JP5334583B2 - Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric - Google Patents

Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric Download PDF

Info

Publication number
JP5334583B2
JP5334583B2 JP2008536332A JP2008536332A JP5334583B2 JP 5334583 B2 JP5334583 B2 JP 5334583B2 JP 2008536332 A JP2008536332 A JP 2008536332A JP 2008536332 A JP2008536332 A JP 2008536332A JP 5334583 B2 JP5334583 B2 JP 5334583B2
Authority
JP
Japan
Prior art keywords
split
fiber
nonwoven fabric
pressure
density polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008536332A
Other languages
Japanese (ja)
Other versions
JPWO2008038536A1 (en
Inventor
暁雄 松原
茂之 本村
ジュリーラット プラサーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2008536332A priority Critical patent/JP5334583B2/en
Publication of JPWO2008038536A1 publication Critical patent/JPWO2008038536A1/en
Application granted granted Critical
Publication of JP5334583B2 publication Critical patent/JP5334583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Description

本発明は、衛生材料、フィルター、ワイパー、電池セパレータなどに好適なオレフィン系重合体からなる分割性に優れる分割型複合長繊維、分割型複合長繊維からなる不織布および分割繊維不織布に関する。   TECHNICAL FIELD The present invention relates to a split composite long fiber excellent in splitting property made of an olefin polymer suitable for sanitary materials, filters, wipers, battery separators, and the like, a non-woven fabric consisting of split composite long fibers, and a split fiber non-woven fabric.

極細繊維からなる不織布は、柔軟性、風合いなどに優れ、衣料、使い捨てオムツ、衛生用品、ワイピングクロスなどの材料として広く使用されている。近年は、その優れた拭取り性能よりクリーンルーム内での使用を期待されている。   Nonwoven fabrics made of ultrafine fibers are excellent in flexibility, texture and the like, and are widely used as materials for clothing, disposable diapers, sanitary goods, wiping cloths and the like. In recent years, it is expected to be used in a clean room because of its excellent wiping performance.

極細繊維を得る方法の一つとして、複数成分の重合体を組み合わせて紡糸して分割型複合繊維とし、得られた該分割型複合繊維を物理的応力や樹脂の化学薬品に対する収縮差などを利用して、多数の繊維に分割して極細繊維を得る方法が用いられている。そして、一般的には、分割型複合繊維に用いられる重合体は、剥離が容易な、即ち、相容性がないポリエステルとポリオレフィン、ポリエステルとポリアミド、ポリアミドとポリオレフィン等が用いられている。   As one of the methods for obtaining ultrafine fibers, a multi-component polymer is spun into a split-type composite fiber, and the resulting split-type composite fiber is utilized by physical stress, differential shrinkage of resin to chemicals, etc. And the method of dividing | segmenting into many fibers and obtaining an ultrafine fiber is used. In general, polymers used for the split type composite fibers are easily peeled, that is, incompatible polyester and polyolefin, polyester and polyamide, polyamide and polyolefin, and the like.

同種の重合体からなる分割型複合繊維はポリエステルとポリオレフィンとの組合せに比べ分割性に劣ることから、プロピレン系重合体とエチレン系重合体からなる分割型複合繊維の分割性を改良する方法が種々提案されている。例えば、MFR比が異なるポリプロピレン系樹脂とポリエチレン系樹脂とを断面が屈曲した分割型複合繊維とする方法(特許文献1;特開2000−328348号公報)、分子量分布が少なくとも5のポリプロピレン系樹脂とポリエチレン系樹脂を用い、断面の中央部が中空部分となる分割型複合ノズルを用いて溶融紡糸し、5倍以上に多段延伸して分割型複合繊維とする方法(特許文献2;特開2002−220740号公報)が提案されている。   Splitting composite fibers made of the same kind of polymer are inferior to the combination of polyester and polyolefin, so there are various methods for improving the splitting ability of splitting composite fibers made of a propylene polymer and an ethylene polymer. Proposed. For example, a method in which a polypropylene-based resin and a polyethylene-based resin having different MFR ratios are made into split-type composite fibers having a bent cross section (Patent Document 1; Japanese Patent Laid-Open No. 2000-328348), and a polypropylene-based resin having a molecular weight distribution of at least 5 A method of using a polyethylene-based resin, melt spinning using a split type composite nozzle having a hollow center in the cross section, and drawing into a split type composite fiber by multistage drawing 5 times or more (Patent Document 2; No. 220740) has been proposed.

しかしながら、分割性を高めるには、特殊なノズルを必要とするか、多段延伸を必要とし、紡出された複合長繊維を冷却流体により冷却しながら流体で長繊維に張力を加えて細化させる方法では分割性に優れる分割型複合長繊維からなる不織布は得られていない。   However, in order to improve the splitting property, a special nozzle is required or multi-stage drawing is required, and while the spun composite long fiber is cooled by a cooling fluid, the long fiber is tensioned with the fluid to be thinned. In the method, a nonwoven fabric composed of split-type composite continuous fibers having excellent splitting properties has not been obtained.

特開2000−328348号公報JP 2000-328348 A 特開2002−220740号公報JP 2002-220740 A

本発明は、プロピレン系重合体とエチレン系重合体からなる分割型複合繊維の分割性を改良することを目的として、種々検討した結果、(A)プロピレン系重合体として、荷重2160g、230℃におけるMFRが40g/10分以上の(A)プロピレン系重合体、およびエチレン系重合体として、(B)高圧法低密度ポリエチレンを用いることにより、分割性を改良し得ることを見出した。   In the present invention, as a result of various studies for the purpose of improving the splitting property of a split type composite fiber composed of a propylene polymer and an ethylene polymer, (A) as a propylene polymer at a load of 2160 g at 230 ° C. It has been found that by using (B) a high-pressure method low-density polyethylene as the (A) propylene polymer and ethylene polymer having an MFR of 40 g / 10 min or more, the resolution can be improved.

本発明は、荷重2160g、230℃におけるMFRが40g/10分以上の(A)プロピレン系重合体および(B)高圧法低密度ポリエチレンを用いてなり、(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部とが互いに接してなる分割型複合長繊維、かかる分割型複合長繊維からなる不織布および当該不織布を分割してなる分割繊維不織布を提供するものである。   The present invention uses (A) a propylene polymer having a load of 2160 g and an MFR at 230 ° C. of 40 g / 10 min or more and (B) a high-pressure low-density polyethylene, and (A) a propylene polymer part and (B ) Provided are split-type composite long fibers in contact with high-pressure method low-density polyethylene parts, a non-woven fabric made of such split-type composite long fibers, and a split-fiber non-woven fabric formed by dividing the non-woven fabric.

本発明はまた、荷重2160g、230℃におけるMFRが40g/10分以上の(A)プロピレン系重合体と、(B)高圧法低密度ポリエチレンを、複合紡糸ノズルを有する紡糸口金から吐出させて、紡出された(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部が互いに接する複合長繊維を、冷却流体により冷却しながら、流体で長繊維に張力を加えて細化させて、(A)プロピレン系重合体部を配向結晶化した後、捕集ベルト上に捕集して堆積させることを特徴とする分割型複合長繊維からなる不織布の製造方法および分割繊維不織布の製造方法を提供するものである。   In the present invention, (A) a propylene polymer having a load of 2160 g and an MFR at 230 ° C. of 40 g / 10 min or more and (B) a high-pressure low-density polyethylene are discharged from a spinneret having a composite spinning nozzle, The composite long fiber in which the spun (A) propylene polymer portion and the (B) high-pressure method low-density polyethylene portion are in contact with each other is cooled by a cooling fluid, and tension is applied to the long fiber to reduce the length. (A) A method for producing a non-woven fabric composed of split-type composite continuous fibers and a method for producing a split-fiber non-woven fabric, characterized in that after propylene-based polymer portion is oriented and crystallized, it is collected and deposited on a collecting belt. Is to provide.

本発明の分割型長繊維は、分割性に優れ、得られる不織布はオレフィン系重合体からなるので、軽量で且つ、耐水性、柔軟性に優れる。   The split-type long fibers of the present invention are excellent in splitting properties, and the resulting nonwoven fabric is made of an olefin polymer, so that it is lightweight and excellent in water resistance and flexibility.

図1は、本発明に係る複合長繊維の横断面の一例を示した模式図である。(a)〜(d)の4形態を挙げた。(e)は分割処理後の断面形態の一例である。 図中、白塗り部分と黒塗り部分はそれぞれ組み合わせる樹脂を表す。FIG. 1 is a schematic view showing an example of a cross section of a composite long fiber according to the present invention. The four forms (a) to (d) were listed. (E) is an example of the cross-sectional form after a division | segmentation process. In the figure, the white and black portions represent the resins to be combined.

(A)プロピレン系重合体
本発明の分割型複合長繊維に係る(A)プロピレン系重合体は、メルトフローレート(MFR;ASTM D―1238 荷重;2160g、温度;230℃)が、MFRが40g/10分以上、好ましくは50〜500g/10分、さらに好ましくは55〜100g/10分の範囲にある。
(A) Propylene Polymer The (A) propylene polymer according to the split composite long fiber of the present invention has a melt flow rate (MFR; ASTM D-1238 load; 2160 g , temperature; 230 ° C.), and an MFR of 40 g. / 10 minutes or more, preferably 50 to 500 g / 10 minutes, more preferably 55 to 100 g / 10 minutes.

MFRが40g/10分未満の(A)プロピレン系重合体を用いた場合は、得られる分割型長繊維の分割性に劣る。
また、ポリ(A)プロピレン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnは、通常1.5〜5.0未満、さらには、紡糸性が良好で、かつ繊維強度が特に優れる複合繊維が得られる点で、1.5〜3.5が好ましい。本発明において、良好な紡糸性とは、紡糸ノズルからの吐き出し時および延伸中に糸切れを生じず、フィラメントの融着が生じないことをいう。Mw/Mnが5.0以上であると高分子量成分が多いために糸切れを生じ易く、Mw/Mnが1.5以下であると延伸中の結晶化の遅れからフィラメントの融着が生じ易いという問題が有る。本発明において、MwおよびMnは、GPC(ゲルパーミエーションクロマトグラフィー)によって、公知の方法で測定することができる。
When the (A) propylene-based polymer having an MFR of less than 40 g / 10 minutes is used, the resulting split-type long fibers are inferior in splitting property.
Further, the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the poly (A) propylene-based polymer is usually 1.5 to less than 5.0, and the spinnability is good. And 1.5-3.5 are preferable at the point from which the composite fiber which is especially excellent in fiber strength is obtained. In the present invention, good spinnability means that yarn breakage does not occur during discharge from the spinning nozzle and during drawing, and filament fusion does not occur. When Mw / Mn is 5.0 or more, there are many high molecular weight components, so yarn breakage is likely to occur, and when Mw / Mn is 1.5 or less, filament fusion is likely to occur due to crystallization delay during stretching. There is a problem. In the present invention, Mw and Mn can be measured by a known method by GPC (gel permeation chromatography).

本発明に係る(A)プロピレン系重合体は、プロピレンの単独重合体若しくはプロピレンと少量のエチレン、1−ブテン、1−ヘキセン、4−メチルー1−ペンテン、1−オクテン、1−デセン等の炭素数2〜10のα―オレフィンとの共重合体を例示できる。かかる(A)プロピレン系重合体は、好ましくは融点(Tm)が155℃以上、より好ましくは160℃以上の重合体である。   The propylene-based polymer (A) according to the present invention is a propylene homopolymer or carbon such as propylene and a small amount of ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, etc. Examples thereof include copolymers with α-olefins of several 2 to 10. The (A) propylene polymer is preferably a polymer having a melting point (Tm) of 155 ° C. or higher, more preferably 160 ° C. or higher.

本発明に係る(A)プロピレン系重合体には、本発明の目的を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、防曇剤、ブロッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応じて配合することができる。   The (A) propylene polymer according to the present invention includes an antioxidant, a weather resistance stabilizer, a light resistance stabilizer, an antistatic agent, an antifogging agent, and an antiblocking agent that are usually used as long as the object of the present invention is not impaired. Additives such as lubricants, nucleating agents, pigments, and other polymers can be blended as necessary.

(B)高圧法低密度ポリエチレン
本発明の分割型複合長繊維に係る(B)高圧法低密度ポリエチレンは、所謂、エチレンを高圧下でラジカル重合して得られる重合体であり、エチレンの単独重合体あるいはエチレンと少量の酢酸ビニルとの共重合体である。かかる(B)高圧法低密度ポリエチレンは、チーグラー触媒、メタロセン触媒等を用いて低圧下にエチレンと炭素数3〜10のα-オレフィンとを共重合して得られるエチレン・α-オレフィン共重合体である、所謂、線状低密度ポリエチレン(LLDPE)、およびチーグラー触媒(低圧10〜20kg/cm2)またはフィリップス触媒またはスタンダード触媒(中圧30〜100kg/cm2)を用いてエチレンをラジカル重合して得られる、所謂、高密度ポリエチレン(HDPE;密度0.950〜0.970g/cm3)とも異なる重合体である。
(B) High-pressure low-density polyethylene (B) The high-pressure low-density polyethylene according to the split composite long fiber of the present invention is a so-called polymer obtained by radical polymerization of ethylene under high pressure. It is a copolymer or a copolymer of ethylene and a small amount of vinyl acetate. The (B) high-pressure method low-density polyethylene is an ethylene / α-olefin copolymer obtained by copolymerizing ethylene and an α-olefin having 3 to 10 carbon atoms under a low pressure using a Ziegler catalyst, a metallocene catalyst or the like. Radical polymerization of ethylene using so-called linear low density polyethylene (LLDPE) and Ziegler catalyst (low pressure 10-20 kg / cm 2 ) or Philips catalyst or standard catalyst (medium pressure 30-100 kg / cm 2 ). It is a polymer different from so-called high density polyethylene (HDPE; density 0.950 to 0.970 g / cm 3 ) obtained in the above manner.

本発明に係る(B)高圧法低密度ポリエチレンのメルトフローレート(MFR;ASTM D―1238 荷重;2160g、温度;190℃)は、溶融紡糸し得る限り特に限定はされないが、通常、1〜1000g/10分、好ましくは10〜500g/10分、さらに好ましくは20〜100g/10分の範囲にある。 The melt flow rate (MFR; ASTM D-1238 load; 2160 g , temperature: 190 ° C.) of the (B) high-pressure low-density polyethylene according to the present invention is not particularly limited as long as it can be melt-spun, but usually 1 to 1000 g. / 10 minutes, preferably 10 to 500 g / 10 minutes, more preferably 20 to 100 g / 10 minutes.

本発明に係る(B)高圧法低密度ポリエチレンの融点(Tm)は、好ましくは90〜110℃、より好ましくは95〜110℃の範囲にあり、密度が好ましくは0.900〜0.935g/cm3、より好ましくは0.905〜0.925g/cm3の範囲にある。 The melting point (Tm) of the (B) high-pressure method low density polyethylene according to the present invention is preferably in the range of 90 to 110 ° C., more preferably 95 to 110 ° C., and the density is preferably 0.900 to 0.935 g / cm 3 , more preferably in the range of 0.905 to 0.925 g / cm 3 .

本発明に係る(B)高圧法低密度ポリエチレンには、本発明の目的を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、防曇剤、ブロッキング防止剤、滑剤、核剤、顔料等の添加剤或いは他の重合体を必要に応じて配合することができる。   The (B) high-pressure method low-density polyethylene according to the present invention includes an antioxidant, a weather-resistant stabilizer, a light-resistant stabilizer, an anti-static agent, an anti-fogging agent, and an anti-blocking agent, as long as the object of the invention is not impaired. Additives such as agents, lubricants, nucleating agents, pigments, or other polymers can be blended as necessary.

分割型複合長繊維
本発明の分割型複合長繊維は、前記(A)プロピレン系重合体および前記(B)高圧法低密度ポリエチレンを用いてなり、(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部とが互いに接してなる分割型複合長繊維である。
Split type composite long fiber The split type composite long fiber of the present invention comprises the (A) propylene polymer and the (B) high-pressure low-density polyethylene, and (A) the propylene polymer part and (B). It is a split-type composite long fiber in which high-pressure method low-density polyethylene parts are in contact with each other.

(A)プロピレン系重合体として、荷重2160g、230℃におけるMFRが40g/10分未満の(A)プロピレン系重合体を用いた場合は、得られる分割型複合長繊維は分割性に劣り、また、(B)高圧法低密度ポリエチレンに替えて線状低密度ポリエチレンを用いた場合も、得られる分割型複合長繊維は分割性に劣る。   (A) When the propylene-based polymer is (A) a propylene-based polymer having a load of 2160 g and an MFR at 230 ° C. of less than 40 g / 10 minutes, the resulting split-type composite continuous fiber is inferior in splitting property, (B) When the linear low-density polyethylene is used instead of the high-pressure method low-density polyethylene, the obtained split-type composite continuous fiber is inferior in splittability.

分割型複合長繊維の形状(断面)は、(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部とが互いに接する限り、特に限定はされず、〔図1(a)〜図1(e)〕など種々の形状を有するが、良好な紡糸性を確保できるという観点から、中心からの距離が等しい点の集合からなる曲線である、いわゆる真円の形状(図1(a)および(b))が好ましい。
本発明の分割型複合長繊維は、配向様式が同一であり、かつその配向度が少なくとも0.80、好ましくは0.82以上のプロピレン系重合体部とエチレン系重合体部が互いに接してなる分割型複合長繊維である。ここで、配向様式とは繊維軸に対し、分子鎖中の構造要素が全体としてどのような方向に選択的に向いているかの傾向を示し、例えばc軸配向度が高いとは、結晶格子のc軸が選択的に繊維軸方向に向いており、その割合が高い状態を表す。
配向様式が同一であり、かつその配向度が高いほど、両成分の結晶化が同時に行われるためか分割性が優れるため好ましい。
The shape (cross section) of the split-type composite long fiber is not particularly limited as long as (A) the propylene-based polymer portion and (B) the high-pressure method low-density polyethylene portion are in contact with each other, [FIG. 1 (e)], etc., but from the viewpoint of ensuring good spinnability, a so-called perfect circle shape (FIG. 1 (a)), which is a curve composed of a set of points having the same distance from the center. And (b)) are preferred.
The split-type composite long fibers of the present invention have the same orientation pattern, and the degree of orientation is at least 0.80, preferably 0.82 or more, and the propylene-based polymer portion and the ethylene-based polymer portion are in contact with each other. It is a split type composite long fiber. Here, the orientation mode indicates a tendency in which the structural elements in the molecular chain are selectively oriented with respect to the fiber axis as a whole. For example, a high degree of c-axis orientation means that the crystal lattice has a high degree of orientation. The c axis is selectively oriented in the fiber axis direction, indicating a high ratio.
The same orientation pattern and higher degree of orientation are preferred because both components are crystallized at the same time or because the splitting property is excellent.

本発明の分割型複合長繊維は、好ましくはエチレン系重合体の主たる配向様式の配向度が少なくとも0.70、より好ましくは0.75以上である。
本発明の配向度は、広角X線回折装置(リガク社製 RINT2550、付属装置:繊維試料台、X線源:CuKα、出力:40kV 370mA、検出器:シンチレーションカウンター)を用いて、試料を繊維軸方向に並べて試料ホルダーに固定し、結晶面ピーク[ポリプロピレン系重合体:(110)面、ポリエチレン重合体:(200)面]の方位角分布強度を測定して得られた方位角分布曲線(X線干渉図)において、ピークの半価幅(α)から下記の式より繊維軸方向の配向度を算出して評価する。なお、下記式で求められる配向度において、0.8未満の場合は配向性が非常に低いと判断し、無配向とする。
配向度(F)=(180°―α)/180° (αは方位角分布曲線におけるピーク半価幅)
In the split-type composite continuous fiber of the present invention, the orientation degree of the main orientation mode of the ethylene polymer is preferably at least 0.70, more preferably 0.75 or more.
The degree of orientation of the present invention is determined using a wide-angle X-ray diffractometer (RINT2550, manufactured by Rigaku Corporation, attached device: fiber sample stage, X-ray source: CuKα, output: 40 kV 370 mA, detector: scintillation counter). An azimuth distribution curve (X) obtained by measuring the azimuth distribution intensity of crystal plane peaks [polypropylene polymer: (110) plane, polyethylene polymer: (200) plane], arranged in a direction and fixed to a sample holder. In the line interference diagram), the degree of orientation in the fiber axis direction is calculated from the half-value width (α) of the peak according to the following formula and evaluated. In addition, in the orientation degree calculated | required by the following formula, when it is less than 0.8, it judges that orientation is very low and makes it non-orientation.
Orientation degree (F) = (180 ° −α) / 180 ° (α is the peak half-value width in the azimuth distribution curve)

本発明の分割型複合長繊維の繊度は、通常、6デニール以下が好ましい。6デニール以下であれば、割繊処理後の繊度を細くすることができ、拭取り性や柔軟性に優れるため好ましい。また、分割型複合長繊維を形成する(A)プロピレン系重合体部とエチレン系重合体部の分割数は分割性を阻害しない範囲であれば特に限定されないが、通常、4〜48分割、好ましくは4〜24分割の範囲にある。分割型複合長繊維の繊度および複合繊維の分割をかかる範囲にすることにより、複合繊維からなる不織布を分割して得られる分割繊維の繊度を0.001〜2.00デニール、好ましくは0.001〜0.5デニールの範囲にすることができる。   The fineness of the split-type composite continuous fiber of the present invention is usually preferably 6 denier or less. If it is 6 deniers or less, the fineness after a split fiber process can be made thin, and since it is excellent in wiping property and a softness | flexibility, it is preferable. Further, the number of divisions of the propylene polymer part and the ethylene polymer part forming the split-type composite long fiber is not particularly limited as long as it does not impair the splittability, but usually 4 to 48 splits, preferably Is in the range of 4 to 24 divisions. By setting the fineness of the split-type composite long fiber and the splitting of the composite fiber in such a range, the fineness of the split fiber obtained by dividing the nonwoven fabric made of the composite fiber is 0.001 to 2.00 denier, preferably 0.001. It can be in the range of ~ 0.5 denier.

分割型複合長繊維からなる不織布
本発明の分割型複合長繊維からなる不織布は、前記分割型複合長繊維からなり、通常、目付けが3〜200g/m2、好ましくは10〜150g/m2の範囲にある。また、本発明の不織布は、必要に応じて、分割型複合長繊維群をエンボスロール、超音波融着などの方法により、熱融着される。熱融着する場合の面積(エンボス面積率)は、用途に応じて、適宜選択し得るが、5〜30%が好ましい。
Nonwoven fabric made of splittable conjugated filaments of the nonwoven fabric present invention comprising a splittable conjugated filaments are made from the splittable conjugated filaments, typically having a basis weight 3~200g / m 2, preferably from 10 to 150 g / m 2 Is in range. Moreover, the nonwoven fabric of this invention heat-seals a split-type composite long fiber group by methods, such as an embossing roll and ultrasonic fusion | fusion, as needed. The area (embossed area ratio) in the case of heat-sealing can be appropriately selected according to the use, but is preferably 5 to 30%.

分割繊維不織布
本発明の分割繊維不織布は、前記分割型複合長繊維からなる不織布に応力を加えることにより、複合繊維を形成する(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部を分割してなる不織布であり、目付けが通常3〜200g/m2、好ましくは10〜150g/m2の範囲にある。
Split fiber nonwoven fabric The split fiber nonwoven fabric of the present invention comprises (A) a propylene-based polymer portion and (B) a high-pressure method low-density polyethylene portion that form a composite fiber by applying stress to the nonwoven fabric composed of the split-type composite long fibers. The basis weight is usually 3 to 200 g / m 2 , preferably 10 to 150 g / m 2 .

本発明の分割繊維不織布を形成する分割繊維の繊度は、通常、0.001〜2.0デニール、好ましくは0.001〜0.5デニールの範囲にある。   The fineness of the split fibers forming the split fiber nonwoven fabric of the present invention is usually in the range of 0.001 to 2.0 denier, preferably 0.001 to 0.5 denier.

分割型複合長繊維からなる不織布に与える応力は、種々公知の方法、例えば、水などの液体を高圧で当てる方法、所謂高圧水流法(ウォータージェット法)、ギア延伸機が挙げられる。   Examples of the stress applied to the nonwoven fabric composed of split-type composite long fibers include various known methods, for example, a method of applying a liquid such as water at a high pressure, a so-called high-pressure water flow method (water jet method), and a gear drawing machine.

堆積させてなる分割型複合長繊維からなる不織布に高圧水流を与える場合は、交絡等を促進させるために、例えば、高圧液体流による分割割繊と交絡の付与工程の前に、不織布の構成単糸間に存在する空気を水で置換するのが好ましい。具体的には、ウェブに水を付与すればよい。   When a high-pressure water flow is applied to a nonwoven fabric composed of split-type composite long fibers that are deposited, in order to promote entanglement and the like, for example, before the split splitting and entanglement application step by high-pressure liquid flow, It is preferred to replace the air present between the yarns with water. Specifically, water may be applied to the web.

高圧液体流は液体をノズル孔に通して高圧ポンプで昇圧して噴射すれば得ることができる。ノズル孔としては、通常、孔径が0.05〜1.0mmであり、更に好ましくは0.1〜0.5mmの範囲にある。また、高圧液体流の圧力としては、通常5〜400MPa、好ましくは50〜300MPaの範囲にある。また、液体としては取扱いの容易さから、水または温水が適用され、公知の水質測定装置で比抵抗値が10MΩ・cm以上が好ましく、更に好ましくは15MΩ・cm以上の純水を使用する。   A high-pressure liquid flow can be obtained by injecting liquid through a nozzle hole and increasing the pressure with a high-pressure pump. As a nozzle hole, a hole diameter is 0.05-1.0 mm normally, More preferably, it exists in the range of 0.1-0.5 mm. The pressure of the high-pressure liquid flow is usually in the range of 5 to 400 MPa, preferably 50 to 300 MPa. In addition, water or warm water is applied as the liquid for ease of handling, and pure water having a specific resistance value of 10 MΩ · cm or more, more preferably 15 MΩ · cm or more, is used with a known water quality measuring apparatus.

ノズル孔と不織布の距離は、1〜15cm程度が好適である。この距離が15cmを超えると、液体が不織布に与えるエネルギーが低下し、割繊や交絡の効果が低下する傾向となる。また、1cm未満となると、不織布の地合が乱れる傾向となる。   The distance between the nozzle hole and the nonwoven fabric is preferably about 1 to 15 cm. When this distance exceeds 15 cm, the energy which a liquid gives to a nonwoven fabric will fall, and it will become the tendency for the effect of splitting or entanglement to fall. Moreover, when it becomes less than 1 cm, the formation of the nonwoven fabric tends to be disturbed.

一般的に、高圧液体流のノズル孔は不織布の進行方向と交差する方向に列状に配置される。片面処理の場合、均一な分割割繊や緊密な交絡結合を得るためには、噴射孔を2列以上、このましくは3列以上で行うのがよい。高圧液体流の圧力は、前段側で低く、後段側で高くするのが、地合の均一化のために好ましい。   Generally, the nozzle holes of the high-pressure liquid stream are arranged in a row in a direction intersecting with the traveling direction of the nonwoven fabric. In the case of single-sided processing, in order to obtain uniform split splitting and tight entanglement coupling, it is preferable to carry out the injection holes in two or more rows, preferably three or more rows. The pressure of the high-pressure liquid stream is preferably low on the front side and high on the rear side in order to make the formation uniform.

更に、本発明に係る分割繊維不織布の外観模様、いわゆる柄は、高圧液体流の処理時に使用するスクリーンベルトのパターンを適宜選択することより、変更可能である。   Furthermore, the appearance pattern of the split fiber nonwoven fabric according to the present invention, the so-called pattern, can be changed by appropriately selecting the pattern of the screen belt used during the treatment of the high-pressure liquid flow.

高圧液体流で分割割繊処理を施された分割繊維不織布は、その後、過剰の水分を機械的絞りで除去した後、乾燥・熱処理されて最終製品となる。熱処理温度時間は、単に水分の除去に留まらず、適度の収縮および結晶化の促進を許容するように選択することも可能である。熱処理は乾熱処理や湿熱処理であってもよい。   The split fiber nonwoven fabric subjected to split splitting treatment with a high-pressure liquid flow is then dried and heat-treated after excess moisture is removed by mechanical squeezing into a final product. The heat treatment temperature time can be selected not only to remove moisture but also to allow moderate shrinkage and promotion of crystallization. The heat treatment may be a dry heat treatment or a wet heat treatment.

分割型複合長繊維および不織布の製造方法
本発明の前記分割型複合長繊維および分割型複合長繊維からなる不織布は、前記(A)プロピレン系重合体および(B)高圧法低密度ポリエチレンを用いて公知の溶融紡糸の製造方法により得ることができるが、生産性が良く、分割性に優れるフィラメントが得られる点で、スパンボンド法が好ましい。
Method for Producing Split Type Composite Long Fiber and Nonwoven Fabric The nonwoven fabric comprising the split type composite long fiber and the split type composite long fiber of the present invention uses the (A) propylene-based polymer and (B) high-pressure method low-density polyethylene. Although it can be obtained by a known melt spinning production method, the spunbond method is preferred in that a filament having good productivity and excellent splitting properties can be obtained.

本発明の分割複合繊維不織布の製造方法として、スパンボンド法を例にとって説明する。前記(A)プロピレン系重合体および(B)高圧法低密度ポリエチレンを、それぞれ別個に押出機等で溶融し、各溶融物を図1(a)〜図1(e)に例示されるように、中空状、放射状または平行あるいは並列、若しくは弧状に断面構造を形成するようにされた複合紡糸ノズルを有する紡糸口金から吐出させて、(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部が互いに接する分割型複合長繊維を紡出させる。紡出された分割型複合長繊維を、冷却流体により冷却し、さらに延伸エアによって長繊維に張力を加えて所定の繊度とし、そのまま捕集ベルト上に捕集して所定の厚さに堆積させる。次いで、必要に応じて熱エンボスロールによる熱融着等による熱エンボス加工を行う。熱エンボスロールによる熱融着の場合、エンボスロールのエンボス面積率は適宜決められるが、通常5〜30%が好ましい。   A spunbond method will be described as an example as a method for producing the split composite fiber nonwoven fabric of the present invention. The (A) propylene polymer and (B) high-pressure low-density polyethylene are separately melted with an extruder or the like, and each melt is exemplified in FIGS. 1 (a) to 1 (e). And (A) a propylene-based polymer portion and (B) a low-pressure method low density by discharging from a spinneret having a composite spinning nozzle that has a hollow, radial, parallel or parallel, or arc-shaped cross-sectional structure. Spinning split-type composite long fibers whose polyethylene parts are in contact with each other. The spun split-type composite long fibers are cooled by a cooling fluid, and further, tension is applied to the long fibers by drawn air to obtain a predetermined fineness, which is then collected on a collecting belt and deposited to a predetermined thickness. . Next, heat embossing is performed as necessary by heat fusion using a heat embossing roll. In the case of heat fusion with a hot embossing roll, the embossing area ratio of the embossing roll is appropriately determined, but is usually preferably 5 to 30%.

この際、紡糸性が良好な範囲で成形温度、紡糸速度、冷却エア温度を適宜選択することにより(A)プロピレン系重合体部、好ましくは(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部を前記範囲で結晶化させることが必要である。   At this time, by appropriately selecting a molding temperature, a spinning speed, and a cooling air temperature within a range in which spinnability is good, (A) a propylene-based polymer part, preferably (A) a propylene-based polymer part, and (B) a high-pressure method. It is necessary to crystallize the low density polyethylene part within the above range.

分割繊維不織布の製造方法
本発明の分割繊維不織布の製造方法は、前記分割型複合長繊維からなる不織布を前記記載の種々公知の方法で(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部とを分割させる。
Method for Producing Split Fiber Nonwoven Fabric The method for producing the split fiber nonwoven fabric of the present invention comprises the steps of (A) propylene-based polymer portion and (B) high-pressure method using the above-mentioned various types of nonwoven fabrics composed of split-type composite continuous fibers. The density polyethylene part is divided.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

なお、実施例および比較例における物性値等は、以下の方法により測定した。   In addition, the physical-property value etc. in an Example and a comparative example were measured with the following method.

(1)分割率
得られた分割繊維不織布をエポキシ樹脂に包埋して、次いでミクロトームで切断し、試料片を得る。これを電子顕微鏡〔(株)日立製作所製S−3500N形 走査型電子顕微鏡〕で観察し、得られた断面像より観察された分割繊維断面のセグメント数が1つの場合は分割率を100%とし、観察された分割繊維断面のセグメント数が2つ以上の場合は分割率を以下の式で算出した。これを繊維50本分観察し、その平均値を該分割繊維不織布の分割率とした。
(1) Dividing ratio The obtained divided fiber nonwoven fabric is embedded in an epoxy resin, and then cut with a microtome to obtain a sample piece. When this is observed with an electron microscope (S-3500N scanning electron microscope manufactured by Hitachi, Ltd.) and the number of segments of the divided fiber cross section observed from the obtained cross-sectional image is 1, the division ratio is 100%. When the observed number of segments in the cross section of the split fibers was two or more, the split ratio was calculated by the following formula. This was observed for 50 fibers, and the average value was taken as the split ratio of the split fiber nonwoven fabric.

分割率[%]=(総セグメント数−観察された分割繊維断面のセグメント数)/総セグメント数×100
ここで、総セグメント数とは、分割型複合繊維のフィラメント横断面を形成するセグメントの総和のことである。例えば、図1(a)、(b)および(d)のようなフィラメント横断面を有する分割型複合繊維の場合は、総セグメントを8とする。
Dividing ratio [%] = (total number of segments−number of observed segments of divided fibers) / total number of segments × 100
Here, the total number of segments refers to the total number of segments forming the filament cross section of the split composite fiber. For example, in the case of a split type composite fiber having a filament cross section as shown in FIGS. 1 (a), (b) and (d), the total number of segments is 8.

例えば、図1(a)のような総セグメント数8のフィラメントにおいて図1(e)のような分割繊維断面が観察された場合は、観察された分割繊維断面のセグメント数は3として、上式より分割率は62.5%とする。   For example, when a split fiber cross section as shown in FIG. 1 (e) is observed in a filament having a total number of segments of 8 as shown in FIG. 1 (a), the number of segments of the observed split fiber cross section is set to 3, Further, the division ratio is 62.5%.

(2)繊度
得られた分割繊維不織布をエポキシ樹脂に包埋して、次いでミクロトームで切断して試料片を得る。次いで、電子顕微鏡〔(株)日立製作所製S−3500N形 走査型電子顕微鏡〕で観察し、得られた断面像から未分割フィラメント30本を選び、その断面積を算出し、それらの平均値より未分割フィラメントの繊度を求め、分割率を用いて次の式により分割繊維の繊度を算出した。
分割繊維の繊度=未分割フィラメント繊度/(総セグメント数×分割率/100)
(2) Fineness The obtained split fiber nonwoven fabric is embedded in an epoxy resin, and then cut with a microtome to obtain a sample piece. Next, the sample was observed with an electron microscope (S-3500N scanning electron microscope manufactured by Hitachi, Ltd.), 30 undivided filaments were selected from the obtained cross-sectional image, and the cross-sectional area was calculated. The fineness of the undivided filament was determined, and the fineness of the divided fiber was calculated by the following formula using the division ratio.
Fineness of split fibers = unsplit filament fineness / (total number of segments x split ratio / 100)

(3)風合い
評価者10人により手触りの評価を行い、以下の基準で評価結果を示す。
(3) Texture The touch is evaluated by 10 evaluators, and the evaluation results are shown according to the following criteria.

◎:手触りが良いと感じた人が、10人のうち10人の場合、
○:手触りが良いと感じた人が、10人のうち9〜7人の場合、
△:手触りが良いと感じた人が、10人のうち6〜3人の場合、
×:手触りが良いと感じた人が、10人のうち2人以下の場合。
◎: When 10 people out of 10 feel that the touch is good,
○: If there are 9 to 7 people out of 10
Δ: When 6 to 3 out of 10 people feel that the touch is good,
X: When the number of people who feel that the touch is good is 2 or less out of 10 people.

(4)剛軟性(45°カンチレバー法)
JIS L1096(6.19.1 A法 項)に準拠して、JIS Z 8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で幅20mm×150mmの試験片を流れ方向(MD)と横方向(CD)でそれぞれ5枚採取し、45°の斜面をもつ表面の滑らかな水平台の上に試験片の短辺をスケール基線に合わせて置く。次に、手動により試験片を斜面の方向に緩やかに滑らせて試験片の一端の中央点が斜面と接したとき他端の位置の移動長さをスケールによって読む。剛軟性(剛軟度)は試験片の移動した長さ(mm)で示され、それぞれ5枚の裏表について測定し、流れ方向(MD)および横方向(CD)それぞれの平均値で表した。
(4) Flexibility (45 ° cantilever method)
In accordance with JIS L1096 (6.19.1 A method paragraph), the temperature is 20 ± 2 ° C. and the humidity is 65 ± 2% in a temperature-controlled room specified in JIS Z 8703 (standard state of test place). Five test pieces are collected in each of the flow direction (MD) and the horizontal direction (CD), and the short side of the test piece is placed on a smooth horizontal table with a 45 ° slope so that the short side of the test piece matches the scale base line. Next, the test piece is manually slid gently in the direction of the slope, and when the central point of one end of the test piece comes into contact with the slope, the moving length of the other end is read on the scale. Bending / softening (bending / softening) is indicated by the length (mm) of the test piece moved, measured for each of the five front and back sides, and expressed as an average value in each of the flow direction (MD) and the transverse direction (CD).

剛軟度が低いほど不織布に柔軟性があると判断される。一般に流れ方向(MD)および横方向(CD)ともに剛軟度の値が25mm未満の場合に、柔軟性が良好と判断される。但し、必要な柔軟性は使用目的等によっても異なる為、必ずしもこの数値に制限されるものではない。   It is judged that the lower the bending resistance is, the more flexible the nonwoven fabric is. Generally, when the value of the bending resistance is less than 25 mm in both the flow direction (MD) and the transverse direction (CD), it is determined that the flexibility is good. However, since the required flexibility varies depending on the purpose of use, it is not necessarily limited to this value.

(5)引張強度
JIS L1906(6.12.1 A法)に準拠して、JIS Z8703(試験場所の標準状態)に規定する温度20±2℃、湿度65±2%の恒温室内で流れ方向(MD)の引張強度としては流れ方向(MD)に25cm、横方向(CD)に2.5cmの不織布試験片を3枚採取し、横方向(CD)の引張強度としては流れ方向(MD)に2.5cm、横方向(CD)に25cmの不織布試験片を3枚採取し、チャック間200mm、引張速度200mm/分の条件で引張り試験機(インストロン ジャパン カンパニイリミテッド製 インストロン5564型)を用いて引張試験を行い、3枚の試験片について引張荷重を測定し、それらの最大値の平均値を引張強度とした。
(5) Tensile strength In accordance with JIS L1906 (6.12.1 A method), the flow direction in a temperature-controlled room with a temperature of 20 ± 2 ° C and a humidity of 65 ± 2% as defined in JIS Z8703 (standard condition of test place) As the tensile strength of (MD), three nonwoven fabric test pieces of 25 cm in the flow direction (MD) and 2.5 cm in the transverse direction (CD) were collected, and the tensile strength in the transverse direction (CD) was taken as the flow direction (MD). 3 pieces of non-woven fabric test pieces of 2.5 cm in the transverse direction (CD) and 25 cm in the transverse direction (CD), and a tensile tester (Instron Model 5564 manufactured by Instron Japan Ltd.) under the conditions of 200 mm between chucks and a pulling speed of 200 mm / min. The tensile test was performed, the tensile load was measured about three test pieces, and the average value of those maximum values was made into the tensile strength.

(6)通気度
JIS L 1096(通気性A法)に準拠し、試料長さ方向より100×100mmの試験片を20枚採取しフラジール型試験機(大栄科学精器製作所 AT-360S)を用いて測定した結果の平均値を通気度とした。
(6) Air permeability In accordance with JIS L 1096 (Breathability A method), 20 test pieces of 100 x 100 mm were collected from the sample length direction and used as a Frazier type tester (Daiei Scientific Instruments Seisakusho AT-360S). The average value of the measurement results was taken as the air permeability.

通気度が低いほど、分割性が高いため極細繊維が不織布全体に均一に存在していると判断できる
[実施例1]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが60g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.75〕を、(B)高圧法低密度ポリエチレン部として荷重2160g、190℃のMFRが20g/10分の(B)高圧法低密度ポリエチレン〔密度0.919g/cm3〕をそれぞれ別個の押出機成形温度を210℃として溶融した。図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させた。次いで、繊維を分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
The lower the air permeability, the higher the splitting ability, so it can be determined that the ultrafine fibers are uniformly present throughout the nonwoven fabric.
[Example 1]
(A) Propylene polymer part (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.75) with a load of 2160 g and an MFR of 230 ° C. of 60 g / 10 min as a propylene polymer part, (B) As a high-pressure method low-density polyethylene part, a load of 2160 g and a 190 ° C. MFR of 20 g / 10 minutes are used. (B) High-pressure method low-density polyethylene [density 0.919 g / cm 3 ] Melted at 0 ° C. Using a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in FIG. 1A, the weight ratio of (A) propylene-based polymer part to (B) high-pressure method low-density polyethylene part is 50. / 50 split-type composite long fibers were spun by a so-called spunbond method at a yarn speed of 2500 m / min and deposited on a collection belt. Next, a nozzle having a hole diameter of 0.11 mm is used to divide the fiber, the distance from the nozzle to the nonwoven fabric is 10 cm, the first-stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, and the second-stage water pressure is 100 kgf / in cm 2, 3-stage water pressure 100 kgf / cm 2, 4-stage pressure 100 kgf / cm 2 each four times on the front and back surfaces of the nonwoven fabric is subjected to a total of eight water jet machining, basis weight 50 g / m Two split fiber nonwoven fabrics were prepared. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[実施例2]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが60g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.75〕を、(B)高圧法低密度ポリエチレン部として荷重2160g、190℃のMFRが35g/10分の(B)高圧法低密度ポリエチレン〔密度0.916 g/cm3〕を用い、それぞれ別個の押出機成形温度を210℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Example 2]
(A) Propylene polymer part (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.75) with a load of 2160 g and an MFR of 230 ° C. of 60 g / 10 min as a propylene polymer part, (B) High pressure method low density polyethylene part (B) High pressure method low density polyethylene (density 0.916 g / cm 3 ) with a load of 2160 g and 190 ° C. MFR of 35 g / 10 min. Using a split type composite fiber spinning die having a total number of segments of 16 in a cross-sectional shape as shown in FIG. 1 (a), melted at 210 ° C., (A) a propylene-based polymer part and (B) a high pressure method A split type composite continuous fiber having a density ratio of 50/50 in the density polyethylene part is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, In order to divide, using a nozzle with a hole diameter of 0.11 mm, the distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, the second stage water pressure is 100 kgf / cm 2 , 3-stage water pressure 100 kgf / cm 2, 4-stage pressure 100 kgf / cm 2 at each four times on the front and back surfaces of the nonwoven fabric, a total of eight for a water jet cutting, basis weight split fibers of 50 g / m 2 A nonwoven fabric was prepared. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[実施例3]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが60g/10分の(A)プロピレン系重合体〔密度0.910 g/cm3、融点161.7℃、Mw/Mn3.40〕を、(B)高圧法低密度ポリエチレン部として荷重2160g、190℃のMFRが35g/10分の(B)高圧法低密度ポリエチレン〔密度0.916g/cm3〕を用い、それぞれ別個の押出機成形温度を210℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Example 3]
(A) Propylene polymer part with a load of 2160 g and an MFR of 230 ° C. of 60 g / 10 min. (A) Propylene polymer [density 0.910 g / cm 3 , melting point 161.7 ° C., Mw / Mn 3.40 (B) High pressure method low density polyethylene part (B) High pressure method low density polyethylene (density 0.916 g / cm 3 ) with a load of 2160 g and 190 ° C. MFR of 35 g / 10 min. (A) Propylene polymer part and (B) high pressure using a split type composite fiber spinning die having a total molding number of 16 in the cross-sectional shape as shown in FIG. A split type composite continuous fiber having a weight ratio of a low density polyethylene part of 50/50 is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then a fiber. In order to divide the fibers, a nozzle having a hole diameter of 0.11 mm is used, the distance from the nozzle to the nonwoven fabric is 10 cm, the first-stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, and the second-stage water pressure is 100 kgf / cm 2. The water pressure of the third stage is 100 kgf / cm 2 and the water pressure of the fourth stage is 100 kgf / cm 2. The surface and the back surface of the nonwoven fabric are each subjected to water jet processing four times, a total of eight times, and the basis weight is 50 g / m 2 . A split fiber nonwoven fabric was produced. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例1]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが60g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.75〕を、高密度ポリエチレン部として荷重2160g、190℃のMFRが16g/10分の高密度ポリエチレン〔密度0.972g/cm3〕を用い、それぞれ別個の押出機成形温度を240℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と高密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 1]
(A) Propylene polymer part (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.75) with a load of 2160 g and an MFR of 230 ° C. of 60 g / 10 min as a propylene polymer part, As the high-density polyethylene part, high-density polyethylene (density: 0.972 g / cm 3 ) having a load of 2160 g and an MFR of 190 ° C. of 16 g / 10 min was melted at 240 ° C. in each separate extruder molding temperature. (a) Split type composite length in which the weight ratio of the propylene polymer part to the high density polyethylene part is 50/50 using a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as in a) The fiber is spun by a so-called spunbond method at a yarn speed of 2500 m / min, is deposited on a collecting belt, and then has a pore diameter of 0.11 mm in order to divide the fiber. The distance by using the nozzle from the nozzle to a nonwoven fabric as 10 cm, with in the first stage pressure 60kgf / cm 2, 2 stage pressure 100 kgf / cm 2 line speed 5 m / min, the 3-stage water pressure 100 kgf / cm 2 A total of 8 water jets were applied to the front and back surfaces of the nonwoven fabric 4 times at a water pressure of 100 kgf / cm 2 in the 4th stage to produce a split fiber nonwoven fabric with a basis weight of 50 g / m 2 . About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例2]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが30g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点165.4℃、Mw/Mn6.79〕を、高密度ポリエチレン部として荷重2160g、190℃のMFRが16g/10分の高密度ポリエチレン〔密度0.972g/cm3〕を用い、それぞれ別個の押出機成形温度を240℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と高密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 2]
(A) Propylene polymer part with a load of 2160 g and an MFR of 230 ° C. of 30 g / 10 min. (A) Propylene polymer [density 0.910 g / cm 3 , melting point 165.4 ° C., Mw / Mn 6.79] The high-density polyethylene part is made of high-density polyethylene (density 0.972 g / cm 3 ) with a load of 2160 g and a 190 ° C. MFR of 16 g / 10 min. A split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as in 1 (a) is used. (A) A split type in which the weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50/50. A composite long fiber is spun by a so-called spunbond method at a yarn speed of 2500 m / min, is deposited on a collecting belt, and then has a pore diameter of 0.11 m in order to divide the fiber. The distance from the nozzle by using the nozzle to a nonwoven fabric as a 10 cm, 1 in stage pressure 60kgf / cm 2, 2 stage pressure 100 kgf / cm 2 at a line speed of 5 m / min, the 3-stage water pressure 100 kgf / cm 2 A total of 8 times of water jet processing was performed on the front and back surfaces of the nonwoven fabric at a water pressure of 100 kgf / cm 2 at the fourth stage for a total of 8 times to produce a split fiber nonwoven fabric with a basis weight of 50 g / m 2 . About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例3]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが13g/10分の(A)プロピレン系重合体を〔密度0.910g/cm3、融点165.4℃、Mw/Mn10.97〕、高密度ポリエチレン部として荷重2160g、190℃のMFRが16g/10分の高密度ポリエチレン〔密度0.972g/cm3〕を用い、それぞれ別個の押出機成形温度を240℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と高密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 3]
(A) (A) propylene polymer having a load of 2160 g and an MFR of 230 ° C. of 13 g / 10 min as the propylene polymer part [density 0.910 g / cm 3 , melting point 165.4 ° C., Mw / Mn 10.97 ] As the high-density polyethylene part, high-density polyethylene (density 0.972 g / cm 3 ) having a load of 2160 g and 190 ° C. MFR of 16 g / 10 minutes was melted at 240 ° C., respectively. A split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as in 1 (a) is used. (A) A split type in which the weight ratio of the propylene-based polymer part to the high-density polyethylene part is 50/50. A composite long fiber is spun by a so-called spunbond method at a yarn speed of 2500 m / min, is deposited on a collecting belt, and then has a pore diameter of φ0.11 to divide the fiber. Use nozzles m as 10cm distance from the nozzles to the non-woven fabric, with in the first stage pressure 60 kgf / cm 2, 2 stage pressure 100 kgf / cm 2 line speed 5 m / min, the 3-stage water pressure 100 kgf / cm 2, 4-stage pressure 100 kgf / cm 2 each four times on the front and back surfaces of the nonwoven fabric is subjected to a total of eight water jet machining, basis weight was produced of the split fiber nonwoven fabric 50 g / m 2. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例4]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが30g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.80〕を、(B)高圧法低密度ポリエチレン部として荷重2160g、190℃のMFRが20g/10分の(B)高圧法低密度ポリエチレン〔密度0.919g/cm3〕を用い、それぞれ別個の押出機成形温度を210℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 4]
(A) Propylene-based polymer part (A) propylene-based polymer [density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.80] with a load of 2160 g and an MFR of 230 ° C. of 30 g / 10 min. (B) High pressure method low density polyethylene part (B) High pressure method low density polyethylene (density 0.919 g / cm 3 ) using a load of 2160 g and 190 ° C. MFR of 20 g / 10 min. Is melted at 210 ° C., and a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as shown in FIG. 1A is used. (A) Propylene-based polymer part and (B) Low pressure method high density A split-type composite continuous fiber having a polyethylene part weight ratio of 50/50 is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then divided into fibers. In order to divide, using a nozzle with a hole diameter of 0.11 mm, the distance from the nozzle to the nonwoven fabric is 10 cm, the first stage water pressure is 60 kgf / cm 2 at the line speed of 5 m / min, the second stage water pressure is 100 kgf / cm 2 , 3-stage water pressure 100 kgf / cm 2, 4-stage pressure 100 kgf / cm 2 at each four times on the front and back surfaces of the nonwoven fabric, a total of eight for a water jet cutting, basis weight split fibers of 50 g / m 2 A nonwoven fabric was prepared. About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例5]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが60g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.75〕を、高密度ポリエチレン部として荷重2160g、190℃のMFRが30g/10分の高密度ポリエチレン〔密度0.95g/cm3〕を用い、それぞれ別個の押出機成形温度を210℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と(B)高密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 5]
(A) Propylene polymer part (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.75) with a load of 2160 g and an MFR of 230 ° C. of 60 g / 10 min as a propylene polymer part, As the high-density polyethylene part, high-density polyethylene (density 0.95 g / cm 3 ) with a load of 2160 g and a 190 ° C. MFR of 30 g / 10 min was melted at 210 ° C. in a separate extruder molding temperature. division section using the splittable conjugate fiber spinning spinneret total segment is 16 in form (a) propylene-based polymer unit and (B) weight ratio of the high-density polyethylene portion as a) is 50/50 Type composite continuous fiber is spun by a so-called spunbond method at a yarn speed of 2500 m / min, is deposited on a collecting belt, and then has a pore diameter of 0.11 m for fiber splitting. The distance from the nozzle by using the nozzle to a nonwoven fabric as a 10 cm, 1 in stage pressure 60kgf / cm 2, 2 stage pressure 100 kgf / cm 2 at a line speed of 5 m / min, the 3-stage water pressure 100 kgf / cm 2 A total of 8 times of water jet processing was performed on the front and back surfaces of the nonwoven fabric at a water pressure of 100 kgf / cm 2 at the fourth stage for a total of 8 times to produce a split fiber nonwoven fabric with a basis weight of 50 g / m 2 . About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例6]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが60g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.75〕を、ポリエチレン部として荷重2160g、190℃のMFRが15g/10分の直鎖状低密度ポリエチレン〔密度0.915g/cm3〕を用い、それぞれ別個の押出機成形温度を210℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と(B)ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 6]
(A) Propylene polymer part (A) Propylene polymer (density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.75) with a load of 2160 g and an MFR of 230 ° C. of 60 g / 10 min as a propylene polymer part, As the polyethylene part, a linear low density polyethylene (density 0.915 g / cm 3 ) having a load of 2160 g and an MFR of 190 ° C. of 15 g / 10 min was melted at 210 ° C. in a separate extruder molding temperature. Using a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as in (a), a split type in which the weight ratio of (A) propylene polymer part and (B) polyethylene part is 50/50 A composite long fiber is spun by a so-called spunbond method at a yarn speed of 2500 m / min, is deposited on a collecting belt, and then has a pore diameter of 0.11 mm to divide the fiber. The distance by using the nozzle from the nozzle to a nonwoven fabric as 10 cm, with in the first stage pressure 60kgf / cm 2, 2 stage pressure 100 kgf / cm 2 line speed 5 m / min, the 3-stage water pressure 100 kgf / cm 2 A total of 8 water jets were applied to the front and back surfaces of the nonwoven fabric 4 times at a water pressure of 100 kgf / cm 2 in the 4th stage to produce a split fiber nonwoven fabric with a basis weight of 50 g / m 2 . About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

[比較例7]
(A)プロピレン系重合体部として荷重2160g、230℃のMFRが35g/10分の(A)プロピレン系重合体〔密度0.910g/cm3、融点157℃、Mw/Mn2.7〕を、高密度ポリエチレン部として荷重2160g、190℃のMFRが16g/10分の高密度ポリエチレン〔密度0.972g/cm3〕を用い、それぞれ別個の押出機成形温度を240℃で溶融し、図1(a)のような断面形状において総セグメント数が16である分割型複合繊維紡糸用口金を用い(A)プロピレン系重合体部と高密度ポリエチレン部の重量比が50/50である分割型複合長繊維を糸速度2500m/分でいわゆるスパンボンド法により紡糸し、捕集ベルト上に堆積させて、次いで、繊維の分割させるために孔径φ0.11mmのノズルを使用してノズルから不織布までの距離を10cmとして、ライン速度5m/minで1段目水圧60kgf/cm2、2段目の水圧100kgf/cm2で、3段目の水圧100kgf/cm2、4段目の水圧100kgf/cm2で不織布の表面と裏面に各4回、合計8回のウォータージェット加工を施し、目付量が50g/m2の分割繊維不織布を作製した。得られた不織布について、分割率、繊度、剛軟性、引張強度を測定して評価した。結果を表1に示す。
[Comparative Example 7]
(A) Propylene polymer part (A) propylene polymer [density 0.910 g / cm 3 , melting point 157 ° C., Mw / Mn 2.7] with a load of 2160 g and an MFR of 230 ° C. of 35 g / 10 min as a propylene polymer part, As the high-density polyethylene part, high-density polyethylene (density: 0.972 g / cm 3 ) having a load of 2160 g and an MFR of 190 ° C. of 16 g / 10 min was melted at 240 ° C. in each separate extruder molding temperature. (a) Split type composite length in which the weight ratio of the propylene polymer part to the high density polyethylene part is 50/50 using a split type composite fiber spinning die having a total number of segments of 16 in the cross-sectional shape as in a) The fiber is spun by a so-called spunbond method at a yarn speed of 2500 m / min, deposited on a collecting belt, and then a fiber having a hole diameter of 0.11 mm is used to divide the fiber. As 10cm distance from the nozzles to the non-woven fabric using the Le, with in the first stage pressure 60 kgf / cm 2, 2 stage pressure 100 kgf / cm 2 line speed 5 m / min, the 3-stage water pressure 100 kgf / cm 2 A total of 8 water jets were applied to the front and back surfaces of the nonwoven fabric 4 times at a water pressure of 100 kgf / cm 2 in the 4th stage to produce a split fiber nonwoven fabric with a basis weight of 50 g / m 2 . About the obtained nonwoven fabric, the division ratio, the fineness, the bending resistance, and the tensile strength were measured and evaluated. The results are shown in Table 1.

表1から明らかなように、実施例1、実施例2、実施例3のポリプロピレンとポリエチレンを用いてなる複合長繊維不織布は、分割性が80%以上と容易に分割でき、得られる分割繊維の繊度も細く、柔軟性および風合いに極めて優れていた。   As is apparent from Table 1, the composite long fiber nonwoven fabric using the polypropylene and polyethylene of Example 1, Example 2 and Example 3 can be easily divided with a splitting ability of 80% or more. The fineness was also thin, and it was extremely excellent in flexibility and texture.

それに対し、比較例1、比較例2、比較例3、比較例4、比較例5、比較例6、比較例7のポリプロピレンとポリエチレンを用いてなる複合長繊維不織布は、分割が困難であり、繊度は細くなり得ず、柔軟性および風合いは劣ったものとなった。   On the other hand, the composite long fiber nonwoven fabric using the polypropylene and polyethylene of Comparative Example 1, Comparative Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 5, Comparative Example 6, Comparative Example 6, and Comparative Example 7 is difficult to divide. The fineness could not be reduced and the flexibility and texture were poor.

本発明の分割繊維不織布の製造方法により得られうる分割型複合繊維不織布は、柔軟性および風合いに極めて優れており、各種ワイピングクロス、手術衣や医療用ガウンや産業用ガウンなどの衣料用不織布、包装布、使い捨てオムツやナプキンなどの衛生材料の表面材、ベッドシーツ、枕カバー等の寝具類、カーペットや人工皮革用基布等に幅広く使用することもできる。   The split-type composite fiber nonwoven fabric that can be obtained by the method for producing a split fiber nonwoven fabric of the present invention is extremely excellent in flexibility and texture, and various wiping cloths, nonwoven fabrics for clothing such as surgical clothes, medical gowns, and industrial gowns, It can also be used widely for packaging cloth, surface materials for sanitary materials such as disposable diapers and napkins, bedding such as bed sheets and pillow covers, carpets and base fabrics for artificial leather.

その他用途として、例えばVTRやコンパクト・ディスクのクリーニング布、ディスクの研磨、ろ過布、フィルター、バッテリーセパレータ、一般消費材としてはグラス、貴金属、高級置物品、窓ガラス、OA機器、自動車などのウインド、楽器、鏡などの汚れ落としや油膜取り、フローリング用、トイレ用クリーナーなども挙げられる。   Other applications include VTR and compact disc cleaning cloths, disc polishing, filter cloths, filters, battery separators, general consumer materials such as glass, precious metals, luxury items, window glass, OA equipment, automobile windows, Examples include dirt removal for instruments and mirrors, oil film removal, flooring, and toilet cleaners.

Claims (9)

(A)荷重2160g、230℃におけるMFRが50〜500g/10分のプロピレン系重合体、および
(B)高圧法低密度ポリエチレンを用いてなり、
(A)からなる樹脂部と(B)からなる樹脂部とが互いに接してなるスパンボンド法で得られた分割型複合長繊維。
(A) a load of 2160 g, a MFR at 230 ° C. of 50 to 500 g / 10 min , and (B) a high-pressure low-density polyethylene,
A split-type composite continuous fiber obtained by a spunbond method in which a resin part made of (A) and a resin part made of (B) are in contact with each other.
(A)プロピレン系重合体のMw/Mn(重量平均分子量/数平均分子量の比)が5.0未満である請求項1に記載のスパンボンド法で得られた分割型複合長繊維。 The split composite long fiber obtained by the spunbond method according to claim 1, wherein (A) Mw / Mn (ratio of weight average molecular weight / number average molecular weight) of the propylene-based polymer is less than 5.0. (B)高圧法低密度ポリエチレンの荷重2160g、190℃におけるMFRが20g/10分以上の請求項1に記載のスパンボンド法で得られた分割型複合長繊維。 (B) A split-type composite long fiber obtained by the spunbond method according to claim 1, wherein the high-pressure low-density polyethylene has a load of 2160 g and an MFR at 190 ° C of 20 g / 10 min or more. 請求項1または2に記載のスパンボンド法で得られた分割型複合長繊維からなる不織布。 A non-woven fabric comprising split-type composite continuous fibers obtained by the spunbond method according to claim 1 or 2. 請求項4に記載の不織布に応力を付加することにより、分割型複合長繊維の(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部を分割してなる分割繊維不織布。   A split fiber nonwoven fabric obtained by splitting (A) a propylene-based polymer portion and (B) a high-pressure method low-density polyethylene portion of a split-type composite long fiber by applying stress to the nonwoven fabric according to claim 4. 応力の付加が、高圧液体流を用いて行われる請求項5に記載の分割繊維不織布。   The split fiber nonwoven fabric according to claim 5, wherein the stress is applied using a high-pressure liquid flow. 荷重2160g、230℃におけるMFRが50〜500g/10分の(A)プロピレン系重合体と、(B)高圧法低密度ポリエチレンを、複合紡糸ノズルを有する紡糸口金から吐出させて、紡出された(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部が互いに接する複合長繊維を、冷却流体により冷却しながら、流体で長繊維に張力を加えて細化させて、(A)プロピレン系重合体部を配向結晶化した後、捕集ベルト上に捕集して堆積させることを特徴とする分割型複合長繊維からなる不織布の製造方法。 (A) Propylene polymer having a load of 2160 g and an MFR at 230 ° C. of 50 to 500 g / 10 min , and (B) high-pressure low-density polyethylene were ejected from a spinneret having a composite spinning nozzle and spun. (A) While a composite long fiber in which a propylene-based polymer part and (B) a high-pressure method low-density polyethylene part are in contact with each other is cooled by a cooling fluid, a tension is applied to the long fiber with a fluid to make it fine, A method for producing a nonwoven fabric comprising split-type composite continuous fibers, characterized in that a propylene-based polymer portion is oriented and crystallized and then collected and deposited on a collection belt. 請求項に記載の不織布に、応力を付加することにより、分割型複合長繊維の(A)プロピレン系重合体部と(B)高圧法低密度ポリエチレン部を分割することを特徴とする分割繊維不織布の製造方法。 A split fiber characterized by splitting (A) the propylene-based polymer part and (B) the high-pressure method low-density polyethylene part of the split-type composite long fiber by applying stress to the nonwoven fabric according to claim 7. Nonwoven fabric manufacturing method. 応力の付加が、高圧液体流を用いて行われる請求項8に記載の分割繊維不織布の製造方法。   The method for producing a split fiber nonwoven fabric according to claim 8, wherein the stress is applied using a high-pressure liquid flow.
JP2008536332A 2006-09-25 2007-09-18 Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric Active JP5334583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536332A JP5334583B2 (en) 2006-09-25 2007-09-18 Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006259365 2006-09-25
JP2006259365 2006-09-25
JP2008536332A JP5334583B2 (en) 2006-09-25 2007-09-18 Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric
PCT/JP2007/068042 WO2008038536A1 (en) 2006-09-25 2007-09-18 Split type composite long fiber, nonwoven fabric made of split type composite long fiber, and split-fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JPWO2008038536A1 JPWO2008038536A1 (en) 2010-01-28
JP5334583B2 true JP5334583B2 (en) 2013-11-06

Family

ID=39229972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008536332A Active JP5334583B2 (en) 2006-09-25 2007-09-18 Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric

Country Status (3)

Country Link
JP (1) JP5334583B2 (en)
TW (1) TW200825225A (en)
WO (1) WO2008038536A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758263A (en) * 2011-04-29 2012-10-31 顾海云 Fabricating method of tangerine section shaped composite fiber
DE102014002232B4 (en) * 2014-02-21 2019-10-02 Carl Freudenberg Kg Microfiber composite fabric
TWI572754B (en) * 2014-06-27 2017-03-01 三洋紡織纖維股份有限公司 Method of manufacturing artificial leather fabrics
JP6350722B2 (en) * 2016-06-14 2018-07-04 王子ホールディングス株式会社 Composite fiber
JP6365733B2 (en) * 2016-06-14 2018-08-01 王子ホールディングス株式会社 Nonwovens and absorbent articles
WO2021256445A1 (en) * 2020-06-19 2021-12-23 花王株式会社 Fiber sheet, electrospinning device, and method for manufacturing fiber sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096345A (en) * 1998-09-21 2000-04-04 Chisso Corp Split-type conjugate fiber, nonwoven cloth and absorbing material thereof
JP2000256914A (en) * 1999-03-11 2000-09-19 Chisso Corp Split type conjugated fiber and textile product
JP2000328348A (en) * 1999-03-17 2000-11-28 Chisso Corp Splittable type conjugate fiber and formed fiber product using the same
JP2002088580A (en) * 2000-09-14 2002-03-27 Chisso Corp Dividable fiber and fabric using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096345A (en) * 1998-09-21 2000-04-04 Chisso Corp Split-type conjugate fiber, nonwoven cloth and absorbing material thereof
JP2000256914A (en) * 1999-03-11 2000-09-19 Chisso Corp Split type conjugated fiber and textile product
JP2000328348A (en) * 1999-03-17 2000-11-28 Chisso Corp Splittable type conjugate fiber and formed fiber product using the same
JP2002088580A (en) * 2000-09-14 2002-03-27 Chisso Corp Dividable fiber and fabric using the same

Also Published As

Publication number Publication date
JPWO2008038536A1 (en) 2010-01-28
TW200825225A (en) 2008-06-16
WO2008038536A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5717769B2 (en) Spunbond nonwoven fabric
EP2133454B1 (en) Mixed continuous fiber nonwoven fabric and process for manufacturing the same
JP5334583B2 (en) Split composite long fiber, non-woven fabric composed of split composite long fiber, and split fiber non-woven fabric
JP2003528226A (en) Multi-component perforated nonwoven
US20110183568A1 (en) Fibers and nonwovens with increased surface roughness
EP3950303A1 (en) Nonwoven laminated body and sanitary product
JP5181028B2 (en) Long fiber nonwoven fabric
KR20120034918A (en) Spunbonded nonwoven having an excellent elastic recovering property and manufacturing method thereof
US20200362492A1 (en) Spunbonded nonwoven fabric, hygiene material, and method for producing spunbonded nonwoven fabric
JPH11158766A (en) Non-woven fabric laminate
CN113474505B (en) Spun-bonded nonwoven fabric, sanitary material, and method for producing spun-bonded nonwoven fabric
JP6533025B1 (en) Method of manufacturing spunbonded nonwoven fabric and spunbonded nonwoven fabric
JP4675865B2 (en) Nonwoven fabric made of split composite fiber
JP2007297723A (en) Formable filament nonwoven fabric
KR101805386B1 (en) Polyolefin non-woven fabric manufacturing method of having a rough surface
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH11286862A (en) Spun-bonded nonwoven fabric for clothes and its production
JPH0261156A (en) Nonwoven fabric comprising hot adhesive filaments
WO2020095947A1 (en) Nonwoven fabric and method for manufacturing same
JP4442013B2 (en) Composite nonwoven fabric and fiber product using the same
WO2020095948A1 (en) Nonwoven fabric and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250