JP5337109B2 - Mortar strength estimation method - Google Patents
Mortar strength estimation method Download PDFInfo
- Publication number
- JP5337109B2 JP5337109B2 JP2010145438A JP2010145438A JP5337109B2 JP 5337109 B2 JP5337109 B2 JP 5337109B2 JP 2010145438 A JP2010145438 A JP 2010145438A JP 2010145438 A JP2010145438 A JP 2010145438A JP 5337109 B2 JP5337109 B2 JP 5337109B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- mortar
- equation
- product
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、フライアッシュ、高炉スラグ、シリカフュームのいずれかを含むコンクリート強度の推定に供する目的で、骨材を除いたモルタルの圧縮強度の推定方法を提供する。 The present invention provides a method for estimating the compressive strength of a mortar excluding aggregates for the purpose of estimating the strength of concrete containing any of fly ash, blast furnace slag, and silica fume.
近年、セメントの一部をフライアッシュ、高炉スラグ、シリカフューム等の工業副産物に置き換えた環境配慮型コンクリートが開発されている。
このような環境配慮型コンクリートによれば、廃棄物の有効利用によるセメント使用量の低減化が可能となり、結果、二酸化炭素(CO2)排出量の削減を図ることができる。
In recent years, environmentally friendly concrete has been developed in which part of the cement is replaced with industrial by-products such as fly ash, blast furnace slag, and silica fume.
According to such an environmentally friendly concrete, it is possible to reduce the amount of cement used by effectively using waste, and as a result, it is possible to reduce the amount of carbon dioxide (CO 2 ) emissions.
ところで、副産物を含むコンクリートの強度は、使用する副産物の品質などによって変化するため、コンクリートの打設後、材齢28日の強度試験結果を待たなければ、品質を評価することができなかった。したがって、材齢28日の強度試験結果を実施せずに調合設計を行うための合理的な強度推定式が求められていた。 By the way, since the strength of the concrete containing a by-product changes with the quality of the by-product to be used, the quality could not be evaluated without waiting for the strength test result at the age of 28 days after placing the concrete. Therefore, a reasonable strength estimation formula for carrying out blending design without carrying out the strength test results on the age of 28 days has been required.
非特許文献1には、式Aに示す、フライアッシュを使用したコンクリートの圧縮強度を推定する計算式が開示されている。
FFA=a(C+k’FA)/W+b ・・・ 式A
FFA:コンクリートの圧縮強度(N/mm2)
C:単位セメント量(kg/m3)
FA:単位フライアッシュ量(kg/m3)
W:単位水量(kg/m3)
a,b:実験係数(N/mm2)
k’:フライアッシュの強度寄与率
Non-Patent Document 1 discloses a calculation formula for estimating the compressive strength of concrete using fly ash, as shown in Formula A.
F FA = a (C + k′FA) / W + b Formula A
F FA : Compressive strength of concrete (N / mm 2 )
C: Unit cement amount (kg / m 3 )
FA: Unit fly ash amount (kg / m 3 )
W: Unit water volume (kg / m 3 )
a, b: Experimental coefficient (N / mm 2 )
k ': Strength contribution ratio of fly ash
ところが、式Aは、フライアッシュの強度寄与率k’によりコンクリートの強度を推定するものであるため、フライアッシュ以外の副産物(高炉スラグやシリカフューム等)が添加されたコンクリートや、複数の異なる副産物が添加されたコンクリートに対しては採用することができなかった。 However, since Formula A estimates the strength of the concrete from the strength contribution ratio k ′ of fly ash, there are concrete by which by-products other than fly ash (such as blast furnace slag and silica fume) are added, and a plurality of different by-products. It could not be used for added concrete.
そのため、本発明は、添加される副産物の種類に関わらず、モルタルの圧縮強度を推定することで、当該モルタル配合に骨材が添加されたコンクリートの圧縮強度の推定を行うことを可能とした、モルタル強度の推定方法を提供することを課題とする。 Therefore, the present invention made it possible to estimate the compressive strength of the concrete in which the aggregate was added to the mortar formulation by estimating the compressive strength of the mortar, regardless of the type of by-product added. It is an object to provide a method for estimating mortar strength.
前記課題を解決するために、本発明は、フライアッシュ、高炉スラグ、シリカフュームのいずれかの副産物を含むモルタルについて、式1を利用して材齢28日の圧縮強度を推定するモルタル強度の推定方法であって、式2により求まる定数αを算出し、前記定数αを利用して式3により副産物の強度寄与率kを算出し、前記強度寄与率kを式1に代入して前記圧縮強度を推定することを特徴としている。
FE=a(C+kE)/W+b ・・・ 式1
α=CaO/(SiO2+Al2O3) ・・・ 式2
k=lC+m(C/E)+nα+o(1/R2)+p(1/R)+q ・・・ 式3
FE:モルタルの材齢28日の圧縮強度(N/mm2)
C:単位セメント量(kg/m3)
E:単位副産物量(kg/m3)
W:単位水量(kg/m3)
a,b:実験係数(N/mm2)
CaO:結合材中に含まれる酸化カルシウムの割合(mass%)
SiO2:結合材中に含まれる二酸化ケイ素の割合(mass%)
Al2O3:結合材中に含まれる酸化アルミニウムの割合(mass%)
R:50%粒子の平均粒径(μm)
l,m,n,o,p,q:係数
In order to solve the above-mentioned problem, the present invention relates to a mortar strength estimation method for estimating compressive strength at a material age of 28 days using Formula 1 for a mortar containing any by-product of fly ash, blast furnace slag, or silica fume. Then, a constant α obtained by Equation 2 is calculated, a strength contribution rate k of the byproduct is calculated by Equation 3 using the constant α, and the compressive strength is calculated by substituting the strength contribution rate k into Equation 1. It is characterized by estimation.
F E = a (C + kE) / W + b Formula 1
α = CaO / (SiO 2 + Al 2 O 3 ) Equation 2
k = 1C + m (C / E) + nα + o (1 / R 2 ) + p (1 / R) + q Equation 3
F E : Compressive strength of mortar at the age of 28 days (N / mm 2 )
C: Unit cement amount (kg / m 3 )
E: Unit by-product amount (kg / m 3 )
W: Unit water volume (kg / m 3 )
a, b: Experimental coefficient (N / mm 2 )
CaO: Ratio of calcium oxide contained in the binder (mass%)
SiO 2 : Ratio of silicon dioxide contained in the binder (mass%)
Al 2 O 3 : Ratio of aluminum oxide contained in the binder (mass%)
R: Average particle diameter of 50% particles (μm)
l, m, n, o, p, q: coefficients
かかるモルタル強度の推定方法によれば、セメントの一部を副産物に置換したモルタルの圧縮強度を簡易に推定することができるため、当該モルタル配合に骨材を添加したコンクリートの調合設計を合理的に行うことができる。 According to this mortar strength estimation method, the compressive strength of a mortar in which a part of the cement is replaced with a by-product can be easily estimated. It can be carried out.
本発明のモルタル強度の推定方法によれば、添加される副産物の種類に関わらず、モルタル強度の推定を簡易に行うことが可能となる。
当該モルタル強度の推定方法により得られたモルタル強度を用いれば、このモルタル配合に粗骨材を添加したコンクリートの圧縮強度の推定は、使用する粗骨材の特性を考慮することで行うことができる。
According to the estimation method of the mortar strength of the present invention, it is possible to easily estimate the mortar strength regardless of the kind of by-product added.
If the mortar strength obtained by the estimation method of the mortar strength is used, the estimation of the compressive strength of the concrete in which the coarse aggregate is added to the mortar composition can be performed by considering the characteristics of the coarse aggregate to be used. .
以下、本発明の実施の形態について説明する。
本実施形態では、高強度コンクリートの配合から粗骨材除いた配合のモルタルの材齢28日の圧縮強度を推定する。当該高強度コンクリートは、セメント使用量の低減化を目的として、セメントの一部を副産物に置き換えたものである。
Embodiments of the present invention will be described below.
In this embodiment, the compressive strength of the mortar having a composition obtained by removing coarse aggregate from the composition of high-strength concrete is estimated at the age of 28 days. The high-strength concrete is obtained by replacing a part of cement with a by-product for the purpose of reducing the amount of cement used.
副産物は、フライアッシュ、高炉スラグ、シリカフュームのうちの1種または複数種を組み合わせたものであり、水およびセメント水和物とポゾラン反応し、結合材として強度発現に寄与する。
本実施形態で使用する結合材の材料を表1に示す。
A by-product is a combination of one or more of fly ash, blast furnace slag, and silica fume. The by-product reacts with water and cement hydrate to cause a pozzolanic reaction and contributes to strength development as a binder.
Table 1 shows the materials of the binder used in the present embodiment.
モルタルの材齢28日の圧縮強度FE(N/mm2)の推定は、式1を利用して行う。 Estimating the compressive strength F E (N / mm 2 ) of the mortar at the age of 28 days is performed using Equation 1.
FE=a(C+kE)/W+b ・・・ 式1
C:単位セメント量(kg/m3)
E:単位副産物量(kg/m3)
W:単位水量(kg/m3)
a,b:実験係数(N/mm2)
k:副産物の強度寄与率
F E = a (C + kE) / W + b Formula 1
C: Unit cement amount (kg / m 3 )
E: Unit by-product amount (kg / m 3 )
W: Unit water volume (kg / m 3 )
a, b: Experimental coefficient (N / mm 2 )
k: Strength contribution ratio of by-products
単位セメント量C、単位副産物量Eおよび単位水量Wは、それぞれモルタル1m3当りの重量である。 The unit cement amount C, the unit by-product amount E, and the unit water amount W are weights per 1 m 3 of mortar, respectively.
実験係数a,bは、式1において、副産物を含まないモルタルの実測圧縮強度を目的変数とし、結合材水比(C/W)を説明変数として回帰分析を行うことにより求まる実験係数である。なお、副産物を含まないモルタルの場合の副産物の単位副産物量Eは0とする。 The experimental coefficients a and b are experimental coefficients obtained by performing regression analysis in Equation 1 with the measured compressive strength of the mortar containing no by-products as the objective variable and the binder water ratio (C / W) as the explanatory variable. In addition, the unit by-product amount E of the by-product in the case of the mortar which does not contain a by-product is set to 0.
副産物の強度寄与率kは、式2および式3により算出する。 The strength contribution rate k of the by-product is calculated by Equation 2 and Equation 3.
α=CaO/(SiO2+Al2O3) ・・・ 式2
k=lC+m(C/E)+nα+o(1/R2)+p(1/R)+q ・・・ 式3
R:50%粒子の平均粒径(μm)
l,m,n,o,p,q:係数
α = CaO / (SiO 2 + Al 2 O 3 ) Equation 2
k = 1C + m (C / E) + nα + o (1 / R 2 ) + p (1 / R) + q Equation 3
R: Average particle diameter of 50% particles (μm)
l, m, n, o, p, q: coefficients
式2では、結合材を構成する分子(CaO、SiO2、Al2O3)の質量比に基いて定数αを算出する。
結合材を構成するポルトランドセメントおよび各副産物(シリカフューム、フライアッシュ、高炉スラグ)に含まれる酸化カルシウムCaO、二酸化ケイ素SiO2および酸化アルミニウムAl2O3の割合は、表1に示す通りである。
In Formula 2, the constant α is calculated based on the mass ratio of the molecules (CaO, SiO 2 , Al 2 O 3 ) constituting the binder.
The ratio of calcium oxide CaO, silicon dioxide SiO 2 and aluminum oxide Al 2 O 3 contained in the Portland cement and each by-product (silica fume, fly ash, blast furnace slag) constituting the binder is as shown in Table 1.
式2に代入する酸化カルシウムCaO(mass%)、二酸化ケイ素SiO2(mass%)および酸化アルミニウムAl2O3(mass%)の値は、各結合材の物性値(表1の値)に混合比を乗じ、分子ごとに合算したものである。 The values of calcium oxide CaO (mass%), silicon dioxide SiO 2 (mass%) and aluminum oxide Al 2 O 3 (mass%) to be substituted into Equation 2 are mixed with the physical property values of each binder (values in Table 1). Multiply by the ratio and add up for each numerator.
例えば、普通ポルトランドセメント、シリカフューム、フライアッシュII種、高炉スラグ微粉末Aの混合比が7:1:1:1の場合の酸化カルシウムCaO、二酸化ケイ素SiO2および酸化アルミニウムAl2O3は、以下の通りとなる。
CaO=63.28×0.7+0.38×0.1
+1.78×0.1+42.65×0.1
=48.78(mass%)
SiO2=5.65×0.7+1.07×0.1
+30.29×0.1+14.00×0.1
=8.49(mass%)
Al2O3=20.61×0.7+92.60×0.1
+33.61×0.1+34.02×0.1
=30.45(mass%)
For example, calcium oxide CaO, silicon dioxide SiO 2 and aluminum oxide Al 2 O 3 when the mixing ratio of ordinary Portland cement, silica fume, fly ash type II, and blast furnace slag fine powder A is 7: 1: 1: 1 are as follows: It becomes as follows.
CaO = 63.28 × 0.7 + 0.38 × 0.1
+ 1.78 × 0.1 + 42.65 × 0.1
= 48.78 (mass%)
SiO 2 = 5.65 × 0.7 + 1.07 × 0.1
+ 30.29 × 0.1 + 14.00 × 0.1
= 8.49 (mass%)
Al 2 O 3 = 20.61 × 0.7 + 92.60 × 0.1
+ 33.61 × 0.1 + 34.02 × 0.1
= 30.45 (mass%)
ここで、式2の各説明変数は、以下の理由により選定した。
単位セメント量と副産物との置換率は、セメント反応物と副産物の二次反応の発生しやすさへの影響を考慮し、選定したものである。
Here, each explanatory variable of Formula 2 was selected for the following reasons.
The substitution rate between the amount of unit cement and the by-product is selected in consideration of the influence on the likelihood of a secondary reaction between the cement reactant and the by-product.
CaO/(SiO2+Al2O3)は、反応生成物への影響を考慮し選定したものである。なお、CaO/(SiO2+Al2O3)を説明変数として選定するにあたっては、CaO/SiO2や(CaO+Al2O3)/SiO2等についても検討したが、CaO/(SiO2+Al2O3)が説明変数として最も高い相関を示したため、これを採用するものとした。 CaO / (SiO 2 + Al 2 O 3 ) is selected in consideration of the influence on the reaction product. In selecting CaO / (SiO 2 + Al 2 O 3 ) as an explanatory variable, CaO / SiO 2 , (CaO + Al 2 O 3 ) / SiO 2, etc. were also examined, but CaO / (SiO 2 + Al 2 O). Since 3 ) showed the highest correlation as an explanatory variable, this was adopted.
粒子半径の逆数1/Rおよび1/R2は、粉体の反応性は粒子半径と相関があるとの知見に基づき、副産物の反応性への影響を考慮して選定した。このとき、比表面積を説明変数とした検討も行ったが、粒子半径の逆数1/Rおよび1/R2を説明変数とした方がよい相関が得られた。
なお、逆数1/Rおよび1/R2の一方のみを説明変数とするよりも、両方を説明変数としたほうがよい相関が得られた
The reciprocals 1 / R and 1 / R 2 of the particle radius were selected in consideration of the influence on the reactivity of the by-product based on the knowledge that the powder reactivity is correlated with the particle radius. At this time, the specific surface area was examined as an explanatory variable, but a better correlation was obtained when the reciprocals 1 / R and 1 / R 2 of the particle radius were used as explanatory variables.
Incidentally, the reciprocal 1 / R and 1 / only one than is the explanatory variables R 2, better to both the explanatory variable is a good correlation was obtained
式3の係数l,m,n,o,p,qは、副産物の強度寄与率kを目的変数とし、単位セメント量(C)、セメントと副産物の置換比(C/E)、分子の構成比(α)および50%粒子の平均粒径の二乗の逆数(1/R2)および逆数(1/R)を説明変数とした重回帰分析によって得られたものである。 The coefficients l, m, n, o, p, and q in Equation 3 use the by-product strength contribution ratio k as an objective variable, the unit cement amount (C), the cement-by-product substitution ratio (C / E), and the molecular structure. It was obtained by multiple regression analysis with the ratio (α) and the inverse of the square of the average particle diameter of 50% particles (1 / R 2 ) and the inverse (1 / R) as explanatory variables.
なお、重回帰分析において使用した副産物の強度寄与率kは、セメントと副産物の混合比および水結合材比を異ならせた複数種類のモルタルの材齢28日の圧縮強度を式1に代入することで算出した。 The strength contribution ratio k of the by-product used in the multiple regression analysis is obtained by substituting the compressive strength at the age of 28 days of multiple types of mortar with different mixing ratio of cement and by-product and water binder ratio into Equation 1. Calculated with
また、式3に代入する50%粒子の平均粒径Rの値は、各結合材の50%粒子の平均粒径R(表1の値)に混合比を乗じ、合算したものである。
例えば、普通ポルトランドセメント、シリカフューム、フライアッシュII種、高炉スラグ微粉末Aの混合比が7:1:1:1の場合は、以下の通りとなる。
R=16.99×0.7+0.87×0.1
+10.51×0.1+22.59×0.1
=15.29(μm)
Moreover, the value of the average particle diameter R of 50% particles substituted into Formula 3 is obtained by multiplying the average particle diameter R (value in Table 1) of 50% particles of each binder by the mixing ratio and adding up.
For example, when the mixing ratio of ordinary Portland cement, silica fume, fly ash type II, and blast furnace slag fine powder A is 7: 1: 1: 1, the result is as follows.
R = 16.99 × 0.7 + 0.87 × 0.1
+ 10.51 × 0.1 + 22.59 × 0.1
= 15.29 (μm)
重回帰分析の結果、係数l,m,n,o,p,qが、表2に示すようになった。 As a result of the multiple regression analysis, the coefficients l, m, n, o, p, and q are as shown in Table 2.
以下、本実施形態のモルタル強度の推定方法により実証実験を行った結果を示す。
本実証実験では、副産物を含むモルタルについて、本実施形態のモルタル強度の推定方法により推定された材料28日の圧縮強度と実測圧縮強度とを比較することで、本実施形態のモルタル強度の推定方法の確認を行った。
Hereinafter, the result of the demonstration experiment by the estimation method of the mortar strength of the present embodiment will be shown.
In this demonstration experiment, for the mortar containing by-products, the material 28-day compressive strength estimated by the mortar strength estimating method of the present embodiment is compared with the actually measured compressive strength, whereby the mortar strength estimating method of the present embodiment. Was confirmed.
図1に横軸を推定圧縮強度、縦軸を実測圧縮強度とし、本実証実験結果をまとめた。
また、比較例として、図2に、強度寄与率kを目的変数、単位セメント量Cを説明変数として、回帰分析を行い、この強度寄与率kを利用して式1により推定圧縮強度を算出した結果を示す。
In FIG. 1, the horizontal axis represents the estimated compressive strength, and the vertical axis represents the measured compressive strength.
In addition, as a comparative example, in FIG. 2, regression analysis was performed using the strength contribution rate k as an objective variable and the unit cement amount C as an explanatory variable, and the estimated compressive strength was calculated by Equation 1 using the strength contribution rate k. Results are shown.
図1に示すように、本実施形態のモルタル強度の推定方法によれば、推定圧縮強度と実測圧縮強度が近似する結果となった。
一方、比較例の場合は、図2に示すように、推定圧縮強度と実測圧縮強度との値にばらつきがあり、圧縮強度の推定が困難な結果となった。
As shown in FIG. 1, according to the mortar strength estimation method of the present embodiment, the estimated compression strength and the measured compression strength are approximated.
On the other hand, in the case of the comparative example, as shown in FIG. 2, there is a variation in the values of the estimated compression strength and the measured compression strength, which makes it difficult to estimate the compression strength.
以上の結果、本実施形態のモルタル強度の推定方法によれば、モルタルでの材齢28日の圧縮強度の推定が可能であることが実証された。 As a result of the above, it was demonstrated that according to the method for estimating the mortar strength of the present embodiment, it is possible to estimate the compressive strength at the age of 28 days in the mortar.
以上、本実施形態のモルタル強度の推定方法によれば、副産物を使用したモルタルの材齢28日の圧縮強度を簡便に予測することが可能となる。
そのため、モルタルに含まれる副産物の種類、品質や量等に関わらず、モルタル強度の推定を行うことができる。
As mentioned above, according to the estimation method of the mortar strength of this embodiment, it becomes possible to easily predict the compressive strength of the mortar using the by-product at the age of 28 days.
Therefore, mortar strength can be estimated regardless of the type, quality, amount, etc. of by-products contained in the mortar.
したがって、本実施形態のモルタル強度の推定方法を採用することで、所望の強度のモルタルの調合設計を簡易に行うことができる。
さらに当該モルタル強度の推定方法により得られたモルタル強度を用いれば、このモルタル配合に粗骨材を添加したコンクリートの調合設計を簡易に行うことができる。
Therefore, by adopting the method for estimating the mortar strength of the present embodiment, it is possible to easily design a mortar having a desired strength.
Furthermore, if the mortar strength obtained by the method for estimating the mortar strength is used, it is possible to easily perform a concrete blending design in which coarse aggregate is added to the mortar blending.
以上、本発明について、好適な実施形態について説明した。しかし、本発明は、前述の各実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and the above-described constituent elements can be appropriately changed without departing from the spirit of the present invention.
例えば、結合材を構成する各材料の物性値は、前記実施形態で示した数値に限定されるものではない。
また、結合材の密度や平均粒径も、使用する材料の値を適宜採用すればよい。
For example, the physical property values of the respective materials constituting the binder are not limited to the numerical values shown in the above embodiment.
Moreover, what is necessary is just to employ | adopt suitably the value of the material to be used also for the density and average particle diameter of a binder.
Claims (1)
式2により定数αを算出し、
前記定数αを利用して式3により副産物の強度寄与率kを算出し、
前記強度寄与率kを式1に代入して前記圧縮強度を推定することを特徴とする、モルタル強度の推定方法。
FE=a(C+kE)/W+b ・・・ 式1
α=CaO/(SiO2+Al2O3) ・・・ 式2
k=lC+m(C/E)+nα+o(1/R2)+p(1/R)+q ・・・ 式3
FE:モルタルの材齢28日の圧縮強度(N/mm2)
C:単位セメント量(kg/m3)
E:単位副産物量(kg/m3)
W:単位水量(kg/m3)
a,b:実験係数(N/mm2)
CaO:結合材中に含まれる酸化カルシウムの割合(mass%)
SiO2:結合材中に含まれる二酸化ケイ素の割合(mass%)
Al2O3:結合材中に含まれる酸化アルミニウムの割合(mass%)
R:50%粒子の平均粒径(μm)
l,m,n,o,p,q:係数 For a mortar containing any one of fly ash, blast furnace slag, and silica fume by-product, an estimation method of mortar strength that estimates compressive strength at 28 days of age using Equation 1.
The constant α is calculated by Equation 2,
By using the constant α, the strength contribution ratio k of the by-product is calculated by Equation 3,
A method for estimating mortar strength, wherein the compressive strength is estimated by substituting the strength contribution rate k into Equation 1.
F E = a (C + kE) / W + b Formula 1
α = CaO / (SiO 2 + Al 2 O 3 ) Equation 2
k = 1C + m (C / E) + nα + o (1 / R 2 ) + p (1 / R) + q Equation 3
F E : Compressive strength of mortar at the age of 28 days (N / mm 2 )
C: Unit cement amount (kg / m 3 )
E: Unit by-product amount (kg / m 3 )
W: Unit water volume (kg / m 3 )
a, b: Experimental coefficient (N / mm 2 )
CaO: Ratio of calcium oxide contained in the binder (mass%)
SiO 2 : Ratio of silicon dioxide contained in the binder (mass%)
Al 2 O 3 : Ratio of aluminum oxide contained in the binder (mass%)
R: Average particle diameter of 50% particles (μm)
l, m, n, o, p, q: coefficients
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010145438A JP5337109B2 (en) | 2010-06-25 | 2010-06-25 | Mortar strength estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010145438A JP5337109B2 (en) | 2010-06-25 | 2010-06-25 | Mortar strength estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012006801A JP2012006801A (en) | 2012-01-12 |
JP5337109B2 true JP5337109B2 (en) | 2013-11-06 |
Family
ID=45537801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010145438A Expired - Fee Related JP5337109B2 (en) | 2010-06-25 | 2010-06-25 | Mortar strength estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5337109B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6198060B2 (en) * | 2013-01-30 | 2017-09-20 | 清水建設株式会社 | Method and apparatus for estimating mortar compressive strength |
JP6198059B2 (en) * | 2014-01-16 | 2017-09-20 | 清水建設株式会社 | Method and apparatus for estimating mortar compressive strength |
CN112094081B (en) * | 2020-09-18 | 2022-06-28 | 唐山中陶纪元工程设计有限公司 | Mortar and preparation method thereof |
KR102538947B1 (en) * | 2022-11-21 | 2023-06-02 | 유진기업 주식회사 | Composite Binder Containing Silica-based ultrafine powder |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5624491A (en) * | 1994-05-20 | 1997-04-29 | New Jersey Institute Of Technology | Compressive strength of concrete and mortar containing fly ash |
JP5335222B2 (en) * | 2007-05-09 | 2013-11-06 | 一般財団法人電力中央研究所 | Method for determining type of fly ash and method for determining pozzolanic reactivity of fly ash using the same |
-
2010
- 2010-06-25 JP JP2010145438A patent/JP5337109B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012006801A (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rajarajeswari et al. | Compressive strength of GGBFS based GPC under thermal curing | |
JP5337109B2 (en) | Mortar strength estimation method | |
JP6346519B2 (en) | Method for producing high-strength concrete and concrete member | |
JP2015024948A (en) | High-strength cement mortar composition and method for producing hardened high-strength cement mortar | |
KR101448837B1 (en) | Cement zero binder for concrete having high fluidity and nature-friendly concrete having high fluidity comprising the same | |
Mahendra et al. | Multi-objective optimization of one-part alkali-activated mortar mixes using Taguchi-Grey relational analysis | |
Haruna et al. | Effect of GGBS slag on setting time and compressive strength of one-part geopolymer binders | |
JP6521608B2 (en) | High durability concrete | |
JP2017194417A (en) | Method of evaluating aggregate for high strength concrete | |
KR101725283B1 (en) | Composition for concrete comprising siliceous dust and composition method using the same thing | |
Hosan et al. | Chloride-induced corrosion resistance of high-volume slag and high-volume slag–fly ash blended concretes containing nanomaterials | |
JP2020011871A (en) | Concrete having durability | |
JP6131459B2 (en) | Mortar or concrete composition and molded product obtained by molding the same | |
JP3806420B2 (en) | Low strength mortar filler using shirasu | |
JP2011173768A (en) | Method for producing fine aggregate using steelmaking slag, method for producing hydration hardened object using the fine aggregate, and fine aggregate and hydration hardened object using steelmaking slag | |
JP6102993B2 (en) | Cement composition | |
JP2015197381A (en) | Strength estimation method of concrete, and high-strength concrete | |
JP6889395B2 (en) | Method for producing highly fluid cement composition containing silica fume | |
JP5169368B2 (en) | Self-healing hydrated cured product and low-reactivity active cement material | |
Kumar et al. | Self-compacted geopolymer concrete incorporating waste ceramic powder | |
JP2016107422A (en) | Manufacturing method of curable kneaded material | |
JP2006188398A (en) | Cementitious composition | |
JP2020180024A (en) | Cement composition for high temperature curing and method for producing cement composition hardened body suppressed in sulfate deterioration using the same | |
JP2012166973A (en) | Cement composition, and method for manufacturing the same | |
JP6753632B2 (en) | Fresh concrete for blast furnace cement concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120919 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5337109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |