JP5337348B2 - Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method - Google Patents

Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method Download PDF

Info

Publication number
JP5337348B2
JP5337348B2 JP2007072101A JP2007072101A JP5337348B2 JP 5337348 B2 JP5337348 B2 JP 5337348B2 JP 2007072101 A JP2007072101 A JP 2007072101A JP 2007072101 A JP2007072101 A JP 2007072101A JP 5337348 B2 JP5337348 B2 JP 5337348B2
Authority
JP
Japan
Prior art keywords
adhesive film
thermoplastic polyimide
adhesive
flexible printed
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007072101A
Other languages
Japanese (ja)
Other versions
JP2008231227A (en
Inventor
剛 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007072101A priority Critical patent/JP5337348B2/en
Publication of JP2008231227A publication Critical patent/JP2008231227A/en
Application granted granted Critical
Publication of JP5337348B2 publication Critical patent/JP5337348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、接着フィルムの接着層内の結晶に基づく光散乱の発生を抑制し、可視光透過率が改善されたフレキシブルプリント配線板用接着フィルムの製造方法、ならびに該製造方法により得られるフレキシブルプリント配線板用接着フィルムに関する。
The present invention, the occurrence of light scattering based on the crystal in the adhesive layer of the adhesive film is suppressed, a method of manufacturing a visible light transmittance of improved flexible printed wiring board adhesive film, and a flexible printed obtained by the production method It is related with the adhesive film for wiring boards .

近年の電子機器の小型化、高機能化に伴い、電子機器に使用される配線板も、より高機能なものが求められるようになっている。例えば、フレキシブルプリント配線板(以下、FPCともいう)は、一般に、柔軟性を有する薄い絶縁性フィルムを基板(ベースフィルム)とし、この基板の表面に、各種接着材料を介して金属箔が加熱・圧着することにより貼りあわされた金属張積層板に回路パターンを形成し、その表面にカバー層を施した構成を有している。かかる絶縁性フィルム、接着層、および金属箔の三層からなるフレキシブルプリント配線板(三層FPC)では、従来から、絶縁性フィルムとしてポリイミドフィルム等が広く用いられている。この理由は、ポリイミドが優れた耐熱性、電気特性などを有しているためである。また、接着層としては、エポキシ樹脂系、アクリル樹脂系等の熱硬化性接着剤が一般的に用いられている。   With recent downsizing and higher functionality of electronic devices, more sophisticated wiring boards are required for electronic devices. For example, a flexible printed wiring board (hereinafter also referred to as FPC) generally uses a thin insulating film having flexibility as a substrate (base film), and a metal foil is heated on the surface of the substrate via various adhesive materials. A circuit pattern is formed on a metal-clad laminate bonded by pressure bonding, and a cover layer is provided on the surface. In a flexible printed wiring board (three-layer FPC) composed of three layers of an insulating film, an adhesive layer, and a metal foil, a polyimide film or the like has been widely used as an insulating film. This is because polyimide has excellent heat resistance and electrical characteristics. Moreover, as the adhesive layer, a thermosetting adhesive such as epoxy resin or acrylic resin is generally used.

しかしながら、前記熱硬化性接着剤は、耐熱性、絶縁性、電気信頼性などの特性が必ずしも十分ではないことから、熱硬化性樹脂に代わって、より優れた特性を示す熱可塑性ポリイミド樹脂が接着剤として使用され始めている(例えば、特許文献1参照)。なお、この接着層にポリイミド材料を用いる方法で得られるFPCは厳密には三層であるともいえるが、2つのポリイミド層を一体と見なして二層FPCと称されるものである。   However, since the thermosetting adhesive does not necessarily have sufficient characteristics such as heat resistance, insulation, and electrical reliability, a thermoplastic polyimide resin exhibiting superior characteristics can be used instead of a thermosetting resin. It has begun to be used as an agent (see, for example, Patent Document 1). Although it can be said that the FPC obtained by the method using a polyimide material for the adhesive layer is strictly three layers, the two polyimide layers are regarded as a single body and are referred to as a two-layer FPC.

他の高分子材料と同様に、熱可塑性ポリイミドにも結晶性のものと非晶性のものが存在することが知られている。結晶性の熱可塑性ポリイミドは、従来、射出成形等の成形体用途で使用されてはいるものの(例えば、特許文献2参照)、電子材料用途、更には電子材料の接着剤用途としては着目されることが無かった。しかしながら、本発明者は、結晶性の熱可塑性ポリイミドは、例えば、FPCの接着剤用途として使用した場合も非常に有用であることを見出している。   As with other polymer materials, it is known that there are crystalline and amorphous thermoplastic polyimides. Crystalline thermoplastic polyimides are conventionally used for molded articles such as injection molding (see, for example, Patent Document 2), but are attracting attention as applications for electronic materials and for adhesives for electronic materials. There was nothing. However, the present inventor has found that crystalline thermoplastic polyimide is also very useful when used, for example, as an adhesive for FPC.

例えば、熱可塑性ポリイミドに結晶性を持たせた場合、当該熱可塑性ポリイミドはガラス転移温度(以下、Tgともいう)付近ではあまり軟化せず、Tgよりも高温の融点(以下、Tmともいう)付近で急激に軟化するようになる。そのため、結晶性の熱可塑性ポリイミドは、耐熱性と加工性を両立させることが容易である。   For example, when the thermoplastic polyimide is made crystalline, the thermoplastic polyimide does not soften very near the glass transition temperature (hereinafter also referred to as Tg), and is near the melting point (hereinafter also referred to as Tm) higher than Tg. Will soften suddenly. Therefore, crystalline thermoplastic polyimide is easy to achieve both heat resistance and workability.

非晶性の熱可塑性ポリイミドはTg付近で急激に軟化するため、耐熱性を上げる(接着層の軟化が始まる温度を上げる)ためにはTgを上げる必要がある。しかし、接着層の軟化が始まる温度が高くなると、必然的に接着フィルムを金属箔等と貼り合わせるのに必要な温度も高くする必要があるが、生産性よく接着フィルムと金属箔等を貼り合わせるためには接着層に用いる熱可塑性ポリイミドのTgよりも80〜150℃程度高い温度で貼り合わせる必要があり、このため加工性が低下する。   Amorphous thermoplastic polyimide softens rapidly in the vicinity of Tg. Therefore, it is necessary to increase Tg in order to improve heat resistance (increase the temperature at which the adhesive layer begins to soften). However, when the temperature at which the adhesive layer begins to soften becomes high, it is inevitably necessary to increase the temperature required to bond the adhesive film to the metal foil, but the adhesive film and the metal foil are bonded to each other with high productivity. For this purpose, it is necessary to bond at a temperature about 80 to 150 ° C. higher than the Tg of the thermoplastic polyimide used for the adhesive layer.

これに対し、結晶性の熱可塑性ポリイミドはTg付近でそれほど軟化せず、Tm付近で急激に軟化する傾向がある。また、TmはTgよりもある程度(100〜200℃)高くなる傾向にある。そのため、例えばFPCが使用される環境でかかる温度(例えば、半田リフロー温度など)と、FPCの製造工程における加工温度(接着フィルムと金属箔等の貼り合わせ温度)の間にTmを有するように適切に分子設計を行えば、耐熱性と加工性が両立された接着フィルムの接着剤として使用可能となる。   On the other hand, crystalline thermoplastic polyimide does not soften so much near Tg and tends to soften rapidly near Tm. Tm tends to be higher than Tg to some extent (100 to 200 ° C.). Therefore, for example, it is appropriate to have Tm between the temperature (for example, solder reflow temperature) in the environment where FPC is used and the processing temperature (bonding temperature of adhesive film and metal foil, etc.) in the FPC manufacturing process. If molecular design is performed, it can be used as an adhesive for an adhesive film having both heat resistance and workability.

上述した理由により、結晶性の熱可塑性ポリイミドは、例えば電子材料用途における接着剤として使用した場合に非常に有用であると考えられるが、その一方で結晶性ならではの不具合も存在する。その一つが、光透過性である。結晶性の熱可塑性ポリイミドを接着フィルムの接着剤として用いた場合、当該接着層中には熱可塑性ポリイミドの結晶が存在していることになるが、この時の結晶サイズが大きいと、当該結晶部位に起因して接着層で光が散乱されるため、結果として接着フィルムの光透過率が大きく低下する傾向がある。接着フィルムの光透過率が低いと、1)接着フィルム製造時に、欠陥検査を実施することが困難になる、2)接着フィルム製造時に、光学系のオンライン膜厚計などで厚み管理をする場合に、膜厚測定が困難になる、3)チップ実装などの工程における位置合わせが困難になる、といった問題が発生する原因となる。
特開平6−200218号公報 特開平11−35822号公報
For the reasons described above, crystalline thermoplastic polyimide is considered to be very useful when used, for example, as an adhesive in electronic material applications, but there are also problems inherent to crystallinity. One of them is light transmission. When crystalline thermoplastic polyimide is used as an adhesive for the adhesive film, thermoplastic polyimide crystals are present in the adhesive layer. If the crystal size at this time is large, As a result, light is scattered by the adhesive layer, and as a result, the light transmittance of the adhesive film tends to be greatly reduced. If the light transmittance of the adhesive film is low, 1) it will be difficult to carry out defect inspection at the time of manufacturing the adhesive film. 2) When managing the thickness with an on-line film thickness meter of the optical system at the time of manufacturing the adhesive film. This makes it difficult to measure the film thickness, and 3) makes it difficult to perform alignment in a process such as chip mounting.
JP-A-6-200218 Japanese Patent Laid-Open No. 11-35822

本発明は、上記の課題に鑑みてなされたものであって、その目的は、結晶性の熱可塑性ポリイミドを接着層に使用した接着フィルムに関して、その光透過性を向上させる製造方法を提供することにある。   This invention is made | formed in view of said subject, The objective is providing the manufacturing method which improves the light transmittance regarding the adhesive film which used the crystalline thermoplastic polyimide for the contact bonding layer. It is in.

本発明者は、上記の課題に鑑み鋭意検討した結果、熱可塑性ポリイミドのイミド化時もしくはイミド化後の温度を制御することにより、接着フィルムの光透過性を向上できることを見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above problems, the present inventors have found that the light transmittance of an adhesive film can be improved by controlling the temperature at the time of imidization of thermoplastic polyimide or after imidization, and the present invention has been completed. I came to let you.

即ち、本発明は、コア層の少なくとも片面に結晶性の熱可塑性ポリイミドを含有する接着層を設けた接着フィルムの製造方法であって、該接着層の形成手段が、熱可塑性ポリイミド前駆体を含有する層をコア層の少なくとも片面に設けた後、これを加熱によりイミド化する際もしくはイミド化した後に、得られる結晶性熱可塑性ポリイミドの融点以上の温度で加熱することを特徴とする、接着フィルムの製造方法に関する。   That is, the present invention is a method for producing an adhesive film in which an adhesive layer containing a crystalline thermoplastic polyimide is provided on at least one side of a core layer, and the means for forming the adhesive layer contains a thermoplastic polyimide precursor. The adhesive film is characterized in that after the layer to be formed is provided on at least one side of the core layer, the film is heated at a temperature equal to or higher than the melting point of the obtained crystalline thermoplastic polyimide when imidized or imidized by heating. It relates to the manufacturing method.

好ましい実施態様は、熱可塑性ポリイミド前駆体層に、脱水剤及び/又はイミド化触媒が含有されていることを特徴とする、前記の接着フィルムの製造方法に関する。   A preferred embodiment relates to the method for producing an adhesive film, wherein the thermoplastic polyimide precursor layer contains a dehydrating agent and / or an imidization catalyst.

好ましい実施態様は、熱可塑性ポリイミド前駆体を加熱によりイミド化する際もしくはイミド化した後に、得られる結晶性熱可塑性ポリイミドの融点よりも20℃以上、100℃以下の温度範囲で加熱することを特徴とする、前記いずれかの接着フィルムの製造方法に関する。   A preferred embodiment is characterized in that when the thermoplastic polyimide precursor is imidized by heating or after imidization, it is heated in a temperature range of 20 ° C. or higher and 100 ° C. or lower than the melting point of the obtained crystalline thermoplastic polyimide. It is related with the manufacturing method of one of the said adhesive films.

本発明は、前記いずれかの製造方法により得られる接着フィルムであって、総厚み25μmにおける波長600nmの光透過率が30%以上であることを特徴とする、接着フィルムに関する。   The present invention relates to an adhesive film obtained by any one of the above-described production methods, wherein the light transmittance at a wavelength of 600 nm at a total thickness of 25 μm is 30% or more.

本発明の接着フィルムの製造方法によれば、接着層に含有される結晶性の熱可塑性ポリイミドのイミド化時もしくはイミド化後の温度を適切に制御することにより、得られる接着フィルムの光透過性を向上させることが可能となる。   According to the method for producing an adhesive film of the present invention, by appropriately controlling the temperature at the time of imidation of the crystalline thermoplastic polyimide contained in the adhesive layer or after imidization, the light transmittance of the obtained adhesive film is obtained. Can be improved.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

本発明は、コア層の少なくとも片面に熱可塑性ポリイミドを含有する接着層を設けて構成される接着フィルムの製造方法、ならびに該製造方法により得られる接着フィルムに関する。ここで、前記接着層に含有される熱可塑性ポリイミドは、少なくとも一部もしくは全部が結晶性を有するものである。なお、本発明において「結晶性を有する」とは、示差走査熱量計(DSC:Differential Scanning Calorimetry)測定において、固体状態から融解状態に移行することによる明確な吸熱ピーク(このピーク温度を融点とする)を示すことを言う。これに対し、非晶性の熱可塑性ポリイミドは、融点を持たないので明確な吸熱ピークを示さず、ガラス転移温度付近で若干の吸熱が確認されるのみである点で相違する。   The present invention relates to a method for producing an adhesive film constituted by providing an adhesive layer containing a thermoplastic polyimide on at least one surface of a core layer, and an adhesive film obtained by the production method. Here, at least a part or all of the thermoplastic polyimide contained in the adhesive layer has crystallinity. In the present invention, “having crystallinity” means a clear endothermic peak (this peak temperature is defined as a melting point) due to a transition from a solid state to a molten state in differential scanning calorimetry (DSC) measurement. ). In contrast, amorphous thermoplastic polyimide is different in that it has no melting point and therefore does not show a clear endothermic peak, and only a slight endotherm is observed near the glass transition temperature.

本発明に係る接着フィルムの製造方法に用いることのできるコア層については特に限定されず、例えば、ポリイミドフィルム、ポリアミドフィルム、液晶ポリマーフィルム等を例示できるが、電子材料用途としては耐熱性ポリイミドフィルムが好適に用いられ得る。前記耐熱性ポリイミドフィルムは限定されるものではなく、非熱可塑性ポリイミドを90重量%以上含有して形成されるものが好ましい。非熱可塑性ポリイミドの分子構造、フィルム厚み等は特に限定されない。耐熱性ポリイミドフィルムの形成に用いられる非熱可塑性ポリイミドは、一般にポリアミド酸を前駆体として用いて製造されるものであるが、前記非熱可塑性ポリイミドは、完全にイミド化していてもよいし、イミド化されていない前駆体すなわちポリアミド酸を一部に含んでいてもよい。ここで、非熱可塑性ポリイミドとは、一般に加熱しても軟化、接着性を示さないポリイミドをいう。本発明では、特にフィルムの状態で450℃、2分間加熱を行い、シワが入ったり伸びたりせず、形状を保持しているポリイミド、若しくは実質的にガラス転移温度を有しないポリイミドをいう。なお、ガラス転移温度は動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値により求めることができる。また、「実質的にガラス転移温度を有しない」とは、ガラス転移状態になる前に熱分解が開始するものをいう。   The core layer that can be used in the method for producing an adhesive film according to the present invention is not particularly limited, and examples thereof include a polyimide film, a polyamide film, a liquid crystal polymer film, and the like. It can be suitably used. The heat-resistant polyimide film is not limited and is preferably formed containing 90% by weight or more of non-thermoplastic polyimide. The molecular structure, film thickness, etc. of the non-thermoplastic polyimide are not particularly limited. The non-thermoplastic polyimide used for forming the heat-resistant polyimide film is generally produced using polyamic acid as a precursor. However, the non-thermoplastic polyimide may be completely imidized or imide An unconverted precursor, that is, a polyamic acid, may be included in part. Here, the non-thermoplastic polyimide generally refers to a polyimide that does not soften or show adhesiveness even when heated. In the present invention, it refers to a polyimide that is heated at 450 ° C. for 2 minutes in the state of a film, does not wrinkle or stretch, and retains its shape, or has substantially no glass transition temperature. The glass transition temperature can be obtained from the value of the inflection point of the storage elastic modulus measured by a dynamic viscoelasticity measuring device (DMA). Further, “substantially has no glass transition temperature” means that thermal decomposition starts before the glass transition state is reached.

前記耐熱性ポリイミドフィルムについては、例えば、市販されている公知のポリイミドフィルムを使用することが可能である。市販されているポリイミドフィルムの例としては、例えば、「アピカル」(カネカ製)、「カプトン」(デュポン、東レ・デュポン製)、「ユーピレックス」(宇部興産製)などが挙げられる。もちろん、従来公知の原料あるいは製法等を用いて適宜作製した耐熱性ポリイミドフィルムを用いても構わない。例えば、通常、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを、実質的等モル量、有機溶媒中に溶解させて、制御された温度条件下で、上記芳香族テトラカルボン酸二無水物と芳香族ジアミンとの重合が完了するまで攪拌することによって前駆体であるポリアミド酸のワニスを製造し、当該ポリアミド酸のワニスを用いて耐熱性ポリイミドフィルムを得ることができる。   About the said heat resistant polyimide film, it is possible to use the well-known polyimide film marketed, for example. Examples of commercially available polyimide films include “Apical” (manufactured by Kaneka), “Kapton” (manufactured by DuPont, Toray DuPont), “Iupilex” (manufactured by Ube Industries), and the like. Of course, you may use the heat resistant polyimide film suitably produced using the conventionally well-known raw material or a manufacturing method. For example, the aromatic tetracarboxylic dianhydride and the aromatic diamine are usually dissolved in an organic solvent in a substantially equimolar amount, and the aromatic tetracarboxylic dianhydride is controlled under controlled temperature conditions. The polyamic acid varnish as a precursor is produced by stirring until the polymerization of the diamine with the aromatic diamine is completed, and a heat-resistant polyimide film can be obtained using the polyamic acid varnish.

本発明に係る接着フィルムの製造方法は、結晶性の熱可塑性ポリイミドを含有する接着層の形成手段が、当該熱可塑性ポリイミドの前駆体を含有する層を、前記コア層の少なくとも片面に設けた後、これを加熱によりイミド化する際もしくはイミド化した後に、得られる結晶性熱可塑性ポリイミドの融点以上の温度で加熱するものであることを特徴とする。ここでいう熱可塑性ポリイミドの「前駆体」とは、一般的にポリイミドの前駆体として認知されている化合物、例えば、ポリアミド酸もしくはイソイミドなどを指すものであって、イミド化によりポリイミドが得られるものであれば限定されない。   In the method for producing an adhesive film according to the present invention, after the means for forming the adhesive layer containing crystalline thermoplastic polyimide has provided a layer containing the thermoplastic polyimide precursor on at least one side of the core layer In addition, it is characterized in that it is heated at a temperature equal to or higher than the melting point of the obtained crystalline thermoplastic polyimide when imidized by heating or after imidization. The “precursor” of the thermoplastic polyimide here refers to a compound generally recognized as a precursor of polyimide, for example, polyamic acid or isoimide, and the polyimide can be obtained by imidization. If it is, it will not be limited.

熱可塑性ポリイミドの前駆体の合成方法としては特に限定されず、従来公知の方法が用いられうる。一般的な例としては、有機溶剤中でジアミン成分と酸二無水物成分を混合し、重合反応によりポリアミド酸の有機溶剤溶液を得る方法が挙げられる。ここで使用されるジアミン成分と酸二無水物成分の構造を適切に選定することにより、それらを重合して得たポリアミド酸をイミド化して得られる熱可塑性ポリイミドに結晶性を付与することが可能となる。しかし、上述した通り、一般的にポリイミドはジアミン成分と酸二無水物成分の重合反応により得られるため、特定のジアミン成分または酸二無水物成分のどちらか一方を用いれば必ず結晶性のポリイミドが得られるわけではなく、結晶性の発現は、ジアミン成分と酸二無水物成分の組み合わせに大きく依存する。   A method for synthesizing the precursor of the thermoplastic polyimide is not particularly limited, and a conventionally known method can be used. As a general example, there is a method in which a diamine component and an acid dianhydride component are mixed in an organic solvent, and a polyamic acid organic solvent solution is obtained by a polymerization reaction. By appropriately selecting the structure of the diamine component and acid dianhydride component used here, it is possible to impart crystallinity to the thermoplastic polyimide obtained by imidizing the polyamic acid obtained by polymerizing them. It becomes. However, as described above, since polyimide is generally obtained by a polymerization reaction of a diamine component and an acid dianhydride component, if either one of the specific diamine component or acid dianhydride component is used, a crystalline polyimide is always produced. Although not obtained, the expression of crystallinity depends largely on the combination of the diamine component and the acid dianhydride component.

上記組み合わせの観点があることを踏まえた上で、本発明において接着層に含有される結晶性の熱可塑性ポリイミドの原料として使用され得るジアミン成分および酸二無水物成分の例を挙げると、ジアミン成分としては、1,4-ビス(4−アミノフェノキシ)ベンゼン、1,3-ビス(4−アミノフェノキシ)ベンゼン、4,4’-ビス(3−アミノフェノキシ)ビフェニル、4,4’-ビス(4−アミノフェノキシ)ビフェニル等のエーテル系ジアミン、1,4−ジアミノベンゼン等のフェニレン系ジアミンなどが結晶性を発現しやすい傾向にあることから好ましい。一方、酸二無水物成分としては、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物などが結晶性を発現しやすい傾向にあることから好ましい。もちろん、本発明の熱可塑性ポリイミドの原料として使用するジアミン成分と酸二無水物成分はこれらに限定されるわけではなく、ジアミン成分と酸二無水物成分との特定の組み合わせの結果として得られる熱可塑性ポリイミドが結晶性を発現するものであれば、他の構造の原料を用いても構わない。   Taking into account that there is a viewpoint of the above combination, examples of the diamine component and the acid dianhydride component that can be used as a raw material for the crystalline thermoplastic polyimide contained in the adhesive layer in the present invention are as follows: As 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis ( Ether-based diamines such as 4-aminophenoxy) biphenyl and phenylene-based diamines such as 1,4-diaminobenzene are preferred because they tend to exhibit crystallinity. On the other hand, as the acid dianhydride component, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and the like are preferable because they tend to exhibit crystallinity. Of course, the diamine component and the acid dianhydride component used as raw materials for the thermoplastic polyimide of the present invention are not limited to these, and the heat obtained as a result of a specific combination of the diamine component and the acid dianhydride component. As long as the plastic polyimide exhibits crystallinity, a raw material having another structure may be used.

本発明において、結晶性の熱可塑性ポリイミドを得るための原料として特に好ましいジアミン成分と酸二無水物成分との組み合わせは、例えば、1,4-ビス(4−アミノフェノキシ)ベンゼン、1,3-ビス(4−アミノフェノキシ)ベンゼンと3,3’,4,4’−ビフェニルテトラカルボン酸二無水物の組み合わせを例示できる。   In the present invention, a particularly preferred combination of a diamine component and an acid dianhydride component as raw materials for obtaining a crystalline thermoplastic polyimide is, for example, 1,4-bis (4-aminophenoxy) benzene, 1,3- A combination of bis (4-aminophenoxy) benzene and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride can be exemplified.

本発明において、接着層に含有される熱可塑性ポリイミドは、少なくとも一部もしくは全部が結晶性の熱可塑性ポリイミドである必要がある。中でも、当該熱可塑性ポリイミド量を基準として、吸湿半田耐性や加工性の観点から、結晶性熱可塑性ポリイミドが85重量%〜100重量%の範囲で含まれることが好ましく、更には90重量%〜100重量%の範囲で含まれることがより好ましい。   In the present invention, the thermoplastic polyimide contained in the adhesive layer needs to be at least partially or entirely crystalline thermoplastic polyimide. Among these, based on the amount of the thermoplastic polyimide, from the viewpoint of moisture absorption solder resistance and workability, it is preferable that the crystalline thermoplastic polyimide is contained in the range of 85% by weight to 100% by weight, and more preferably 90% by weight to 100%. More preferably, it is contained in the range of% by weight.

本発明において、前記熱可塑性ポリイミドの前駆体であるポリアミド酸の重合に使用する有機溶媒、重合温度、重合濃度などに関する諸条件についても特に限定されず、従来公知の条件で製造することが可能である。   In the present invention, the conditions relating to the organic solvent used for the polymerization of the polyamic acid which is the precursor of the thermoplastic polyimide, the polymerization temperature, the polymerization concentration, etc. are not particularly limited, and can be produced under conventionally known conditions. is there.

本発明の接着フィルムの製造方法において、コア層の少なくとも片面に、熱可塑性ポリイミドの前駆体を含有する層を設ける手段については特に限定されず、従来公知の方法が使用できる。例を挙げると、(i)コア層となる耐熱性ポリイミドフィルムに接着層を形成する方法、(ii)接着層をシート状に成形し、これを前記コア層に貼り合わせる方法、(iii)コア層と接着層を多層押出し等で同時成形する方法等が好適に例示され得る。このうち、(i)の方法を採る場合、接着層に含有される熱可塑性ポリイミドの前駆体であるポリアミド酸を完全にイミド化してしまうと、有機溶媒への溶解性が低下する場合があることから、コア層上に上記接着層を設けることが困難となることがある。従って、上記観点から、熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する溶液を調製して、これをコア層となるフィルムに塗布し、次いでイミド化する手順を採った方がより好ましい。   In the method for producing an adhesive film of the present invention, means for providing a layer containing a thermoplastic polyimide precursor on at least one surface of the core layer is not particularly limited, and a conventionally known method can be used. For example, (i) a method of forming an adhesive layer on a heat-resistant polyimide film to be a core layer, (ii) a method of forming the adhesive layer into a sheet and bonding it to the core layer, (iii) a core A method of simultaneously forming the layer and the adhesive layer by multilayer extrusion or the like can be suitably exemplified. Among these, in the case of adopting the method (i), if the polyamic acid that is a precursor of the thermoplastic polyimide contained in the adhesive layer is completely imidized, the solubility in an organic solvent may be reduced. Therefore, it may be difficult to provide the adhesive layer on the core layer. Therefore, from the above viewpoint, it is more preferable to prepare a solution containing polyamic acid which is a precursor of thermoplastic polyimide, apply this to a film to be a core layer, and then imidize.

接着層のイミド化方法については、例えば、加熱によりイミド化する熱キュア法、脱水剤及び/又はイミド化触媒を添加してイミド化するケミカルキュア法、あるいは両者を併用する方法が挙げられる。このうち、イミド化に必要となる時間を短縮し、生産性を向上させるという観点では、ケミカルキュア法の方が好ましい。また、ケミカルキュアと熱キュアを併用すれば、更に短時間でイミド化が可能となり、生産性をより向上させることが可能となる。但し、上述の通り、ポリアミド酸からポリイミドに転化することによって一般的に有機溶媒への溶解性が大きく低下する傾向があるため、ケミカルキュアを行う場合は工程の温度管理を厳密に行い、コア層上に接着層を設ける前にイミド化が終了してしまわないよう、注意することが好ましい。   Examples of the imidization method for the adhesive layer include a thermal cure method in which imidization is performed by heating, a chemical cure method in which imidization is performed by adding a dehydrating agent and / or an imidization catalyst, or a method in which both are used in combination. Among these, the chemical curing method is preferable from the viewpoint of shortening the time required for imidization and improving productivity. Moreover, if chemical curing and thermal curing are used in combination, imidization can be achieved in a shorter time, and productivity can be further improved. However, as described above, the conversion from polyamic acid to polyimide generally tends to greatly reduce the solubility in organic solvents. Therefore, when performing chemical curing, the temperature control of the process is strictly performed, and the core layer It is preferable to take care so that imidization does not end before the adhesive layer is provided thereon.

前記脱水剤としては、ポリアミド酸に対する各種の脱水閉環剤が使用できるが、脂肪族酸無水物、芳香族酸無水物、N,N′−ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族酸無水物、アリールスルホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物を好ましく用いることができる。その中でも特に、脂肪族酸無水物及び芳香族酸無水物が良好に作用する。また、イミド化触媒とは、ポリアミド酸に対する脱水剤の脱水閉環作用を促進する効果を有する成分を広く示すが、例えば、脂肪族3級アミン、芳香族3級アミン、複素環式3級アミンを用いることができる。そのうち、イミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、キノリン、またはβ−ピコリンなどの含窒素複素環化合物であることが特に好ましい。さらに、脱水剤及びイミド化触媒からなる溶液中に、有機極性溶媒を導入することも適宜選択されうる。   As the dehydrating agent, various dehydrating ring closure agents for polyamic acid can be used, but aliphatic acid anhydrides, aromatic acid anhydrides, N, N′-dialkylcarbodiimides, lower aliphatic halides, halogenated lower aliphatics. An acid anhydride, an aryl sulfonic acid dihalide, a thionyl halide or a mixture of two or more thereof can be preferably used. Of these, aliphatic acid anhydrides and aromatic acid anhydrides work particularly well. In addition, the imidization catalyst widely refers to a component having an effect of promoting the dehydrating and ring-closing action of the dehydrating agent on the polyamic acid. For example, an aliphatic tertiary amine, an aromatic tertiary amine, or a heterocyclic tertiary amine is used. Can be used. Of these, nitrogen-containing heterocyclic compounds such as imidazole, benzimidazole, isoquinoline, quinoline, and β-picoline are particularly preferable. Furthermore, introduction of an organic polar solvent into a solution composed of a dehydrating agent and an imidization catalyst may be appropriately selected.

脱水剤の好ましい量は、脱水剤及びイミド化触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して、0.5〜5モル、好ましくは0.7〜4モルである。また、イミド化触媒の好ましい量は、脱水剤及びイミド化触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して、0.05〜3モル、好ましくは0.2〜2モルである。脱水剤及びイミド化触媒が上記範囲を下回ると化学的イミド化が不十分で、焼成途中で破断したり、機械的強度が低下したりすることがある。また、これらの量が上記範囲を上回ると、イミド化の進行が早くなりすぎ、フィルム状にキャストすることが困難となることがあるため好ましくない。   The preferable amount of the dehydrating agent is 0.5 to 5 mol, preferably 0.7 to 4 mol, based on 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the dehydrating agent and the imidization catalyst. . Moreover, the preferable quantity of an imidation catalyst is 0.05-3 mol with respect to 1 mol of amic acid units in the polyamic acid contained in the solution which contains a dehydrating agent and an imidation catalyst, Preferably it is 0.2-2. Is a mole. If the dehydrating agent and the imidization catalyst are below the above ranges, chemical imidization may be insufficient, and may break during firing or mechanical strength may decrease. Moreover, when these amounts exceed the above range, the progress of imidization becomes too fast, and it may be difficult to cast into a film, which is not preferable.

本発明の製造方法において、接着フィルムの接着層には、熱可塑性ポリイミド以外に、必要に応じて、例えば、線膨張係数や滑り性制御の目的でフィラー等の有機物/無機物粒子を含有してもよい。この場合のフィラーの添加量は、接着層に対して0.001〜10重量%の範囲で含んでいても良い。   In the production method of the present invention, the adhesive layer of the adhesive film may contain organic / inorganic particles such as a filler for the purpose of controlling the linear expansion coefficient and slipperiness, for example, in addition to the thermoplastic polyimide. Good. The amount of filler added in this case may be included in the range of 0.001 to 10% by weight with respect to the adhesive layer.

本発明に係る接着フィルムの製造方法においては、得られる接着フィルムの光透過性を向上させるため、接着フィルムを製造する際の加熱温度を制御することが重要となる。具体的には、接着層に含有される熱可塑性ポリイミドの前駆体を加熱によりイミド化する際もしくはイミド化した後に、得られる結晶性の熱可塑性ポリイミドの融点以上の温度で加熱することが重要となる。仮に、イミド化する際に融点よりも低い温度で加熱したとしても、接着層に含有される熱可塑性ポリイミドの前駆体は問題なくイミド化されるため、最終的に得られる接着フィルムの接着性や半田耐熱性には何ら問題は生じない。しかし、イミド化の際、結晶性熱可塑性ポリイミドの融点よりも低い温度で加熱されて製造された接着フィルムは、接着層に含有される結晶性熱可塑性ポリイミドの結晶粒度が大きくなり、得られる接着フィルムの光透過性は、接着層に非晶性の熱可塑性ポリイミドを用いた場合に比べて大きく低下してしまう。これに対して、一度、結晶性熱可塑性ポリイミドの融点よりも高い温度で加熱した場合は、得られる接着フィルムの光透過性が改善される傾向がある。この原因は、一旦、結晶性熱可塑性ポリイミドの融点以上の温度で加熱することで接着層を融解状態とし、これを冷却して再結晶化させることにより、結晶粒度を小さくすることができるためと考えている。   In the method for producing an adhesive film according to the present invention, it is important to control the heating temperature when producing the adhesive film in order to improve the light transmittance of the obtained adhesive film. Specifically, it is important to heat the thermoplastic polyimide precursor contained in the adhesive layer at a temperature equal to or higher than the melting point of the resulting crystalline thermoplastic polyimide when imidized by heating or after imidization. Become. Even if it is heated at a temperature lower than the melting point at the time of imidization, the thermoplastic polyimide precursor contained in the adhesive layer is imidized without any problem, so the adhesiveness of the finally obtained adhesive film and There is no problem with solder heat resistance. However, the adhesive film manufactured by heating at a temperature lower than the melting point of the crystalline thermoplastic polyimide during imidation increases the crystal grain size of the crystalline thermoplastic polyimide contained in the adhesive layer, and the resulting adhesion The light transmittance of the film is greatly reduced as compared with the case where amorphous thermoplastic polyimide is used for the adhesive layer. On the other hand, once heated at a temperature higher than the melting point of the crystalline thermoplastic polyimide, the light transmittance of the resulting adhesive film tends to be improved. The reason for this is that once the crystalline layer is heated at a temperature equal to or higher than the melting point of the crystalline thermoplastic polyimide, the adhesive layer is brought into a molten state, and this is cooled and recrystallized, whereby the crystal grain size can be reduced. thinking.

接着フィルムを、接着層に含有される結晶性熱可塑性ポリイミドの融点以上の温度で加熱する時期は特に制限されず、接着フィルムの製造工程中(イミド化する際)、または後工程(イミド化した後)のどちらでも構わない。例えば、接着フィルムの製造工程中で融点以上に加熱する場合において、上記(i)〜(iii)の各手段に対応させて、以下に例示する。   The timing for heating the adhesive film at a temperature equal to or higher than the melting point of the crystalline thermoplastic polyimide contained in the adhesive layer is not particularly limited. During the manufacturing process of the adhesive film (when imidizing), or subsequent process (imidized) Either). For example, in the case of heating to the melting point or higher during the production process of the adhesive film, the following will be exemplified corresponding to each means (i) to (iii).

前記(i)の手段で接着フィルムを製造する場合、例えばコア層となる耐熱性ポリイミドフィルムに接着層となる接着剤溶液を塗工した後、まず接着剤溶液中の有機溶剤を大部分除去するため、比較的低い温度で加熱を行う。この段階での温度は50〜200℃の範囲が好ましい。次に、接着層中に僅かに残った溶剤の除去と、接着層中の熱可塑性ポリイミドのイミド化を行うため、高い温度で加熱を行う。この段階での温度は250℃以上が好ましい。接着層中に溶剤が殆ど残っていない場合、この段階で結晶性熱可塑性ポリイミドの融点以上の温度をかけて加熱を行い、溶剤除去、接着層中の熱可塑性ポリイミドのイミド化、接着層の融解を一工程でまとめて行っても良い。結晶性熱可塑性ポリイミドの融点以上の温度はかなり高温であるため、加熱後に急冷すると接着フィルムの急激な収縮が起こり、外観が悪化する可能性があるため、徐々に雰囲気温度を下げて徐冷する方が好ましい。   In the case of producing an adhesive film by the means (i), for example, after applying an adhesive solution to be an adhesive layer to a heat-resistant polyimide film to be a core layer, first, most of the organic solvent in the adhesive solution is removed. Therefore, heating is performed at a relatively low temperature. The temperature at this stage is preferably in the range of 50 to 200 ° C. Next, heating is performed at a high temperature in order to remove the solvent remaining slightly in the adhesive layer and imidize the thermoplastic polyimide in the adhesive layer. The temperature at this stage is preferably 250 ° C. or higher. If almost no solvent remains in the adhesive layer, heat is applied over the melting point of the crystalline thermoplastic polyimide at this stage to remove the solvent, imidize the thermoplastic polyimide in the adhesive layer, and melt the adhesive layer. May be performed in one step. Since the temperature above the melting point of crystalline thermoplastic polyimide is quite high, if the film is rapidly cooled after heating, the adhesive film may shrink rapidly and the appearance may deteriorate. Is preferred.

前記(ii)の手段で接着フィルムを製造する場合、まず接着層の単層シートを作製する。この場合も(i)の手段と同様、最初は有機溶剤の除去のため接着剤溶液を比較的低い温度で加熱し、徐々に加熱温度を上げていった方が好ましい。ここで、接着層中の熱可塑性ポリイミドを完全にイミド化してしまうと、接着層の単層シートをコア層に貼り合わせるために必要となる温度が高くなる傾向にある。そのため、イミド化が不完全な状態で接着層シートを耐熱性ポリイミドフィルムなどのコア層に貼り合わせ、その後、融点以上の温度で加熱を行って接着層のイミド化と融解を行った方が好ましい。   When producing an adhesive film by the means (ii), first, a single layer sheet of an adhesive layer is prepared. Also in this case, it is preferable to heat the adhesive solution at a relatively low temperature and gradually increase the heating temperature in order to remove the organic solvent, as in the method (i). Here, if the thermoplastic polyimide in the adhesive layer is completely imidized, the temperature required for bonding the single layer sheet of the adhesive layer to the core layer tends to increase. Therefore, it is preferable to bond the adhesive layer sheet to a core layer such as a heat-resistant polyimide film in a state where imidization is incomplete, and then perform imidization and melting of the adhesive layer by heating at a temperature equal to or higher than the melting point. .

前記(iii)の手段で接着フィルムを製造する場合、コア層と接着層を多層押出し等で同時成形した後、加熱して溶剤除去、接着層のイミド化、接着層の融解を行う。温度ステップについては(i)と同様にして行えば良い。   When the adhesive film is produced by the means (iii), the core layer and the adhesive layer are simultaneously formed by multilayer extrusion or the like, and then heated to remove the solvent, imidize the adhesive layer, and melt the adhesive layer. The temperature step may be performed in the same manner as (i).

なお、上述したように、一旦接着フィルムを製造し、後工程で結晶性熱可塑性ポリイミドの融点以上の温度をかけて加熱を行っても良い。この場合、接着層中には溶剤が残留していないと見なすことができるため、最初から結晶性熱可塑性ポリイミドの融点以上の温度をかけて加熱することは可能である。しかし、接着フィルムを急激に加熱した場合、接着フィルムの急激な膨張が起こり、外観が悪化する可能性があるため、徐々に雰囲気温度を上げる方が好ましい。加熱後についても、(i)の手段に記載した通り、徐々に雰囲気温度を下げて徐冷する方が好ましい。   Note that, as described above, an adhesive film may be once manufactured and heated in a subsequent step by applying a temperature equal to or higher than the melting point of the crystalline thermoplastic polyimide. In this case, since it can be considered that the solvent does not remain in the adhesive layer, it is possible to heat from the beginning by applying a temperature higher than the melting point of the crystalline thermoplastic polyimide. However, when the adhesive film is heated rapidly, the adhesive film may rapidly expand and the appearance may be deteriorated. Therefore, it is preferable to gradually increase the ambient temperature. Even after heating, as described in the means (i), it is preferable to gradually cool by lowering the ambient temperature.

本発明において、接着層に含有される結晶性熱可塑性ポリイミドの融点以上の温度については融点以上であればよく特に制限はないが、その具体的な温度としては、熱可塑性ポリイミドの融点よりも20℃以上高い温度が好ましく、50℃以上高い温度が特に好ましい。上記加熱温度が高い方が、短時間でも確実に熱可塑性ポリイミドを融解できるため、得られる接着フィルムの光透過性と、接着フィルムの生産性を両立させることが容易となる。但し、加熱温度が高すぎると熱可塑性ポリイミドの熱分解が発生してしまい、接着フィルムとしての特性が低下する場合がある。従って、前記加熱温度は、最高でも結晶性熱可塑性ポリイミドの融点+100℃以下に留めた方が好ましい。   In the present invention, the temperature above the melting point of the crystalline thermoplastic polyimide contained in the adhesive layer is not particularly limited as long as it is equal to or higher than the melting point, but the specific temperature is 20 times higher than the melting point of the thermoplastic polyimide. A temperature higher by at least 50 ° C. is preferable, and a temperature higher by at least 50 ° C. is particularly preferable. Since the one where the said heating temperature is higher can melt | dissolve a thermoplastic polyimide reliably also for a short time, it becomes easy to make light transmittance of the adhesive film obtained and the productivity of an adhesive film compatible. However, if the heating temperature is too high, thermal decomposition of the thermoplastic polyimide occurs, and the properties as an adhesive film may be deteriorated. Therefore, it is preferable to keep the heating temperature at most at the melting point of the crystalline thermoplastic polyimide + 100 ° C. or less.

前記加熱手段としては特に制限されず、例えば、熱風方式、遠赤外線方式のどちらを用いても良く、さらに両者を併用しても良い。また、加熱方法についても、バッチ処理、連続処理のどちらを用いても良いが、接着フィルムの生産性の観点からすると、連続処理が好ましい。   The heating means is not particularly limited, and for example, either a hot air method or a far infrared method may be used, and both may be used in combination. As for the heating method, either batch processing or continuous processing may be used, but continuous processing is preferable from the viewpoint of productivity of the adhesive film.

上記の製造法により得られた本発明に係る接着フィルムは、光透過率が改善されうる。光透過率については、接着フィルムの総厚み、コア層、接着層の各厚み構成がそれぞれ影響するため、接着層中に含有される結晶性熱可塑性ポリイミドの粒度が同じでも、接着フィルムとしての光透過性には差が生じる。この点を考慮に入れて考えると、接着フィルムの総厚みが25μmである場合に、600nmの光透過率が30%以上であることが好ましい。更に好ましくは35%以上である。25μm厚みにおける光透過率が上記の値以上である場合は、接着フィルムの総厚みや各層の厚み構成が変わった場合でも、十分に光透過性が確保されており、接着フィルム製造時の欠陥検査や厚み管理を問題なく行うことが可能であり、チップ実装などの工程における位置合わせも問題なく行うことが可能である。   The adhesive film according to the present invention obtained by the above production method can have improved light transmittance. The light transmittance is affected by the total thickness of the adhesive film, the core layer, and the thickness of the adhesive layer. Therefore, even though the crystalline thermoplastic polyimide contained in the adhesive layer has the same particle size, There is a difference in permeability. Considering this point, when the total thickness of the adhesive film is 25 μm, the light transmittance at 600 nm is preferably 30% or more. More preferably, it is 35% or more. When the light transmittance at a thickness of 25 μm is equal to or more than the above value, even when the total thickness of the adhesive film or the thickness configuration of each layer is changed, the light transmittance is sufficiently secured, and defect inspection at the time of manufacturing the adhesive film And thickness management can be performed without any problem, and alignment in a process such as chip mounting can be performed without any problem.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例における接着層で使用される熱可塑性ポリイミドの融点(Tm)、接着フィルムの光透過率は、次のようにして測定または評価した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to these. In addition, melting | fusing point (Tm) of the thermoplastic polyimide used by the contact bonding layer in an Example and a comparative example, and the light transmittance of the adhesive film were measured or evaluated as follows.

〔熱可塑性ポリイミドの融点〕
合成例で得られた熱可塑性ポリイミド前駆体溶液を、18μm圧延銅箔(BHY−22B−T、日鉱金属製)のシャイン面に、最終厚みが20μmとなるように流延し、130℃で3分間、200℃で2分間、250℃で2分間、300℃で2分間、350℃で1分間乾燥を行った。乾燥後、エッチングにより銅箔を除去し、50℃で30分間乾燥させて熱可塑性ポリイミドの単層シートを得た。
[Melting point of thermoplastic polyimide]
The thermoplastic polyimide precursor solution obtained in the synthesis example was cast on a shine surface of 18 μm rolled copper foil (BHY-22B-T, manufactured by Nikko Metal Co., Ltd.) so that the final thickness was 20 μm. Drying was performed at 200 ° C for 2 minutes, 250 ° C for 2 minutes, 300 ° C for 2 minutes, and 350 ° C for 1 minute. After drying, the copper foil was removed by etching and dried at 50 ° C. for 30 minutes to obtain a single layer sheet of thermoplastic polyimide.

得られた熱可塑性ポリイミドの単層シートを用いて、セイコーインスツルメンツ社製 DSC220により、アルミをリファレンスとして使用し、昇温速度10℃/分、降温速度40℃/分にて、0℃から450℃の範囲で測定し、昇温工程での吸熱チャートのピークを融点とした。   Using the obtained thermoplastic polyimide single layer sheet, DSC220 manufactured by Seiko Instruments Inc. was used as a reference, and the temperature was increased from 0 ° C. to 450 ° C. at a temperature increase rate of 10 ° C./min and a temperature decrease rate of 40 ° C./min. The peak of the endothermic chart in the temperature raising step was taken as the melting point.

〔接着フィルムの光透過率〕
各実施例、比較例で得られた接着フィルムを、日本分光製Ubest−30により、測定波長領域800〜200nm、測定速度480nm/分の条件下で測定し、波長600nmにおける光透過率を評価した。
[Light transmittance of adhesive film]
The adhesive films obtained in each Example and Comparative Example were measured under the measurement wavelength region of 800 to 200 nm and the measurement speed of 480 nm / min with JASCO's Ubest-30, and the light transmittance at a wavelength of 600 nm was evaluated. .

〔フレキシブル金属張積層板の金属箔引き剥がし強度〕
実施例ならびに比較例で得られた接着フィルムの両面に18μmの圧延銅箔(BHY−22B−T;日鉱金属製)、さらにその両側に保護材料(アピカル125NPI;カネカ製)を配して、熱ロールラミネート機を用いて、ラミネート温度380℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で連続的に熱ラミネートを行い、フレキシブル金属張積層板を作製した。作製したフレキシブル金属張積層板を用いて、JIS C6471の「6.5 引きはがし強さ」に従って、サンプルを作製し、5mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。
[Metal foil peel strength of flexible metal-clad laminate]
18 μm rolled copper foil (BHY-22B-T; manufactured by Nikko Metal) is disposed on both sides of the adhesive films obtained in the examples and comparative examples, and protective materials (Apical 125 NPI; manufactured by Kaneka) are disposed on both sides thereof. Using a roll laminator, thermal lamination was performed continuously under the conditions of a laminating temperature of 380 ° C., a laminating pressure of 196 N / cm (20 kgf / cm), and a laminating speed of 1.5 m / min, to produce a flexible metal-clad laminate. Using the prepared flexible metal-clad laminate, a sample was prepared according to “6.5 Peel strength” of JIS C6471, and a 5 mm wide metal foil part was peeled off at 180 ° under a condition of 50 mm / min. It peeled and the load was measured.

(合成例1;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにN,N−ジメチルホルムアミド(以下、DMFともいう)を637.0g、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう。)を68.2g加え、窒素雰囲気下で撹拌しながら、1,4-ビス(4−アミノフェノキシ)ベンゼン(以下、TPE−Qともいう)を20.3g、1,3-ビス(4−アミノフェノキシ)ベンゼン(以下、TPE−Rともいう)を45.4g添加し、25℃で1時間撹拌した。2.0gのTPE−Rを27.0gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1200poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液を得た。
(Synthesis Example 1; Synthesis of thermoplastic polyimide precursor)
637.0 g of N, N-dimethylformamide (hereinafter also referred to as DMF), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA) in a glass flask having a capacity of 2000 ml. 28.2 g of 1,4-bis (4-aminophenoxy) benzene (hereinafter also referred to as TPE-Q) and 1,3-bis (4-aminophenoxy) with stirring under a nitrogen atmosphere. ) 45.4 g of benzene (hereinafter also referred to as TPE-R) was added and stirred at 25 ° C. for 1 hour. A solution in which 2.0 g of TPE-R was dissolved in 27.0 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1200 poise, the addition and stirring were stopped to obtain a polyamic acid solution.

(合成例2;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを637.0g、BPDAを68.2g加え、窒素雰囲気下で撹拌しながら、TPE−Rを65.8g添加し、25℃で1時間撹拌した。2.0gのTPE−Rを27.0gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1200poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液を得た。
(Synthesis Example 2: Synthesis of thermoplastic polyimide precursor)
To a glass flask having a volume of 2000 ml, 637.0 g of DMF and 68.2 g of BPDA were added, and 65.8 g of TPE-R was added while stirring under a nitrogen atmosphere, followed by stirring at 25 ° C. for 1 hour. A solution in which 2.0 g of TPE-R was dissolved in 27.0 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1200 poise, the addition and stirring were stopped to obtain a polyamic acid solution.

(実施例1)
合成例1で得られたポリアミド酸溶液を固形分濃度8.5重量%になるまでDMFで希釈した後、17μm厚の耐熱性ポリイミドフィルム(アピカル17FP、カネカ製)の両面に、熱可塑性ポリイミド層(接着層となる)の最終片面厚みが4μmとなるようにポリアミド酸を塗布した後、140℃で1分間加熱を行った。続いて250℃で10秒間、350℃で10秒間、450℃で10秒間、200℃で2秒間加熱を行い、接着フィルムを得た。
Example 1
After diluting the polyamic acid solution obtained in Synthesis Example 1 with DMF to a solid content concentration of 8.5% by weight, a thermoplastic polyimide layer is formed on both sides of a 17 μm-thick heat-resistant polyimide film (Apical 17FP, Kaneka). After applying polyamic acid so that the final one-side thickness of (adhesive layer) was 4 μm, heating was performed at 140 ° C. for 1 minute. Subsequently, heating was performed at 250 ° C. for 10 seconds, 350 ° C. for 10 seconds, 450 ° C. for 10 seconds, and 200 ° C. for 2 seconds to obtain an adhesive film.

(実施例2)
合成例1で得られたポリアミド酸溶液を固形分濃度14重量%になるまでDMFで希釈した。この希釈したポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比1.5/0.4/8.2)からなるイミド化促進剤をポリアミド酸溶液に対して重量比50%で添加し、撹拌を行った。得られた混合溶液を用いて実施例1と同様にして接着層の形成を行い、接着フィルムを得た。
(Example 2)
The polyamic acid solution obtained in Synthesis Example 1 was diluted with DMF until the solid concentration was 14% by weight. To this diluted polyamic acid solution, an imidization accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 1.5 / 0.4 / 8.2) was added at a weight ratio of 50% with respect to the polyamic acid solution, Stirring was performed. Using the obtained mixed solution, an adhesive layer was formed in the same manner as in Example 1 to obtain an adhesive film.

(実施例3)
合成例1で得られたポリアミド酸溶液の代わりに、合成例2で得られたポリアミド酸溶液を使用する以外は、実施例1と同様の操作を行い、接着フィルムを得た。
(Example 3)
An adhesive film was obtained in the same manner as in Example 1 except that the polyamic acid solution obtained in Synthesis Example 2 was used instead of the polyamic acid solution obtained in Synthesis Example 1.

(実施例4)
合成例1で得られたポリアミド酸溶液の代わりに、合成例2で得られたポリアミド酸溶液を使用する以外は、実施例2と同様の操作を行い、接着フィルムを得た。
Example 4
An adhesive film was obtained in the same manner as in Example 2, except that the polyamic acid solution obtained in Synthesis Example 2 was used instead of the polyamic acid solution obtained in Synthesis Example 1.

(比較例1)
合成例1で得られたポリアミド酸溶液を固形分濃度8.5重量%になるまでDMFで希釈した後、17μm厚の耐熱性ポリイミドフィルム(アピカル17FP、カネカ製)の両面に、熱可塑性ポリイミド層(接着層となる)の最終片面厚みが4μmとなるようにポリアミド酸を塗布した後、140℃で1分間加熱を行った。続いて250℃で10秒間、370℃で10秒間、200℃で2秒間加熱を行い、接着フィルムを得た。
(Comparative Example 1)
After diluting the polyamic acid solution obtained in Synthesis Example 1 with DMF to a solid content concentration of 8.5% by weight, a thermoplastic polyimide layer is formed on both sides of a 17 μm-thick heat-resistant polyimide film (Apical 17FP, Kaneka). After applying polyamic acid so that the final one-side thickness of (adhesive layer) was 4 μm, heating was performed at 140 ° C. for 1 minute. Subsequently, heating was performed at 250 ° C. for 10 seconds, 370 ° C. for 10 seconds, and 200 ° C. for 2 seconds to obtain an adhesive film.

(比較例2)
合成例1で得られたポリアミド酸溶液の代わりに、合成例2で得られたポリアミド酸溶液を使用する以外は、比較例1と同様の操作を行い、接着フィルムを得た。
(Comparative Example 2)
An adhesive film was obtained in the same manner as in Comparative Example 1, except that the polyamic acid solution obtained in Synthesis Example 2 was used instead of the polyamic acid solution obtained in Synthesis Example 1.

各実施例、比較例で得られた接着フィルムの特性を評価した結果を表1に示す。   Table 1 shows the results of evaluating the properties of the adhesive films obtained in each of the examples and comparative examples.

Figure 0005337348
Figure 0005337348

比較例に示すように、接着層に含有される熱可塑性ポリイミドの融点以上の温度で加熱しなかった場合は、金属箔との密着強度は確保できているものの、得られる接着フィルムは光透過性に劣る結果となった。これに対し、熱可塑性ポリイミドの融点以上の温度で加熱した実施例では、光透過性が改善される結果となっている。   As shown in the comparative example, when not heated at a temperature equal to or higher than the melting point of the thermoplastic polyimide contained in the adhesive layer, although the adhesion strength with the metal foil can be secured, the resulting adhesive film is light transmissive. It became inferior result. On the other hand, in the Example heated at the temperature more than melting | fusing point of a thermoplastic polyimide, it has resulted in improving a light transmittance.

Claims (4)

コア層の少なくとも片面に結晶性の熱可塑性ポリイミドを含有する接着層を設けたフレキシブルプリント配線板用接着フィルムの製造方法であって、該接着層の形成手段が、熱可塑性ポリイミド前駆体を含有する層をコア層の少なくとも片面に設けた後、これを加熱によりイミド化する際もしくはイミド化した後に、得られる結晶性熱可塑性ポリイミドの融点以上の温度で加熱することを特徴とする、フレキシブルプリント配線板用接着フィルムの製造方法。 A method for producing an adhesive film for a flexible printed wiring board in which an adhesive layer containing crystalline thermoplastic polyimide is provided on at least one surface of a core layer, wherein the adhesive layer forming means contains a thermoplastic polyimide precursor A flexible printed wiring comprising: providing a layer on at least one surface of a core layer, and then imidating or imidizing the core layer by heating, and then heating at a temperature equal to or higher than a melting point of the obtained crystalline thermoplastic polyimide. Manufacturing method of adhesive film for board . 熱可塑性ポリイミド前駆体層に、脱水剤及び/又はイミド化触媒が含有されていることを特徴とする、請求項1記載のフレキシブルプリント配線板用接着フィルムの製造方法。 The method for producing an adhesive film for a flexible printed wiring board according to claim 1, wherein the thermoplastic polyimide precursor layer contains a dehydrating agent and / or an imidization catalyst. 熱可塑性ポリイミド前駆体を加熱によりイミド化する際もしくはイミド化した後に、得られる結晶性熱可塑性ポリイミドの融点よりも20℃高い温度以上、100℃高い温度以下の温度範囲で加熱することを特徴とする、請求項1または2記載のフレキシブルプリント配線板用接着フィルムの製造方法。 After or imidation during imidization by heating a thermoplastic polyimide precursor obtained crystalline thermoplastic polyimide 20 ° C. higher temperatures or higher than the melting point, and wherein the heating at a temperature range 100 ° C. higher temperatures The manufacturing method of the adhesive film for flexible printed wiring boards of Claim 1 or 2. 請求項1乃至3のいずれか1項の製造方法により得られるフレキシブルプリント配線板用接着フィルムであって、総厚み25μmであり、波長600nmの光透過率が30%以上であることを特徴とする、フレキシブルプリント配線板用接着フィルム。
It is an adhesive film for flexible printed wiring boards obtained by the manufacturing method of any one of Claims 1 thru | or 3 , Comprising: Total thickness is 25 micrometers and the light transmittance of wavelength 600nm is 30% or more, It is characterized by the above-mentioned. An adhesive film for flexible printed wiring boards .
JP2007072101A 2007-03-20 2007-03-20 Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method Active JP5337348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072101A JP5337348B2 (en) 2007-03-20 2007-03-20 Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072101A JP5337348B2 (en) 2007-03-20 2007-03-20 Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method

Publications (2)

Publication Number Publication Date
JP2008231227A JP2008231227A (en) 2008-10-02
JP5337348B2 true JP5337348B2 (en) 2013-11-06

Family

ID=39904428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072101A Active JP5337348B2 (en) 2007-03-20 2007-03-20 Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method

Country Status (1)

Country Link
JP (1) JP5337348B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224943A (en) * 1990-12-27 1992-08-14 Takigawa Kagaku Kogyo Kk Coextrusion multilayer film
JPH05132548A (en) * 1991-11-11 1993-05-28 Kuraray Co Ltd Clear crystalline copolyester resin and adhesive comprising the same
JPH05147179A (en) * 1991-11-28 1993-06-15 Takigawa Kagaku Kogyo Kk Coextruded multi-layer film
JPH0948851A (en) * 1995-06-02 1997-02-18 Japan Synthetic Rubber Co Ltd Polyamic acid and polyimide
JP3956390B2 (en) * 2003-01-07 2007-08-08 三菱マテリアル神戸ツールズ株式会社 Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting

Also Published As

Publication number Publication date
JP2008231227A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR101917405B1 (en) Polyimide film and metal laminate using same
JP5514861B2 (en) Method for producing polyimide film having high adhesiveness
JP6743697B2 (en) Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate using the same, and copolymerized polyimide used therein
US20070178323A1 (en) Polyimide multilayer body and method for producing same
TWI408202B (en) Followed by sheet and copper foil laminated board
JP5480490B2 (en) Adhesive film and flexible metal-clad laminate
JP5574704B2 (en) Film and flexible metal-clad laminate
JP2017177604A (en) Polyimide laminate film
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
WO2016052491A1 (en) Polyimide copolymer and molded article using same
US10798826B2 (en) Polyimide laminate film, method for manufacturing polyimide laminate film, method for manufacturing thermoplastic polyimide, and method for manufacturing flexible metal-clad laminate
JP4967494B2 (en) Method for producing heat-resistant polyimide metal laminate
JP5337348B2 (en) Method for producing adhesive film for flexible printed wiring board and adhesive film for flexible printed wiring board obtained by the method
JP2002322276A (en) New thermoplastic polyimide resin
JP4821411B2 (en) Polyimide film with heat-sealability only on one side, single-sided copper-clad laminate
JP5297573B2 (en) Polyimide film with high adhesiveness
JP2004285103A (en) Thermoplastic polyimide and adhesive comprising the same
JP2006316232A (en) Adhesive film and its preparation process
JP2007313854A (en) Copper-clad laminated sheet
JP5261563B2 (en) Method for producing polyimide film having high adhesiveness
JP5355993B2 (en) Adhesive film
JP2006199871A (en) Adhesive film
JP2008239694A (en) Adhesive film excellent in sliding property
JP2017177603A (en) Polyimide laminate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5337348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250