JP5337120B2 - Class D amplifier and wireless communication apparatus - Google Patents

Class D amplifier and wireless communication apparatus Download PDF

Info

Publication number
JP5337120B2
JP5337120B2 JP2010204281A JP2010204281A JP5337120B2 JP 5337120 B2 JP5337120 B2 JP 5337120B2 JP 2010204281 A JP2010204281 A JP 2010204281A JP 2010204281 A JP2010204281 A JP 2010204281A JP 5337120 B2 JP5337120 B2 JP 5337120B2
Authority
JP
Japan
Prior art keywords
signal
class
amplifier
switching voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010204281A
Other languages
Japanese (ja)
Other versions
JP2012060568A (en
Inventor
和司 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010204281A priority Critical patent/JP5337120B2/en
Priority to PCT/JP2011/004944 priority patent/WO2012035713A1/en
Publication of JP2012060568A publication Critical patent/JP2012060568A/en
Application granted granted Critical
Publication of JP5337120B2 publication Critical patent/JP5337120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Description

本発明は、デジタル携帯電話等のデジタル無線通信システムにおいて送信信号レベルを増幅するD級増幅器及びこれを用いた無線通信装置に関する。   The present invention relates to a class D amplifier for amplifying a transmission signal level in a digital wireless communication system such as a digital cellular phone and a wireless communication apparatus using the same.

デジタル無線通信システムの基地局では、送信信号を数十W〜数百Wの大電力に増幅する必要があるが、大電力を扱うゆえに、増幅器の電力効率を高めることは、基地局の低消費電力化に大きく寄与する。また、移動局においても増幅器を含めた装置の低消費電力化は重要である。   In a base station of a digital wireless communication system, it is necessary to amplify a transmission signal to a large power of several tens of watts to several hundreds of watts. Greatly contributes to power generation. Also in the mobile station, it is important to reduce the power consumption of the device including the amplifier.

電力利用効率が高い増幅器の構成の一つとして、D級増幅器がよく知られている。D級増幅器は、トランジスタなどの増幅素子の飽和領域を用いて、信号をON/OFFスイッチングすることによって実現されるものである。   A class D amplifier is well known as one of amplifier configurations with high power utilization efficiency. A class D amplifier is realized by ON / OFF switching of a signal using a saturation region of an amplifying element such as a transistor.

一般に、D級増幅器は、およそ20kHz程度までの可聴域の低周波数帯域の信号の増幅に用いられており、被増幅信号としては、例えば、1ビットΔΣ変調された高SNR(Signal to Noise Ratio)の信号が用いられる。この信号のサンプリング周波数は信号周波数帯域の128倍又は256倍程度のものが用いられている(なお、サンプリング周波数が高いほど高SNRとなる)。   In general, a class D amplifier is used for amplifying a signal in a low frequency band in an audible range up to about 20 kHz. As an amplified signal, for example, a high SNR (Signal to Noise Ratio) modulated by 1-bit ΔΣ is used. These signals are used. The sampling frequency of this signal is about 128 times or 256 times the signal frequency band (the higher the sampling frequency, the higher the SNR).

また、無線で用いられる高周波数帯域の信号(RF信号)の増幅器としては、近年、ドハティー増幅器やET(Envelope Tracking)増幅器の検討が盛んに行われているが、電力効率の観点から、D級増幅器の採用も模索され始めている。   In recent years, Doherty amplifiers and ET (Envelope Tracking) amplifiers have been actively studied as amplifiers for high frequency band signals (RF signals) used wirelessly. From the viewpoint of power efficiency, class D The use of amplifiers is beginning to be explored.

D級増幅器でRF信号を増幅するためには、RF信号を1ビットのパルス信号に変換する必要がある。このパルス信号を生成する際に、普通にΔΣ変調をかける(以後、「ローパスΔΣ変調」と呼ぶ)と、高SNRの送信信号を得るためには、例えば、RF信号のキャリア周波数がfc=2GHzである場合、サンプリング周波数fs=2GHz×128=256GSa(Samples)/sといった非常に高速なサンプリング信号が必要となり、現実的ではない。   In order to amplify an RF signal with a class D amplifier, it is necessary to convert the RF signal into a 1-bit pulse signal. In order to obtain a high SNR transmission signal when ΔΣ modulation is normally applied (hereinafter referred to as “low-pass ΔΣ modulation”) when generating this pulse signal, for example, the carrier frequency of the RF signal is fc = 2 GHz. In this case, a very high-speed sampling signal such as sampling frequency fs = 2 GHz × 128 = 256 GSa (Samples) / s is required, which is not realistic.

そこで考え出されたのがバンドパスΔΣ変調器である。例えば、キャリア周波数fc=2GHzであれば、2GHzの4倍である8GSa/sのサンプリング周波数fsで、(変調信号の帯域が数十MHz程度であれば)ローパスΔΣ変調器と遜色のないSNRの信号が得られる。   Therefore, the band-pass ΔΣ modulator was conceived. For example, if the carrier frequency fc = 2 GHz, the sampling frequency fs is 8 GSa / s, which is 4 times 2 GHz, and the SNR is comparable to the low-pass ΔΣ modulator (if the modulation signal band is about several tens of MHz). A signal is obtained.

このようなバンドパスΔΣ変調器は、RF信号の受信回路に積極的に用いられている。受信においては、受信信号をバンドパスΔΣ変調器にかけた後に、キャリア周波数fc周辺のSNRの良い狭帯域の信号のみをバンドパスフィルタで取り出せば、良好な復調が可能となるからである。   Such a bandpass ΔΣ modulator is actively used in an RF signal receiving circuit. This is because, in reception, after the received signal is applied to the band-pass ΔΣ modulator, only a narrow-band signal having a good SNR around the carrier frequency fc is extracted by the band-pass filter, so that good demodulation is possible.

一方、バンドパスΔΣ変調器をRF信号の送信回路(増幅回路)で用いる場合には、理論上、アナログ回路が0Hz〜∞Hzの周波数領域においてフラットな帯域特性を持たなければならない。そうでなければ、送信信号は歪んでしまい、例えば、送信信号の品質指標であるEVM(Error Vector Magnitude)が劣化してしまう。   On the other hand, when a bandpass ΔΣ modulator is used in an RF signal transmission circuit (amplifier circuit), theoretically, an analog circuit must have a flat band characteristic in a frequency range of 0 Hz to ∞ Hz. Otherwise, the transmission signal is distorted and, for example, EVM (Error Vector Magnitude), which is a quality indicator of the transmission signal, is degraded.

ここで、RF信号のアナログ回路は分布乗数回路になることから、必要な周波数帯域において回路の周波数整合を取る必要があり、広い周波数範囲において帯域特性をフラットにすることは困難である。また、増幅器の破壊を防止するためにDC信号を遮断する必要もあり、RF信号のアナログ回路は必ず帯域特性を有することになる。このため、RF信号をD級増幅器で増幅することは技術的に困難である。   Here, since the analog circuit of the RF signal is a distributed multiplier circuit, it is necessary to achieve frequency matching of the circuit in a necessary frequency band, and it is difficult to flatten the band characteristics in a wide frequency range. Further, it is necessary to cut off the DC signal in order to prevent destruction of the amplifier, and the analog circuit of the RF signal always has band characteristics. For this reason, it is technically difficult to amplify the RF signal with a class D amplifier.

バンドパスΔΣ変調器を用いたD級増幅部として、例えば、特許文献1に開示の技術が知られている。特許文献1に開示のD級増幅部を含む無線通信装置を図1に示す。   As a class D amplifier using a bandpass ΔΣ modulator, for example, a technique disclosed in Patent Document 1 is known. FIG. 1 shows a wireless communication apparatus including a class D amplification unit disclosed in Patent Document 1.

図1において、ベースバンド信号発生部11では、狭帯域(〜数十MHz)のベースバンド変調信号が生成され、ベースバンド信号発生部11から出力されたベースバンド信号は、アップコンバート部12においてキャリア周波数fcにアップコンバートされる。アップコンバート部12から出力された信号は、バンドパスΔΣ変調部13において、例えば、サンプリング周波数fs=4×fcにてバンドパスΔΣ変調が施され、バンドパスΔΣ変調部13から出力された信号は、D級増幅部14においてD級増幅される。D級増幅部14から出力された信号は、キャリア周波数fcを中心としたバンドパスフィルタ部15を介して、アンテナ部16から無線信号として送信される。   In FIG. 1, a baseband signal generation unit 11 generates a narrowband (˜several tens of MHz) baseband modulation signal, and the baseband signal output from the baseband signal generation unit 11 is transferred to a carrier in the upconversion unit 12. Up-converted to frequency fc. The signal output from the up-conversion unit 12 is subjected to, for example, bandpass ΔΣ modulation at the sampling frequency fs = 4 × fc in the bandpass ΔΣ modulation unit 13, and the signal output from the bandpass ΔΣ modulation unit 13 is The class D amplification unit 14 performs class D amplification. The signal output from the class D amplification unit 14 is transmitted as a radio signal from the antenna unit 16 via the bandpass filter unit 15 centered on the carrier frequency fc.

図1の各ブロックの出力信号の時間軸波形及び周波数特性等について図2〜図6に例示する。図2は、ベースバンド信号発生部11の出力であるQPSK直交変調波のコンスタレーションを示し、図3は、ベースバンド信号発生部11の出力信号の周波数特性を示し、図4は、アップコンバート部12の出力信号の周波数特性を示す。また、図5は、バンドパスΔΣ変調部13の出力信号の広帯域での周波数特性を示し、図6は、バンドパスΔΣ変調部13の出力信号のキャリア周波数fc近傍における狭帯域での周波数特性を示している。   The time axis waveform and frequency characteristics of the output signal of each block in FIG. 1 are illustrated in FIGS. 2 shows a constellation of a QPSK quadrature modulated wave that is an output of the baseband signal generator 11, FIG. 3 shows a frequency characteristic of an output signal of the baseband signal generator 11, and FIG. 4 shows an upconverter. 12 shows frequency characteristics of 12 output signals. 5 shows the frequency characteristics of the output signal of the bandpass ΔΣ modulator 13 in a wide band, and FIG. 6 shows the frequency characteristics of the output signal of the bandpass ΔΣ modulator 13 in a narrow band near the carrier frequency fc. Show.

図5より、バンドパスΔΣ変調部13の出力信号は、パルス信号であることから、0Hz〜∞Hzの広い周波数成分を有することが分かる。また、図6より、バンドパスΔΣ変調部13の出力信号は、キャリア周波数fc近傍でのSNRが良好となっていることが分かる。これは、ΔΣ変調の周波数特性の特徴的な形状である。   FIG. 5 shows that the output signal of the bandpass ΔΣ modulator 13 is a pulse signal, and thus has a wide frequency component of 0 Hz to ∞ Hz. Further, it can be seen from FIG. 6 that the output signal of the bandpass ΔΣ modulator 13 has a good SNR in the vicinity of the carrier frequency fc. This is a characteristic shape of the frequency characteristic of ΔΣ modulation.

ところで、主増幅部であるD級増幅部14に入力される信号は、D級増幅部14が動作可能な信号レベルに増幅されている必要がある。図1において、ベースバンド信号発生部11、アップコンバート部12、バンドパスΔΣ変調部13は、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)を用いてデジタル信号処理にて実現することが可能であるが、この場合、バンドパスΔΣ変調部13の出力となる高速サンプリング信号の信号レベルは必然的に小さくなるため、駆動増幅部が必要となる。   By the way, the signal input to the class D amplification unit 14 as the main amplification unit needs to be amplified to a signal level at which the class D amplification unit 14 can operate. In FIG. 1, a baseband signal generation unit 11, an up-conversion unit 12, and a bandpass ΔΣ modulation unit 13 are realized by digital signal processing using a DSP (Digital Signal Processor) or an FPGA (Field Programmable Gate Array). In this case, the signal level of the high-speed sampling signal that is the output of the bandpass ΔΣ modulation unit 13 is inevitably reduced, so that a drive amplification unit is required.

図7は、図1のD級増幅部14前段に駆動増幅部21が設けられた構成を示す図である。図7において、図1と共通する構成には図1と同一の符号を付す。   FIG. 7 is a diagram showing a configuration in which the drive amplifier 21 is provided in the previous stage of the class D amplifier 14 of FIG. In FIG. 7, the same reference numerals as those in FIG.

図8に駆動増幅部21の周波数特性を示し、図9に駆動増幅部21の出力信号の周波数特性を示す。ここで、駆動増幅部21への入力信号の周波数特性は図5に示すものである。   FIG. 8 shows the frequency characteristics of the drive amplification unit 21, and FIG. 9 shows the frequency characteristics of the output signal of the drive amplification unit 21. Here, the frequency characteristic of the input signal to the drive amplifier 21 is as shown in FIG.

一般にアナログ高周波回路では、取り扱う信号の周波数において回路整合を取る。図8は、駆動増幅部21について、キャリア周波数fc近傍における周波数整合を取ったときの駆動増幅部21の周波数特性の例であり、キャリア周波数fc近傍の周波数成分のみを通過させるバンドパスフィルタ様の周波数特性となっており、帯域特性を有していることが分かる。図9は、駆動増幅部21に、図5の周波数特性を有する信号を入力したときの、出力信号の周波数特性を示す。   In general, in an analog high frequency circuit, circuit matching is achieved at the frequency of a signal to be handled. FIG. 8 shows an example of the frequency characteristics of the drive amplifier 21 when frequency matching is performed in the vicinity of the carrier frequency fc for the drive amplifier 21, and a band-pass filter-like filter that passes only frequency components in the vicinity of the carrier frequency fc. It can be seen that it has frequency characteristics and has band characteristics. FIG. 9 shows the frequency characteristic of the output signal when the signal having the frequency characteristic of FIG.

駆動増幅部21の入力信号の周波数特性は、図5に示すように0Hz〜∞Hzの広い周波数成分を有しているため、信号の時間軸波形は綺麗なパルス波形である。一方、駆動増幅部21の出力信号の周波数特性は、図9に示すように信号が帯域制限されてしまっているため、信号の時間軸波形はなまってしまう。この駆動増幅部21の入出力信号の時間軸波形は図10に示すようになる。図10において、細線が入力パルス信号の時間軸波形を示し、太線が出力信号の時間軸波形を示す。図10より、駆動増幅部21の帯域特性によって、時間軸波形が大きく劣化してしまっている様子が分かる。   The frequency characteristic of the input signal of the drive amplifier 21 has a wide frequency component of 0 Hz to ∞ Hz as shown in FIG. 5, and therefore the time axis waveform of the signal is a beautiful pulse waveform. On the other hand, the frequency characteristic of the output signal of the drive amplifier 21 is that the signal is band-limited as shown in FIG. The time axis waveform of the input / output signal of the drive amplifier 21 is as shown in FIG. In FIG. 10, the thin line shows the time axis waveform of the input pulse signal, and the thick line shows the time axis waveform of the output signal. From FIG. 10, it can be seen that the time-axis waveform has greatly deteriorated due to the band characteristics of the drive amplifier 21.

駆動増幅部21の出力信号は、D級増幅部14に入力され、増幅される。このD級増幅部14の入出力信号の時間軸波形は図11に示すようになる。図11において、細線が入力信号の時間軸波形を示し、太線が出力信号の時間軸波形を示す。D級増幅部14ではスイッチング動作が行われ、信号レベルが0以上のときには1、信号レベルが0未満のときには−1が出力される。このとき、スイッチング電圧閾値SWVth=0であるから、D級増幅部14からの出力信号の時間軸波形は、図11の太線のようになる(ただし、増幅率は無視している)。   The output signal of the drive amplifier 21 is input to the class D amplifier 14 and amplified. The time axis waveform of the input / output signal of the class D amplifier 14 is as shown in FIG. In FIG. 11, the thin line shows the time axis waveform of the input signal, and the thick line shows the time axis waveform of the output signal. The class D amplifier 14 performs a switching operation, and outputs 1 when the signal level is 0 or more, and -1 when the signal level is less than 0. At this time, since the switching voltage threshold value SWVth = 0, the time axis waveform of the output signal from the class D amplifier 14 is as shown by the thick line in FIG. 11 (however, the amplification factor is ignored).

Design of H-Bridge Class-D Power Amplifiers for Digital Pulse Modulation Transmitters. (I4 TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.55, NO.12, DECEMBER 2007)Design of H-Bridge Class-D Power Amplifiers for Digital Pulse Modulation Transmitters. (I4 TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.55, NO.12, DECEMBER 2007)

しかしながら、D級増幅部14は、バンドパスΔΣ変調部13の出力パルス信号を線形増幅する必要があり、バンドパスΔΣ変調部13とD級増幅部14との間に周波数特性を有する駆動増幅部21が配置されていることから、D級増幅部14の出力である増幅された出力パルス(図11の太線)は、被増幅信号であるバンドパスΔΣ変調部13の出力パルス(図10の細線)とは全く異なるものになってしまっている。このため、D級増幅部14で増幅された送信信号のEVMは劣化しており、送信コンスタレーションは、例えば、図12のようになり、EVMは約10.2%である。   However, the class D amplification unit 14 needs to linearly amplify the output pulse signal of the bandpass ΔΣ modulation unit 13, and the drive amplification unit having frequency characteristics between the bandpass ΔΣ modulation unit 13 and the class D amplification unit 14. 21 is arranged, the amplified output pulse (bold line in FIG. 11) that is the output of the class D amplifier 14 is the output pulse of the bandpass ΔΣ modulator 13 (the thin line in FIG. 10) that is the amplified signal. ) Is completely different. For this reason, the EVM of the transmission signal amplified by the class D amplification unit 14 is deteriorated, and the transmission constellation is as shown in FIG. 12, for example, and the EVM is about 10.2%.

本発明の目的は、D級増幅された無線信号のEVMの劣化を抑制するD級増幅器及び無線通信装置を提供することである。   An object of the present invention is to provide a class-D amplifier and a wireless communication apparatus that suppress degradation of EVM of a class-D amplified radio signal.

本発明のD級増幅器は、キャリア周波数信号に所定の周波数でΔΣ変調を施すバンドパスΔΣ変調手段と、ΔΣ変調が施された信号を一定の信号レベルまで増幅する第1増幅手段と、前記第1増幅手段によって増幅された信号を、スイッチング電圧閾値に基づいて、スイッチング増幅する第2増幅手段と、前記第1増幅手段によって増幅された信号に基づいて、前記スイッチング電圧閾値を決定制御するスイッチング電圧制御手段と、を具備する構成を採る。   A class D amplifier according to the present invention includes a bandpass ΔΣ modulation unit that performs ΔΣ modulation on a carrier frequency signal at a predetermined frequency, a first amplification unit that amplifies the signal subjected to ΔΣ modulation to a certain signal level, A second amplifying means for switching and amplifying the signal amplified by one amplifying means based on a switching voltage threshold; and a switching voltage for determining and controlling the switching voltage threshold based on the signal amplified by the first amplifying means. And a control means.

本発明によれば、D級増幅された無線信号のEVMの劣化を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, degradation of EVM of the radio signal by which D class amplification was carried out can be suppressed.

特許文献1に開示のD級増幅部を含む無線通信装置の構成を示す図The figure which shows the structure of the radio | wireless communication apparatus containing the class D amplification part disclosed by patent document 1 ベースバンド信号発生部の出力であるQPSK直交変調波のコンスタレーションを示す図The figure which shows the constellation of the QPSK quadrature modulation wave which is an output of a baseband signal generation part ベースバンド信号発生部の出力信号の周波数特性を示す図The figure which shows the frequency characteristic of the output signal of the baseband signal generation part アップコンバート部の出力信号の周波数特性を示す図The figure which shows the frequency characteristic of the output signal of the up-conversion part バンドパスΔΣ変調部の出力信号の広帯域での周波数特性を示す図The figure which shows the frequency characteristic in the wide band of the output signal of the band pass ΔΣ modulator バンドパスΔΣ変調部の出力信号のキャリア周波数fc近傍における狭帯域での周波数特性を示す図The figure which shows the frequency characteristic in the narrow band in the carrier frequency fc vicinity of the output signal of a band pass delta-sigma modulation part. 図1のD級増幅部前段に駆動増幅部が設けられた構成を示す図The figure which shows the structure by which the drive amplification part was provided in the front stage of the class D amplification part of FIG. 駆動増幅部の周波数特性を示す図Diagram showing frequency characteristics of drive amplifier 駆動増幅部の出力信号の周波数特性を示す図The figure which shows the frequency characteristic of the output signal of the drive amplification part 駆動増幅部の入出力信号の時間軸波形を示す図The figure which shows the time-axis waveform of the input / output signal of the drive amplifier D級増幅部の入出力信号の時間軸波形を示す図The figure which shows the time-axis waveform of the input-output signal of a class D amplification part D級増幅部で増幅された送信信号の送信コンスタレーションを示す図The figure which shows the transmission constellation of the transmission signal amplified by the class D amplifier 本発明の一実施の形態に係る無線通信装置の構成を示す図The figure which shows the structure of the radio | wireless communication apparatus which concerns on one embodiment of this invention スイッチング電圧閾値がSWVth=+0.2のときのD級増幅部の入力信号と出力信号の時間軸波形を示す図The figure which shows the time-axis waveform of the input signal and output signal of a class D amplification part when switching voltage threshold value is SWVth = + 0.2 スイッチング電圧閾値SWVth=+0.2のときの送信コンスタレーションを示す図The figure which shows the transmission constellation when switching voltage threshold value SWVth = + 0.2 スイッチング電圧閾値を変化させた場合のEVMの例を示す図The figure which shows the example of EVM at the time of changing a switching voltage threshold value RMS(Root Mean Square)とスイッチング電圧制御部が出力するスイッチング電圧閾値の最適値SWVth_optをプロットした図The figure which plotted RMS (Root Mean Square) and the optimal value SWVth_opt of the switching voltage threshold value which a switching voltage control part outputs 本発明の一実施の形態に係る無線通信システムの構成を示す図The figure which shows the structure of the radio | wireless communications system which concerns on one embodiment of this invention

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(一実施の形態)
図13は、本発明の一実施の形態に係る無線通信装置の構成を示す図である。以下、図13を用いて無線通信装置の構成について説明する。
(One embodiment)
FIG. 13 is a diagram showing a configuration of a wireless communication apparatus according to an embodiment of the present invention. Hereinafter, the configuration of the wireless communication apparatus will be described with reference to FIG.

ベースバンド信号発生部101は、狭帯域(〜数十MHz)のベースバンド信号を生成し、アップコンバート部102に出力する。   The baseband signal generation unit 101 generates a narrowband (˜several tens of MHz) baseband signal and outputs the baseband signal to the up-conversion unit 102.

アップコンバート部102は、ベースバンド信号発生部101から出力されたベースバンド信号をキャリア周波数fcにアップコンバートし、キャリア周波数信号をD級増幅器103のバンドパスΔΣ変調部104に出力する。   Up-conversion unit 102 up-converts the baseband signal output from baseband signal generation unit 101 to carrier frequency fc, and outputs the carrier frequency signal to bandpass ΔΣ modulation unit 104 of class D amplifier 103.

D級増幅器103は、バンドパスΔΣ変調部104、駆動増幅部105、スイッチング電圧制御部106及びD級増幅部107を備えている。   The class D amplifier 103 includes a bandpass ΔΣ modulation unit 104, a drive amplification unit 105, a switching voltage control unit 106, and a class D amplification unit 107.

バンドパスΔΣ変調部104は、アップコンバート部102から出力されたキャリア周波数信号に、例えば、サンプリング周波数fs=4×fcにてバンドパスΔΣ変調を施し、バンドパスΔΣ変調を施した信号を駆動増幅部105に出力する。   The bandpass ΔΣ modulation unit 104 performs bandpass ΔΣ modulation on the carrier frequency signal output from the up-conversion unit 102 at, for example, a sampling frequency fs = 4 × fc, and drives and amplifies the signal subjected to the bandpass ΔΣ modulation. Output to the unit 105.

駆動増幅部105は、バンドパスΔΣ変調部104から出力された信号を後段のD級増幅部107が動作可能な信号レベルにまで増幅し、スイッチング電圧制御部106及びD級増幅部107に出力する。   The drive amplifier 105 amplifies the signal output from the bandpass ΔΣ modulator 104 to a signal level at which the subsequent class D amplifier 107 can operate, and outputs the amplified signal to the switching voltage controller 106 and the class D amplifier 107. .

スイッチング電圧制御部106は、駆動増幅部105から出力された信号に基づいて、D級増幅部107のスイッチング電圧閾値SWVthを決定し、決定したスイッチング電圧閾値SWVthをD級増幅部107に出力する。なお、スイッチング電圧閾値SWVthの決定方法については後述する。   The switching voltage control unit 106 determines the switching voltage threshold SWVth of the class D amplification unit 107 based on the signal output from the drive amplification unit 105, and outputs the determined switching voltage threshold SWVth to the class D amplification unit 107. A method for determining the switching voltage threshold SWVth will be described later.

D級増幅部107は、スイッチング電圧制御部106から出力されたスイッチング電圧閾値SWVthに基づいて、駆動増幅部105から出力された信号をスイッチング増幅し、バンドパスフィルタ部108に出力する。   The class D amplifier 107 performs switching amplification on the signal output from the drive amplifier 105 based on the switching voltage threshold SWVth output from the switching voltage controller 106, and outputs the amplified signal to the band pass filter unit 108.

バンドパスフィルタ部108は、D級増幅部107から出力された信号のうち、キャリア周波数fcを中心とした帯域を通過させ、アンテナ部109から無線信号として送信する。   The bandpass filter unit 108 passes the band centered on the carrier frequency fc in the signal output from the class D amplification unit 107 and transmits it as a radio signal from the antenna unit 109.

ここで、図13の各ブロックの出力信号の時間軸波形及び周波数特性等について説明する。D級増幅部107よりも前段の信号については、背景技術で説明した図と同一である。すなわち、図2は、ベースバンド信号発生部101の出力であるQPSK直交変調波のコンスタレーションを示し、図3は、ベースバンド信号発生部101の出力信号の周波数特性を示し、図4は、アップコンバート部102の出力信号の周波数特性を示す。また、図5は、バンドパスΔΣ変調部104の出力信号の広帯域での周波数特性を示し、図6は、バンドパスΔΣ変調部104の出力信号のキャリア周波数fc近傍における狭帯域での周波数特性を示している。   Here, the time axis waveform and frequency characteristics of the output signal of each block in FIG. 13 will be described. The signal before the class D amplification unit 107 is the same as that described in the background art. 2 shows the constellation of the QPSK quadrature modulated wave that is the output of the baseband signal generation unit 101, FIG. 3 shows the frequency characteristics of the output signal of the baseband signal generation unit 101, and FIG. The frequency characteristic of the output signal of the conversion part 102 is shown. 5 shows the frequency characteristics in the wide band of the output signal of the bandpass ΔΣ modulation section 104, and FIG. 6 shows the frequency characteristics in the narrow band near the carrier frequency fc of the output signal of the bandpass ΔΣ modulation section 104. Show.

また、駆動増幅部105について、キャリア周波数fc近傍における周波数整合を取ったときの駆動増幅部105の周波数特性を図8に示し、駆動増幅部105の出力信号の周波数特性を図9に示す。さらに、駆動増幅部105の入力信号の時間軸波形は図10の細線で示し、出力信号の時間軸波形は図10の太線で示す。   FIG. 8 shows the frequency characteristics of the drive amplifier 105 when frequency matching is performed in the vicinity of the carrier frequency fc, and FIG. 9 shows the frequency characteristics of the output signal of the drive amplifier 105. Further, the time axis waveform of the input signal of the drive amplifier 105 is indicated by a thin line in FIG. 10, and the time axis waveform of the output signal is indicated by a thick line in FIG.

いま、D級増幅部107でのスイッチング増幅において、スイッチング電圧制御部106からのスイッチング電圧閾値がSWVth=+0.2のときのD級増幅部107の入力信号と出力信号の時間軸波形を図14に示す。図14において、細線が駆動増幅部105の帯域特性に起因して劣化したパルス入力信号を示し、太線がD級増幅部107の出力信号を示す。   Now, in the switching amplification in the class D amplification unit 107, the time axis waveforms of the input signal and the output signal of the class D amplification unit 107 when the switching voltage threshold value from the switching voltage control unit 106 is SWVth = + 0.2 are shown in FIG. Shown in In FIG. 14, the thin line indicates a pulse input signal that has deteriorated due to the band characteristics of the drive amplifier 105, and the thick line indicates the output signal of the class D amplifier 107.

図11の太線で示した、スイッチング電圧制御部がないときのD級増幅部14の出力と、図14の太線で示した、スイッチング電圧制御部106があるときのD級増幅部107の出力とを比較すると、後者の方が被増幅信号であるバンドパスΔΣ変調部の出力波形(図10の細線)に近いことが分かる。   The output of the class D amplifying unit 14 when there is no switching voltage control unit shown by the thick line in FIG. 11 and the output of the class D amplification unit 107 when there is the switching voltage control unit 106 shown by the thick line in FIG. Is compared, the latter is closer to the output waveform (thin line in FIG. 10) of the bandpass ΔΣ modulation unit that is the amplified signal.

スイッチング電圧制御部106で決定したスイッチング電圧閾値がSWVth=+0.2のときの送信コンスタレーションは、例えば、図15に示すようになり、図12に示した場合よりも改善していることが分かる。なお、図15の信号のEVMは約7.4%であり、図12と比べると2.8%改善しており、本発明のD級増幅器がEVM改善に寄与することが分かる。   The transmission constellation when the switching voltage threshold determined by the switching voltage control unit 106 is SWVth = + 0.2 is, for example, as shown in FIG. 15, and it is understood that the transmission constellation is improved from the case shown in FIG. . The EVM of the signal of FIG. 15 is about 7.4%, which is an improvement of 2.8% compared to FIG. 12, and it can be seen that the class D amplifier of the present invention contributes to the EVM improvement.

図9の信号の周波数特性に見られるように、パルス信号の高周波成分が通過しない場合には、信号の立ち上がりや立ち下がりの時間応答が遅くなり、信号波形がD級増幅部107の本来のスイッチング電圧閾値である0に到達する時間が長くなる。この到達時間の遅延は、信号波形が電圧レベル0に達する前の電圧レベルでD級増幅部107をスイッチング動作させることで相殺できるため、上述のようなEVM改善効果が得られる。   As can be seen from the frequency characteristics of the signal in FIG. 9, when the high-frequency component of the pulse signal does not pass, the time response of the rise and fall of the signal is delayed, and the signal waveform is the original switching of the class D amplification unit 107. The time to reach 0 which is the voltage threshold becomes longer. This delay in arrival time can be offset by switching the class D amplifier 107 at the voltage level before the signal waveform reaches the voltage level 0, so that the EVM improvement effect as described above can be obtained.

ここで、スイッチング電圧制御部106のスイッチング電圧閾値を変化させた場合のEVMの例を図16に示す。図16では、縦軸をEVM、横軸をスイッチング電圧閾値としている。図16を参照すると、従来、スイッチング電圧閾値はSWVth=0に固定であることから、EVMは約10.2%にとどまるのに対し、本発明では、スイッチング電圧制御部106によってD級増幅部107のスイッチング電圧閾値を最適値(ここではSWVth=−0.17)に設定することにより、EVMが6.7%まで改善できることが読み取られる。したがって、駆動増幅部105の周波数特性が図8に示されるような場合には、スイッチング電圧制御部106が出力するスイッチング電圧閾値をSWVth=−0.17の固定値とすればよい。   Here, FIG. 16 shows an example of the EVM when the switching voltage threshold value of the switching voltage control unit 106 is changed. In FIG. 16, the vertical axis represents the EVM, and the horizontal axis represents the switching voltage threshold. Referring to FIG. 16, the switching voltage threshold is conventionally fixed at SWVth = 0, so that the EVM is only about 10.2%, whereas in the present invention, the switching voltage control unit 106 performs the class D amplification unit 107. It can be seen that the EVM can be improved to 6.7% by setting the switching voltage threshold value to the optimum value (here, SWVth = −0.17). Therefore, when the frequency characteristic of the drive amplifier 105 is as shown in FIG. 8, the switching voltage threshold output from the switching voltage controller 106 may be a fixed value of SWVth = −0.17.

なお、EVMの値はSWVth=0の軸に関してほぼ線対称であることが図16から読み取れるように、SWVth=+0.17を固定値として用いてもよい。   Note that SWVth = + 0.17 may be used as a fixed value, as can be seen from FIG. 16 that the value of EVM is substantially line symmetric with respect to the axis of SWVth = 0.

以上の説明では、駆動増幅部105の周波数特性が図8に示されるような場合の信号の時間軸波形や周波数特性について見てきた。しかしながら、実際には、駆動増幅部105の周波数特性は、回路の実現方法や整合の取り方によって様々な形状を取りうる。図17は、駆動増幅部105の周波数特性がキャリア周波数fcに対して線対称となる種々のケースにおいて、駆動増幅部105の出力信号の電力実効値であるRMS(Root Mean Square)とスイッチング電圧制御部106が出力するスイッチング電圧閾値の最適値(EVMが最良となるときの電圧レベル)SWVth_optをプロットした図である。図17では、縦軸をSWVth_opt、横軸をRMSとしている。   In the above description, the time axis waveform and frequency characteristics of the signal when the frequency characteristics of the drive amplifier 105 are as shown in FIG. 8 have been seen. However, in practice, the frequency characteristics of the drive amplification unit 105 can take various shapes depending on the circuit implementation method and the matching method. FIG. 17 shows RMS (Root Mean Square) that is an effective power value of the output signal of the drive amplifier 105 and switching voltage control in various cases where the frequency characteristic of the drive amplifier 105 is line-symmetric with respect to the carrier frequency fc. FIG. 10 is a diagram plotting an optimum value (voltage level when EVM is the best) SWVth_opt of a switching voltage threshold output by a unit 106. In FIG. 17, the vertical axis represents SWVth_opt and the horizontal axis represents RMS.

図17を参照すると、駆動増幅部105の出力信号のRMSが大きくなるに従って、スイッチング電圧制御部106が出力するスイッチング電圧閾値の最適値が大きくなっている。このことから、スイッチング電圧制御部106が、図17に示す関係を利用し、駆動増幅部105の出力信号からRMS値を算出し、算出したRMS値に基づいてD級増幅部107のスイッチング電圧閾値を最適なレベルに決定することにより、送信EVMを改善することができる。また、送信信号に適用する変調種別や変調帯域が時間軸上で異なったり、駆動増幅部105やその他アナログ回路の帯域特性が固体間で異なったりするときにも、これらに起因する信号劣化を低減することができる。   Referring to FIG. 17, the optimum value of the switching voltage threshold output from the switching voltage control unit 106 increases as the RMS of the output signal of the drive amplification unit 105 increases. From this, the switching voltage control unit 106 calculates the RMS value from the output signal of the drive amplification unit 105 using the relationship shown in FIG. 17, and the switching voltage threshold value of the class D amplification unit 107 based on the calculated RMS value. Can be improved to determine the transmission EVM. In addition, when the modulation type and modulation band applied to the transmission signal are different on the time axis, or when the band characteristics of the drive amplifier 105 and other analog circuits are different from one object to another, signal degradation caused by these is reduced. can do.

このように、本実施の形態によれば、D級増幅部への入力信号の電力実効値RMSに基づいて、D級増幅部のスイッチング電圧閾値を最適なレベルに決定し、決定したスイッチング電圧閾値を用いてD級増幅部がスイッチング増幅することにより、D級増幅部前段に駆動増幅部を配置した場合でも、D級増幅部で増幅された無線信号のEVMの劣化を抑制することができる。よって、D級増幅器を含む無線通信装置は、EVMが良好な無線信号を送信することができる。   Thus, according to the present embodiment, the switching voltage threshold value of the class D amplification unit is determined to an optimum level based on the RMS power value RMS of the input signal to the class D amplification unit, and the determined switching voltage threshold value is determined. Since the class D amplification unit performs switching amplification using the, the degradation of the EVM of the radio signal amplified by the class D amplification unit can be suppressed even when the drive amplification unit is arranged in the previous stage of the class D amplification unit. Therefore, the wireless communication apparatus including the class D amplifier can transmit a wireless signal with good EVM.

なお、本実施の形態では、無線通信装置単体について説明したが、本発明の無線通信装置を含む無線通信システムを構成してもよい。例えば、図18に示すように、移動局又は固定局の無線通信装置RS1、RS2、…、RSmのうち少なくとも一つは図13に示したD級増幅器を含むものとする。また、基地局にも図13に示したD級増幅器が含まれてもよい。   In the present embodiment, a single wireless communication apparatus has been described. However, a wireless communication system including the wireless communication apparatus of the present invention may be configured. For example, as shown in FIG. 18, it is assumed that at least one of radio communication apparatuses RS1, RS2,..., RSm of a mobile station or a fixed station includes the class D amplifier shown in FIG. The base station may also include the class D amplifier shown in FIG.

図18に示す無線通信システムは、図13に示すD級増幅器を備える無線通信装置が多いほど、システム全体としてEVMが良好な無線信号が使用される頻度が増える。また、各無線通信装置の受信においては、送信信号の品質が良好であることから、その受信性能も良好となり、結果として通信品質のよい無線通信システムを構築することができる。また、電力利用効率が高いD級増幅器を備える無線通信装置を使用していることから、全体として電力利用効率が高いシステムを構築することができる。   In the wireless communication system illustrated in FIG. 18, the more wireless communication apparatuses including the class D amplifier illustrated in FIG. 13, the more frequently a wireless signal with a good EVM is used as the entire system. Moreover, since the quality of the transmission signal is good at the reception of each wireless communication device, the reception performance is also good, and as a result, a wireless communication system with good communication quality can be constructed. In addition, since a wireless communication apparatus including a class D amplifier with high power utilization efficiency is used, a system with high power utilization efficiency as a whole can be constructed.

なお、本実施の形態では、スイッチング電圧閾値SWVthを駆動増幅部の出力信号のRMSに基づいて決定するものとして説明したが、このときの値は固定としてもよいし、可変としてもよい。また、スイッチング電圧閾値SWVthとして、駆動増幅部の出力信号のRMSに依存しない固定値を設定してもよい。   In the present embodiment, the switching voltage threshold SWVth has been described as being determined based on the RMS of the output signal of the drive amplifier, but the value at this time may be fixed or variable. Further, as the switching voltage threshold SWVth, a fixed value that does not depend on the RMS of the output signal of the drive amplifier may be set.

本発明にかかるD級増幅器及び無線通信装置は、無線通信システム等に適用できる。   The class D amplifier and the wireless communication apparatus according to the present invention can be applied to a wireless communication system and the like.

101 ベースバンド信号発生部
102 アップコンバート部
103 D級増幅器
104 バンドパスΔΣ変調部
105 駆動増幅部
106 スイッチング電圧制御部
107 D級増幅部
108 バンドパスフィルタ部
109 アンテナ部
DESCRIPTION OF SYMBOLS 101 Baseband signal generation part 102 Up-conversion part 103 Class D amplifier 104 Band pass delta-sigma modulation part 105 Drive amplification part 106 Switching voltage control part 107 Class D amplification part 108 Band pass filter part 109 Antenna part

Claims (4)

キャリア周波数信号に所定の周波数でΔΣ変調を施すバンドパスΔΣ変調手段と、
ΔΣ変調が施された信号を一定の信号レベルまで増幅する第1増幅手段と、
前記第1増幅手段によって増幅された信号を、スイッチング電圧閾値に基づいて、スイッチング増幅する第2増幅手段と、
前記第1増幅手段によって増幅された信号に基づいて、前記スイッチング電圧閾値を決定制御するスイッチング電圧制御手段と、
を具備するD級増幅器。
Bandpass ΔΣ modulation means for performing ΔΣ modulation on the carrier frequency signal at a predetermined frequency;
First amplifying means for amplifying the signal subjected to ΔΣ modulation to a certain signal level;
Second amplification means for switching and amplifying the signal amplified by the first amplification means based on a switching voltage threshold;
Switching voltage control means for determining and controlling the switching voltage threshold based on the signal amplified by the first amplification means;
A class D amplifier comprising:
前記スイッチング電圧閾値を固定値とする請求項1に記載のD級増幅器。   The class D amplifier according to claim 1, wherein the switching voltage threshold is a fixed value. 前記スイッチング電圧制御手段は、前記第1増幅手段によって増幅された信号のレベルに応じて可変制御する請求項1に記載のD級増幅器。   2. The class D amplifier according to claim 1, wherein the switching voltage control means variably controls the switching voltage control means according to the level of the signal amplified by the first amplifying means. 請求項1に記載のD級増幅器を備える無線通信装置。   A wireless communication apparatus comprising the class D amplifier according to claim 1.
JP2010204281A 2010-09-13 2010-09-13 Class D amplifier and wireless communication apparatus Expired - Fee Related JP5337120B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010204281A JP5337120B2 (en) 2010-09-13 2010-09-13 Class D amplifier and wireless communication apparatus
PCT/JP2011/004944 WO2012035713A1 (en) 2010-09-13 2011-09-02 Class d amplifier and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204281A JP5337120B2 (en) 2010-09-13 2010-09-13 Class D amplifier and wireless communication apparatus

Publications (2)

Publication Number Publication Date
JP2012060568A JP2012060568A (en) 2012-03-22
JP5337120B2 true JP5337120B2 (en) 2013-11-06

Family

ID=45831208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204281A Expired - Fee Related JP5337120B2 (en) 2010-09-13 2010-09-13 Class D amplifier and wireless communication apparatus

Country Status (2)

Country Link
JP (1) JP5337120B2 (en)
WO (1) WO2012035713A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051641A1 (en) 2011-10-04 2013-04-11 住友電気工業株式会社 Design method for bandpass δς modulator, bandpass δς modulator, device having bandpass δς modulator, and method using bandpass δς modulation
US8847834B2 (en) * 2012-05-14 2014-09-30 Tag-Comm Inc. Method and apparatus for generating dedicated data channels in backscatter RFID systems using band-pass modulation
JP5510564B2 (en) 2012-05-25 2014-06-04 日本電気株式会社 Switching amplifier and transmitter using the same
JP5920109B2 (en) * 2012-08-23 2016-05-18 住友電気工業株式会社 Distortion compensation apparatus, distortion compensation method, distortion compensation program, transmitter, and 1-bit audio apparatus
US9917556B2 (en) 2014-08-04 2018-03-13 Nec Corporation Transmitter, transmission system, and transmission method
CA2961908A1 (en) 2014-09-22 2016-03-31 Drnc Holdings, Inc. Transmission apparatus for a wireless device using delta-sigma modulation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3388173B2 (en) * 1998-03-17 2003-03-17 シャープ株式会社 Feedback circuit
JP2002230905A (en) * 2001-01-29 2002-08-16 Niigata Seimitsu Kk Device and method for reproducing voice
JP4017596B2 (en) * 2001-09-04 2007-12-05 新電元工業株式会社 Switching amplifier
JP4040378B2 (en) * 2002-07-17 2008-01-30 シャープ株式会社 Balanced output circuit for 1-bit amplifier
JP4120829B2 (en) * 2004-07-30 2008-07-16 ソニー株式会社 Power amplifier device and DC component removal method
JP5167196B2 (en) * 2009-05-14 2013-03-21 シャープ株式会社 Signal correction apparatus, audio processing apparatus, and pulse amplification method

Also Published As

Publication number Publication date
JP2012060568A (en) 2012-03-22
WO2012035713A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US9107167B2 (en) Envelope tracking signal bandwidth control
JP5337120B2 (en) Class D amplifier and wireless communication apparatus
CN111436225B (en) Predistortion circuit of wireless transmitter and method for generating predistortion baseband signal
JP5609890B2 (en) Transmitter
US20140199949A1 (en) Method for improving tx gain in envelope tracking systems
JP6119735B2 (en) Transmitting apparatus and transmitting method
EP3018874B1 (en) Wireless transceiver
CN103684285A (en) High efficiency and high linearity adaptive power amplifier for signals with high PAPR
JP2019503133A (en) Power amplifying device, envelope tracking type amplifying device, and method for amplifying a signal
JP2005244935A (en) Transmitting device and radio communication equipment
Sira et al. Output power control in class-E power amplifiers
CN103518322A (en) Digital envelope signal amplification circuit, method and envelope tracking power amplifier
KR101104143B1 (en) Apparatus and method for transmitting signal in a wireless communication system
JP2010035158A (en) Transmitting circuit, and communication apparatus using communication apparatus
JP2017511029A (en) Transmitter and method of transmission
US8145148B2 (en) Transmitter and communication apparatus
JP2005064662A (en) Transmitter, transmission power control method, and wireless communication device
US20120002755A1 (en) Multi-level pulse modulated polar transmitter and method of generating multi-level modulated envelope signals carrying modulated rf signal
JP2008294812A (en) Radio signal amplifier
US9252714B2 (en) Transmission signal power control device and communication apparatus
JP2008205821A (en) High-frequency power amplifier and transmitter using it
US9748983B2 (en) Transmitter and method for transmission control in a technique of delta sigma modulating
CN203800956U (en) Digital pre-distortion system of off-line estimation pre-distortion coefficient
JP2013051456A (en) Modulator and amplifier using the same
JP2006121408A (en) Modulation signal transmitting circuit and radio communication equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees