JP5335121B2 - Crack detection apparatus and crack detection method - Google Patents

Crack detection apparatus and crack detection method Download PDF

Info

Publication number
JP5335121B2
JP5335121B2 JP2012219165A JP2012219165A JP5335121B2 JP 5335121 B2 JP5335121 B2 JP 5335121B2 JP 2012219165 A JP2012219165 A JP 2012219165A JP 2012219165 A JP2012219165 A JP 2012219165A JP 5335121 B2 JP5335121 B2 JP 5335121B2
Authority
JP
Japan
Prior art keywords
measurement object
crack
lower plate
vibration
levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012219165A
Other languages
Japanese (ja)
Other versions
JP2012255811A (en
Inventor
智子 大石
彰 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012219165A priority Critical patent/JP5335121B2/en
Publication of JP2012255811A publication Critical patent/JP2012255811A/en
Application granted granted Critical
Publication of JP5335121B2 publication Critical patent/JP5335121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、測定対象物内に発生したクラックを検知するクラック検知装置及びクラック検知方法に関するものである。   The present invention relates to a crack detection device and a crack detection method for detecting a crack generated in a measurement object.

従来、クラックを検出する方法としては、測定対象物に振動を与えることにより音を発生させ、発生音を音響解析してそれぞれの音に対応するパワースペクトルを求め、所定の周波数領域でのパワースペクトルのスペクトル強度の差に基づいてクラックの有無を判断する方法が知られている(例えば、特許文献1参照)。   Conventionally, as a method for detecting cracks, sound is generated by applying vibration to an object to be measured, the generated sound is subjected to acoustic analysis to obtain a power spectrum corresponding to each sound, and a power spectrum in a predetermined frequency region. There is known a method for determining the presence or absence of cracks based on the difference in the spectral intensity (see, for example, Patent Document 1).

他には、空気の吹き出しおよび吸引によって測定対象物を浮上させ、浮上状態でカメラによる表面検査を行う方法がある(例えば、特許文献2参照)。   In addition, there is a method in which an object to be measured is floated by air blowing and suction, and a surface inspection is performed by a camera in the floated state (see, for example, Patent Document 2).

特開2006−90871号公報(第9頁、図2)JP 2006-90871 A (page 9, FIG. 2) 特開2009−51654号公報(第12頁、図1)JP 2009-51654 A (page 12, FIG. 1)

特許文献1に記載の技術では、測定対象物の所定の位置を支持し、弾性部材で測定対象物を打撃することにより振動を与える方法を用いている。しかしながら、このような方法では、打撃の衝撃によって測定対象物に新たな割れが発生してしまう可能性があるという問題がある。   The technique described in Patent Document 1 uses a method of applying vibration by supporting a predetermined position of a measurement object and striking the measurement object with an elastic member. However, in such a method, there is a problem that a new crack may occur in the measurement object due to the impact of the impact.

また、特許文献2に記載の技術では、測定対象物を浮上させながら検査を行うので、非接触状態での検査が可能である。しかし、カメラによる表面検査であるため測定対象物の内部にあるクラックの検知は困難であり、さらに、測定対象物の表面全面を検査するので、検査に時間がかかるという問題がある。   Further, in the technique described in Patent Document 2, since the inspection is performed while the measurement object is levitated, the inspection in a non-contact state is possible. However, since it is a surface inspection by a camera, it is difficult to detect cracks inside the measurement object, and further, since the entire surface of the measurement object is inspected, there is a problem that it takes time for the inspection.

本発明は、以上のような問題を解決するためになされたもので、測定対象物の表面及び内部のクラックを非接触且つ短時間で検知可能なクラック検知装置及びクラック検知方法を提供するものである。   The present invention has been made to solve the above problems, and provides a crack detection device and a crack detection method capable of detecting the surface and internal cracks of a measurement object in a non-contact and short time. is there.

本発明に係るクラック検知装置は、測定対象物を空中に浮上させる浮上手段と、浮上した測定対象物を上下方向に加振する加振手段と、加振手段の測定対象物への加振入力に対する応答出力を検出する動作検出装置と、動作検出装置の出力に基づき測定対象物のクラックの有無を検知するクラック検知手段とを備え、浮上手段及び加振手段は、正又は負の電極に接続された下板を有し、下板に電圧を印加して下板と下板上に載置した測定対象物とを同電荷に帯電させることにより測定対象物を空中に浮上させると共に、電極への入力電圧レベルを周期的に変動させて測定対象物を加振するものである。   A crack detection apparatus according to the present invention includes a levitating means for levitating a measurement object in the air, an excitation means for exciting the levitated measurement object in a vertical direction, and an excitation input to the measurement object of the vibration means. A motion detection device for detecting a response output to the sensor and a crack detection means for detecting the presence or absence of a crack in the measurement object based on the output of the motion detection device, and the levitation means and the vibration means are connected to a positive or negative electrode. The lower plate and a voltage applied to the lower plate to charge the lower plate and the measurement object placed on the lower plate to the same charge, so that the measurement object floats in the air and The object to be measured is vibrated by periodically changing the input voltage level.

本発明によれば、測定対象物を空中に浮上させた状態で検査を行うので、測定対象物にダメージを与えずに検査することができる。また、浮上状態の測定対象物を上下方向に加振したときの応答出力に基づきクラックの検出を行うため、浮上時の応答のバラツキによる悪影響を極力排除して測定対象物の表面及び内部のクラックを迅速に検知できる。   According to the present invention, since the inspection is performed in a state where the measurement object is levitated in the air, the inspection can be performed without damaging the measurement object. In addition, since cracks are detected based on the response output when the measurement object in the floating state is vibrated up and down, cracks on the surface of the measurement object and internal cracks are eliminated as much as possible by eliminating adverse effects due to variations in the response at the time of floating. Can be detected quickly.

本発明の一実施の形態に係るクラック検知装置を説明するためのブロック図である。It is a block diagram for demonstrating the crack detection apparatus which concerns on one embodiment of this invention. 図1の浮上手段及び加振手段として超音波を用いた場合のクラック検知装置の一例を示す模式図である。It is a schematic diagram which shows an example of the crack detection apparatus at the time of using an ultrasonic wave as a levitation means and a vibration means of FIG. 図1の加振手段の加振入力に対する応答の一例を示す模式図である。It is a schematic diagram which shows an example of the response with respect to the vibration input of the vibration means of FIG. 図1の浮上手段として静電気を用いた場合の作用説明図である。It is action | operation explanatory drawing at the time of using static electricity as a floating means of FIG. 図1の加振手段として静電気を用いた場合の作用説明図である。FIG. 2 is an operation explanatory diagram when static electricity is used as the vibration means of FIG. 1. 図1の浮上手段として気体又は液体を用いた場合のクラック検知装置の一例を示す模式図である。It is a schematic diagram which shows an example of the crack detection apparatus at the time of using gas or a liquid as a floating means of FIG. 図1の加振手段としてレーザー加熱を用いた場合の、クラックを有する測定対象物の振動波の一例を示す模式図である。It is a schematic diagram which shows an example of the vibration wave of the measuring object which has a crack at the time of using a laser heating as a vibration means of FIG. 図1の浮上手段により測定対象物を浮上させるときの力の分布の一例を表す模式図である。It is a schematic diagram showing an example of distribution of force when a measuring object is levitated by the levitating means of FIG.

図1は、本発明の一実施の形態に係るクラック検知装置100を説明するためのブロック図である。図1には、測定対象物50を併せて図示している。
クラック検知装置100は、測定対象物50を空中に浮上させる浮上手段1と、浮上した測定対象物50を上下方向に加振する加振手段2と、加振手段2の加振入力に対する応答(例えば、変位)を検出する動作検出装置3と、動作検出装置3の出力に基づきクラックの有無を検出するクラック検出手段4とを備えている。浮上手段1は、測定対象物50の面内全体に浮揚力を作用させ、測定対象物50を一定の高さに浮上させるものである。測定対象物50としては、例えば電子部品が搭載される基板等が該当する。
FIG. 1 is a block diagram for explaining a crack detection apparatus 100 according to an embodiment of the present invention. FIG. 1 also shows the measurement object 50.
The crack detection apparatus 100 includes a levitating unit 1 that levitates the measurement object 50 in the air, a vibration unit 2 that vibrates the measurement object 50 that has floated in the vertical direction, and a response to the vibration input of the vibration unit 2 ( For example, a motion detection device 3 that detects displacement) and a crack detection means 4 that detects the presence or absence of a crack based on the output of the motion detection device 3 are provided. The levitation means 1 causes a levitation force to act on the entire surface of the measurement object 50, and causes the measurement object 50 to float to a certain height. The measurement object 50 corresponds to, for example, a substrate on which electronic components are mounted.

動作検出装置3は、測定対象物50の表面に対して鉛直方向に配設され、測定対象物50の上下方向の変位を検知する例えば距離センサにより構成される。動作検出装置3によって検出された変位は、順次、クラック検出手段4に出力される。   The motion detection device 3 is arranged in a vertical direction with respect to the surface of the measurement object 50, and is configured by, for example, a distance sensor that detects a displacement in the vertical direction of the measurement object 50. The displacement detected by the motion detection device 3 is sequentially output to the crack detection means 4.

クラック検出手段4は、動作検出装置3にて検出された変位を時系列に取得する。クラックがない場合とクラックがある場合とでは、加振されたときの測定対象物50の挙動が後述するように異なる。よって、クラック検出手段4は動作検出装置3から取得した変位パターンと予め記憶した正常時の変位パターンとを比較することにより、クラックの有無を検出する。   The crack detection means 4 acquires the displacement detected by the motion detection device 3 in time series. The behavior of the measurement object 50 when vibrated differs between when there is no crack and when there is a crack, as will be described later. Therefore, the crack detection means 4 detects the presence or absence of a crack by comparing the displacement pattern acquired from the motion detection device 3 with the displacement pattern at the normal time stored in advance.

<浮上手段1及び加振手段2:超音波>
図2は、図1の浮上手段1及び加振手段2として超音波を用いた場合のクラック検知装置100の一例を示す模式図である。
図1の浮上手段1及び加振手段2の具体例として、超音波振動子(以下、振動子という)10と、ホーン11と、振動板12とを備えている。なお、ホーン11が備えられていなくても、浮上手段1及び加振手段2としての機能を発揮することができる。以下、振動子10の浮上手段1としての動作と、振動子10の加振手段2としての動作について順次説明する。
<Floating means 1 and exciting means 2: ultrasonic waves>
FIG. 2 is a schematic diagram showing an example of the crack detection apparatus 100 when ultrasonic waves are used as the levitation means 1 and the vibration means 2 of FIG.
As a specific example of the levitation means 1 and the vibration means 2 in FIG. 1, an ultrasonic vibrator (hereinafter referred to as a vibrator) 10, a horn 11, and a diaphragm 12 are provided. Even if the horn 11 is not provided, the functions as the levitation means 1 and the vibration means 2 can be exhibited. Hereinafter, the operation of the vibrator 10 as the levitation means 1 and the operation of the vibrator 10 as the vibration means 2 will be sequentially described.

(浮上手段1としての動作)
振動子10には、図示省略の圧電素子が設けられており、この圧電素子に正電極端子及び負電極端子を介してパルス電圧が印加され、圧電素子が発振するようになっている。つまり、振動子10は、圧電素子にパルス電圧が印加されることによって、所定の周波数範囲(19kHz〜40kHz)の音波(超音波)を発生する。ホーン11は、両端面が開口され、内部に音響通路(超音波帯域の音響信号を増幅する通路)が形成されるように構成されており、振動子10と振動板12との間に取り付けられている。また、ホーン11は円錐台形状に構成され、振動子10側から振動板12側に向けて徐々に縮径されているのが好ましい。
(Operation as levitation means 1)
The vibrator 10 is provided with a piezoelectric element (not shown). A pulse voltage is applied to the piezoelectric element via a positive electrode terminal and a negative electrode terminal so that the piezoelectric element oscillates. That is, the vibrator 10 generates a sound wave (ultrasonic wave) in a predetermined frequency range (19 kHz to 40 kHz) when a pulse voltage is applied to the piezoelectric element. The horn 11 is configured such that both end surfaces are opened and an acoustic path (a path for amplifying an ultrasonic band acoustic signal) is formed therein, and is attached between the vibrator 10 and the diaphragm 12. ing. In addition, the horn 11 is preferably formed in a truncated cone shape and is gradually reduced in diameter from the vibrator 10 side toward the diaphragm 12 side.

振動板12は、ホーン11の一端部(振動子10と反対側の端部)に固着されており、振動子10の発振(振動)と共振することによって共振波を作り出す機能を有している。この共振波は、振動板12の両面(ホーン11側の面(ホーン11を設けない場合には振動子10の設置面)12a及びその対向面12b)の全体から放射されることになる。   The diaphragm 12 is fixed to one end of the horn 11 (the end opposite to the vibrator 10), and has a function of creating a resonance wave by resonating with the oscillation (vibration) of the vibrator 10. . This resonance wave is radiated from both the entire surfaces of the diaphragm 12 (the surface on the horn 11 side (the surface on which the vibrator 10 is installed when the horn 11 is not provided) 12a and the opposite surface 12b).

圧電素子にパルス電圧が印加されると、19kHz〜40kHz帯域の超音波が振動子10から発生し、この超音波がホーン11を介して振動板12に伝搬する。振動板12に伝搬した超音波は、共振され強力な音圧レベルを有する共振波となって振動板12の表面全体から一様に放射される。そうすると、振動板12と測定対象物50との間には定在波による音響波が発生し、振動板12の表面に置かれた測定対象物50が空中に浮上することになる。   When a pulse voltage is applied to the piezoelectric element, an ultrasonic wave in a 19 kHz to 40 kHz band is generated from the vibrator 10, and this ultrasonic wave propagates to the diaphragm 12 through the horn 11. The ultrasonic wave propagated to the diaphragm 12 is resonated and becomes a resonance wave having a strong sound pressure level, and is uniformly radiated from the entire surface of the diaphragm 12. Then, an acoustic wave due to a standing wave is generated between the diaphragm 12 and the measurement object 50, and the measurement object 50 placed on the surface of the diaphragm 12 floats in the air.

(加振手段2としての動作)
図3は、図1の加振手段2として超音波を用いた場合の作用説明図で、浮上加振時の入力レベルとそれに対する応答出力の時間変化とを表している。なお、図3の応答出力の実線はクラック無しの場合、点線はクラック有りの場合を示している。また、図3の入力レベル1の時には浮上用のパルス電圧が印加され、入力レベル2の時には浮上用電圧に更に加振用電圧を重畳したパルス電圧が印加される。
入力レベル1のとき、圧電素子に浮上用のパルス電圧が印加され、上述したように測定対象物50は浮上する。そして、入力レベルを2に上げることにより、浮上用電圧に更に加振用電圧を重畳したパルス電圧が圧電素子に印加される。これにより、測定対象物50の応答が大きくなる(つまり、更に浮上する)。そして、再び入力レベルを1に戻して一定に保つことにより、測定対象物50の応答は小さくなる(つまり、測定対象物50の位置が降下する)。これを繰り返し、浮上用電圧に加振用電圧を間欠的に重畳する。これにより、共振波に強弱が生じて測定対象物50は一定の振幅を有した上下振動を行うことになり、振動子10が加振手段2として動作することになる。
(Operation as vibration means 2)
FIG. 3 is an explanatory diagram of the action when ultrasonic waves are used as the vibration means 2 of FIG. 1, and shows the input level at the time of levitation vibration and the time change of the response output in response thereto. Note that the solid line of the response output in FIG. 3 indicates that there is no crack and the dotted line indicates that there is a crack. In addition, a levitation pulse voltage is applied at the input level 1 in FIG. 3, and a pulse voltage obtained by further superimposing an excitation voltage on the levitation voltage is applied at the input level 2.
When the input level is 1, a pulse voltage for flying is applied to the piezoelectric element, and the measurement object 50 floats as described above. Then, by raising the input level to 2, a pulse voltage in which an excitation voltage is further superimposed on the levitation voltage is applied to the piezoelectric element. As a result, the response of the measuring object 50 increases (that is, further rises). Then, by returning the input level to 1 and keeping it constant, the response of the measurement object 50 becomes small (that is, the position of the measurement object 50 is lowered). This is repeated, and the excitation voltage is intermittently superimposed on the levitation voltage. As a result, the resonance wave becomes strong and weak, and the measurement object 50 vibrates up and down with a constant amplitude, and the vibrator 10 operates as the vibration means 2.

ここで、図3に示したように、クラック有りの場合とクラック無しの場合とでは応答出力が異なったものとなる。よって、クラック無しの場合の応答を予め検出しておき、その応答と比較することにより測定対象物50のクラックの有無を検知することが可能である。   Here, as shown in FIG. 3, the response output is different between the case with a crack and the case without a crack. Therefore, it is possible to detect the presence or absence of a crack in the measurement object 50 by detecting a response when there is no crack in advance and comparing the response with the response.

ところで、測定対象物50が浮上している状態では、常に電気的なノイズが加わっており、小さな応答変化を検知するのは困難である。よって、上述したように浮上用電圧に加振用電圧を間欠的に重畳させ、故意にノイズによる変動以上の変位を与えることで、浮上時の応答のバラツキが検査結果に与える悪影響を極力排除することができる。したがって、測定精度を向上させることができる。   By the way, in the state where the measurement object 50 is floating, electrical noise is always added, and it is difficult to detect a small response change. Therefore, as described above, the excitation voltage is intermittently superimposed on the levitation voltage, and the displacement more than the fluctuation due to noise is intentionally given to eliminate as much as possible the adverse effect of variations in response during the levitation on the inspection result. be able to. Therefore, measurement accuracy can be improved.

以下、浮上手段1及び加振手段2の他の具体例について順次説明する。   Hereinafter, other specific examples of the levitation means 1 and the vibration means 2 will be sequentially described.

<浮上手段1及び加振手段2:静電気>
(浮上手段1としての動作)
図4は、図1の浮上手段1として静電気を用いた場合の作用説明図である。
浮上手段1は、正極と接続された下板13を有している。下板13に電圧が印加されることにより、下板13に正電荷がチャージされ、チャージされた正電荷により測定対象物50が帯電する。すなわち、測定対象物50と下板13とが同電荷に帯電し、お互い反発し合って測定対象物50が下板13から浮上する。なお、ここでは下板13を正極と接続した構成を図示したが、負極としてももちろん良い。
<Floating means 1 and vibration means 2: static electricity>
(Operation as levitation means 1)
FIG. 4 is an operation explanatory diagram when static electricity is used as the levitation means 1 of FIG.
The levitation means 1 has a lower plate 13 connected to the positive electrode. When a voltage is applied to the lower plate 13, a positive charge is charged to the lower plate 13, and the measurement object 50 is charged by the charged positive charge. That is, the measurement object 50 and the lower plate 13 are charged to the same charge, repel each other, and the measurement object 50 floats from the lower plate 13. In addition, although the structure which connected the lower board 13 with the positive electrode was shown here, of course, it is good also as a negative electrode.

(加振手段2としての動作)
図5は、図1の加振手段2として静電気を用いた場合の作用説明図であり、浮上加振時の電圧(入力)の時間変化と、それに対応する下板13と測定対象物50間の距離の時間変化とを併せて示した図である。
電圧レベルを周期的に変動させることにより、測定対象物50は、浮上した状態を保ちながら上下に振動する。すなわち、浮上した状態から電圧レベルを下げると、同電荷に帯電した測定対象物50と下板13との間の反発力が弱くなり、下板13と測定対象物50との距離が小さくなる。そして、再び電圧レベルを上げると、測定対象物50と下板13との間の反発力が強まり、下板13と測定対象物50との距離が大きくなる。この動作を周期的に繰り返すことにより、測定対象物50は上下に振動することになる。
(Operation as vibration means 2)
FIG. 5 is an operation explanatory diagram when static electricity is used as the vibration means 2 of FIG. 1, and the time change of the voltage (input) at the time of floating vibration and the corresponding lower plate 13 and the measurement object 50 It is the figure which showed together with the time change of distance.
By periodically changing the voltage level, the measurement object 50 vibrates up and down while maintaining a floating state. That is, when the voltage level is lowered from the floating state, the repulsive force between the measurement object 50 charged to the same charge and the lower plate 13 is weakened, and the distance between the lower plate 13 and the measurement object 50 is reduced. When the voltage level is increased again, the repulsive force between the measurement object 50 and the lower plate 13 increases, and the distance between the lower plate 13 and the measurement object 50 increases. By repeating this operation periodically, the measurement object 50 vibrates up and down.

なお、上記の説明では、測定対象物50の下方に同電荷を帯電させるものを例として挙げたが、測定対象物50の上方に対極の上板を更に加えてもよい。これにより、下板13から離れる力に、上板に近づこうとする上方向の力が加わり、測定対象物50の上下方向の変動を容易にすることができる。   In the above description, an example in which the same charge is charged below the measurement object 50 has been described as an example, but an upper plate of a counter electrode may be further added above the measurement object 50. As a result, an upward force that tends to approach the upper plate is added to the force that moves away from the lower plate 13, and the vertical fluctuation of the measurement object 50 can be facilitated.

<浮上手段1:気体(例えば空気)又は液体(例えば水)>
図6は、図1の浮上手段1として気体又は液体を用いた場合のクラック検知装置100の一例を示す模式図である。
浮上手段1は、気体又は液体を噴出する装置(図示せず)を有し、気体又は液体を測定対象物50の下面に向かって噴出させ、気圧又は液圧により測定対象物50を空中に浮上させる。浮上手段1として気体又は液体を用いたときの加振手段2としては、上述の超音波又は静電気を用いれば良い。
<Floating means 1: gas (for example, air) or liquid (for example, water)>
FIG. 6 is a schematic diagram showing an example of the crack detection device 100 when gas or liquid is used as the levitation means 1 of FIG.
The levitation means 1 has a device (not shown) for ejecting gas or liquid, ejects the gas or liquid toward the lower surface of the measurement object 50, and floats the measurement object 50 in the air by atmospheric pressure or liquid pressure. Let As the vibration means 2 when gas or liquid is used as the levitation means 1, the above-described ultrasonic waves or static electricity may be used.

<加振手段2:レーザー加熱>
図7(a)は、図1の加振手段2としてレーザー加熱を用いた場合の模式図である。図7(b)は、クラックを有する測定対象物50をレーザー加熱した際の振動波の分布を示す模式図である。
加振手段2は、レーザー加熱装置40を有している。レーザー加熱装置40から測定対象物50のある一点に対してレーザーを照射すると、測定対象物50には、照射点を中心に面方向に振動波が発生する。測定対象物50にクラックや傷がある場合、図7(b)に示すように振動波はクラックでせき止められ、面全体として不均一な分布になる。これを動作検出装置3により検知することにより、測定対象物50のクラックの有無を検出することができる。なお、レーザーは、一点に限らず、複数個所に照射してもよい。加振手段2としてレーザー加熱を用いた時の浮上手段1としては、上述の超音波、静電気、気体又は液体が用いられる。なお、加振手段2としてレーザー加熱を用いる場合には、動作検出装置3を複数配置して測定対象物50の各所の変位を検出し、クラック検出手段4にて振動波の不均一な分布を検知できるようにする。
<Excitation means 2: Laser heating>
FIG. 7A is a schematic diagram when laser heating is used as the vibration means 2 of FIG. FIG. 7B is a schematic diagram showing a distribution of vibration waves when the measurement object 50 having cracks is laser-heated.
The vibration means 2 has a laser heating device 40. When a laser beam is irradiated from a laser heating device 40 to a certain point on the measurement object 50, a vibration wave is generated in the measurement object 50 in the plane direction around the irradiation point. When the measurement object 50 has cracks or scratches, the vibration wave is blocked by the cracks as shown in FIG. By detecting this with the motion detection device 3, it is possible to detect the presence or absence of a crack in the measurement object 50. The laser is not limited to one point, and may be irradiated to a plurality of places. As the levitation means 1 when laser heating is used as the vibration means 2, the above-described ultrasonic wave, static electricity, gas or liquid is used. In the case of using laser heating as the vibration means 2, a plurality of motion detection devices 3 are arranged to detect displacements of the measurement object 50, and the crack detection means 4 generates an uneven distribution of vibration waves. Make it detectable.

ここでは、振動波分布によりクラック検知を行う例を説明したが、温度分布からでも検知可能である。測定対象物50が加振された際、測定対象物50にクラックがない場合は、測定対象物50の温度分布は均一となる。一方、クラックがある場合、クラックにおいて破面同士がこすれ合い、摩擦熱が発生する。よって、クラックがある場合は、クラック付近の温度が高くなる。したがって、加振された測定対象物50表面の温度分布を検出することにより、測定対象物50のクラックの有無を検出することが可能である。この場合の動作検出装置3としては、加振入力に対する応答として温度を検知することになる。なお、温度分布の場合も上記振動波分布の検出の場合と同様、動作検出装置3を複数配置して測定対象物50の各所の温度を検出し、クラック検出手段4にて温度の不均一な分布を検知できるようにする。   Here, an example in which crack detection is performed based on vibration wave distribution has been described, but detection is also possible from temperature distribution. When the measurement object 50 is vibrated, if there is no crack in the measurement object 50, the temperature distribution of the measurement object 50 is uniform. On the other hand, when there is a crack, the fracture surfaces rub against each other in the crack, and frictional heat is generated. Therefore, when there is a crack, the temperature near the crack becomes high. Therefore, it is possible to detect the presence or absence of cracks in the measurement object 50 by detecting the temperature distribution on the surface of the measurement object 50 that has been vibrated. In this case, the motion detection device 3 detects the temperature as a response to the vibration input. In the case of the temperature distribution, as in the case of the detection of the vibration wave distribution, a plurality of motion detection devices 3 are arranged to detect the temperature of each part of the measurement object 50, and the crack detection means 4 makes the temperature non-uniform. Enable to detect distribution.

以上説明したように本実施の形態によれば、測定対象物50を空中に浮上させながら検査を行うため、測定対象物50にダメージを与えずに検査することができる。また、浮上状態の測定対象物50を加振し、その加振による応答に基づきクラックの検出を行うため、浮上時の応答のバラツキによる悪影響を受けないクラック検出が可能である。よって、測定精度を向上することができる。   As described above, according to the present embodiment, since the inspection is performed while the measurement object 50 is levitated in the air, the inspection can be performed without damaging the measurement object 50. In addition, since the measurement object 50 in the floating state is vibrated and the crack is detected based on the response due to the vibration, the crack can be detected without being adversely affected by variations in the response during the floating. Therefore, measurement accuracy can be improved.

また、測定対象物50を加振する際には、測定対象物50全体を一度に加振するため、この加振入力に対する応答は、測定対象物50の表面に限らず、内部に発生したクラックによっても、クラック有りの場合とクラック無しの場合とで異なったものとなる。よって、測定対象物50の表面に限らず、内部にクラックが発生していても検知することができる。また、カメラにより表面全面を検査する方法に比べて検知時間を短縮化できる。このように、クラックの検知精度が上がるため、製造途中の割れ等を防止でき、歩留まり向上に効果がある。よって、省エネ化の効果も期待できる。また、製造途中の割れを防止できるため、割れた欠片による危険を防止できる。   In addition, when the measurement object 50 is vibrated, the entire measurement object 50 is vibrated at a time, so that the response to the vibration input is not limited to the surface of the measurement object 50, but is a crack generated inside. Depending on the case, the case where there is a crack is different from the case where there is no crack. Therefore, it is possible to detect not only the surface of the measurement object 50 but also a crack inside. Also, the detection time can be shortened compared to the method of inspecting the entire surface with a camera. As described above, since the crack detection accuracy is improved, it is possible to prevent cracks during the production and the like, which is effective in improving the yield. Therefore, energy saving effect can be expected. Moreover, since the cracking during manufacture can be prevented, the danger by the broken piece can be prevented.

上記の説明では、加振手段2として超音波、静電気、レーザー加熱を例に挙げたが、この他にも気体又は液体を測定対象物50に噴射することにより加振する方法や、測定対象物50の下方にコイルを設置して、電磁誘導により加振する方法でもよい。浮上手段1としては超音波、気体又は液体、静電気を挙げたが、浮上手段1と加振手段2は同じ手段を用いてもよいし、それぞれ別な手段を互いに組み合わせて用いることも可能である。なお、浮上手段1と加振手段2が異なる場合には、特に浮上状態を安定化させることが可能となるため、検知精度を向上させることが可能となる。   In the above description, the vibration means 2 is exemplified by ultrasonic waves, static electricity, and laser heating. However, in addition to this, a method of vibrating by injecting a gas or liquid onto the measurement object 50, or a measurement object Alternatively, a method may be used in which a coil is installed below 50 and is vibrated by electromagnetic induction. As the levitation means 1, ultrasonic waves, gas or liquid, and static electricity are listed. However, the levitation means 1 and the vibration means 2 may be the same means, or different means may be used in combination with each other. . In addition, when the levitation means 1 and the vibration means 2 are different, the levitation state can be particularly stabilized, so that the detection accuracy can be improved.

また、上記にて、動作検出装置3を測定対象物50に対して上方に配設するように示したが、測定対象物50の側面に配置し、上下方向の変位を検知するようにしてもよい。   In the above description, the motion detection device 3 is shown to be disposed above the measurement object 50. However, the movement detection device 3 may be disposed on the side surface of the measurement object 50 to detect vertical displacement. Good.

さらに、図8に示すように、浮上手段1により測定対象物50に対して発せられる浮揚力は、測定対象物50の外側が最も大きくなるようにしてもよい。これにより、測定対象物50が面方向に移動することを防ぐことができるので、安定した浮上状態を保つことができ、クラック検知精度の向上に結びつく。   Further, as shown in FIG. 8, the levitation force generated by the levitation means 1 with respect to the measurement object 50 may be maximized on the outside of the measurement object 50. Thereby, since it can prevent that the measuring object 50 moves to a surface direction, the stable floating state can be maintained and it leads to the improvement of a crack detection precision.

浮上手段1を図2に示した超音波とした場合に測定対象物50の外側の浮揚力が最も大きくなるようにするには、例えば、振動板12の振動モードが振動板12の外側に近いところで変位が大きくなるように周波数を調整したり、振動板12の形状を変更する。浮上手段1を図4に示した静電気とした場合に測定対象物50の外側の浮揚力が最も大きくなるようにするには、例えば、下板13の外側に近い部分の入力電圧が大きくなるように調整する。浮上手段1を図6に示した気体又は液体とした場合に測定対象物50の外側の浮揚力が最も大きくなるようにするには、気体又は液体が、測定対象物50の外側で大きい圧になるように気体又は液体の噴出力を調整する。   In order to maximize the levitation force outside the measurement object 50 when the levitation means 1 is the ultrasonic wave shown in FIG. 2, for example, the vibration mode of the diaphragm 12 is close to the outside of the diaphragm 12. By the way, the frequency is adjusted so that the displacement becomes large, or the shape of the diaphragm 12 is changed. In order to maximize the levitation force on the outside of the measurement object 50 when the levitation means 1 is the static electricity shown in FIG. 4, for example, the input voltage near the outside of the lower plate 13 is increased. Adjust to. In order to maximize the levitation force outside the measurement object 50 when the levitation means 1 is the gas or liquid shown in FIG. 6, the gas or the liquid is set to a large pressure outside the measurement object 50. The gas or liquid jet power is adjusted so that

1 浮上手段、2 加振手段、3 動作検出装置、4 クラック検出手段、10 振動子、11 ホーン、12 振動板、13 下板、40 レーザー加熱装置、50 測定対象物、100 クラック検知装置。   DESCRIPTION OF SYMBOLS 1 Levitation means, 2 Excitation means, 3 Motion detection apparatus, 4 Crack detection means, 10 Vibrator, 11 Horn, 12 Vibration plate, 13 Lower plate, 40 Laser heating apparatus, 50 Measuring object, 100 Crack detection apparatus.

Claims (4)

測定対象物を空中に浮上させる浮上手段と、
浮上した測定対象物を上下方向に加振する加振手段と、
前記加振手段の測定対象物への加振入力に対する応答出力を検出する動作検出装置と、
前記動作検出装置の出力に基づき前記測定対象物のクラックの有無を検知するクラック検知手段と
を備え、
前記浮上手段及び前記加振手段は、正又は負の電極に接続された下板を有し、前記下板に電圧を印加して前記下板と前記下板上に載置した測定対象物とを同電荷に帯電させることにより測定対象物を空中に浮上させると共に、前記電極への入力電圧レベルを周期的に変動させて測定対象物を加振することを特徴とするクラック検知装置。
A levitating means for levitating the measurement object in the air;
A vibration means for vibrating the object to be lifted up and down;
An operation detecting device for detecting a response output to a vibration input to the measurement object of the vibration means;
Crack detecting means for detecting the presence or absence of cracks in the measurement object based on the output of the motion detection device,
The levitation means and the vibration means have a lower plate connected to a positive or negative electrode, a voltage applied to the lower plate, and a measurement object placed on the lower plate and the lower plate; A crack detection apparatus characterized in that the object to be measured is levitated in the air by being charged with the same charge, and the object to be measured is vibrated by periodically varying the input voltage level to the electrode.
前記浮上手段は、測定対象物の外側に作用する浮揚力が最も大きくなるようにして測定対象物を浮上させることを特徴とする請求項1記載のクラック検知装置。   The crack detection apparatus according to claim 1, wherein the levitation means levitates the measurement object such that the levitation force acting on the outside of the measurement object is maximized. 正又は負の電極に接続された下板に電圧を印加して、前記下板と前記下板上に載置した測定対象物とを同電荷に帯電させることにより測定対象物を空中に浮上させ、
前記電極への入力電圧レベルを周期的に変動させて前記浮上した測定対象物を上下方向に加振し、
測定対象物への加振入力に対する応答出力を検出し、
検出結果に基づき測定対象物のクラックの有無を検知することを特徴とするクラック検知方法。
A voltage is applied to the lower plate connected to the positive or negative electrode, and the measurement object is levitated in the air by charging the lower plate and the measurement object placed on the lower plate to the same charge. ,
The input voltage level to the electrode is periodically changed to vibrate the measurement object that has floated up and down,
Detect response output in response to excitation input to measurement object,
A crack detection method characterized by detecting the presence or absence of a crack in a measurement object based on a detection result.
測定対象物の外側に作用する浮揚力が最も大きくなるようにして測定対象物を浮上させることを特徴とする請求項3記載のクラック検知方法。   The crack detection method according to claim 3, wherein the measurement object is levitated so that the levitation force acting on the outside of the measurement object is maximized.
JP2012219165A 2012-10-01 2012-10-01 Crack detection apparatus and crack detection method Expired - Fee Related JP5335121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012219165A JP5335121B2 (en) 2012-10-01 2012-10-01 Crack detection apparatus and crack detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012219165A JP5335121B2 (en) 2012-10-01 2012-10-01 Crack detection apparatus and crack detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010089417A Division JP5264820B2 (en) 2010-04-08 2010-04-08 Crack detection apparatus and crack detection method

Publications (2)

Publication Number Publication Date
JP2012255811A JP2012255811A (en) 2012-12-27
JP5335121B2 true JP5335121B2 (en) 2013-11-06

Family

ID=47527459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219165A Expired - Fee Related JP5335121B2 (en) 2012-10-01 2012-10-01 Crack detection apparatus and crack detection method

Country Status (1)

Country Link
JP (1) JP5335121B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015106603A1 (en) * 2015-04-29 2016-11-03 Technische Hochschule Wildau (Fh) Apparatus and method for investigating a vibration behavior of a test specimen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802883B2 (en) * 1993-07-12 1998-09-24 株式会社カイジョー Object levitating device, object conveying device equipped with the device, and object levitating method
JP2001250854A (en) * 1999-12-28 2001-09-14 Nikon Corp Carrying method and device, positioning method and device, substrate retaining method and device, exposure method and projection aligner, device and manufacturing method thereof
JP2003014708A (en) * 2001-07-05 2003-01-15 Mitsubishi Electric Corp Nondestructive inspection apparatus for plate
JP4670000B2 (en) * 2001-09-27 2011-04-13 株式会社 東北テクノアーチ Nondestructive inspection device for balls
JP2003329655A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Damage inspection device
CA2496935C (en) * 2002-08-28 2011-09-13 Wayne State University System and method for acoustic chaos in sonic infrared imaging
US7075084B2 (en) * 2002-12-20 2006-07-11 The Boeing Company Ultrasonic thermography inspection method and apparatus
JP2005142495A (en) * 2003-11-10 2005-06-02 Sharp Corp Crack-detecting method for substrate, crack detecting apparatus therefor, and solar cell module manufacturing method
JP4901926B2 (en) * 2009-09-08 2012-03-21 三菱電機株式会社 Crack detection support device

Also Published As

Publication number Publication date
JP2012255811A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
KR101507185B1 (en) Device for transporting and holding objects or material in a contact free manner
KR100943199B1 (en) Ultra-high cycle fatigue testing apparatus
JP4901926B2 (en) Crack detection support device
CN110361446B (en) Gas sensor and gas detection method
JP4906897B2 (en) Crack detection support apparatus and crack detection support method
KR101304878B1 (en) Ultra-high cycle fatigue testing apparatus
EP2980556B1 (en) Fatigue testing device
JP5335121B2 (en) Crack detection apparatus and crack detection method
JP5264820B2 (en) Crack detection apparatus and crack detection method
KR101243645B1 (en) Airborne dust particles monitoring device and airborne dust particles detecting method using the same
JP2015169614A (en) External force detection apparatus and inclination adjustment method for quartz piece
KR20030035953A (en) Driving unit for transducer
JP5893119B2 (en) Crack inspection equipment
JP2012107918A (en) Crack detection device and crack detection method
Wang et al. Output of an ultrasonic wave-driven nanogenerator in a confined tube
JP6238438B2 (en) Substrate floating device
JP5705091B2 (en) Crack inspection equipment
CN102590353A (en) Acoustic emission excitation device of EMAT (Electro Magnetic Acoustic Transducer) transmitting probe
JP5456010B2 (en) Thin plate inspection equipment
JP5197717B2 (en) Thin plate inspection equipment
KR102126081B1 (en) Nanomechanical detecting system and method
JP5865328B2 (en) Thin plate vibration device
JP5490187B2 (en) Thin plate inspection apparatus, thin plate inspection method, and thin plate manufacturing method
JP2005331362A (en) Vacuum gauge
JP2009290169A (en) Method for manufacturing oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5335121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees