JP5339024B2 - Fuel cell aging method - Google Patents

Fuel cell aging method Download PDF

Info

Publication number
JP5339024B2
JP5339024B2 JP2007273371A JP2007273371A JP5339024B2 JP 5339024 B2 JP5339024 B2 JP 5339024B2 JP 2007273371 A JP2007273371 A JP 2007273371A JP 2007273371 A JP2007273371 A JP 2007273371A JP 5339024 B2 JP5339024 B2 JP 5339024B2
Authority
JP
Japan
Prior art keywords
fuel cell
load
aging
current
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007273371A
Other languages
Japanese (ja)
Other versions
JP2009104823A (en
Inventor
篤史 木村
大輔 山崎
伸浩 友定
幸弘 新谷
智美 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007273371A priority Critical patent/JP5339024B2/en
Publication of JP2009104823A publication Critical patent/JP2009104823A/en
Application granted granted Critical
Publication of JP5339024B2 publication Critical patent/JP5339024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池に所定の前履歴を与える燃料電池のエイジング方法に関する。
The present invention relates to aging how the fuel cell to provide a predetermined pre-history to the fuel cell.

一般的に、燃料電池の特性としては、安定発電特性(DC特性)と負荷応答特性(AC特性)があり、燃料電池の評価において、これらの特性を正確に計測することは重要である。ただし、前履歴の影響を受けるという性質を持つ燃料電池においては、それぞれの特性はその時々で安定しておらず、評価の前段で前履歴を実質的に同一にするエイジング処理や、燃料電池の状態の相同性を確認する作業を行うのが一般的である。これらの手法として、一定電流による発電を燃料電池電圧が安定するまで実施するエイジングや、燃料電池電流、あるいは、電圧が安定した際の電流−電圧測定値やIV曲線により相同性の確認を実施する手法がある。
特開2005−243245号公報 特開2005−243562号公報 特開2005−251396号公報 特開2005−302360号公報 特開2006−040869号公報
In general, fuel cell characteristics include stable power generation characteristics (DC characteristics) and load response characteristics (AC characteristics), and it is important to accurately measure these characteristics in the evaluation of fuel cells. However, in a fuel cell having the property of being affected by the previous history, each characteristic is not stable from time to time, and aging treatment that makes the previous history substantially the same in the previous stage of evaluation, It is common to work to confirm the homology of states. As these methods, homogeneity is confirmed by aging, in which power generation with a constant current is performed until the fuel cell voltage is stabilized, fuel cell current, current-voltage measured value when the voltage is stabilized, or IV curve. There is a technique.
JP 2005-243245 A JP 2005-243562 A JP 2005-251396 A JP 2005-302360 A JP 2006-040869 A

近年、燃料電池の安定発電特性が向上してきたため、燃料電池の評価においてはAC特性の評価が重要となってきており、AC特性を安定させるエイジングの実施や、AC特性を確認することが必要とされている。しかし、従来実施されている一定電流にて発電するエイジング手法や安定した状態でのIV測定値やIV曲線による相同性の確認は、燃料電池のDC特性に対するエイジングや特性確認であり、AC特性に対するものではない。   In recent years, since the stable power generation characteristics of fuel cells have improved, the evaluation of AC characteristics has become important in the evaluation of fuel cells, and it is necessary to perform aging to stabilize the AC characteristics and to confirm the AC characteristics. Has been. However, the conventional aging method for generating electricity at a constant current and the confirmation of homology by the IV measurement value and IV curve in a stable state are the aging and characteristic confirmation for the DC characteristics of the fuel cell. It is not a thing.

本発明の目的は、AC特性に対する適切なエイジングを実施できるエイジング方法およびエイジング装置を提供することにある。   An object of the present invention is to provide an aging method and an aging apparatus capable of performing appropriate aging on AC characteristics.

本発明の燃料電池のエイジング方法は、燃料電池に所定の前履歴を与える燃料電池のエイジング方法において、前記燃料電池に所定の掃引速度で変化する負荷電圧または負荷電流を繰り返し与えるステップと、負荷電圧または負荷電流が与えられている前記燃料電池の状態を繰り返し計測するステップと、前記計測するステップにより計測される前記燃料電池の状態が安定したときにエイジングが終了したと判定するステップと、を備え、前記判定するステップでは、前記状態を示す指標として燃料電池電圧または燃料電池発電電流を用いた変数を使用し、
前記判定するステップでは、前記状態が安定し、かつ前記状態が既定の基準状態に近い場合に、エイジングが終了したと判定し、前記状態は、前記燃料電池の交流負荷に対する応答特性を示し、前記掃引速度は、前記燃料電池に実質的な交流電圧負荷または交流電流負荷を与える速度とされることを特徴とする。
この燃料電池のエイジング方法によれば、燃料電池に所定の掃引速度で変化する負荷電圧または負荷電流を繰り返し与えるので、AC特性に対する適切なエイジングを実施できる。
The fuel cell aging method of the present invention is a fuel cell aging method for giving a predetermined previous history to a fuel cell, the step of repeatedly applying a load voltage or load current that changes at a predetermined sweep speed to the fuel cell, Or repeatedly measuring the state of the fuel cell to which a load current is applied, and determining that aging has been completed when the state of the fuel cell measured by the measuring step is stabilized. In the determining step, a variable using a fuel cell voltage or a fuel cell power generation current is used as an index indicating the state,
In the determining step, when the condition is stable and the state close to a predetermined reference state, it is determined that the aging is completed, the state indicates a response characteristic with respect to an AC load of the fuel cell, before SL sweep rate, characterized in that it is a rate that provides substantial AC voltage load or alternating current load to the fuel cell.
According to this fuel cell aging method, the load voltage or load current that changes at a predetermined sweep speed is repeatedly applied to the fuel cell, so that appropriate aging of the AC characteristics can be performed.

前記判定するステップでは、前記燃料電池の燃料電池電圧または燃料電池発電電流における、前記負荷電圧または前記負荷電流の掃引ごとの変化が所定値よりも小さくなった場合に、前記燃料電池の前記状態が安定したとみなしてもよい。
In the determining step, in the fuel cell voltage or the fuel cell power generation current of the fuel cell, when the change of each sweep of the load voltage or the load current is smaller than the predetermined value, the said state of said fuel cell stable and it may be all you.

本発明の燃料電池のエイジング方法によれば、燃料電池に所定の掃引速度で変化する負荷電圧または負荷電流を繰り返し与えるので、AC特性に対する適切なエイジングを実施できる。   According to the fuel cell aging method of the present invention, a load voltage or a load current that changes at a predetermined sweep speed is repeatedly applied to the fuel cell, so that appropriate aging for AC characteristics can be performed.

以下、図1〜図2を参照して、本発明による燃料電池のエイジング方法の一実施形態について説明する。   Hereinafter, an embodiment of a fuel cell aging method according to the present invention will be described with reference to FIGS.

図1は、本実施形態のエイジング方法における燃料電池の接続状態を示すブロック図である。   FIG. 1 is a block diagram showing a connection state of fuel cells in the aging method of the present embodiment.

図1に示すように、燃料電池1には負荷装置2が接続されており、その接続ループには燃料電池電流(Ifc)を計測する電流計測器11が挿入されている。また、燃料電池1には、燃料電池電圧(Vfc)を計測する電圧計測器12と、燃料電池温度(Tfc)を計測する温度計測器13が接続されている。   As shown in FIG. 1, a load device 2 is connected to the fuel cell 1, and a current measuring instrument 11 for measuring the fuel cell current (Ifc) is inserted in the connection loop. The fuel cell 1 is connected to a voltage measuring device 12 that measures the fuel cell voltage (Vfc) and a temperature measuring device 13 that measures the fuel cell temperature (Tfc).

燃料電池1のエイジングを行うエイジング装置3には、負荷装置2を制御することにより、燃料電池1に所定の掃引速度で変化する負荷電圧または負荷電流を与える負荷制御手段31と、負荷制御手段31により負荷電圧または負荷電流が与えられている燃料電池1の状態を計測する計測手段32と、計測手段32により計測される燃料電池1の状態が安定したときにエイジングが終了したと判定する判定手段33と、によって構成されている。   The aging device 3 that performs aging of the fuel cell 1 includes a load control unit 31 that applies a load voltage or a load current that changes at a predetermined sweep speed to the fuel cell 1 by controlling the load device 2, and a load control unit 31. Measuring means 32 for measuring the state of the fuel cell 1 to which a load voltage or load current is applied, and a determination means for determining that aging has been completed when the state of the fuel cell 1 measured by the measuring means 32 is stabilized. 33.

負荷制御手段31、計測手段32および判定手段33は、例えば、コンピュータであるエイジング装置3に所定のプログラムを実装することにより構成することができる。   The load control unit 31, the measurement unit 32, and the determination unit 33 can be configured, for example, by mounting a predetermined program on the aging device 3 that is a computer.

図2は、エイジング装置3を用いたエイジングの手順を示すフローチャートである。   FIG. 2 is a flowchart showing an aging procedure using the aging device 3.

図2のステップS1では、エイジングで用いる設定値および判定値をエイジング装置3に入力する。   In step S <b> 1 of FIG. 2, set values and determination values used for aging are input to the aging device 3.

ここでは、燃料電池運転温度:Tset[℃]、最低制御電圧値:VL[V]、初期特性判定値:Ib[V]、初期特性判定時間:Mb[min]、電流掃引速度:a[A/sec]、最低制御電流値:IL[A]、燃料電池温度許容値:Ta[℃]、燃料電池温度判定時間:Mt[min]、安定性判定値:Vs[V]、再現性判定値Vw[V]、再現性基準sweepIV:frefについて入力する。 Here, fuel cell operating temperature: Tset [° C.], minimum control voltage value: VL [V], initial characteristic determination value: Ib [V], initial characteristic determination time: Mb [min], current sweep speed: a [A / Sec], minimum control current value: IL [A], fuel cell temperature tolerance: Ta [° C.], fuel cell temperature judgment time: Mt [min], stability judgment value: Vs [V], reproducibility judgment value Input Vw [V] and reproducibility standard sweepIV: f ref .

次に、初期特性判定の処理に移行する。ステップS2では、負荷制御手段31により負荷装置2を動作させ、燃料電池電圧:Vfc[V]が最低制御電圧値(VL)となるように制御する。その際の燃料電池電流:Ifc[A]を計測手段32で計測し、ステップS3では、初期特性判定時間(Mb)の間の燃料電池電流(Ifc)の最大値(Ifcmax)から最小値(Ifcmin)を減算した差分値が初期特性判定値(Ib)以下となる、すなわち、式(1)が成立するのを待って、温度安定性判定の処理に移行する。 Next, the process proceeds to initial characteristic determination processing. In step S2, the load control unit 31 operates the load device 2 to control the fuel cell voltage: Vfc [V] to be the lowest control voltage value (VL). The fuel cell current: Ifc [A] at that time is measured by the measuring means 32, and in step S3, the maximum value (Ifc max ) of the fuel cell current (Ifc) during the initial characteristic determination time (Mb) is changed to the minimum value (Ifc max ). If the difference value obtained by subtracting Ifc min ) is equal to or smaller than the initial characteristic determination value (Ib), that is, waits for the expression (1) to be established, the process proceeds to the temperature stability determination process.

Ifc(Mb)=Ifcmax−Ifcmin≦Ib ・・・式(1) Ifc (Mb) = Ifc max −Ifc min ≦ Ib (1)

温度安定性判定の処理では、ステップS4において、負荷制御手段31により負荷装置2を制御し、燃料電池電流(Ifc)の電流掃引速度(a)を保持する。これにより、燃料電池電流(Ifc)が、最低制御電流値(IL)から燃料電池電圧(Vfc)が最低制御電圧値(VL)となる値まで一定の電流掃引速度(a)で増加するように制御される。燃料電池電圧(Vfc)が最低制御電圧値(VL)に到達後、再び、燃料電池電流(Ifc)を最低制御電流値(IL)から増加させる動作を繰り返す。なお、燃料電池電圧(Vfc)が最低制御電圧値(VL)に到達後、一定の電流掃引速度(例えば、電流掃引速度(a))で燃料電池電流(Ifc)を最低制御電流値(IL)まで減少させるという動作を繰り返してもよい。   In the temperature stability determination process, in step S4, the load device 2 is controlled by the load control means 31, and the current sweep speed (a) of the fuel cell current (Ifc) is held. Thus, the fuel cell current (Ifc) increases at a constant current sweep rate (a) from the lowest control current value (IL) to a value at which the fuel cell voltage (Vfc) becomes the lowest control voltage value (VL). Be controlled. After the fuel cell voltage (Vfc) reaches the minimum control voltage value (VL), the operation of increasing the fuel cell current (Ifc) from the minimum control current value (IL) is repeated again. After the fuel cell voltage (Vfc) reaches the minimum control voltage value (VL), the fuel cell current (Ifc) is changed to the minimum control current value (IL) at a constant current sweep speed (for example, current sweep speed (a)). You may repeat the operation | movement to reduce to.

次に、ステップS5では、燃料電池温度判定時間(Mt)が経過する毎に、その間における燃料電池温度(Tfc)の最大値(Tfcmax)と最小値(Tfcmin)を計測手段32により取得する。そして、燃料電池運転温度(Tset)からのずれが燃料電池温度許容値(Ta)以下となる、すなわち、式(2−1)および式(2−2)が成立するのを待って、判定手段33による状態安定性判定の処理に移行する。 Next, in step S5, every time the fuel cell temperature determination time (Mt) elapses, the maximum value (Tfc max ) and the minimum value (Tfc min ) of the fuel cell temperature (Tfc) during that time are acquired by the measuring means 32. . Then, the determination means waits until the deviation from the fuel cell operating temperature (Tset) becomes equal to or less than the fuel cell temperature allowable value (Ta), that is, the expressions (2-1) and (2-2) are satisfied. The process proceeds to the state stability determination process by 33.

Tfcmax−Tset≦Ta ・・・式(2−1) Tfc max −Tset ≦ Ta (2)

Tset−Tfcmin≦Ta ・・・式(2−2) Tset−Tfc min ≦ Ta (Formula 2-2)

状態安定性判定の処理では、ステップS6において、燃料電池の状態安定性を評価するための演算を実行する。ここでは、αを計測周期(個々の電流掃引期間内における計測周期)ごとに1ずつ増加する変数として、n回目の電流掃引周期におけるsweepIVデータfnを式(3−1)のように定義する。   In the state stability determination process, in step S6, a calculation for evaluating the state stability of the fuel cell is executed. Here, the sweep IV data fn in the n-th current sweep cycle is defined as in equation (3-1), where α is a variable that increases by 1 for each measurement cycle (measurement cycle in each current sweep period).

fn=(Iα,n,Vα,n) ・・・式(3−1) fn = (I α, n , V α, n ) Equation (3-1)

また、同一測定周期時のn回目とn−1回目のfnの差分値△fnを式(3−2)により、燃料電池電流(Ifc)および燃料電池電圧(Vfc)の差分値を、それぞれ式(3−3)および式(3−4)により定義する。   Further, the difference value Δfn between the nth and n−1th fn in the same measurement cycle is expressed by the equation (3-2), and the difference value between the fuel cell current (Ifc) and the fuel cell voltage (Vfc) is expressed by the equation It is defined by (3-3) and formula (3-4).

△fn=fn−fn-1=f(△Iα,n,△Vα,n) ・・・式(3−2) Δf n = f n −f n−1 = f (ΔI α, n , ΔV α, n ) (3-2)

△Iα,n=Iα,n−Iα,n-1 ・・・式(3−3) ΔI α, n = I α, n −I α, n−1 Formula (3-3)

△Vα,n=Vα,n−Vα,n-1 ・・・式(3−4) ΔV α, n = V α, n −V α, n−1 Formula (3-4)

ステップS7では、燃料電池電圧(Vfc)の差分値が安定性判定値(Vs)以下となる条件が2回連続で成立する、すなわち式(3−5)および式(3−7)成立後、式(3−6)及び式(3−8)が成立するのを待って、再現性判定の処理へ移行する。   In step S7, the condition that the difference value of the fuel cell voltage (Vfc) is equal to or lower than the stability determination value (Vs) is established twice, that is, after the expressions (3-5) and (3-7) are satisfied, After waiting for the expressions (3-6) and (3-8) to be established, the process proceeds to the process of determining reproducibility.

△Vα,nの最大値をMax(△Vα,n)、最小値をMin(△Vα,n)とする。
|Min(△Vα,n-1)|≦Vs かつ |Max(△Vα,n-1)|≦Vs・・・式(3−5)
|Min(△Vα,n)|≦Vs かつ |Max(△Vα,n)|≦Vs ・・・式(3−6)
電流差分判定値:ISとする。△Iα,nの最大値をMax(△Iα,n)、最小値をMin(△Iα,n)とする。
式(3−5)に対し、
|Min(△Iα,n-1)|≦Is かつ |Max(△Iα,n-1)|≦Is・・・式(3−7)
式(3−6)に対し、
|Min(△Iα,n)|≦Is かつ |Max(△Iα,n)|≦Is ・・・式(3−8)
が同時に成立することを条件とする。
△ V α, the maximum value of n M ax (△ V α, n), the minimum value M in (△ V α, n ) to.
| M in (ΔV α, n−1 ) | ≦ Vs and | M ax (ΔV α, n−1 ) | ≦ Vs (3-5)
| M in (ΔV α, n ) | ≦ Vs and | M ax (ΔV α, n ) | ≦ Vs (3-6)
Current difference judgment value: I S. Let the maximum value of ΔI α, n be Max (ΔI α, n ) and the minimum value be M in (ΔI α, n ).
For formula (3-5),
| M in (ΔI α, n−1 ) | ≦ Is and | M ax (ΔI α, n−1 ) | ≦ Is (3-7)
For formula (3-6),
| M in (ΔI α, n ) | ≦ Is and | M ax (ΔI α, n ) | ≦ Is (3-8)
On the condition that

再現性判定の処理では、ステップS8において、式(4−2)に示すように、式(4−1)として定義される再現性基準(sweepIV:fref)とfnの差分を再現性判定値(Vw)と比較する。 In the reproducibility determination process, in step S8, as shown in Expression (4-2), the difference between the reproducibility standard (sweep IV: f ref ) defined as Expression (4-1) and fn is used as the reproducibility determination value. Compare with (Vw).

ref=(Iα,ref,Vα,ref) ・・・式(4−1) f ref = (I α, ref , V α, ref ) Equation (4-1)

α,ref−Vα,nの最大値をMax_α,n、最小値をMin_α,nとする。
|Min_α,n|≦Vw かつ |Max_α,n|≦Vw ・・・式(4−2)
Let V α, ref −V α, n be the maximum value Max — α, n and the minimum value be M in —α, n .
| M in_α, n | ≦ Vw and | M ax_α, n | ≦ Vw Expression (4-2)

ステップS9では、式(4−2)が成立するのを待って、エイジング処理を終了する。これにより、燃料電池の状態安定性および再現性が確保され、その後、所定の測定に移行する。   In step S9, the aging process is terminated after waiting for the expression (4-2) to be established. Thereby, the state stability and reproducibility of the fuel cell are ensured, and thereafter, the process proceeds to a predetermined measurement.

このように、本実施形態では、燃料電池に所定の掃引速度で変化する負荷電流を与えるが、このような電流変化は交流電流負荷を与えることと実質的に等価であり、AC特性に対するエイジングを実施していることになる。このため、燃料電池の安定性および再現性を確認することで、AC特性に対する適切なエイジングを実施できる。   As described above, in this embodiment, a load current that changes at a predetermined sweep speed is applied to the fuel cell. However, such a current change is substantially equivalent to applying an alternating current load, and aging of the AC characteristics is performed. It will be implemented. For this reason, appropriate aging with respect to AC characteristics can be implemented by confirming the stability and reproducibility of the fuel cell.

なお、上記実施形態において、初期特性判定(ステップS2〜ステップS3)を省略し、温度安定性判定(ステップS4〜ステップS5)の処理に包含することもできる。また、電流基準での掃引に代えて電圧基準の掃引とし、で燃料電池電圧を所定の掃引速度で変化させるようにしても、同様の効果が得られる。   In the above embodiment, the initial characteristic determination (steps S2 to S3) may be omitted, and the temperature stability determination (steps S4 to S5) may be included. The same effect can be obtained by using a voltage-based sweep instead of the current-based sweep and changing the fuel cell voltage at a predetermined sweep speed.

以上説明したように、本発明の燃料電池のエイジング方法によれば、燃料電池に所定の掃引速度で変化する負荷電圧または負荷電流を繰り返し与えるので、AC特性に対する適切なエイジングを実施できる。また、本発明の燃料電池のエイジング装置によれば、燃料電池に所定の掃引速度で変化する負荷電圧または負荷電流を与え、燃料電池の状態が安定したときにエイジングが終了したと判定するので、AC特性に対する適切なエイジングを実施できる。   As described above, according to the fuel cell aging method of the present invention, the load voltage or load current that changes at a predetermined sweep speed is repeatedly applied to the fuel cell, so that appropriate aging of the AC characteristics can be performed. Further, according to the fuel cell aging device of the present invention, a load voltage or a load current that changes at a predetermined sweep speed is applied to the fuel cell, and it is determined that the aging is completed when the state of the fuel cell is stabilized. Appropriate aging for AC characteristics can be performed.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、燃料電池に所定の前履歴を与える燃料電池のエイジング方法に対し、広く適用することができる。

The scope of application of the present invention is not limited to the above embodiment. The present invention is, against the aging how the fuel cell to provide a predetermined pre-history to the fuel cell, can be widely applied.

一実施形態のエイジング方法における燃料電池の接続状態を示すブロック図。The block diagram which shows the connection state of the fuel cell in the aging method of one Embodiment. エイジング装置を用いたエイジングの手順を示すフローチャート。The flowchart which shows the procedure of the aging using an aging apparatus.

符号の説明Explanation of symbols

3 エイジング装置
31 負荷制御手段
32 計測手段
33 判定手段
3 Aging device 31 Load control means 32 Measuring means 33 Determination means

Claims (2)

燃料電池に所定の前履歴を与える燃料電池のエイジング方法において、
前記燃料電池に所定の掃引速度で変化する負荷電圧または負荷電流を繰り返し与えるステップと、
負荷電圧または負荷電流が与えられている前記燃料電池の状態を繰り返し計測するステップと、
前記計測するステップにより計測される前記燃料電池の状態に基づいてエイジングが終了したと判定するステップと、
を備え、
前記判定するステップでは、前記状態を示す指標として燃料電池電圧または燃料電池発電電流を用いた変数を使用し、
前記判定するステップでは、前記状態が安定し、かつ前記状態が既定の基準状態に近い場合に、エイジングが終了したと判定し、
前記状態は、前記燃料電池の交流負荷に対する応答特性を示し、
前記掃引速度は、前記燃料電池に実質的な交流電圧負荷または交流電流負荷を与える速度とされることを特徴とする燃料電池のエイジング方法。
In a fuel cell aging method that gives a predetermined previous history to a fuel cell,
Repeatedly applying to the fuel cell a load voltage or load current that changes at a predetermined sweep rate;
Repeatedly measuring the state of the fuel cell to which a load voltage or load current is applied;
Determining that aging is completed based on the state of the fuel cell measured by the measuring step;
With
In the determining step, using a variable using a fuel cell voltage or a fuel cell power generation current as an index indicating the state,
In the determining step, when the state is stable and the state is close to a predetermined reference state, it is determined that aging has ended,
The state indicates a response characteristic of the fuel cell to an AC load,
The fuel cell aging method, wherein the sweep speed is a speed at which a substantial alternating voltage load or alternating current load is applied to the fuel cell.
前記判定するステップでは、前記燃料電池の燃料電池電圧または燃料電池発電電流における、前記負荷電圧または前記負荷電流の掃引ごとの変化が所定値よりも小さくなった場合に、前記燃料電池の前記状態が安定したとみなすことを特徴とする請求項1に記載の燃料電池のエイジング方法 In the determining step, the state of the fuel cell is determined when a change in the load voltage or the fuel cell power generation current of the fuel cell for each sweep of the load voltage or the load current becomes smaller than a predetermined value. The fuel cell aging method according to claim 1, wherein the method is regarded as stable .
JP2007273371A 2007-10-22 2007-10-22 Fuel cell aging method Expired - Fee Related JP5339024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273371A JP5339024B2 (en) 2007-10-22 2007-10-22 Fuel cell aging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273371A JP5339024B2 (en) 2007-10-22 2007-10-22 Fuel cell aging method

Publications (2)

Publication Number Publication Date
JP2009104823A JP2009104823A (en) 2009-05-14
JP5339024B2 true JP5339024B2 (en) 2013-11-13

Family

ID=40706309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273371A Expired - Fee Related JP5339024B2 (en) 2007-10-22 2007-10-22 Fuel cell aging method

Country Status (1)

Country Link
JP (1) JP5339024B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627145B2 (en) * 2004-03-01 2011-02-09 本田技研工業株式会社 Operation method of fuel cell

Also Published As

Publication number Publication date
JP2009104823A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US11243258B2 (en) Method for approximating algorithms for fast charging li-ion batteries based on electrochemical battery models
US20220239122A1 (en) Server-side characterisation of rechargeable batteries
US7996167B2 (en) Apparatus and method for estimating resistance characteristics of battery based on open circuit voltage estimated by battery voltage variation pattern
Waag et al. On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach
Lohmann et al. Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain
JP6577047B2 (en) Method for determining a reference energy profile and apparatus for forming a battery
JP5278508B2 (en) Battery degradation determination apparatus and method
WO2017154419A1 (en) Battery management system, battery system and hybrid vehicle control system
JP4876671B2 (en) Apparatus and method for measuring characteristics of fuel cell
US9673655B2 (en) Apparatus and methods of charging to safe cell voltage
JP4805192B2 (en) Battery internal resistance measuring device
JP4833788B2 (en) Battery voltage prediction method, program, state monitoring device, and power supply system
SE541171C2 (en) A method for operating a battery charger, and a battery charger
CN115308616A (en) OCV-SOC calibration and estimation method, device, medium and vehicle
TWI578006B (en) Method for determining characteristics of uknown battery
JP2008066390A (en) Method and device for measuring and inspecting capacitor
JP2012500980A (en) Method and controller for determining the state of charge of a battery
JP5339024B2 (en) Fuel cell aging method
Oldenburger et al. Analysis of low frequency impedance hysteresis of Li-ion cells by time-and frequency domain measurements and its relation to the OCV hysteresis
US9294023B2 (en) Method or system for minimizing the impact of back EMF sampling for motor resistance profiling
JP2006300717A (en) Insulation resistance meter
JP5817157B2 (en) Secondary battery state determination method, secondary battery system
JP2019161813A (en) Evaluation device and power conditioner
US20230042256A1 (en) Method, Apparatus, System, Electric Vehicle, Computer Program and Storage Medium for Charging or Discharging a Cell of an Electric Energy Store
JP2007315981A (en) Measuring device and inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees