JPS62258912A - Fluidized-bed combustion furnace - Google Patents

Fluidized-bed combustion furnace

Info

Publication number
JPS62258912A
JPS62258912A JP62099643A JP9964387A JPS62258912A JP S62258912 A JPS62258912 A JP S62258912A JP 62099643 A JP62099643 A JP 62099643A JP 9964387 A JP9964387 A JP 9964387A JP S62258912 A JPS62258912 A JP S62258912A
Authority
JP
Japan
Prior art keywords
chamber
furnace
fluidized bed
combustion furnace
bed combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099643A
Other languages
Japanese (ja)
Inventor
イェンス・ブントガールト
ヨハン・エミール・ピパー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Burumaisutaa & Buain Eneagii A
Burumaisutaa & Buain Eneagii As
Original Assignee
Burumaisutaa & Buain Eneagii A
Burumaisutaa & Buain Eneagii As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burumaisutaa & Buain Eneagii A, Burumaisutaa & Buain Eneagii As filed Critical Burumaisutaa & Buain Eneagii A
Publication of JPS62258912A publication Critical patent/JPS62258912A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
    • F22B31/0092Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed with a fluidized heat exchange bed and a fluidized combustion bed separated by a partition, the bed particles circulating around or through that partition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、燃焼炉の運転中、内部に存在する本活性物質
からなる渦動層がそのがなi)の部分示排出煙道ガスと
共に排出される程度に流動状態が維持され、不活性物質
が煙道ガスから分離後再循環される垂直燃焼室と、その
内部で炉作動媒体が再循環される渦動層物質から熱を吸
収する熱交換器を有する型式の流動床燃焼炉(a fl
uid−bedreactor)  に関する、 米国特許第4,111,158号には、灰粒子や未燃状
態の可燃物質を含む渦動層物質を再循環させる経路を二
つ有する上記型式の燃焼炉が記載されている。第一の経
路にはサイクロン分#l#lFiが配置され、同分離器
により煙道ガスと共に燃焼室から排出された粒子の大部
分が煙道ガスから分離される。分離粒子は燃焼室に再供
給される3、燃焼により生成されたエネルギーを利用す
る前述の熱交換器は第二の経路の一部を構成する3、第
二の経路においては、渦動層粒子は燃焼室内の渦動層底
部から除去され、癲焼室の外部に存在する熱交換すで冷
却された後、燃焼室の上部位置から燃焼室内に再供給さ
れる1、 本発明による燃焼炉は上記従来技術用る燃焼炉とは以下
の点で相違している。    ′本発明の燃焼炉におい
ては、燃焼室が上部に位置する炉室(upper fu
rnace shamber)と下部に位置する反応室
(lower 、reactor chamber)か
ら形成され、反応室内において燃焼が営まれる。反応室
は、炉室の中央下部に位置し、炉室よりもかなり(su
bstantially)小さな断面積を持つ。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that, during operation of a combustion furnace, a fluidized bed consisting of the active substance present inside the combustion furnace is in a fluidized state to the extent that it is exhausted together with the partial exhaust gas of i). A type of fluidized bed with a vertical combustion chamber in which the inert substances are separated and recycled from the flue gas, and a heat exchanger that absorbs heat from the fluidized bed material in which the furnace working medium is recycled. Combustion furnace (a fl
U.S. Pat. No. 4,111,158, for ash particles and unburnt combustible material, describes a combustion furnace of this type having two paths for recirculating fluidized bed material, including ash particles and unburned combustible material. There is. A cyclone #l #lFi is arranged in the first path, by means of which separator a large part of the particles discharged from the combustion chamber together with the flue gas are separated from the flue gas. The separated particles are re-fed into the combustion chamber3, and the aforementioned heat exchanger that utilizes the energy produced by the combustion forms part of a second path3, in which the fluidized bed particles are The fluidized layer is removed from the bottom of the combustion chamber, cooled by a heat exchanger existing outside the combustion chamber, and then re-supplied into the combustion chamber from the upper part of the combustion chamber. It differs from the combustion furnace used in technology in the following points. 'In the combustion furnace of the present invention, the combustion chamber is located in the upper furnace chamber (upper fu
The combustion chamber is formed of a lower reactor chamber and a lower reactor chamber, and combustion takes place within the reaction chamber. The reaction chamber is located at the lower center of the furnace chamber, and is much larger than the furnace chamber.
bstantially) have a small cross-sectional area.

i交換器は、反応室近くに隣接する単数または→ 複数の垂直管の中に組み込まれ、垂直管の頂部は炉室に
開口している。
The i-exchanger is installed in one or more vertical tubes adjacent to the reaction chamber, the top of which opens into the furnace chamber.

本発明により得られる数多くの重要な利点は、以下疋述
べる燃焼炉運転の概説の中に記述される。
A number of important advantages provided by the present invention are described in the following overview of combustion furnace operation.

燃焼室の底部に位置する反応室の中で、供給された可燃
物質の大部分は流・勧化反応により燃焼する。゛燃焼用
空気が反応室の底部より注入され、その流量は、灰粒子
や未燃状態の可燃物質を含む渦動層中の粒子の多くが、
煙道ガスに伴われて上方にある炉室へ移送される程度に
大流景である。・本発明の特徴である燃焼室の分割、前
述の1如く下部に位置する反応室と該反応室忙比べ十分
に大きな断面積を有する上部に位11°1する炉室への
分割、に基づいて反応室から炉室へとガスが流れる際、
急敵なガス流−’4 (flow rate)の低下が
発生する。
In the reaction chamber located at the bottom of the combustion chamber, most of the supplied combustible material is combusted by a flow-induction reaction. ``Combustion air is injected from the bottom of the reaction chamber, and its flow rate is such that most of the particles in the fluidized bed, including ash particles and unburned combustible materials,
The flow is so great that it is carried along with the flue gas to the furnace room above.・Based on the division of the combustion chamber, which is a feature of the present invention, into the reaction chamber located at the lower part and the furnace chamber located at the upper part, which is located at 11°1 and has a sufficiently large cross-sectional area compared to the reaction chamber, as described in 1 above. When gas flows from the reaction chamber to the furnace chamber,
A sudden drop in gas flow rate occurs.

その結果、渦動粒子に対する煙道ガスの搬送力は急激に
減衰し、渦動粒子はガス流量が零か零に近い炉室壁面に
向って外側へ移動する。該粒子は、最終的には単数又は
複数の管開口内へと降下し、作動媒体への熱受渡しの後
、該管底部より反、芯室底部へと再供給される、 このように煙道ガスから高温粒子が大幅に除去されるの
で、炉室直後の煙道に熱交換器の伝熱面を配置すること
が可能となる。それによって、煙道ガスの温度を、続い
て接続されるサイクロン分離器を、前述の米国特許にお
けるサイクロン分離器においては不可欠であった耐熱・
耐疲労コーティングを不要とし、鋼材のみで製作可能な
湛IWにまで低下させることができる。
As a result, the conveying force of the flue gas against the swirling particles is rapidly attenuated, and the swirling particles move outward toward the wall of the furnace chamber where the gas flow rate is zero or close to zero. The particles eventually fall into the pipe opening or openings and, after heat transfer to the working medium, are re-fed from the pipe bottom back into the core chamber bottom. Since the gas is largely free of hot particles, it is possible to place the heat transfer surface of the heat exchanger in the flue immediately after the furnace chamber. Thereby, the temperature of the flue gas is controlled by the temperature of the subsequently connected cyclone separator, which is essential for the cyclone separator in the aforementioned U.S. patent.
No fatigue-resistant coating is required, and the IW can be reduced to a level that can be manufactured using only steel materials.

この結果、一方では、分離器中央にガス排出管を設ける
ことが可能となり、該排出管の長さを予め設電された分
離度に調整できるので、より高度の分離が実現され、他
方ではより軽量、より低順な製作が実現される。
As a result, on the one hand, it is possible to provide a gas discharge pipe in the center of the separator, the length of which can be adjusted to a preset degree of separation, resulting in a higher degree of separation; Lighter weight and lower cost production are realized.

単数又は複数管の中央反応室−\の取付は位11iを共
通の中間81とすることにより、良好な熱効率。
The central reaction chamber of single or multiple tubes can be mounted with good thermal efficiency by using the common intermediate 81 at position 11i.

中間壁の熱応力の低下、構成の単純化がもたらされる。This results in a reduction in the thermal stress of the intermediate wall and a simplification of the construction.

また、燃焼室出口における煙道ガスの温度が比較的低温
となるので・、反応室は別であるが、耐熱材による補強
は概+λ不要となる〜 結果としてもたらされる燃焼炉の蓄熱能力の低下は、運
転開始に要する時間の短縮と、運転中断時の冷却に要す
る時間の短縮を可能とする、また、燃焼炉自体の重量が
引き下げられるので、炉支持構造及び炉の基材の重量も
軽減される。
In addition, since the temperature of the flue gas at the exit of the combustion chamber is relatively low, reinforcement with heat-resistant materials is generally not necessary, except for the reaction chamber. As a result, the heat storage capacity of the combustion furnace is reduced. This reduces the time required to start up operations and reduce the time required for cooling during interruptions in operation.In addition, the weight of the combustion furnace itself is reduced, so the weight of the furnace support structure and furnace base material is also reduced. be done.

図面を参照しながら、より詳細に本発明を説明する1、 図示した実施例においては、燃焼炉は自然循環の燃焼炉
容器として記載されている、燃焼炉の燃焼室lは垂直か
つ気密の管状壁で囲まれており、その上昇管は従来のも
のと同様に上部ドラム2に適当な一\ツダーを介して接
す、される。また上昇管の下端は8+示しない分配箱に
接続されている、燃焼室1は、以下燃焼炉の炉室と呼ぶ
上部区域3と、炉室の下部である中央に同軸的に位置し
その中で燃・暁の大部分が行われる燃焼炉の反応室区域
4に分割される。頂部が炉室に向って開放されている反
応室は、炉室に比べかなり小さな断面積を有する。図示
の実施例においては、反応室の断面、積は炉室の断面積
の約25係である。
The invention will now be explained in more detail with reference to the drawings.1 In the illustrated embodiment, the combustion furnace is described as a combustion furnace vessel with natural circulation, the combustion chamber l of the combustion furnace having a vertical and gas-tight tubular shape. It is surrounded by a wall, and its riser pipe contacts the upper drum 2 via a suitable pipe, as in the conventional case. The lower end of the riser tube is also connected to a distribution box 8+ not shown, the combustion chamber 1 is located coaxially with the upper section 3, hereinafter referred to as the furnace chamber of the combustion furnace, and in the middle, the lower part of the furnace chamber. It is divided into reaction chamber sections 4 of the combustion furnace where the bulk of the combustion takes place. The reaction chamber, which is open at the top towards the furnace chamber, has a considerably smaller cross-sectional area than the furnace chamber. In the illustrated embodiment, the cross-sectional area of the reaction chamber is about 25 times the cross-sectional area of the furnace chamber.

二つの垂直管5、この総断面積は図示の実施例では実質
的に反応室4の断面積に等しい、が反応室4の向い合っ
た二つの側面壁に沿って配置される。各管5の残りの三
面は第1図、i2図に示すように断熱外壁によって取囲
まれている。反応室4の外壁、このうちの二壁は必然的
に管5の仕切壁を構成している、は気密の管状壁として
形成され、その管は下部において1ネ1示しない分配箱
から供給を受け、頂部においては外側に広がり、炉室3
の垂直管状壁の一部となっている。
Two vertical tubes 5, the total cross-sectional area of which in the illustrated embodiment is substantially equal to the cross-sectional area of the reaction chamber 4, are arranged along two opposite side walls of the reaction chamber 4. The remaining three sides of each tube 5 are surrounded by a heat insulating outer wall as shown in FIGS. 1 and 12. The outer walls of the reaction chamber 4, two of which necessarily constitute the partition walls of the tubes 5, are formed as gas-tight tubular walls, the tubes being fed at the bottom from a distribution box, not shown. holder, expands outward at the top, and opens into the furnace chamber 3.
part of the vertical tubular wall.

第1図、第2図に示すよ5K、反応室4から炉室3へ移
る部分における配管状態は、管6の各々が他の管7に討
し一つおきに垂直方向にずれる(displaced)
ように配置される。
As shown in FIGS. 1 and 2, the state of the piping at the transition from the reaction chamber 4 to the furnace chamber 3 is such that each tube 6 is connected to another tube 7, and every other tube is displaced in the vertical direction.
It is arranged like this.

同時に、管状壁で後続する管に接続するシート状の部分
が反応室から炉室への移行部分において外部へ突出する
ので、粒子状物面が通過するための流路が、反応室4と
炉室3壁の間に形成される、前記粒子状物質は、反応室
4上方へ吹き出さ」シtこ後、炉室3内でのガス流速の
減少により管5の内部へ落下する。
At the same time, the sheet-like part of the tubular wall connecting to the following tube protrudes to the outside at the transition from the reaction chamber to the furnace chamber, so that a flow path for the particulate surface to pass between the reaction chamber 4 and the furnace The particulate matter formed between the walls of the chamber 3 is blown upwards into the reaction chamber 4 and then falls into the interior of the tube 5 due to the reduction in the gas flow rate in the furnace chamber 3.

管5の底部には各々、図示していないが、調整可能なス
ライド弁が設けられ、粒子状物質の反応室4底部への再
循環量を制御できるよ5になっている1、 第3図に最も良く示されるように、反応室4の下方に、
流動用及び燃焼用空気を吸入する吸入開口9を設けた通
風室8が配置される。
Each of the tubes 5 is provided with an adjustable slide valve (not shown) at the bottom to control the amount of particulate matter recirculated to the bottom of the reaction chamber 4.1, FIG. Below reaction chamber 4, as best shown in
A ventilation chamber 8 is provided with an intake opening 9 for intake of flow and combustion air.

空気は、通風室8及び従来より使用されている火格子あ
るいはノズル底部を通り反応室4に吹き込まれる、 ゛  該空気の流jI:ば、室内に供給された粒子状物
質が、強制的に上方旋回させられ、燃焼助出を改善され
るのみならず、粒子状物質の大部分が燃焼時に生成する
煙道カス(伴われて、煙道ガスが反応室の上部開口から
排出される際に搬送(いわゆる気体電送)されることを
保証する程度の流量である、。
Air is blown into the reaction chamber 4 through the ventilation chamber 8 and the bottom of a conventionally used grate or nozzle. This not only improves combustion assistance, but also removes most of the particulate matter from the flue scum produced during combustion, which is carried away when the flue gas exits from the upper opening of the reaction chamber. (so-called gas electric transmission), which is at a flow rate that guarantees that it will be carried out.

第3図に)ま他に、燃焼炉の運転中に失われる粒状可燃
性物質、渦動物質を補充するための入口管31.12が
図式的に示されている。
Also shown schematically in FIG. 3 is an inlet pipe 31.12 for replenishing particulate combustible material, vortex material, which is lost during operation of the combustion furnace.

図示の実施例では、炉室3は反応室とほぼ等しい高さを
持っている。炉室3には、その頂部に傾斜した管状壁】
3が存在し、この壁部により後続する、炉室の残部の断
面積と比較してかなり(substantially)
狭い断面積を有する煙道ガス排出開口14が区画される
In the illustrated embodiment, the furnace chamber 3 has approximately the same height as the reaction chamber. Furnace chamber 3 has a sloping tubular wall at its top]
3 is present and is followed by this wall, which is substantially compared to the cross-sectional area of the remainder of the furnace chamber.
A flue gas outlet opening 14 with a narrow cross-sectional area is defined.

短い上昇搬送路15及びかなり長い下降搬送路】6が排
出開口】4の下流(・ζ設げられる。画報送路15.1
6は、炉室3 fill 34面に直接(i mm e
d 1ate)取付けられる。
A short ascending conveyance path 15 and a fairly long downward conveyance path 6 are provided downstream of the discharge opening 4. Picture conveyance path 15.1
6 directly on the furnace chamber 3 fill 34 surface (i mm e
d1ate) installed.

二つの流路15.16には、17で示されろ伝熱面(c
onvection heat 5urface)が取
付けられ、それ自体は周知の方法で例えは初過熟器、空
気予熱器又はエコツマ・(ザが構成される5、ガス通路
16の下端部から上方に延びる流路】8がサイクロン分
離器19に接続される、分離器の中で煙道ガス中に残留
し−こし・た粒子の大部分がガスから分離され排出管2
0を経て容器2J内に回収される、回収された粒子は戻
り管22を介して全量又は部分的に管5の1つに再供給
され、及び/又はシステムから除去される。このように
して不純物(粒子)を除去された煙道ガスは、管路23
を経て分離器から排出される。管23は、第1図に示す
ように煙道ガスを付加的に設ける伝熱面(convec
tion heat 5urface) 24に導き、
更にバッグフィルターや電気集塵器からなるダスト分離
器25に接続させる、図示していないドラフト送風機に
よりダスト分離器25内の煙道ガスは煙突に排出される
The two channels 15 and 16 have heat transfer surfaces (c
The invection heat 5 surface) is installed in a manner well known per se, for example, an initial overheater, an air preheater or an ecotsuma surface (5, a flow path extending upwardly from the lower end of the gas passage 16). is connected to a cyclone separator 19, in which the majority of the particles remaining in the flue gas are separated from the gas and discharged into the discharge pipe 2.
0 into the container 2J, the collected particles are re-supplied in whole or in part via the return pipe 22 into one of the pipes 5 and/or removed from the system. The flue gas from which impurities (particles) have been removed in this way is transferred to the pipe 23.
It is then discharged from the separator. The tube 23 has a heat transfer surface (convex) additionally provided with flue gas as shown in FIG.
tion heat 5 surface) 24,
Further, the flue gas in the dust separator 25 is discharged into the chimney by a draft blower (not shown) connected to the dust separator 25, which is a bag filter or an electric precipitator.

前述の搬送路中の伝熱面(convqction he
atsurface)  や、反応室4及び炉室3内の
水流管状壁の外にも、燃焼炉には、二つの管5内に伝熱
面2(1が配置されている。第2図に最も良く示される
この伝熱面は螺線状の管として形成され、少なくともそ
の一部は燃焼炉の最高温部分にさらされる。従って、燃
焼炉が例えばターボジェネレータ等に対して過熱蒸気を
供給する燃焼炉として使用されるならば、前記伝熱面全
体又はその一部が、燃焼炉における最終段の過熱器を構
成することは明らかである。
The heat transfer surface in the aforementioned conveyance path
Besides the water flow tubular walls in the reaction chamber 4 and the furnace chamber 3, the combustion furnace also has a heat transfer surface 2 (1) arranged in the two tubes 5, best shown in FIG. This heat transfer surface shown is formed as a spiral tube and at least a part of it is exposed to the hottest part of the combustion furnace.Therefore, the combustion furnace supplies superheated steam to, for example, a turbo generator, etc. It is clear that if used as such, the entire heat transfer surface or a portion thereof constitutes the final stage superheater in the combustion furnace.

管5から反応室4への粒子状物質の再循環が調整可能な
スライド弁によって制御される事は、既に簡単に述べた
が、該スライド弁は、可燃物質の供給量と関連して、伝
熱面26における作動媒体の熱吸収量の制御、反応室4
内の渦動層温度の制御にも用いられる。
It has already been mentioned briefly that the recirculation of the particulate matter from the tube 5 into the reaction chamber 4 is controlled by an adjustable slide valve, which is configured to control the recirculation of the particulate matter in relation to the feed rate of combustible material. Control of the amount of heat absorption of the working medium in the thermal surface 26, reaction chamber 4
It is also used to control the temperature of the fluidized layer inside the tank.

ある程度知られているように、水の注入により連結され
るタービンの蒸気温度を制御することも可能である。蒸
気の圧力は可燃物質及び空気の供給量を調整するための
制御パラメータとして使用される。
As is known to some extent, it is also possible to control the steam temperature of connected turbines by water injection. The pressure of the steam is used as a control parameter to adjust the supply of combustible material and air.

少量の供給を行う場合には、燃焼に必要な空気量は、反
応室4内で粒子を充分に流動化するに要する量を太き(
下回る0、このような状況下では、反応室の底部10を
介して煙道ガスの一部が反応室へ再循環される。
When supplying a small amount, the amount of air required for combustion is larger than the amount required to sufficiently fluidize the particles in the reaction chamber 4 (
Under these circumstances, a portion of the flue gas is recycled to the reaction chamber via the bottom 10 of the reaction chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明燃焼炉の実施例で、第2図のI−I線
)(沿った垂直部分断面図、第2図は第1図の■−■線
に沿った断面図、第3図は第1図に対応する燃焼炉を簡
略化した図で示したものである。 なお、図面に用いられている符号において、3は炉室、
4は反応室、]9はサイクロン分離器、17.24.2
6は伝熱面、25はダスト分離器である。 (外5名) ―1 j− l歿2
Fig. 1 shows an embodiment of the combustion furnace of the present invention, and Fig. 2 is a vertical partial sectional view taken along line I-I in Fig. 2; Figure 3 is a simplified diagram of the combustion furnace corresponding to Figure 1. In addition, in the symbols used in the drawing, 3 indicates the furnace chamber;
4 is a reaction chamber,] 9 is a cyclone separator, 17.24.2
6 is a heat transfer surface, and 25 is a dust separator. (5 other people) -1 j- l歿2

Claims (7)

【特許請求の範囲】[Claims] (1)垂直燃焼室(1)であつて、燃焼炉の運転中燃焼
室内部に存在する不活性物質からなる渦動層が、そのか
なりの部分が排出煙道ガスと共に排出される程度に流動
状態が維持されると共に、煙道ガスから分離された不活
性物質が再循環されるもの、及び熱交換器(26)であ
つて、その内部で炉作動媒体が再循環される渦動層物質
から熱を吸収するもの、を有する型式の流動床燃焼炉で
あつて、燃焼室(1)が上方に位置する炉室(3)及び
下方に位置し内部で燃焼が行われる反応室(4)から構
成され、反応室(4)は炉室(3)の直下でかつ中央に
位置すると共に、その断面積は炉室に比べかなり小さく
、前記熱交換器(26)は、反応室(4)近くに隣接す
る単数または複数の垂直管(5)の中に組み込まれ、該
垂直管の頂部は炉室(3)に開口している、ことを特徴
とする流動床燃焼炉。
(1) A vertical combustion chamber (1) in which a vortex layer made of inert material existing inside the combustion chamber during operation of the combustion furnace is in a fluid state to the extent that a considerable portion of it is exhausted together with the exhaust flue gas. a heat exchanger (26) in which heat is maintained and inert material separated from the flue gas is recycled; A fluidized bed combustion furnace of the type having a combustion chamber (1), which absorbs The reaction chamber (4) is located directly below and in the center of the furnace chamber (3), and its cross-sectional area is considerably smaller than that of the furnace chamber, and the heat exchanger (26) is located near the reaction chamber (4). Fluidized bed combustion furnace, characterized in that it is installed in one or more adjacent vertical tubes (5), the tops of which open into the furnace chamber (3).
(2)特許請求の範囲第1項に記載の流動床燃焼炉にお
いて、炉室(3)と反応室(4)の断面積の比が少なく
とも3:1であることを特徴とする流動床燃焼炉。
(2) The fluidized bed combustion furnace according to claim 1, characterized in that the ratio of the cross-sectional areas of the furnace chamber (3) and the reaction chamber (4) is at least 3:1. Furnace.
(3)特許請求の範囲第1項または第2項に記載の流動
床燃焼炉において、炉室(3)が炉室頂部に存在する煙
道ガス排出開口(14)に至るまで、ほぼ一定の断面積
を有する炉室であることを特徴とする流動床燃焼炉。
(3) In the fluidized bed combustion furnace according to claim 1 or 2, the furnace chamber (3) has a substantially constant flow rate up to the flue gas discharge opening (14) located at the top of the furnace chamber. A fluidized bed combustion furnace characterized by a furnace chamber having a cross-sectional area.
(4)特許請求の範囲第3項に記載の流動床燃焼炉にし
て、流動床燃焼炉内部に伝熱面(17)を設置し前記炉
室に連通する下方に延びる搬送路(16)を有し、該搬
送路(16)の下端は概ね反応室(4)及び垂直管(5
)の開口位置に位置することを特徴とする流動床燃焼炉
(4) In the fluidized bed combustion furnace according to claim 3, a heat transfer surface (17) is installed inside the fluidized bed combustion furnace, and a conveyance path (16) extending downward and communicating with the furnace chamber is provided. The lower end of the conveyance path (16) is generally connected to the reaction chamber (4) and the vertical pipe (5).
) A fluidized bed combustion furnace characterized by being located at an open position.
(5)特許請求の範囲第1項から第4項までのいずれか
一つに記載の流動床燃焼炉において、反応室(4)及び
垂直管(5)の高さが、燃焼室(1)全体の高さの約半
分であることを特徴とする流動床燃焼炉。
(5) In the fluidized bed combustion furnace according to any one of claims 1 to 4, the height of the reaction chamber (4) and the vertical pipe (5) is higher than that of the combustion chamber (1). A fluidized bed combustion furnace characterized by being approximately half of the total height.
(6)特許請求の範囲第1頃から第5項までのいずれか
一つに記載の流動床燃焼炉において、単数又は複数の垂
直管(5)に組込まれる熱交換器は、最終段の過熱器を
含むことを特徴とする流動床燃焼炉。
(6) In the fluidized bed combustion furnace according to any one of claims 1 to 5, the heat exchanger incorporated in the single or plural vertical pipes (5) is a final stage superheater. A fluidized bed combustion furnace comprising:
(7)特許請求の範囲第1項から第6項までのいずれか
一つに記載の流動床燃焼炉において、反応室(4)は挿
入される熱交換面を持たないことを特徴とする流動床燃
焼炉。
(7) In the fluidized bed combustion furnace according to any one of claims 1 to 6, the reaction chamber (4) has no inserted heat exchange surface. Floor combustion furnace.
JP62099643A 1986-04-23 1987-04-22 Fluidized-bed combustion furnace Pending JPS62258912A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK1860/86 1986-04-23
DK186086A DK186086A (en) 1986-04-23 1986-04-23 Boiler for fluid-bed combustion

Publications (1)

Publication Number Publication Date
JPS62258912A true JPS62258912A (en) 1987-11-11

Family

ID=8108600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099643A Pending JPS62258912A (en) 1986-04-23 1987-04-22 Fluidized-bed combustion furnace

Country Status (8)

Country Link
EP (1) EP0243156A1 (en)
JP (1) JPS62258912A (en)
KR (1) KR870010356A (en)
BR (1) BR8701911A (en)
DD (1) DD256081A5 (en)
DK (1) DK186086A (en)
FI (1) FI871698A (en)
NO (1) NO871667L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK120288D0 (en) * 1988-03-04 1988-03-04 Aalborg Boilers FLUID BED COMBUSTION REACTOR AND METHOD FOR OPERATING A FLUID BED COMBUSTION REACTOR
JPH03213902A (en) * 1990-01-19 1991-09-19 Nkk Corp Burner for circulating fluidized-bed combustion
WO1994022571A1 (en) 1993-04-05 1994-10-13 A. Ahlstrom Corporation A fluidized bed reactor system and a method of manufacturing the same
EP0722067A3 (en) * 1995-01-12 1998-02-04 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Heat recovery apparatus by fluidized bed

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE409953B (en) * 1976-12-08 1979-09-17 Chambert Lars Axel Andreas SET AND DEVICE FOR SEPARATION OF MATERIAL AT A FLUIDIZED BED
DE3322971C3 (en) * 1983-06-25 1994-07-28 Lentjes Ag Fluidized bed reactor
CN1010425B (en) * 1985-05-23 1990-11-14 西门子股份有限公司 Fluidized bed furnace

Also Published As

Publication number Publication date
NO871667L (en) 1987-10-26
FI871698A0 (en) 1987-04-16
DK186086A (en) 1987-10-24
DK186086D0 (en) 1986-04-23
EP0243156A1 (en) 1987-10-28
FI871698A (en) 1987-10-24
BR8701911A (en) 1988-02-02
DD256081A5 (en) 1988-04-27
KR870010356A (en) 1987-11-30
NO871667D0 (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JP3132662B2 (en) Circulating fluidized bed reactor and operating method thereof
US4688521A (en) Two stage circulating fluidized bed reactor and method of operating the reactor
EP0365723B1 (en) Fluidized bed reactor having an integrated recycle heat exchanger
US4538549A (en) Fast fluidized bed boiler and a method of controlling such a boiler
JP2657870B2 (en) Fluid bed combustion apparatus and method with integrated recirculation heat exchanger with recirculation rate control and backflow seal
JP2660826B2 (en) Fluid bed combustion apparatus with variable efficiency recirculating heat exchanger having multiple compartments and method of operation thereof
JP2818236B2 (en) Fluid bed cooler, fluid bed combustion reactor and method of operating the reactor
JPS6321401A (en) Steam generator using separate fluid flow circuit and operating method thereof
RU2459659C1 (en) Boiler with circulating fluid bed
JPH0650678A (en) Fluidized-bed reactor device and method having heat exchanger
JPH04227403A (en) Fluidized-bed combustion apparatus and operating method thereof
JPH07301401A (en) Pressure fluidized-bed combustion apparatus with integral recirculating heat exchanger and said operation
JPH0798163B2 (en) Horizontal cyclone separator for fluidized bed reactor
JPH03102105A (en) Circulating fluid bed reactor utilizing integrated curved arm separator
KR100293851B1 (en) Large Fluidized Bed Reactor
US5277151A (en) Integral water-cooled circulating fluidized bed boiler system
JPS62258912A (en) Fluidized-bed combustion furnace
JPH05223210A (en) Fluidized-bed steam reactor including two horizontal cyclone separator and internal recirculating heat exchanger
JP2939338B2 (en) Fluidized bed reactor and method for producing the same
CA1311395C (en) Fluidized bed steam generating system including a steam cooled cyclone separator
JPH01203801A (en) Fluidized bed boiler having vertical heat transfer pipe and fluidized bed hot water boiler employing said boiler
JP2023552273A (en) Circulating fluidized bed boiler
JPH0642941B2 (en) Fluidized bed reactor with integrated recycle heat exchanger and method of operating same
CA1240889A (en) Fast fluidized bed boiler and a method of controlling such a boiler
JPH0451723B2 (en)