducting the reaction and analysis in the same manner as in Example 1 except that phenylene-1,3-dimethylene diisocyanate (IIc) was used instead of hexamethylene diisocyanate (IIa) and the reaction temperature was 160 ° C., the weight average molecular weight was It was found that 62300 (number average molecular weight 5800) of solid polyurethane (IIIc) was produced almost quantitatively.
When the solid polyurethane was dissolved in tetrahydrofuran and reprecipitated with 2-propanol, the high molecular weight component IIIc was obtained in a yield of 84%. As a result of analysis by GPC, the molecular weight was 74100 (weight average molecular weight 9000).

(実施例4)
ヘキサメチレンジイソシアネート(IIa)のかわりにトリレン−1,3−ジイソシアネート(IId)を用いる他は、実施例1と同様に反応及び分析を行った結果、重量平均分子量2250(数平均分子量1300)の固体状ポリウレタン(IIId)がほぼ定量的に生成したことがわかった。
その固体状ポリウレタンをテトラヒドロフランに溶解し、メタノールで再沈殿させると、高分子量成分のIIIdが51%の収率で得られた。その分子量は、GPCで分析した結果、重量平均分子量3200(数平均分子量1700)であった。
Example 4
The reaction and analysis were conducted in the same manner as in Example 1 except that tolylene-1,3-diisocyanate (IId) was used instead of hexamethylene diisocyanate (IIa). As a result, a solid having a weight average molecular weight of 2250 (number average molecular weight of 1300) was obtained. It was found that the polyurethane (IIId) was produced almost quantitatively.
When the solid polyurethane was dissolved in tetrahydrofuran and reprecipitated with methanol, the high molecular weight component IIId was obtained in a yield of 51%. As a result of analysis by GPC, the molecular weight was a weight average molecular weight of 3200 (number average molecular weight of 1700).

(実施例5〜17)
反応条件(ジイソシアネート、溶媒、温度、時間)を変えて、実施例1と同様に反応を行い、GPCで生成したポリウレタンの分子量を測定した結果を表1に示す。

Figure 0005339326
(Examples 5 to 17)
Table 1 shows the results of measuring the molecular weight of the polyurethane produced by GPC by reacting in the same manner as in Example 1 while changing the reaction conditions (diisocyanate, solvent, temperature, time).
Figure 0005339326

(実施例18)
放射温度計を備えたマイクロ波照射装置として、CEM社製のDiscoverのかわりにバイオタージ社製のInitiatorを用い、反応時間を20分とするほかは実施例2と同様に反応を行った。生成した固体状ポリウレタンをテトラヒドロフランに溶解し、2−プロパノールで再沈殿させると、IIIbが93%の収率で得られた。その分子量は、GPCで分析した結果、重量平均分子量69900(数平均分子量10900)であった。
IIIbは文献未載の新規化合物で、そのスペクトルデータは下記の通りであった(IIIbのシクロヘキサン環部分のシス:トランス比は約2:1)。
H−NMR(CDCl):0.44−0.58及び0.66−0.84(br m,2H),1.08−1.24及び1.28−1.54(br m,4H),1.56−1.76(br m,4H),2.84−3.14(br m,4H),3.92−4.12(br m,4H),4.26−4.42(br m,4H),4.70−4.90(br m,2H),6.66−6.76(br m,4H),7.02−7.14(br m,4H),7.16−7.26(br m,2H),7.26−7.38(br m,4H),7.66−7.76(br m,4H).
13C−NMR(CDCl):20.67,25.11,29.14,30.33,31.80,33.16,34.53,37.85,44.91,47.22,61.40,63.12,64.13,66.41,69.12,114.20,120.15,125.95,127.37,127.69,129.18,138.50,139.91,151.66,156.35,156.51,157.26.
IR(KBr):3424,3354,2922,2854,1723,1606,1507,1448,1238,1180,1148,1117,1060,1013,823,746,730,628,617cm−1
(Example 18)
The reaction was carried out in the same manner as in Example 2 except that, as a microwave irradiation apparatus equipped with a radiation thermometer, an initiator manufactured by Biotage was used instead of a Discover manufactured by CEM, and the reaction time was 20 minutes. When the produced solid polyurethane was dissolved in tetrahydrofuran and reprecipitated with 2-propanol, IIIb was obtained in a yield of 93%. As a result of analysis by GPC, the molecular weight was a weight average molecular weight of 69900 (number average molecular weight of 10900).
IIIb was a novel compound not yet described in the literature, and its spectral data were as follows (the cis: trans ratio of the cyclohexane ring portion of IIIb was about 2: 1).
1 H-NMR (CDCl 3 ): 0.44-0.58 and 0.66-0.84 (br m, 2H), 1.08-1.24 and 1.28-1.54 (br m, 4H), 1.56-1.76 (br m, 4H), 2.84-3.14 (br m, 4H), 3.92-4.12 (br m, 4H), 4.26-4 .42 (br m, 4H), 4.70-4.90 (br m, 2H), 6.66-6.76 (br m, 4H), 7.02-7.14 (br m, 4H) 7.16-7.26 (br m, 2H), 7.26-7.38 (br m, 4H), 7.66-7.76 (br m, 4H).
13 C-NMR (CDCl 3 ): 20.67, 25.11, 29.14, 30.33, 31.80, 33.16, 34.53, 37.85, 44.91, 47.22, 61 40, 63.12, 64.13, 66.41, 69.12, 114.20, 120.15, 125.95, 127.37, 127.69, 129.18, 138.50, 139.91 151.66, 156.35, 156.51, 157.26.
IR (KBr): 3424, 3354, 2922, 2854, 1723, 1606, 1507, 1448, 1238, 1180, 1148, 1117, 1060, 1013, 823, 746, 730, 628, 617 cm −1 .

(比較例1)
マイクロ波照射装置の代わりにオイルバスを用いる他は実施例1と同様に反応を行い、GPCで生成したIIIaを分析した結果、その分子量は重量平均分子量1300(数平均分子量840)であり、実施例1で得られた重量平均分子量30700(数平均分子量5800)よりも低いものであった。このことは、マイクロ波照射の反応が、同じ反応温度・時間でのオイルバスによる通常加熱の反応に比べ、短時間でより高分子量のポリウレタンを与えることを示している。
(Comparative Example 1)
The reaction was carried out in the same manner as in Example 1 except that an oil bath was used instead of the microwave irradiation device, and as a result of analyzing IIIa produced by GPC, the molecular weight was 1300 (number average molecular weight 840). It was lower than the weight average molecular weight 30700 (number average molecular weight 5800) obtained in Example 1. This indicates that the microwave irradiation reaction gives a higher molecular weight polyurethane in a shorter time than the normal heating reaction with an oil bath at the same reaction temperature and time.

(比較例2〜12)
他の代表的な実施例において、比較例1と同様に、オイルバスでの反応を行いGPCで生成したポリウレタンを分析した結果を、対応する実施例の結果と共に表2に示す。

Figure 0005339326
(Comparative Examples 2 to 12)
In other representative examples, as in Comparative Example 1, the results of analysis of polyurethane produced by GPC by reaction in an oil bath are shown in Table 2 together with the results of the corresponding examples.
Figure 0005339326

いずれの比較例においても、ポリウレタンの分子量は対応する実施例の値よりも小さく、マイクロ波照射を用いることにより、原料の種類や温度等の反応条件に関わりなく、高分子量のポリウレタンをより効率的に製造できることが示された。   In any of the comparative examples, the molecular weight of polyurethane is smaller than the value of the corresponding example, and by using microwave irradiation, high molecular weight polyurethane is more efficient regardless of reaction conditions such as the type of raw material and temperature. It was shown that it can be manufactured.

本発明の方法により、各種機能性材料として広範に利用されている高分子量のフルオレン含有ポリウレタンを、より効率的かつ安全に製造できる。特に、本発明により得られるポリウレタンは、耐熱性、透明性、高屈折性、高強度性等に優れ、光学レンズ、光学フィルム等の光学材料や高強度材料等への応用が期待される高機能材料用として有用であり、本発明の工業的意義は多大である。   By the method of the present invention, a high-molecular-weight fluorene-containing polyurethane widely used as various functional materials can be produced more efficiently and safely. In particular, the polyurethane obtained by the present invention is excellent in heat resistance, transparency, high refraction, high strength, etc., and is expected to be applied to optical materials such as optical lenses and optical films, and high strength materials. It is useful for materials, and the industrial significance of the present invention is great.

Claims (2)

下記の一般式(I)
Figure 0005339326
(式中、Rは水素原子又はメチル基を示し、環上の水素原子の一部が反応に関与しない置換基で置換されていてもよい。)
で表されるフルオレン誘導体を、下記の一般式(II)
O=C=N−R’−N=C=O (II)
(式中、R’は、アルキレン基、アリーレン基、アルキレンアリーレンアルキレン基、又はアリーレンアルキレンアリーレン基を示し、これらの基の水素原子の一部が反応に関与しない置換基で置換されていてもよい。)
で表されるジイソシアネートと、マイクロ波を照射して反応させることを特徴とする、下記の一般式(III)
Figure 0005339326
(式中、R及びR’は前記と同じ意味であり、nは2以上の整数である。)
で表されるポリウレタンの製造方法。
The following general formula (I)
Figure 0005339326
(In the formula, R represents a hydrogen atom or a methyl group, and a part of the hydrogen atoms on the ring may be substituted with a substituent that does not participate in the reaction.)
A fluorene derivative represented by the following general formula (II)
O = C = N-R'-N = C = O (II)
(In the formula, R ′ represents an alkylene group, an arylene group, an alkylenearylenealkylene group, or an arylenealkylenearylene group, and a part of hydrogen atoms of these groups may be substituted with a substituent that does not participate in the reaction. .)
The following general formula (III), characterized by reacting with a diisocyanate represented by the formula:
Figure 0005339326
(In the formula, R and R ′ have the same meaning as described above, and n is an integer of 2 or more.)
The manufacturing method of the polyurethane represented by these.
下記の一般式(IV)で表されるポリウレタン。
Figure 0005339326
(式中、Rは水素原子又はメチル基を示し、R”はメチレンシクロヘキシレンメチレン基を示す。nは2以上の整数である。)
A polyurethane represented by the following general formula (IV).
Figure 0005339326
(In the formula, R represents a hydrogen atom or a methyl group, R ″ represents a methylenecyclohexylenemethylene group, and n is an integer of 2 or more.)
JP2007314837A 2007-12-05 2007-12-05 Fluorene-containing polyurethane and efficient production method thereof Expired - Fee Related JP5339326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314837A JP5339326B2 (en) 2007-12-05 2007-12-05 Fluorene-containing polyurethane and efficient production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314837A JP5339326B2 (en) 2007-12-05 2007-12-05 Fluorene-containing polyurethane and efficient production method thereof

Publications (2)

Publication Number Publication Date
JP2009138073A JP2009138073A (en) 2009-06-25
JP5339326B2 true JP5339326B2 (en) 2013-11-13

Family

ID=40869013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314837A Expired - Fee Related JP5339326B2 (en) 2007-12-05 2007-12-05 Fluorene-containing polyurethane and efficient production method thereof

Country Status (1)

Country Link
JP (1) JP5339326B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180342A (en) * 2009-02-06 2010-08-19 Toyo-Morton Ltd Method for producing polyaddition compound
CN102101910B (en) * 2009-12-18 2014-05-14 财团法人工业技术研究院 Polymer, manufacturing method of same, optical element having same and optoelectronic device having same
WO2012017775A1 (en) * 2010-08-04 2012-02-09 東洋鋼鈑株式会社 Urethane resin for phase difference films and phase difference film
KR101584439B1 (en) * 2013-09-30 2016-01-11 주식회사 엘지화학 Optical film having inverse wavelength dispersion, polarizing plate and display device comprising the same
WO2021125821A1 (en) * 2019-12-17 2021-06-24 주식회사 엘지화학 Compound, binder resin, negative-type photosensitive resin composition, and display device comprising black bank formed using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840079A1 (en) * 1988-11-28 1990-06-07 Illbruck Gmbh METHOD FOR PRODUCING ELASTIC FOAMS BASED ON POLYURETHANE BY MICROWAVE FOAMING
DE4111655A1 (en) * 1991-04-10 1992-10-15 Bayer Ag SINGLE-COMPONENT REACTIVE ADHESIVES BASED ON POLYURETHANE
JP2004285359A (en) * 1993-05-20 2004-10-14 Mitsui Takeda Chemicals Inc Urethane resin for optical material
JP3993645B2 (en) * 1993-05-20 2007-10-17 三井化学ポリウレタン株式会社 Optical lens
JPH11209454A (en) * 1998-01-29 1999-08-03 Osaka Gas Co Ltd Polyurethane having fluorene backbone
JPH11279251A (en) * 1998-03-30 1999-10-12 Osaka Gas Co Ltd Polyurethane having fluorene skeleton
JP3846047B2 (en) * 1998-07-28 2006-11-15 大阪瓦斯株式会社 Polyurethane having fluorene skeleton and method for producing the same
JP4321971B2 (en) * 2001-03-26 2009-08-26 大阪瓦斯株式会社 Polyurethane resin and molded article for low temperature
JP4724323B2 (en) * 2001-08-08 2011-07-13 アキレス株式会社 Method for producing polyurethane porous body

Also Published As

Publication number Publication date
JP2009138073A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5339326B2 (en) Fluorene-containing polyurethane and efficient production method thereof
JP3448694B2 (en) Polyurethane having a fluorene skeleton
JP2008274239A (en) Hyper branched polycarbonate and its manufacturing method
JP3965535B2 (en) Polyurethane having a fluorene skeleton
Slobodinyuk et al. Synthesis of oligotetramethylene oxides with terminal amino groups as curing agents for an epoxyurethane oligomer
CN108395512B (en) Bio-based polyurethane containing carbonate structure as well as preparation method and application thereof
JP5397875B2 (en) Efficient process for producing fluorene-containing polyester
JPH11209454A (en) Polyurethane having fluorene backbone
WO2009151055A1 (en) Chlorinated polyether and polyurethane obtained from the same
KR910007995A (en) Isocyanate Reactive Compositions
Gao et al. Synthesis and characterization of bis‐triethoxysilane endcapped polyurethane/urea
Li et al. Improved poling efficiency of polyurethanes containing spindle-like chromophores by a functional group tuning for nonlinear optic (NLO) materials
JP2006219440A (en) Method for producing aromatic dicarboxylic acid
CA1261999A (en) 1,2,2-trimethyl-1-phenyl polydisilane and method for producing the same
CA1113488A (en) Bis-anthranilates
JPH11279251A (en) Polyurethane having fluorene skeleton
JPH11279252A (en) Polyurethane having fluorene skeleton
US3484389A (en) Preparation of polyoxadiazoles
Xuemei et al. Experimental study, characterization and performance test of epoxy cyclohexane-based transparent polyurethane material
JPS6127988A (en) Urethane (meth)acrylate compound
Mikroyannidis Polyesters, polyurethanes, and epoxy resin derived from 2, 2′‐(1, 4‐phenylenedivinylene) bis‐5‐hydroxypyridine
JP3341446B2 (en) Azo group-containing polymer and method for producing the same
Berlin et al. Synthesis and study of properties of oligourethane methacrylates and their polymers
JP4029246B2 (en) Polyurethane having fluorene skeleton and method for producing the same
JP3867749B2 (en) Polymer and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees