JP5336821B2 - Fluidized bed boiler - Google Patents

Fluidized bed boiler Download PDF

Info

Publication number
JP5336821B2
JP5336821B2 JP2008290016A JP2008290016A JP5336821B2 JP 5336821 B2 JP5336821 B2 JP 5336821B2 JP 2008290016 A JP2008290016 A JP 2008290016A JP 2008290016 A JP2008290016 A JP 2008290016A JP 5336821 B2 JP5336821 B2 JP 5336821B2
Authority
JP
Japan
Prior art keywords
cyclone
fluidized bed
fluidized
pressure equalizing
seal pot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008290016A
Other languages
Japanese (ja)
Other versions
JP2009281718A (en
Inventor
鳥居  功
明用  和幸
健 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008290016A priority Critical patent/JP5336821B2/en
Publication of JP2009281718A publication Critical patent/JP2009281718A/en
Application granted granted Critical
Publication of JP5336821B2 publication Critical patent/JP5336821B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、固気二相を分離させるサイクロンを備えた循環型の流動層ボイラに関するものである。   The present invention relates to a circulating fluidized bed boiler equipped with a cyclone that separates solid-gas two phases.

従来、砂などを流動材として用いて炉内を循環させ、炉内温度を一定に保つことで優れた燃焼効率及び脱硫効率が得られる循環型の流動層ボイラにおいては、固体の流動材と気体の燃焼ガスとを分離させるサイクロンが必要となる。(たとえば、特許文献1参照)
図4は循環型の流動層ボイラを示す構成図であり、図中の符号1は流動層ボイラ、2はシールポット部、3は流動層熱交換手段、4は低温粒子循環ライン、5は高温粒子循環ライン、6は排ガス熱交換手段、7はバグフィルタ、8は誘引ファン、9は煙突、10は外部循環型流動床炉(以下、「流動床炉」と呼ぶ)、20はサイクロンである。
この装置では、流動床炉10内で燃料を燃焼させて発生した燃焼ガスが流動材と共に固気2相の状態でサイクロン20へ導かれ、サイクロン20において、流動材の砂が主成分である固体と燃焼ガスの気体とに分離される。
Conventionally, in a circulating fluidized bed boiler in which excellent combustion efficiency and desulfurization efficiency are obtained by circulating the inside of the furnace using sand or the like as the fluidizing material and keeping the furnace temperature constant, the solid fluidizing material and gas A cyclone that separates the combustion gas is required. (For example, see Patent Document 1)
FIG. 4 is a block diagram showing a circulating fluidized bed boiler, in which 1 is a fluidized bed boiler, 2 is a seal pot section, 3 is a fluidized bed heat exchange means, 4 is a low temperature particle circulation line, and 5 is a high temperature. A particle circulation line, 6 is an exhaust gas heat exchange means, 7 is a bag filter, 8 is an induction fan, 9 is a chimney, 10 is an external circulation type fluidized bed furnace (hereinafter referred to as “fluidized bed furnace”), and 20 is a cyclone. .
In this apparatus, combustion gas generated by burning fuel in the fluidized bed furnace 10 is guided to the cyclone 20 in a solid-gas two-phase state together with the fluidized material. In the cyclone 20, a solid whose main component is sand of the fluidized material. And combustion gas.

上述した流動床炉10は、矩形断面の縦長柱状容器内部が燃焼室11となり、この燃焼室11の内部には、底部付近に燃料及び空気が供給される。この結果、流動床炉10内に充填された流動材、底部付近に供給される燃料及び空気は、燃焼室10内を上昇することとなり、この過程において、高温に保たれる流動材と共に上昇する燃料が燃焼して燃焼ガスとなる。
また、燃焼ガスが燃焼室11内を上昇する過程では、石灰や石灰石等の添加剤とも反応し、燃焼ガスに含まれている硫黄分を除去するいわゆる脱硫が行われる。なお、流動材として使用される砂の平均粒径は、通常0.15〜0.25mm程度である。
In the fluidized bed furnace 10 described above, the inside of a vertically long columnar vessel having a rectangular cross section becomes a combustion chamber 11, and fuel and air are supplied to the inside of the combustion chamber 11 near the bottom. As a result, the fluidized material filled in the fluidized bed furnace 10, the fuel and air supplied to the vicinity of the bottom rise in the combustion chamber 10, and in this process rise with the fluidized material kept at a high temperature. Fuel burns and becomes combustion gas.
Further, in the process in which the combustion gas rises in the combustion chamber 11, so-called desulfurization is performed to react with additives such as lime and limestone to remove sulfur contained in the combustion gas. In addition, the average particle diameter of the sand used as a fluidizing material is usually about 0.15 to 0.25 mm.

こうして燃焼室11内で燃焼した燃焼ガスの気体は、主成分が流動材の固体と共に固気2相流となり、燃焼室11の上部に設けられた出口開口12からサイクロン20へ送られる。出口開口12とサイクロン20の入口開口21との間は、サイクロン導入路30によって接続されている。そして、サイクロン20内においては、気体である燃焼ガスと固体である流動材とが分離し、燃焼ガスは上部の出口開口22から外部へ流出する。
一方、サイクロン20内で分離した流動材は底部に落下し、流動材出口23からシールポット部2を通って流動床炉10へ戻される。図示の構成例では、流動材をシールポット部2から燃焼室11内へ直接導く高温粒子循環ライン5と、流動層熱交換手段3にて熱交換後に炉内へ戻す低温粒子循環ライン4とに分かれている。
特開2001−311503号公報(図9参照)
The gas of the combustion gas burned in the combustion chamber 11 in this way becomes a solid-gas two-phase flow together with the fluid material solid, and is sent to the cyclone 20 from the outlet opening 12 provided in the upper portion of the combustion chamber 11. The outlet opening 12 and the inlet opening 21 of the cyclone 20 are connected by a cyclone introduction path 30. In the cyclone 20, the combustion gas that is a gas and the fluid material that is a solid are separated, and the combustion gas flows out from the upper outlet opening 22 to the outside.
On the other hand, the fluidized material separated in the cyclone 20 falls to the bottom and is returned to the fluidized bed furnace 10 from the fluidized material outlet 23 through the seal pot portion 2. In the illustrated configuration example, there are a high-temperature particle circulation line 5 that guides the fluidized material directly from the seal pot portion 2 into the combustion chamber 11, and a low-temperature particle circulation line 4 that returns the heat to the furnace after fluid exchange by the fluidized bed heat exchange means 3. I know.
Japanese Patent Laying-Open No. 2001-311503 (see FIG. 9)

近年、流動層ボイラ1の燃料としては、木屑や固形燃料(Refuse Paper & Plastic Fuel;RPF)等の廃棄系燃料が主体となっている。このような廃棄系燃料は、Na,K,Cl,金属Al等のように、低融点共結晶塩を形成しうる成分を含有し、循環粒子の流動性を悪化させる傾向にある。
すなわち、廃棄系燃料を循環型の流動層ボイラ1に使用すると、流動材の表面に粘着性を有する低融点共結晶塩が付着するので、シールポット部2の上部に位置するサイクロン下部では、図4に示す流動材出口23において粒子が滞留と崩壊とを繰り返す。
In recent years, the fuel of the fluidized bed boiler 1 is mainly waste fuel such as wood chips and solid fuel (Refuse Paper & Plastic Fuel; RPF). Such a waste fuel contains components that can form a low-melting point co-crystal salt, such as Na, K, Cl, and metal Al, and tends to deteriorate the fluidity of circulating particles.
That is, when the waste fuel is used in the circulating fluidized bed boiler 1, the low melting point co-crystal salt having adhesiveness adheres to the surface of the fluidized material, and therefore, in the lower part of the cyclone located at the upper part of the seal pot part 2, At the fluidized material outlet 23 shown in FIG.

具体的に説明すると、表面の粘着性を増した流動材は、サイクロン20の下部及びシールポット部2を通過する際に密着して滞留するので、粒子搬送用の空気がサイクロン20へ向けて上昇する流路を塞ぐこととなる。この結果、シールポット部2側では空気の内圧が上昇し、流動材出口23を塞ぐ流動材を崩壊させる圧力まで上昇した時点でサイクロン20内へ流入する。従って、流動床炉10の燃焼室11には、流動材の滞留及び崩壊に連動した差圧変動が発生する。このような差圧変動により、燃焼室11の炉内温度は高さ方向に不均一となるため、燃料の燃焼性も不安定になる。   More specifically, since the fluidized material having increased surface adhesiveness stays in close contact when passing through the lower part of the cyclone 20 and the seal pot part 2, the particle conveying air rises toward the cyclone 20. This will block the flow path. As a result, the internal pressure of the air rises on the seal pot portion 2 side, and flows into the cyclone 20 when the pressure rises to a pressure at which the fluid material closing the fluid material outlet 23 is collapsed. Therefore, a differential pressure fluctuation is generated in the combustion chamber 11 of the fluidized bed furnace 10 in conjunction with the retention and collapse of the fluidized material. Due to such differential pressure fluctuations, the temperature in the furnace of the combustion chamber 11 becomes uneven in the height direction, and the fuel combustibility becomes unstable.

このように、近年の流動層ボイラにおいては、廃棄系燃料の運用が増加するとともに、石炭燃料等の質も低下する傾向にあるので、流動材の表面に流動性を低下させる成分が付着するなどして、流動性の低下した流動材が流動材出口23で滞留及び崩壊を繰り返し、流動材の外部循環や燃料の燃焼性を不安定にするという問題を生じやすい状況にある。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、流動材が流動材出口に滞留することを防止して、流動材の外部循環や燃料の燃焼性を安定させることができる流動層ボイラを提供することにある。
As described above, in the fluidized bed boilers in recent years, the operation of the waste fuel increases and the quality of the coal fuel or the like also tends to decrease. Therefore, a component that lowers the fluidity adheres to the surface of the fluidized material. Thus, the fluidized material whose fluidity has deteriorated is likely to cause a problem that the fluid material is repeatedly accumulated and collapsed at the fluidized material outlet 23 to make the external circulation of the fluidized material and the fuel combustibility unstable.
The present invention has been made in view of the above circumstances, and an object thereof is to prevent the fluidized material from staying at the fluidized material outlet and to stabilize the external circulation of the fluidized material and the combustibility of the fuel. It is in providing the fluidized bed boiler which can be made to do.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の参考例に係る流動層ボイラは、流動材が循環する燃焼室内に燃料を供給して燃焼させる外部循環型流動床炉と、該外部循環型流動床炉に接続され主として流動材の固体から燃焼ガスの気体を分離させるサイクロンとを備えている流動層ボイラにおいて、前記サイクロンで分離された流動材がシールポット部及び高温粒子循環ラインを通って前記外部循環型流動床炉に戻され、前記サイクロンの流動材出口に連結して設けられた前記シールポット部の上部と前記サイクロンの下部との間を均圧させる手段が設けられていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A fluidized bed boiler according to a reference example of the present invention includes an external circulation type fluidized bed furnace for supplying fuel to a combustion chamber in which a fluidized material is circulated, and an external circulation type fluidized bed furnace which is connected to the external circulation type fluidized bed furnace and mainly a fluidized material solid In a fluidized bed boiler comprising a cyclone for separating the gas of combustion gas from the fluidized material separated by the cyclone is returned to the external circulation type fluidized bed furnace through a seal pot part and a high temperature particle circulation line, Means is provided for equalizing the pressure between the upper portion of the seal pot portion connected to the fluid outlet of the cyclone and the lower portion of the cyclone.

このような流動層ボイラによれば、サイクロンの流動材出口に連結して設けられたシールポット部の上部とサイクロンの下部との間を均圧させる手段が設けられているので、シールポット部の上部とサイクロンの下部との圧力差がなくなり、流動材出口に流動材が滞留することを防止して安定した流動を可能にする。   According to such a fluidized bed boiler, there is provided means for equalizing the pressure between the upper part of the seal pot part connected to the fluid outlet of the cyclone and the lower part of the cyclone. The pressure difference between the upper part and the lower part of the cyclone disappears, and the fluidized material is prevented from staying at the fluidized material outlet, thereby enabling a stable flow.

本発明に係る流動層ボイラは、流動材が循環する燃焼室内に燃料を供給して燃焼させる外部循環型流動床炉と、該外部循環型流動床炉に接続され主として流動材の固体から燃焼ガスの気体を分離させるサイクロンとを備えている流動層ボイラにおいて、前記サイクロンで分離された流動材がシールポット部及び高温粒子循環ラインを通って前記外部循環型流動床炉に戻され、前記サイクロンの流動材出口に連結して設けられた前記シールポット部の上部と前記サイクロンの下部との間を連通させる均圧管が設けられ、前記均圧管のサイクロン側開口位置は、サイクロン下部からの高さH(m)が、前記高温粒子循環ラインを前記外部循環型流動床炉に接続した位置におけるドラフトのゲージ圧P(mmH OG)及び前記流動材の粒子かさ密度ρ(kg/m )により表される式「H≧P/ρ」を満たしていることを特徴とするものである。 A fluidized bed boiler according to the present invention includes an external circulation type fluidized bed furnace for supplying and burning fuel in a combustion chamber in which a fluidized material circulates, and a combustion gas mainly connected to the external circulation type fluidized bed furnace, mainly from a fluidized material solid. A fluidized bed boiler comprising a cyclone for separating the gas of the fluid, the fluidized material separated by the cyclone is returned to the external circulation type fluidized bed furnace through a seal pot part and a high-temperature particle circulation line, A pressure equalizing pipe is provided to communicate between the upper part of the seal pot portion connected to the fluid material outlet and the lower part of the cyclone, and the cyclone side opening position of the pressure equalizing pipe has a height H from the lower part of the cyclone. (m) is, the particle bulk density of the hot particles the circulation line the external circulation fluidized draft at the position connected to the bed furnace gauge pressure P (mmH 2 OG) and said flow material ρ and it is characterized in that it meets kg / m 3) by expression represented the "H ≧ P / ρ".

このような流動層ボイラによれば、サイクロンの流動材出口に連結して設けられたシールポット部の上部とサイクロンの下部との間を連通させる均圧管が設けられているので、シールポット部を上昇する気流が均圧管を通ってサイクロン側へ流れ、流動材出口に流動材が滞留することを防止して安定した流動を可能にする。そして、均圧管のサイクロン側開口位置は、サイクロン下部からの高さH(m)が、高温粒子循環ラインを外部循環型流動床炉に接続した位置におけるドラフトのゲージ圧P(mmH OG)及び流動材の粒子かさ密度ρ(kg/m )により表される式「H≧P/ρ」を満たしているので、流動材出口に流動材が滞留することを確実に防止することができる。 According to such a fluidized bed boiler, since the pressure equalizing pipe is provided to communicate between the upper portion of the seal pot portion connected to the fluid outlet of the cyclone and the lower portion of the cyclone, the seal pot portion is The rising airflow flows through the pressure equalizing pipe to the cyclone side, and the fluidized material is prevented from staying at the fluidized material outlet, thereby enabling a stable flow. The cyclone side opening position of the pressure equalizing pipe is such that the height H (m) from the lower part of the cyclone is a draft gauge pressure P (mmH 2 OG) at a position where the high-temperature particle circulation line is connected to the external circulation type fluidized bed furnace. Since the formula “H ≧ P / ρ” represented by the particle bulk density ρ (kg / m 3 ) of the fluidizing material is satisfied, the fluidizing material can be reliably prevented from staying at the fluidizing material outlet.

上記の発明において、前記均圧管は、前記シールポット部の上部及び前記サイクロンの下部との接続部が上向きに傾斜していることが好ましく、これにより、流動材が均圧管へ入り込んで均圧管を塞いでしまうことを防止できる。   In the above invention, it is preferable that the pressure equalizing pipe is inclined so that the connection portion between the upper part of the seal pot part and the lower part of the cyclone is upward, whereby the fluidized material enters the pressure equalizing pipe. It can be prevented from blocking.

上記の発明において、前記均圧管は、円周方向に複数設けられていることが好ましく、これにより、サイクロンの大型化に応じて均圧管の数を増せば、流動材出口に流動材が滞留することを防止して安定した流動を可能にする。なお、複数の均圧管は、円周方向に等ピッチで対称となるように配置することが望ましい。   In the above invention, it is preferable that a plurality of the pressure equalizing pipes are provided in the circumferential direction. Accordingly, if the number of pressure equalizing pipes is increased in accordance with an increase in the size of the cyclone, the fluidized material stays at the fluidized material outlet. To prevent this and enable a stable flow. It is desirable that the plurality of pressure equalizing tubes be arranged so as to be symmetrical at equal pitches in the circumferential direction.

上述した本発明によれば、サイクロンの流動材出口に連結して設けられたシールポット部の上部とサイクロンの下部との間を均圧させる手段の均圧管を設けたので、シールポット部の上部とサイクロンの下部との圧力差がなくなり、流動材出口における流動材の滞留が防止されて安定した流動を可能にする。この結果、サイクロン下部に流動材が滞留することを防止し、外部循環を安定化させることができる。
また、上述した本発明によれば、シールポット部を上昇するガスが均圧管を通ってサイクロン側へ流れ、流動材出口に流動材が滞留することを防止して安定した流動を可能にするので、サイクロン下部に流動材が滞留することを防止して外部循環を安定化する。このため、廃棄系燃料や粗悪な石炭燃料等を使用する場合であっても、流動材出口で流動材が滞留及び崩壊を繰り返すことを防止できる。従って、流動材の滞留及び崩壊に連動して流動床炉の燃焼室内に発生していた差圧変動がなくなり、燃焼室内の炉内温度も高さ方向に均一となるので、燃料の燃焼性を安定させることができる。
すなわち、流動材が流動材出口に滞留することを防止し、流動材の外部循環や燃料の燃焼性が安定する流動層ボイラとなる。
According to the above-described present invention, since the pressure equalizing pipe of the means for equalizing the pressure between the upper portion of the seal pot portion connected to the fluid outlet of the cyclone and the lower portion of the cyclone is provided, the upper portion of the seal pot portion. And the lower part of the cyclone are eliminated, and the stagnation of the fluidized material at the fluidized material outlet is prevented to enable stable flow. As a result, the fluidized material can be prevented from staying in the lower part of the cyclone, and the external circulation can be stabilized.
Further, according to the present invention described above, the gas rising up the seal pot portion flows to the cyclone side through the pressure equalizing pipe, and the fluidized material is prevented from staying at the outlet of the fluidized material, thereby enabling a stable flow. This prevents the fluid material from staying in the lower part of the cyclone and stabilizes the external circulation. For this reason, even if it is a case where waste system fuel, poor coal fuel, etc. are used, it can prevent that a fluidized material repeats staying and collapse at a fluidized material exit. Therefore, the differential pressure fluctuation generated in the combustion chamber of the fluidized bed furnace in conjunction with the retention and collapse of the fluidized material is eliminated, and the furnace temperature in the combustion chamber becomes uniform in the height direction. It can be stabilized.
That is, the fluidized material is prevented from staying at the fluidized material outlet, and the fluidized bed boiler in which the external circulation of the fluidized material and the fuel combustibility are stabilized.

以下、本発明に係る流動層ボイラの一実施形態を図面に基づいて説明する。
図1に示す循環型の流動層ボイラ1は、砂等の流動材が循環する燃焼室11内に燃料を供給して燃焼させる外部循環型流動床炉(以下、「流動床炉」と呼ぶ)10と、この流動床炉10に接続され主として流動材の固体から燃焼ガスの気体を分離させるサイクロン20とを備えている。この流動床炉10は、燃焼室(炉)11内で燃料を燃焼させて発生した燃焼ガスが流動材と共に固気2相の状態でサイクロン20へ導かれ、サイクロン20の内部で流動材を主成分とする固体と燃焼ガスの気体とに分離される。
Hereinafter, an embodiment of a fluidized bed boiler according to the present invention will be described with reference to the drawings.
A circulating fluidized bed boiler 1 shown in FIG. 1 supplies an external circulating fluidized bed furnace (hereinafter referred to as a “fluidized bed furnace”) in which fuel is supplied into a combustion chamber 11 in which a fluid such as sand circulates. 10 and a cyclone 20 that is connected to the fluidized bed furnace 10 and separates the gas of the combustion gas from the solid of the fluidized material. In the fluidized bed furnace 10, combustion gas generated by burning fuel in a combustion chamber (furnace) 11 is guided to the cyclone 20 in a solid-gas two-phase state together with the fluid material, and the fluid material is mainly used inside the cyclone 20. It is separated into a solid component and a gas of combustion gas.

サイクロン20で分離された固相の流動材は、サイクロン下部の流動材出口23に連通するシールポット部2及び高温粒子循環ライン5を通って流動床炉10の燃焼室11に戻される。図示の構成例では、流動材をシールポット部2から燃焼室11内へ直接導く高温粒子循環ライン5と、流動層熱交換手段3に導いて熱交換後に燃焼室11内へ戻す低温粒子循環ライン4とに分かれている。
シールポット部2は、サイクロン20の下部を絞った最下端部に開口する流動材出口23の下方に延びる鉛直管部に設けられている。従って、サイクロン20内で分離した流動材は、サイクロン底部に落下した後、再循環用として供給される空気により流動し、流動材出口23からシールポット部2を通って流動床炉10へ戻される。
The solid phase fluidized material separated by the cyclone 20 is returned to the combustion chamber 11 of the fluidized bed furnace 10 through the seal pot portion 2 communicating with the fluidized material outlet 23 at the lower part of the cyclone and the hot particle circulation line 5. In the illustrated configuration example, a high-temperature particle circulation line 5 that leads the fluidized material directly from the seal pot portion 2 into the combustion chamber 11, and a low-temperature particle circulation line that guides the fluidized material to the fluidized bed heat exchange means 3 and returns it to the combustion chamber 11 after heat exchange. It is divided into four.
The seal pot portion 2 is provided in a vertical pipe portion that extends below a fluid outlet 23 that opens to the lowermost end portion of the cyclone 20 narrowed down. Therefore, after the fluidized material separated in the cyclone 20 falls to the bottom of the cyclone, it flows by the air supplied for recirculation, and is returned from the fluidized material outlet 23 to the fluidized bed furnace 10 through the seal pot portion 2. .

このように構成されたサイクロン20には、流動材出口23に連結して設けられたシールポット部2の上部とサイクロン20の下部との間を連通させる均圧管40が設けられている。この均圧管40は、シールポット部2の上部とサイクロン20の下部との間を均圧させる手段であり、一端がサイクロン下部から高さH以上となる位置に接続されている。この場合の高さHは、サイクロン20の流動材出口23が開口する位置を基準にして鉛直方向上向きに規定される寸法であり、均圧管40がサイクロン20の側壁面に開口する最上端位置までの寸法である。なお、均圧管40の他端は、シールポット部2の側面に接続されている。
また、この場合の高さHは、すなわち、均圧管40のサイクロン側開口位置は、サイクロン下部からの高さをH(m)とした場合、下記の式で表される条件を満たすことが望ましい。
〔式〕 H≧P/ρ
The cyclone 20 configured as described above is provided with a pressure equalizing pipe 40 that allows communication between the upper portion of the seal pot portion 2 provided to be connected to the fluid outlet 23 and the lower portion of the cyclone 20. The pressure equalizing pipe 40 is a means for equalizing the pressure between the upper portion of the seal pot portion 2 and the lower portion of the cyclone 20, and one end thereof is connected to a position where the height is higher than the height H from the lower portion of the cyclone. The height H in this case is a dimension that is defined upward in the vertical direction with reference to the position where the fluid outlet 23 of the cyclone 20 opens, and reaches the uppermost end position where the pressure equalizing pipe 40 opens on the side wall surface of the cyclone 20. It is the dimension. The other end of the pressure equalizing tube 40 is connected to the side surface of the seal pot portion 2.
Further, the height H in this case, that is, the cyclone side opening position of the pressure equalizing tube 40 preferably satisfies the condition represented by the following formula when the height from the lower part of the cyclone is H (m). .
[Formula] H ≧ P / ρ

この式において、P(mmHOG)は高温粒子循環ライン5を流動床炉10に接続した位置におけるドラフトのゲージ圧、ρ(kg/m)は流動材の粒子かさ密度である。
また、上述した均圧管40は、シールポット部2の上部及びサイクロン20の下部と接続される水平管部41,42を備え、両水平管部41,42間を連結する鉛直管部43を備えている。そして、水平管部41,42については、サイクロン20内を旋回する流動材が入り込んで塞ぐことを防止するため、たとえば図2に示す均圧管40Aのように、いずれも上向きに60度程度傾斜している水平管部41A,42Aとすることが好ましい。なお、上述した均圧管40,40Aは、シールポット部2の上部とサイクロン20の下部との間を連通させることが主たる目的であるから、その途中経路については特に限定されるものではない。
In this equation, P (mmH 2 OG) is the draft gauge pressure at the position where the high temperature particle circulation line 5 is connected to the fluidized bed furnace 10, and ρ (kg / m 3 ) is the particle bulk density of the fluidized material.
The pressure equalizing pipe 40 described above includes horizontal pipe parts 41 and 42 connected to the upper part of the seal pot part 2 and the lower part of the cyclone 20, and includes a vertical pipe part 43 that connects the horizontal pipe parts 41 and 42. ing. The horizontal pipe portions 41 and 42 are both inclined upward by about 60 degrees, for example, as in the pressure equalizing pipe 40A shown in FIG. It is preferable to use horizontal pipe portions 41A and 42A. The above-described pressure equalizing tubes 40, 40A are mainly intended to communicate between the upper portion of the seal pot portion 2 and the lower portion of the cyclone 20, and therefore the route therefor is not particularly limited.

このような均圧管40,40Aを備えた流動層ボイラ1は、サイクロン20の流動材出口23に連結して設けられたシールポット部2の上部とサイクロン20の下部との間が均圧管40,40Aを介して連通しているので、シールポット部2を通って上昇する空気の気流が均圧管40,40Aを通ってスムーズにサイクロン20側へ流れる。このため、サイクロン20及びシールポット部2の内部は略同じ圧力となり、サイクロン下部の流動材出口23に流動材が滞留することを防止して安定した流動を可能にする。すなわち、流動材の粒子がサイクロン20の下部に滞留することを防止し、流動材の外部循環をスムーズにして安定化することができる。   The fluidized bed boiler 1 equipped with such pressure equalizing tubes 40, 40 </ b> A has a pressure equalizing tube 40, between the upper portion of the seal pot portion 2 connected to the fluid outlet 23 of the cyclone 20 and the lower portion of the cyclone 20. Since it communicates via 40A, the airflow of the air which goes up through the seal pot part 2 flows smoothly through the pressure equalizing tubes 40 and 40A to the cyclone 20 side. For this reason, the inside of the cyclone 20 and the seal pot part 2 becomes substantially the same pressure, and the fluid material is prevented from staying at the fluid material outlet 23 under the cyclone, thereby enabling a stable flow. That is, the fluidized material particles can be prevented from staying in the lower part of the cyclone 20, and the external circulation of the fluidized material can be smoothed and stabilized.

特に、均圧管40,40Aがサイクロン20に開口する位置の高さHを規定する式1を満足すれば、流動材の滞留を確実に防止することができる。
このように、上述した本発明の流動層ボイラ1によれば、シールポット部2を上昇する気流が均圧管40,40Aを通ってサイクロン20側へ流れ、流動材出口23に流動材が滞留することを防止して安定した流動を可能にするので、サイクロン下部に流動材が滞留することを防止して外部循環を安定化する。このため、流動層ボイラ1の燃料として廃棄系燃料や粗悪な石炭燃料等を使用する場合であっても、流動材出口23で流動材が滞留及び崩壊を繰り返すことを防止できる。
In particular, if the equation 1 that defines the height H of the position where the pressure equalizing tubes 40, 40A open to the cyclone 20 is satisfied, the retention of the fluidized material can be reliably prevented.
Thus, according to the fluidized bed boiler 1 of the present invention described above, the air flow rising up the seal pot portion 2 flows to the cyclone 20 side through the pressure equalizing tubes 40 and 40A, and the fluidized material stays at the fluidized material outlet 23. This prevents the fluid from staying in the lower part of the cyclone and stabilizes the external circulation. For this reason, even when a waste system fuel, poor coal fuel, etc. are used as a fuel of the fluidized bed boiler 1, it can prevent that a fluidized material repeats stay and collapse at the fluidized material exit 23. FIG.

従って、流動材の滞留及び崩壊に連動して流動床炉10の燃焼室11内に発生していた差圧変動がなくなり、燃焼室11内の炉内温度も高さ方向に均一となるので、燃料の燃焼性を安定させることができる。すなわち、均圧管40,40Aを設けたことにより、流動材が流動材出口23に滞留することを防止し、流動材の外部循環や燃料の燃焼性が安定する流動層ボイラ1となる。   Therefore, the pressure difference fluctuation generated in the combustion chamber 11 of the fluidized bed furnace 10 in conjunction with the retention and collapse of the fluidized material is eliminated, and the furnace temperature in the combustion chamber 11 becomes uniform in the height direction. Fuel combustibility can be stabilized. That is, by providing the pressure equalizing tubes 40, 40A, the fluidized material is prevented from staying at the fluidized material outlet 23, and the fluidized bed boiler 1 in which the external circulation of the fluidized material and the fuel combustibility are stabilized.

また、上述した均圧管40,40Aは、たとえば図3に示すように、大型のサイクロン20Aを使用する場合など、円周方向に複数配置した構成を採用することが望ましい。
図3に示す構成例において、大型のサイクロン20Aには、流動材出口23に連結して設けられたシールポット部2の上部とサイクロン20の下部との間を連通させる均圧管40Aが、円周方向に等ピッチで6本設けられている。すなわち、サイクロン20Aの底部には、合計6本の均圧管40Aが設けられており、各均圧管40Aは、周方向に均等な60度ピッチとなるよう放射状に配設されている。
なお、図示の構成例では、上向きの傾斜角度を有する水平管部41A,42A備える均圧管40Aとしたが、図1に示すように、角度が0度(水平)の水平管部41,42を備える均圧管40を採用してもよい。
Moreover, it is desirable to employ a configuration in which a plurality of pressure equalizing tubes 40, 40A described above are arranged in the circumferential direction, for example, when a large cyclone 20A is used, as shown in FIG.
In the configuration example shown in FIG. 3, the large cyclone 20 </ b> A has a pressure equalizing pipe 40 </ b> A that communicates between the upper portion of the seal pot portion 2 connected to the fluid outlet 23 and the lower portion of the cyclone 20. Six are provided at equal pitches in the direction. That is, a total of six pressure equalizing tubes 40A are provided at the bottom of the cyclone 20A, and each of the pressure equalizing tubes 40A is radially arranged so as to have a uniform 60 degree pitch in the circumferential direction.
In the illustrated configuration example, the pressure equalizing pipe 40A including the horizontal pipe parts 41A and 42A having an upward inclination angle is used. However, as shown in FIG. 1, the horizontal pipe parts 41 and 42 having an angle of 0 degrees (horizontal) are provided. The pressure equalizing pipe 40 provided may be employed.

このように、シールポット部2の上部とサイクロン20の下部との間を均圧させる手段として複数の均圧管40,40Aを設けることにより、大型化したサイクロン20Aにおいても、流動材の滞留及び崩壊に連動して流動床炉10の燃焼室11内に発生していた差圧変動がなくなり、燃焼室11内の炉内温度も高さ方向に均一となるので、燃料の燃焼性を安定させることができる。従って、円周方向に複数の均圧管40,40Aを設けたことにより、サイクロン20Aの周方向においては、全周にわたって流動材が流動材出口23に滞留することを防止し、流動材の外部循環や燃料の燃焼性が安定する流動層ボイラとなる。   As described above, the provision of the plurality of pressure equalizing tubes 40 and 40A as means for equalizing the pressure between the upper portion of the seal pot portion 2 and the lower portion of the cyclone 20 makes it possible to retain and collapse the fluidized material even in the cyclone 20A that has been enlarged. The pressure difference fluctuation generated in the combustion chamber 11 of the fluidized bed furnace 10 is eliminated and the furnace temperature in the combustion chamber 11 becomes uniform in the height direction, so that the fuel combustibility is stabilized. Can do. Therefore, by providing a plurality of pressure equalizing tubes 40, 40A in the circumferential direction, in the circumferential direction of the cyclone 20A, the fluidized material is prevented from staying at the fluidized material outlet 23, and the fluid material is externally circulated. And a fluidized bed boiler with stable fuel combustibility.

このような大型サイクロン20Aに対し、6本程度の均圧管40,40Aを周方向に等ピッチで配置すれば、シールポット部2を上昇する気流は、各均圧管40,40Aを通ってサイクロン側へ流れるので、流動材出口においては全周にわたって流動材の滞留が防止される。従って、サイクロン20Aを大型化しても、部分的な滞留を生じることなく全体的に安定したスムーズな流動が可能になる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
If about six pressure equalizing pipes 40, 40A are arranged at an equal pitch in the circumferential direction with respect to such a large cyclone 20A, the air flow rising up the seal pot portion 2 passes through the pressure equalizing pipes 40, 40A on the cyclone side. Therefore, the fluid material is prevented from staying around the entire circumference at the fluid material outlet. Therefore, even if the size of the cyclone 20A is increased, a stable and smooth flow can be achieved as a whole without causing partial retention.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明の一実施形態に係る流動層ボイラの構成例を示す図である。It is a figure which shows the structural example of the fluidized bed boiler which concerns on one Embodiment of this invention. 均圧管の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of a pressure equalizing pipe. 均圧管を複数設けた流動層ボイラの構成例を示す図で、(a)は正面図、(b)は(a)のA−A断面図である。It is a figure which shows the structural example of the fluidized-bed boiler provided with two or more equalizing pipes, (a) is a front view, (b) is AA sectional drawing of (a). 流動層ボイラの従来例を示す構成例の図である。It is a figure of the structural example which shows the prior art example of a fluidized bed boiler.

符号の説明Explanation of symbols

1 流動層ボイラ
2 シールポット部
5 高温粒子循環ライン
10 外部循環型流動床炉(流動床炉)
11 燃焼室
20,20A サイクロン
23 流動材出口
40,40A 均圧管
DESCRIPTION OF SYMBOLS 1 Fluidized bed boiler 2 Seal pot part 5 Hot particle circulation line 10 External circulation type fluidized bed furnace (fluidized bed furnace)
11 Combustion chamber 20, 20A Cyclone 23 Fluidized material outlet 40, 40A Pressure equalizing pipe

Claims (3)

流動材が循環する燃焼室内に燃料を供給して燃焼させる外部循環型流動床炉と、該外部循環型流動床炉に接続され主として流動材の固体から燃焼ガスの気体を分離させるサイクロンとを備えている流動層ボイラにおいて、
前記サイクロンで分離された流動材がシールポット部及び高温粒子循環ラインを通って前記外部循環型流動床炉に戻され、前記サイクロンの流動材出口に連結して設けられた前記シールポット部の上部と前記サイクロンの下部との間を連通させる均圧管が設けられ
前記均圧管のサイクロン側開口位置は、サイクロン下部からの高さH(m)が、前記高温粒子循環ラインを前記外部循環型流動床炉に接続した位置におけるドラフトのゲージ圧P(mmH OG)及び前記流動材の粒子かさ密度ρ(kg/m )により表される式「H≧P/ρ」を満たしていることを特徴とする流動層ボイラ。
An external circulation type fluidized bed furnace for supplying fuel to a combustion chamber in which the fluidized material circulates and combusting, and a cyclone connected to the external circulation type fluidized bed furnace for separating the gas of combustion gas mainly from the fluidized material solids In a fluidized bed boiler
The fluidized material separated by the cyclone is returned to the external circulation type fluidized bed furnace through a seal pot portion and a high-temperature particle circulation line, and is connected to the fluidized material outlet of the cyclone and is an upper portion of the seal pot portion. And a pressure equalizing pipe that communicates between the lower part of the cyclone ,
The cyclone side opening position of the pressure equalizing tube is such that the height H (m) from the lower part of the cyclone is a draft gauge pressure P (mmH 2 OG) at a position where the high temperature particle circulation line is connected to the external circulation type fluidized bed furnace. And a fluidized bed boiler satisfying an expression “H ≧ P / ρ” represented by a particle bulk density ρ (kg / m 3 ) of the fluidized material.
前記均圧管は、前記シールポット部の上部及び前記サイクロンの下部との接続部が上向きに傾斜していることを特徴とする請求項1に記載の流動層ボイラ。 2. The fluidized bed boiler according to claim 1 , wherein a connection portion between the pressure equalizing pipe and an upper portion of the seal pot portion and a lower portion of the cyclone is inclined upward. 前記均圧管が、円周方向に複数設けられていることを特徴とする請求項1または2に記載の流動層ボイラ。 The fluidized bed boiler according to claim 1 or 2, wherein a plurality of the pressure equalizing pipes are provided in a circumferential direction.
JP2008290016A 2008-02-29 2008-11-12 Fluidized bed boiler Expired - Fee Related JP5336821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290016A JP5336821B2 (en) 2008-02-29 2008-11-12 Fluidized bed boiler

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008051048 2008-02-29
JP2008051048 2008-02-29
JP2008110484 2008-04-21
JP2008110484 2008-04-21
JP2008290016A JP5336821B2 (en) 2008-02-29 2008-11-12 Fluidized bed boiler

Publications (2)

Publication Number Publication Date
JP2009281718A JP2009281718A (en) 2009-12-03
JP5336821B2 true JP5336821B2 (en) 2013-11-06

Family

ID=41452345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290016A Expired - Fee Related JP5336821B2 (en) 2008-02-29 2008-11-12 Fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP5336821B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915590B1 (en) * 1970-08-05 1974-04-16
JPS5980427U (en) * 1982-11-24 1984-05-31 三菱重工業株式会社 Cyclone deposited material removal equipment
DE69225772T2 (en) * 1991-10-28 1998-11-19 Tsukishima Kikai Co Process for building a fluidized bed furnace with an external circulation system
JPH10300020A (en) * 1997-04-25 1998-11-13 Hitachi Ltd Power generation system
JP2002286216A (en) * 2001-03-28 2002-10-03 Chugai Ro Co Ltd Operation method for circulated fluidized bed
JP2003322308A (en) * 2002-04-30 2003-11-14 Tsukishima Kikai Co Ltd Circulation fluidized-bed furnace

Also Published As

Publication number Publication date
JP2009281718A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP1613422B1 (en) A method of and an apparatus for recovering heat in a fluidized bed reactor
JP5349606B2 (en) Circulating fluidized bed boiler
JPH08503540A (en) Method and apparatus for operating a circulating fluidized bed system
CN104515125B (en) Advanced ultra supercritical steam generator
US20120103584A1 (en) Water-cooling u-valve
PL176588B1 (en) Method of and apparatus for operating a circulating fluidized bed reactor
JP5490248B2 (en) Supply method and supply device for supplying fuel into a circulating fluidized bed boiler
JP5336821B2 (en) Fluidized bed boiler
JP6202555B2 (en) Fluidized medium recovery unit for circulating fluidized bed boiler
JP6681752B2 (en) Boiler equipment
US10253972B2 (en) Transition casting for boiler with steam cooled upper furnace
US9920924B2 (en) High temperature sub-critical boiler with steam cooled upper furnace and start-up methods
US20110048343A1 (en) Steam boiler equipped with cooling device
CN208652542U (en) Fluidized bed exchanger and corresponding burning facility
JP5748784B2 (en) Fluidized bed reactor equipment
US11835298B2 (en) Heat exchanger for a loopseal of a circulating fluidized bed boiler and a circulating fluidized bed boiler
US10429062B2 (en) High temperature sub-critical boiler with steam cooled upper furnace
US10234169B2 (en) Transition casting for boiler with steam cooled upper furnace
JPH1019206A (en) Circulation amount control device
JPS62258912A (en) Fluidized-bed combustion furnace
JP2023552273A (en) Circulating fluidized bed boiler
KR20140091286A (en) Circulating Fluidized Bed Boiler
WO2014184437A1 (en) Arrangement and method in boiler using fluidized-bed technology
JP2010255887A (en) Once-through boiler
JPS6346389A (en) Partition wall in fluidized bed heat recovering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R151 Written notification of patent or utility model registration

Ref document number: 5336821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees