JP5333383B2 - Sensor control device - Google Patents

Sensor control device Download PDF

Info

Publication number
JP5333383B2
JP5333383B2 JP2010193100A JP2010193100A JP5333383B2 JP 5333383 B2 JP5333383 B2 JP 5333383B2 JP 2010193100 A JP2010193100 A JP 2010193100A JP 2010193100 A JP2010193100 A JP 2010193100A JP 5333383 B2 JP5333383 B2 JP 5333383B2
Authority
JP
Japan
Prior art keywords
detection
particulate matter
average particle
particles
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010193100A
Other languages
Japanese (ja)
Other versions
JP2012052811A (en
Inventor
真浩 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010193100A priority Critical patent/JP5333383B2/en
Priority to DE102011081808.1A priority patent/DE102011081808B4/en
Publication of JP2012052811A publication Critical patent/JP2012052811A/en
Application granted granted Critical
Publication of JP5333383B2 publication Critical patent/JP5333383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、粒子状物質検出センサの検出信号に基づいて粒子状物質(PM:Particulate Matter)の量を算出するセンサ制御装置に関するものである。   The present invention relates to a sensor control device that calculates an amount of particulate matter (PM) based on a detection signal of a particulate matter detection sensor.

従来から、エンジンから排出されるPMの量を検出するPMセンサ(粒子状物質検出センサ)が各種提案されている。例えば、特許文献1のPMセンサでは、絶縁基板上に一対の対向電極を設けておき、その一対の対向電極間にPMが付着すると電極間抵抗が変化することを利用し、電極間抵抗に応じた検出信号を出力する構成としている。そして、PMセンサの検出信号に基づいてPM量を算出することとしている。   Conventionally, various PM sensors (particulate matter detection sensors) for detecting the amount of PM discharged from an engine have been proposed. For example, in the PM sensor of Patent Document 1, a pair of counter electrodes is provided on an insulating substrate, and the resistance between the electrodes changes when PM adheres between the pair of counter electrodes. The detection signal is output. Then, the PM amount is calculated based on the detection signal of the PM sensor.

特開昭59−196453号公報JP 59-196453 A

PMセンサの検出信号に基づいてPM量が算出される場合、そのPM量は質量として算出されるが、エンジンから排出されるPM量を評価するには、質量による評価だけでなく、粒子数による評価が考えられている。かかる場合、PMセンサに付着する粒子状物質の平均粒子質量をあらかじめ定めておき、PM量(質量)を平均粒子質量によって除算演算することにより、PMの粒子数を算出することが考えられる。   When the amount of PM is calculated based on the detection signal of the PM sensor, the amount of PM is calculated as a mass. To evaluate the amount of PM discharged from the engine, not only the evaluation based on the mass but also the number of particles. Evaluation is considered. In such a case, it is conceivable to calculate the number of PM particles by preliminarily determining the average particle mass of the particulate matter adhering to the PM sensor and dividing the PM amount (mass) by the average particle mass.

しかしながら、排気中に含まれるPMには、大きさ(質量や粒径)が大小異なるものが含まれており、また、エンジン運転状態等によって大きさの分布が異なるものになると考えられる。そのため、PM粒子数を算出する場合にその算出精度を確保することは困難であり、ゆえにPM粒子数を正確に把握できないという問題があると考えられる。   However, it is considered that the PM contained in the exhaust includes those having different sizes (mass and particle size), and the size distribution varies depending on the engine operating state and the like. For this reason, when calculating the number of PM particles, it is difficult to ensure the calculation accuracy, and it is considered that there is a problem that the number of PM particles cannot be accurately grasped.

本発明は、内燃機関から排出される粒子状物質(PM)の粒子数を正確に求めることができるセンサ制御装置を提供することを主たる目的とするものである。   An object of the present invention is to provide a sensor control device that can accurately determine the number of particles of particulate matter (PM) discharged from an internal combustion engine.

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

本発明のセンサ制御装置は、内燃機関から排出される排気中に含まれる導電性の粒子状物質を付着させる被付着部と、前記被付着部に設けられた一対の対向電極からなる検出部とを有し、前記一対の対向電極間の抵抗値に応じた検出信号を出力する粒子状物質検出センサに適用されるものである。そして、第1の発明では、前記粒子状物質検出センサの検出信号に基づいて前記粒子状物質の付着量を算出する付着量算出手段と、前記被付着部に付着した粒子状物質の粒子1個当たりの平均粒子質量として各々異なる複数の平均粒子質量を設定可能であり、そのうちいずれかの平均粒子質量を設定する粒子質量設定手段と、前記付着量算出手段により算出した前記粒子状物質の付着量と、前記粒子質量設定手段により設定した平均粒子質量とに基づいて、前記粒子状物質の粒子数を算出する粒子数算出手段と、を備えることを特徴とする。 A sensor control device according to the present invention includes an adherend portion for adhering conductive particulate matter contained in exhaust gas discharged from an internal combustion engine, and a detection portion including a pair of counter electrodes provided in the adherend portion. And is applied to a particulate matter detection sensor that outputs a detection signal corresponding to a resistance value between the pair of counter electrodes. And in 1st invention, the adhesion amount calculation means which calculates the adhesion amount of the said particulate matter based on the detection signal of the said particulate matter detection sensor, and one particle | grain of the particulate matter adhering to the said to-be-adhered part A plurality of different average particle masses can be set as the average particle mass per hit, a particle mass setting unit for setting any one of the average particle masses, and an adhesion amount of the particulate matter calculated by the adhesion amount calculation unit And particle number calculating means for calculating the number of particles of the particulate matter based on the average particle mass set by the particle mass setting means.

要するに、粒子状物質の粒子数の算出に用いる平均粒子質量が1つでありかつそれが固定されている場合、粒子数の算出精度が低くなることが懸念される。つまり、粒子状物質の粒子の大きさにはばらつきがあり、さらに粒子状物質は内燃機関の運転状態等に応じて大小変化することを考えると、算出精度を確保するのが困難になる。この点、本発明によれば、被付着部に付着した粒子状物質の平均粒子質量について、複数の平均粒子質量からの設定が可能となるため、平均粒子質量の使い分けが可能となり、粒子数の算出精度を高めることができる。その結果、内燃機関から排出される粒子状物質の粒子数を正確に求めることが可能となる。   In short, when the average particle mass used for calculation of the number of particles of the particulate matter is one and is fixed, there is a concern that the calculation accuracy of the number of particles is lowered. That is, it is difficult to ensure the calculation accuracy, considering that there are variations in the particle size of the particulate matter, and that the particulate matter changes depending on the operating state of the internal combustion engine. In this regard, according to the present invention, since the average particle mass of the particulate matter adhering to the adherend can be set from a plurality of average particle masses, the average particle mass can be selectively used, and the number of particles Calculation accuracy can be increased. As a result, the number of particles of particulate matter discharged from the internal combustion engine can be accurately obtained.

なお、粒子状物質の粒子1個当たりの質量と粒径とはほぼ比例関係にあり、粒子状物質の大きさの指標として、質量に代えて粒径を採用することも可能である。つまり、粒子状物質の粒子1個当たりの平均の大きさとして、平均粒子質量と平均粒径とは同義に扱われてもよい。   Note that the mass per particle of the particulate matter and the particle size are approximately proportional to each other, and the particle size can be used instead of the mass as an index of the size of the particulate matter. That is, the average particle mass and the average particle size may be treated as the same as the average size per particle of the particulate matter.

第2の発明では、複数の前記検出部における検出結果が各々検出信号として入力されるセンサ制御装置であって、前記複数の検出部は、付着する粒子状物質の大きさの範囲が各々異なるものであり、前記粒子質量設定手段は、前記複数の検出部ごとに前記平均粒子質量を設定し、前記粒子数算出手段は、前記複数の検出部ごとの前記粒子状物質の付着量と前記平均粒子質量とに基づいて、前記複数の検出部ごとに前記粒子状物質の粒子数を算出するとともに、それらの各算出結果に基づいて、排気中の粒子状物質の粒子数を算出する。 In a second aspect of the invention, there is provided a sensor control device in which detection results from the plurality of detection units are respectively input as detection signals, wherein the plurality of detection units have different sizes of attached particulate matter. The particle mass setting means sets the average particle mass for each of the plurality of detection units, and the particle number calculation unit is configured to determine the amount of the particulate matter adhered and the average particle for each of the plurality of detection units. Based on the mass, the number of particles of the particulate matter is calculated for each of the plurality of detection units, and the number of particles of the particulate matter in the exhaust gas is calculated based on the respective calculation results.

上記構成によれば、複数の検出部において、付着する粒子の大きさが各々相違するため、粒子の大きさの範囲を各々限定することができる。したがって、個々の検出部における粒子数の算出精度を高めることができ、ひいては排気中に存在する粒子状物質の個数を精度良く算出することができる。   According to the above configuration, since the sizes of the particles to be attached are different in the plurality of detection units, the range of the size of the particles can be limited. Therefore, the calculation accuracy of the number of particles in each detection unit can be increased, and as a result, the number of particulate matter present in the exhaust gas can be calculated with high accuracy.

第3の発明では、前記粒子数算出手段は、前記複数の検出部のいずれかの検出結果に基づいて、排気中に含まれる粒子状物質の大きさの全範囲のうち一部となる一部範囲の粒子状物質について粒子数を算出する。 In the third invention, the particle number calculating means is a part that is a part of the entire range of the size of the particulate matter contained in the exhaust gas based on the detection result of any of the plurality of detection units. The number of particles is calculated for a range of particulate matter.

上記構成によれば、例えば粒子状物質の大きさの全範囲のうち軽小範囲の粒子状物質だけを対象に粒子数を算出したりすることができる。具体的には、複数の検出部の各検出結果のうち、粒子状物質の大きさの範囲が最小となる検出部の検出結果を用いることで、軽小範囲の粒子状物質だけを対象に粒子数を算出する。   According to the above configuration, for example, the number of particles can be calculated only for a light and small range of particulate matter in the entire range of the size of the particulate matter. Specifically, among the detection results of the plurality of detection units, the detection result of the detection unit that minimizes the size range of the particulate matter is used, so that only particles in a light range are targeted. Calculate the number.

第4の発明では、前記内燃機関の運転状態を検出する運転状態検出手段を備え、前記粒子質量設定手段は、前記運転状態検出手段により検出した機関運転状態に基づいて前記粒子状物質の平均粒子質量を設定する。 According to a fourth aspect of the invention, there is provided an operating state detecting means for detecting an operating state of the internal combustion engine, wherein the particle mass setting means is an average particle of the particulate matter based on the engine operating state detected by the operating state detecting means. Set the mass.

内燃機関の運転状態が変化すると、それに伴い排気中の粒子状物質の大きさの分布が変わると考えられる。上記構成によれば、機関運転状態の変化に伴い粒子状物質の大きさの分布が変化した場合に、それに合わせて平均粒子質量を可変に設定できる。そのため、粒子状物質の粒子数の算出精度を高めることができる。   When the operating state of the internal combustion engine changes, the size distribution of the particulate matter in the exhaust gas is considered to change accordingly. According to the above configuration, when the distribution of the size of the particulate matter changes as the engine operating state changes, the average particle mass can be variably set in accordance with the change. Therefore, the calculation accuracy of the number of particles of the particulate matter can be increased.

機関運転状態に基づいて粒子状物質の平均粒子質量を設定する構成として、以下の第5,第6の発明が考えられる。 As configurations for setting the average particle mass of the particulate matter based on the engine operating state, the following fifth and sixth inventions are conceivable.

第5の発明では、前記運転状態として、筒内噴射式内燃機関の燃料噴射手段から噴射される燃料粒径の決定要因となる機関運転状態を検出し、前記燃料粒径が大きくなる機関運転状態では前記燃料粒径が小さくなる機関運転状態に比べて前記平均粒子質量を大きい値に設定する。 In a fifth aspect of the invention, the engine operating state in which the fuel particle size is increased by detecting an engine operating state that is a determining factor of the fuel particle size injected from the fuel injection means of the direct injection internal combustion engine as the operating state. Then, the average particle mass is set to a large value as compared with the engine operating state in which the fuel particle size becomes small.

つまり、機関運転状態に応じて燃料粒径(燃料噴射手段から噴射される燃料の粒径)が変わり、その燃料粒径に応じて粒子状物質の大きさ(質量や粒径)が変わると考えられる。この点、第5の発明によれば、都度の機関運転状態を好適に反映しつつ、高精度に粒子状物質の粒子数を算出することができる。 That is, the fuel particle size (the particle size of the fuel injected from the fuel injection means) changes according to the engine operating state, and the size (mass and particle size) of the particulate matter changes according to the fuel particle size. It is done. In this regard, according to the fifth aspect, the number of particles of the particulate matter can be calculated with high accuracy while suitably reflecting the engine operating state at each time.

具体的には、燃料噴射手段に供給される燃料の圧力(燃圧)が高いほど、燃料粒径が小さくなり、逆に燃圧が低いほど、燃料粒径が大きくなる。それを考慮し、燃圧が低いほど、粒子状物質の平均粒子質量として大きい粒子質量を設定するとよい。また、内燃機関の水温が高いほど、燃料粒径が小さくなり、逆に水温が低いほど、燃料粒径が大きくなる。それを考慮し、水温が低いほど、粒子状物質の平均粒子質量として大きい粒子質量を設定するとよい。   Specifically, the higher the pressure (fuel pressure) of the fuel supplied to the fuel injection means, the smaller the particle size of the fuel. Conversely, the lower the fuel pressure, the larger the particle size of the fuel. Considering this, it is better to set a larger particle mass as the average particle mass of the particulate matter as the fuel pressure is lower. Also, the higher the water temperature of the internal combustion engine, the smaller the fuel particle size, and conversely, the lower the water temperature, the larger the fuel particle size. Considering this, it is better to set a larger particle mass as the average particle mass of the particulate matter as the water temperature is lower.

また、第6の発明では、前記運転状態として前記内燃機関の回転速度を検出し、前記検出した内燃機関の回転速度が高いほど、前記平均粒子質量を大きい値に設定する。 In the sixth aspect of the invention, the rotational speed of the internal combustion engine is detected as the operating state, and the average particle mass is set to a larger value as the detected rotational speed of the internal combustion engine is higher.

内燃機関の回転速度が高低相違すると内燃機関の燃焼サイクルにおいて燃料噴射終了から着火されて燃焼するまでの「霧化時間」が変わり、それによって粒子状物質の大きさに影響が及ぶと考えられる。例えば内燃機関の回転速度が高い状態ではこの霧化時間が短くなり、粒径の大きい粒子状物質が排気通路に排出される。この点、第6の発明によれば、都度の機関回転速度を好適に反映しつつ、高精度に粒子状物質の粒子数を算出することができる。 If the rotational speed of the internal combustion engine is different, the “atomization time” from the end of fuel injection to the ignition and combustion in the combustion cycle of the internal combustion engine changes, which may affect the size of the particulate matter. For example, when the rotational speed of the internal combustion engine is high, the atomization time is shortened and particulate matter having a large particle size is discharged into the exhaust passage. In this regard, according to the sixth invention, it is possible to calculate the number of particles of the particulate matter with high accuracy while suitably reflecting the engine speed of each time.

発明の実施の形態におけるエンジン制御システムの概要を示す構成図。The block diagram which shows the outline | summary of the engine control system in embodiment of invention. PMセンサのセンサ素子の要部構成を分解して示す分解斜視図。The disassembled perspective view which decomposes | disassembles and shows the principal part structure of the sensor element of PM sensor. PMセンサに関する電気的構成図。The electrical block diagram regarding PM sensor. 3つのPM検出部について付着PMの粒径分布を示す図。The figure which shows the particle size distribution of adhesion PM about three PM detection parts. PM粒子数の算出手順を示すフローチャート。The flowchart which shows the calculation procedure of PM particle number. センサ素子と主要な電気的構成とを示す図。The figure which shows a sensor element and main electrical structures. PM粒子数の算出手順を示すフローチャート。The flowchart which shows the calculation procedure of PM particle number. (a)は燃圧とPM粒径との関係を示す図、(b)は水温とPM粒径との関係を示す図、(c)はエンジン回転速度とPM粒径との関係を示す図。(A) is a figure which shows the relationship between a fuel pressure and PM particle size, (b) is a figure which shows the relationship between water temperature and PM particle size, (c) is a figure which shows the relationship between an engine speed and PM particle size. センサ素子の別の構成を示す平面図。The top view which shows another structure of a sensor element.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図面に基づいて説明する。本実施形態は、車載エンジンを備える車両エンジンシステムにおいて、同エンジンから排出される排気中のPM量(導電性粒子状物質の量)を監視するものである。特に、エンジン排気管にPMセンサを設け、そのPMセンサでのPM付着量に基づいて排気中のPM量を監視するものとしている。図1は、本システムの概略構成を示す構成図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. This embodiment monitors the amount of PM (the amount of conductive particulate matter) in the exhaust discharged from the engine in a vehicle engine system including an on-vehicle engine. In particular, a PM sensor is provided in the engine exhaust pipe, and the amount of PM in the exhaust gas is monitored based on the amount of PM attached by the PM sensor. FIG. 1 is a configuration diagram showing a schematic configuration of the present system.

図1において、エンジン11は直噴式ガソリンエンジンであり、同エンジン11には、同エンジン11の運転に関わるアクチュエータとして燃料噴射弁12や点火装置13等が設けられている。燃料噴射弁12には燃料配管14を介して燃料供給部15が接続されており、燃料噴射弁12は燃料供給部15から供給される燃料をエンジン燃焼室内に直接噴射する。燃料供給部15は、燃料を高圧化して燃料噴射弁12に供給する周知の高圧燃料供給手段であり、燃料タンクから供給される燃料を高圧化する高圧ポンプや、この高圧ポンプから吐出される高圧燃料が導入される蓄圧部としてのデリバリパイプ等を備えている。   In FIG. 1, an engine 11 is a direct-injection gasoline engine, and the engine 11 is provided with a fuel injection valve 12 and an ignition device 13 as actuators related to the operation of the engine 11. A fuel supply unit 15 is connected to the fuel injection valve 12 via a fuel pipe 14, and the fuel injection valve 12 directly injects fuel supplied from the fuel supply unit 15 into the engine combustion chamber. The fuel supply unit 15 is a well-known high-pressure fuel supply unit that increases the pressure of the fuel and supplies the fuel to the fuel injection valve 12. The high-pressure pump that increases the pressure of the fuel supplied from the fuel tank, and the high pressure discharged from the high-pressure pump. A delivery pipe or the like is provided as a pressure accumulating section into which fuel is introduced.

エンジン11の排気管16には排気浄化装置としての三元触媒17が設けられており、その三元触媒17の上流側にはA/Fセンサ18が設けられ、下流側には粒子状物質検出センサとしてのPMセンサ19が設けられている。その他、本システムでは、エンジン回転速度を検出するための回転センサ21や、吸気管圧力を検出するための吸気圧センサ22、燃料供給部15における燃料圧力(デリバリパイプ内の燃圧)を検出するための燃圧センサ23、エンジン冷却水の温度(エンジン水温)を検出する水温センサ24等が設けられている。   The exhaust pipe 16 of the engine 11 is provided with a three-way catalyst 17 as an exhaust purification device, an A / F sensor 18 is provided on the upstream side of the three-way catalyst 17, and particulate matter detection is provided on the downstream side. A PM sensor 19 as a sensor is provided. In addition, in the present system, the rotation sensor 21 for detecting the engine rotation speed, the intake pressure sensor 22 for detecting the intake pipe pressure, and the fuel pressure in the fuel supply unit 15 (fuel pressure in the delivery pipe) are detected. A fuel pressure sensor 23, a water temperature sensor 24 for detecting the temperature of engine cooling water (engine water temperature), and the like are provided.

ECU25は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータ(マイコン)を主体として構成されており、ROMに記憶された各種の制御プログラムを実行することで、都度のエンジン運転状態に応じてエンジン11及びその周辺装置の各種制御を実施する。すなわち、ECU25は、上記各種センサ等から各々信号を入力し、それらの各種信号に基づいて燃料噴射量や点火時期を演算して燃料噴射弁12や点火装置13の駆動を制御する。また、ECU25は、燃料供給部15における燃料圧力(デリバリパイプ内の燃圧)を制御する燃圧制御を実施する。具体的には、ECU25は、都度のエンジン運転状態(エンジン回転速度や吸気管圧力)に基づいて目標燃圧を設定するとともに、燃圧センサ23により検出した実燃圧が目標燃圧に一致するように燃圧フィードバック制御を実施する。   The ECU 25 is mainly composed of a microcomputer (microcomputer) composed of a well-known CPU, ROM, RAM, and the like, and executes various control programs stored in the ROM, so that the engine can be operated according to the engine operating state each time. 11 and various peripheral devices are controlled. That is, the ECU 25 inputs signals from the various sensors and the like, calculates the fuel injection amount and ignition timing based on the various signals, and controls the driving of the fuel injection valve 12 and the ignition device 13. Further, the ECU 25 performs fuel pressure control for controlling the fuel pressure in the fuel supply unit 15 (fuel pressure in the delivery pipe). Specifically, the ECU 25 sets the target fuel pressure based on each engine operating state (engine speed and intake pipe pressure), and also provides fuel pressure feedback so that the actual fuel pressure detected by the fuel pressure sensor 23 matches the target fuel pressure. Implement control.

さらに、ECU25は、PMセンサ19の検出信号に基づいてエンジン11の実際のPM排出量(実PM排出量)を算出し、その実PM排出量に基づいてエンジン11の燃焼状態を診断する。具体的には、実PM排出量が所定の異常判定値を超えていれば、PM排出過多の状態であり、エンジン異常であると判定する。   Further, the ECU 25 calculates the actual PM emission amount (actual PM emission amount) of the engine 11 based on the detection signal of the PM sensor 19, and diagnoses the combustion state of the engine 11 based on the actual PM emission amount. Specifically, if the actual PM emission amount exceeds a predetermined abnormality determination value, it is determined that the PM is excessively discharged and the engine is abnormal.

その他、ECU25は、PMセンサ19の検出結果から算出される実PM排出量に基づいて、エンジン11の制御態様を可変に制御する構成であってもよい。例えば、実PM排出量に基づいて燃料噴射量を制御したり、燃料噴射時期を制御したり、点火時期を制御したりすることが可能である。   In addition, the ECU 25 may be configured to variably control the control mode of the engine 11 based on the actual PM emission amount calculated from the detection result of the PM sensor 19. For example, the fuel injection amount can be controlled based on the actual PM emission amount, the fuel injection timing can be controlled, and the ignition timing can be controlled.

次に、PMセンサ19の構成、及びそのPMセンサ19に関する電気的構成を図2及び図3を用いて説明する。図2は、PMセンサ19を構成するセンサ素子31の要部構成を分解して示す分解斜視図であり、図3は、PMセンサ19に関する電気的構成図である。   Next, the configuration of the PM sensor 19 and the electrical configuration related to the PM sensor 19 will be described with reference to FIGS. FIG. 2 is an exploded perspective view showing an essential configuration of the sensor element 31 constituting the PM sensor 19, and FIG. 3 is an electrical configuration diagram regarding the PM sensor 19.

図2に示すように、センサ素子31は、長尺板状をなす2枚の絶縁基板32,33を有しており、一方の絶縁基板32にはPM量を検出するための3つのPM検出部34,35,36が設けられ、他方の絶縁基板33にはセンサ素子31を加熱するためのヒータ部37が設けられている。センサ素子31は、絶縁基板32,33が二層に積層されることで構成されている。絶縁基板32が被付着部に相当する。なお本実施形態では、3つのPM検出部を設ける構成とするが、その個数は複数個であれば任意である。   As shown in FIG. 2, the sensor element 31 has two insulating substrates 32 and 33 each having a long plate shape, and one of the insulating substrates 32 has three PM detections for detecting the amount of PM. The parts 34, 35 and 36 are provided, and the other insulating substrate 33 is provided with a heater part 37 for heating the sensor element 31. The sensor element 31 is configured by laminating insulating substrates 32 and 33 in two layers. The insulating substrate 32 corresponds to the adherend. In the present embodiment, three PM detectors are provided. However, the number of PM detectors is arbitrary as long as it is plural.

PM検出部34〜36はそれぞれ一対の検出電極を有するものであり、絶縁基板32には、PM検出部34として一対の検出電極34a,34bが設けられ、PM検出部35として一対の検出電極35a,35bが設けられ、PM検出部36として一対の検出電極36a,36bが設けられている。これらPM検出部34〜36の各検出電極は、他方の絶縁基板33(ヒータ用基板)とは反対側の基板表面において互いに離間して設けられており、直線状をなす1つ又は2つの直線電極同士が互い違いに所定間隔をあけて対向配置されて構成されている。各PM検出部34〜36における検出電極の対向間隔はいずれも同一である。また、ヒータ部37は例えば電熱線からなる発熱体により構成されている。   Each of the PM detection units 34 to 36 has a pair of detection electrodes, and the insulating substrate 32 is provided with a pair of detection electrodes 34 a and 34 b as the PM detection unit 34 and a pair of detection electrodes 35 a as the PM detection unit 35. , 35b, and a pair of detection electrodes 36a, 36b as the PM detector 36. The detection electrodes of the PM detectors 34 to 36 are provided apart from each other on the surface of the substrate opposite to the other insulating substrate 33 (heater substrate), and have one or two straight lines that form a straight line. The electrodes are alternately arranged so as to face each other at a predetermined interval. The opposing intervals of the detection electrodes in the PM detection units 34 to 36 are all the same. Moreover, the heater part 37 is comprised by the heat generating body which consists of heating wires, for example.

ただし、各PM検出部34〜36の検出電極の形状は上記に限定されず、複数の櫛歯電極同士が互い違いに設けられるものや、曲線状をなす形状で設けられているもの、各1本の線からなる一対の電極部が所定距離を隔てて平行に対向配置されているものであってもよい。   However, the shape of the detection electrode of each PM detection unit 34 to 36 is not limited to the above, and a plurality of comb electrodes are provided alternately, a curved shape, one each A pair of electrode portions composed of the above-mentioned lines may be arranged opposite to each other in parallel at a predetermined distance.

なお、図示は省略するが、PMセンサ19は、センサ素子31を保持するための保持部を有しており、センサ素子31はその一端側が保持部により保持された状態で排気管に固定されるようになっている。この場合、少なくともPM検出部34〜36及びヒータ部37を含む部位が排気管内に位置するように、かつセンサ素子31において絶縁基板32(PM被付着部)が排気上流側を向くようにして、PMセンサ19が排気管に取り付けられる構成となっている。これにより、PMを含む排気が排気管内を流れる際、そのPMが絶縁基板32において各PM検出部34〜36の検出電極及びその周辺に付着し堆積する。また、PMセンサ19は、センサ素子31の突出部分を覆う保護カバーを有している。   Although not shown, the PM sensor 19 has a holding portion for holding the sensor element 31, and the sensor element 31 is fixed to the exhaust pipe in a state where one end side thereof is held by the holding portion. It is like that. In this case, at least a part including the PM detection units 34 to 36 and the heater unit 37 is located in the exhaust pipe, and the insulating substrate 32 (PM attached portion) in the sensor element 31 faces the exhaust upstream side, The PM sensor 19 is configured to be attached to the exhaust pipe. Thereby, when exhaust gas containing PM flows in the exhaust pipe, the PM adheres to and accumulates on the detection electrodes of the PM detection units 34 to 36 and the periphery thereof on the insulating substrate 32. The PM sensor 19 has a protective cover that covers the protruding portion of the sensor element 31.

上記構成のPMセンサ19は、排気中のPMがセンサ素子31の絶縁基板32に付着し堆積すると、それによりPM検出部34〜36の各抵抗値(すなわち各一対の検出電極間の抵抗値)が変化すること、及びその抵抗値の変化がPM付着量に対応していることから、その抵抗値の変化を利用してPM量を検出するものである。   When the PM in the exhaust gas adheres to and accumulates on the insulating substrate 32 of the sensor element 31, the PM sensor 19 having the above configuration causes each resistance value of the PM detection units 34 to 36 (that is, the resistance value between each pair of detection electrodes). Since the change in the resistance value and the change in the resistance value correspond to the PM adhesion amount, the change in the resistance value is used to detect the PM amount.

図3に示すように、PMセンサ19に関する電気的構成として、PMセンサ19のPM検出部34〜36の一端側には電源装置41が接続され、他端側にはそれぞれシャント抵抗42,43,44が接続されている。電源装置41は、車載バッテリの電圧を昇圧する昇圧回路により構成されており、例えば、PM検出部34,35,36に対してそれぞれ50V、40V、30Vの電圧を印加するものとなっている。各PM検出部34〜36では、印加電圧が相違することから各々に電極周囲の電界強度が異なり、その電界強度の違いに応じて、各PM検出部34〜36で捕集されるPM(付着PM)の最大粒径が各々異なるものとなる。つまり、排気中には粒径が大小異なる様々なPMが混在しているが、粒径が比較的大きいPMは質量が大きいため、電界強度が大きいPM検出部でないと捕集されない。これに対し、粒径が比較的小さいPMは質量が小さいため、電界強度が小さいPM検出部でも捕集される。   As shown in FIG. 3, as an electrical configuration related to the PM sensor 19, a power supply device 41 is connected to one end side of the PM detection units 34 to 36 of the PM sensor 19, and shunt resistors 42, 43, 44 is connected. The power supply device 41 is configured by a booster circuit that boosts the voltage of the in-vehicle battery. For example, the power supply device 41 applies voltages of 50 V, 40 V, and 30 V to the PM detectors 34, 35, and 36, respectively. In each PM detection part 34-36, since the applied voltage is different, the electric field intensity around the electrode is different from each other, and the PM (attachment) collected by each PM detection part 34-36 according to the difference in the electric field intensity. The maximum particle size of (PM) is different. That is, various PMs having different particle sizes are mixed in the exhaust gas. However, since PM having a relatively large particle size has a large mass, it is not collected unless it is a PM detection unit having a high electric field strength. On the other hand, since the PM having a relatively small particle size has a small mass, it is also collected by the PM detection unit having a small electric field strength.

なお、排気中に存在するPMが帯電していれば、各PM検出部34〜36への捕集効率が高められると考えられる。つまり、PMが帯電していることにより、PMが各PM検出部34〜36に引き寄せられる力が増し、PMが効率よく捕集される。排気管内に放電手段を有してなる荷電部を設け、その荷電部を稼働させることによりPMを帯電させる構成であってもよい。具体的には、荷電部においてコロナ放電によりイオンを生じさせ、そのイオンをPMに付着させることでPMを帯電させる。そして、その帯電PMを電界の作用によって各PM検出部34〜36の検出電極において分離補集する。   In addition, if PM which exists in exhaust_gas | exhaustion is electrically charged, it is thought that the collection efficiency to each PM detection part 34-36 is improved. That is, when the PM is charged, the force that the PM is attracted to each of the PM detection units 34 to 36 increases, and the PM is efficiently collected. A configuration may be adopted in which a charging unit having discharge means is provided in the exhaust pipe, and the charging unit is operated to charge the PM. Specifically, ions are generated by corona discharge in the charging portion, and the PM is charged by attaching the ions to the PM. The charged PM is separated and collected at the detection electrodes of the PM detection units 34 to 36 by the action of an electric field.

また、図3に示す電気回路では、PM検出部34〜36とシャント抵抗42〜44とによりそれぞれ分圧回路が構成されており、それらの中間点電圧がPM検出電圧Vpm1,Vpm2,Vpm3としてECU25に入力されるようになっている。つまり、各PM検出部34〜36ではPM付着量に応じて抵抗値(電極間抵抗値)が変化し、その抵抗値の変化に応じてPM検出電圧Vpm1〜Vpm3が変化する。そして、そのPM検出電圧Vpm1〜Vpm3がA/D変換器(図示略)を介してマイコン45に入力される。マイコン45は、PM検出電圧Vpm1〜Vpm3に応じてPM付着量を算出する。   Further, in the electric circuit shown in FIG. 3, voltage dividing circuits are configured by the PM detection units 34 to 36 and the shunt resistors 42 to 44, respectively, and the intermediate point voltages thereof are PM detection voltages Vpm1, Vpm2, and Vpm3. To be input. That is, in each PM detection part 34-36, resistance value (interelectrode resistance value) changes according to PM adhesion amount, and PM detection voltage Vpm1-Vpm3 changes according to the change of the resistance value. The PM detection voltages Vpm1 to Vpm3 are input to the microcomputer 45 via an A / D converter (not shown). The microcomputer 45 calculates the PM adhesion amount according to the PM detection voltages Vpm1 to Vpm3.

また、PMセンサ19のヒータ部37には、ヒータ電源47が接続されている。ヒータ電源47は例えば車載バッテリであり、車載バッテリからの給電によりヒータ部37が加熱される。この場合、ヒータ部37のローサイドにはスイッチング素子としてのトランジスタ48が接続されており、マイコン45によりトランジスタ48がオン/オフされることでヒータ部37の加熱制御が行われる。   A heater power supply 47 is connected to the heater section 37 of the PM sensor 19. The heater power supply 47 is, for example, an in-vehicle battery, and the heater unit 37 is heated by power supply from the in-vehicle battery. In this case, a transistor 48 as a switching element is connected to the low side of the heater unit 37, and heating control of the heater unit 37 is performed when the transistor 48 is turned on / off by the microcomputer 45.

絶縁基板32上にPMが付着した状態でヒータ部37の通電を開始すると、付着PMの温度が上昇し、それに伴い付着PMが強制的に燃焼される。こうした強制燃焼により、絶縁基板32に付着したPMが燃焼除去される。マイコン45は、例えば、エンジン始動時や運転終了時に、又はPM付着量が所定量になったと判定された時に、PMの強制燃焼要求が生じたとしてヒータ部37による加熱制御を実施する。なお、PMセンサ19のPM強制燃焼の処理は、PMセンサ19においてPM付着量の検出機能を再生するものであり、その意味からセンサ再生処理とも称される。   When energization of the heater unit 37 is started in a state where PM is adhered to the insulating substrate 32, the temperature of the adhered PM rises, and the adhered PM is forcibly burned accordingly. Due to such forced combustion, PM adhering to the insulating substrate 32 is removed by combustion. For example, the microcomputer 45 performs the heating control by the heater unit 37 when a request for forced combustion of PM is generated when the engine is started or when the operation is finished, or when it is determined that the PM adhesion amount has reached a predetermined amount. Note that the PM forced combustion process of the PM sensor 19 regenerates the PM adhesion amount detection function in the PM sensor 19, and is also referred to as a sensor regeneration process in that sense.

上述したように各PM検出部34〜36における印加電圧が相違する構成では、PM検出部ごとにPM粒径の分布が異なり、その粒径分布を図4に示す。図4は、横軸をPM粒径[μm]、縦軸を粒子数[個]として、3つのPM検出部34〜36について捕集されるPM(付着PM)の粒径分布を示すものである。   As described above, in the configuration in which the applied voltages in the PM detection units 34 to 36 are different, the PM particle size distribution is different for each PM detection unit, and the particle size distribution is shown in FIG. FIG. 4 shows the particle size distribution of PM (adherent PM) collected for the three PM detectors 34 to 36 with the horizontal axis representing the PM particle size [μm] and the vertical axis representing the number of particles [number]. is there.

図4に示すように、各PM検出部34〜36では、その印加電圧が高いほど付着PMの粒径範囲が上限拡大側に拡がり、すなわち捕集可能な最大粒径が大きくなり、それに伴い付着PMの粒径の平均値(平均粒径)が、印加電圧が高いPM検出部であるほど大きくなっている。具体的には、印加電圧が50VのPM検出部34では、粒径が0〜0.5μmのPMが捕集され、その平均粒径は0.25μmである。また、印加電圧が40VのPM検出部35では、粒径が0〜0.4μmのPMが捕集され、その平均粒径は0.2μmである。印加電圧が30VのPM検出部36では、粒径が0〜0.3μmのPMが捕集され、その平均粒径は0.15μmである。本実施形態では、PM検出部34の粒径範囲(0〜0.5μm)が、PMの大きさの全範囲に相当する。 As shown in FIG. 4, in each PM detection unit 34 to 36, the higher the applied voltage, the larger the particle size range of the adhered PM is to the upper limit enlargement side, that is, the maximum particle size that can be collected is increased, and the adhesion is accompanied accordingly. The average value (average particle size) of the particle size of PM becomes larger as the PM detection unit has a higher applied voltage. Specifically, in the PM detection unit 34 having an applied voltage of 50 V, PM having a particle size of 0 to 0.5 μm is collected, and the average particle size is 0.25 μm. Moreover, in PM detection part 35 with an applied voltage of 40 V, PM with a particle size of 0 to 0.4 μm is collected, and the average particle size is 0.2 μm. In the PM detector 36 with an applied voltage of 30 V, PM with a particle size of 0 to 0.3 μm is collected, and the average particle size is 0.15 μm. In the present embodiment, the particle size range (0 to 0.5 μm) of the PM detection unit 34 corresponds to the entire range of the size of PM.

本実施形態では、PM検出部34〜36ごとに、付着するPMの大きさ(粒径範囲)が異なることに着目し、PM検出部34〜36ごとにPM1個当たりの平均粒子質量を設定するとともに、それらの平均粒子質量を用いてPM粒子数を算出することとしている。なお、PMの粒子質量は、PMの粒径に概ね比例するものであり、上述のごとく各PM検出部34〜36でPMの平均粒径が異なることから、それと同様にPMの平均粒子質量も異なるものとなっている。   In the present embodiment, focusing on the fact that the size (particle size range) of the adhered PM differs for each PM detection unit 34 to 36, the average particle mass per PM is set for each PM detection unit 34 to 36. At the same time, the number of PM particles is calculated using the average particle mass. Note that the PM particle mass is generally proportional to the PM particle size, and the PM average particle size differs between the PM detectors 34 to 36 as described above. It is different.

具体的には、PM検出部34でのPM付着量をMass_A[mg]、平均粒子質量をMean_A[mg]とし、PM検出部35でのPM付着量をMass_B[mg]、平均粒子質量をMean_B[mg]とし、PM検出部36でのPM付着量をMass_C[mg]、平均粒子質量をMean_C[mg]とすると、PM検出部34〜36に付着したそれぞれのPM粒子数は、Mass_A/Mean_A、Mass_B/Mean_B、Mass_C/Mean_Cとして求められ、それらの総和により排気中のPM粒子数が算出される。   Specifically, the PM adhesion amount at the PM detection unit 34 is Mass_A [mg], the average particle mass is Mean_A [mg], the PM adhesion amount at the PM detection unit 35 is Mass_B [mg], and the average particle mass is Mean_B. Assuming that [mg] is the PM adhesion amount at the PM detection unit 36 and Mass_C [mg] and the average particle mass is Mean_C [mg], the number of PM particles adhering to the PM detection units 34 to 36 is Mass_A / Mean_A. , Mass_B / Mean_B, Mass_C / Mean_C, and the sum of them is used to calculate the number of PM particles in the exhaust gas.

なお、各PM検出部34〜36を比べると、電極長さが相違することによりPM付着面の面積が各々異なる(図2参照)。それゆえに、各PM検出部34〜36の面積比を加味して排気中のPM粒子数を算出するようにしてもよい。例えば、各PM検出部34〜36について同一面積で換算してPM粒子数を算出し、そのPM粒子数の総和により排気中のPM粒子数を算出する構成であってもよい。   In addition, when each PM detection part 34-36 is compared, the area of PM adhesion surface differs according to each electrode length differing (refer FIG. 2). Therefore, the number of PM particles in the exhaust gas may be calculated in consideration of the area ratio of the PM detection units 34 to 36. For example, the PM particle number may be calculated by converting the PM detection units 34 to 36 with the same area, and the number of PM particles in the exhaust gas may be calculated based on the sum of the PM particle numbers.

ちなみに、排気中のPM付着量の算出に関して補足すると、基本的には3つのPM検出部34〜36のうち1つのPM検出部の検出結果に基づいてPM付着量が算出される。この場合、3つのPM検出部34〜36のうち、PM検出部35,36は捕集されるPMの大きさが限定されるが、PM検出部34は、捕集されるPMの大きさが限定されず、どの大きさのPMも捕集可能となっている。したがって、排気中のPM量を算出するには、PM検出部34の検出結果に基づいて行われるのが望ましい。ただし、3つのPM検出部34〜36の検出結果に基づいてPM付着量を算出してもよい。   Incidentally, supplementing the calculation of the PM adhesion amount in the exhaust, basically, the PM adhesion amount is calculated based on the detection result of one of the three PM detection units 34 to 36. In this case, among the three PM detection units 34 to 36, the PM detection units 35 and 36 are limited in the size of the collected PM, but the PM detection unit 34 has a size of the collected PM. There is no limitation, and PM of any size can be collected. Therefore, it is desirable to calculate the PM amount in the exhaust based on the detection result of the PM detection unit 34. However, the PM adhesion amount may be calculated based on the detection results of the three PM detection units 34 to 36.

図5は、PM粒子数の算出手順を示すフローチャートであり、本処理はECU25内のマイコン45により所定周期で繰り返し実行される。   FIG. 5 is a flowchart showing the procedure for calculating the number of PM particles, and this process is repeatedly executed by the microcomputer 45 in the ECU 25 at a predetermined cycle.

図5において、ステップS11では、粒子数算出の実行条件の成否を判定する。例えば、実行条件として、PMセンサ19に異常が生じていないか否かを判定し、異常無しの場合に実行条件が成立しているとする。ステップS11がYESの場合、ステップS12で、PM検出電圧Vpm1〜Vpm3に基づいて、各PM検出部34〜36におけるPM付着量を算出する。また、ステップS13では、各PM検出部34〜36における平均粒子質量を設定する。このとき、各PM検出部34〜36の平均粒子質量は、各PM検出部34〜36の印加電圧に対応させて、それぞれ大小異なるように設定される。   In FIG. 5, in step S <b> 11, whether or not the execution condition for calculating the number of particles is satisfied is determined. For example, as an execution condition, it is determined whether or not an abnormality has occurred in the PM sensor 19, and it is assumed that the execution condition is satisfied when there is no abnormality. When step S11 is YES, in step S12, based on the PM detection voltages Vpm1 to Vpm3, the PM adhesion amounts in the PM detection units 34 to 36 are calculated. Moreover, in step S13, the average particle mass in each PM detection part 34-36 is set. At this time, the average particle mass of each of the PM detection units 34 to 36 is set so as to be different depending on the voltage applied to each of the PM detection units 34 to 36.

その後、ステップS14では、各PM検出部34〜36におけるPM付着量と平均粒子質量とに基づいて、PM検出部34〜36ごとにPM粒子数を算出するとともに、それらPM検出部34〜36ごとのPM粒子数に基づいて、排気中のPM粒子数を算出する。   Thereafter, in step S14, the number of PM particles is calculated for each PM detection unit 34-36 based on the amount of PM adhesion and the average particle mass in each PM detection unit 34-36, and for each PM detection unit 34-36. The number of PM particles in the exhaust is calculated based on the number of PM particles.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

PMセンサ19に、各々付着するPMの大きさの範囲(粒径範囲)が相違する3つのPM検出部34〜36を設け、PM検出部34〜36ごとにPM付着量を算出するとともに平均粒子質量を設定し、さらにそれらPM付着量と平均粒子質量とに基づいてPM検出部34〜36ごとのPM粒子数を算出する構成とした。そして、それらの各算出結果に基づいて、排気中のPM粒子数を算出するようにした。かかる構成によれば、複数のPM検出部34〜36において、付着するPM粒子の大きさが各々相違するため、PM粒子の大きさの範囲を各々限定することができる。したがって、個々のPM検出部34〜36におけるPM粒子数の算出精度を高めることができ、ひいては排気中に存在するPMの個数を精度良く算出することができる。   The PM sensor 19 is provided with three PM detectors 34 to 36 each having a different size range (particle size range) of PM to be adhered, and calculates the PM adhesion amount for each PM detector 34 to 36 and average particles. The mass was set, and the number of PM particles for each of the PM detection units 34 to 36 was calculated based on the PM adhesion amount and the average particle mass. The number of PM particles in the exhaust gas is calculated based on each calculation result. According to such a configuration, in the plurality of PM detection units 34 to 36, the sizes of the PM particles to be attached are different from each other, and therefore the range of the size of the PM particles can be limited. Therefore, the calculation accuracy of the number of PM particles in each of the PM detection units 34 to 36 can be increased, and as a result, the number of PMs present in the exhaust gas can be calculated with high accuracy.

ここで、PMセンサがPM検出部を1つしか有さず、しかも平均粒子質量が1つでありかつ固定されている場合、排気中に含まれるPMの大きさにはばらつきがあるため、粒子数の算出精度が低くなることが懸念される。この点、本実施形態の構成によれば、PM検出部34〜36ごとの複数の平均粒子質量が設定されるため、平均粒子質量の使い分けが可能となり、粒子数の算出精度を高めることができる。   Here, when the PM sensor has only one PM detection unit, and the average particle mass is one and is fixed, the size of the PM contained in the exhaust gas varies, so the particles There is a concern that the accuracy of calculating the number will be low. In this regard, according to the configuration of the present embodiment, since a plurality of average particle masses for each of the PM detection units 34 to 36 are set, the average particle mass can be properly used, and the calculation accuracy of the number of particles can be improved. .

(第2の実施形態)
次に、第2の実施形態について第1の実施形態との相違点を中心に説明する。本実施形態では、PMセンサが1つのPM検出部を有する構成となっており、そのPM検出部の検出結果(PM検出電圧Vpm)に基づいてPMの粒子数を算出する。また、粒子数の算出に際し、PMの平均粒子質量を、エンジン運転状態に基づいて設定することを特徴とするものである。つまり、排気中に含まれるPMの大きさは都度のエンジン運転状態に応じて変わりうるものである。そこで本実施形態では、都度のエンジン運転状態に応じてPMの大きさが変わることを考慮して平均粒子質量を設定し、それによりPM粒子数の算出精度を高めることとしている。
(Second Embodiment)
Next, the second embodiment will be described focusing on the differences from the first embodiment. In this embodiment, the PM sensor has one PM detection unit, and the number of PM particles is calculated based on the detection result (PM detection voltage Vpm) of the PM detection unit. In calculating the number of particles, the average particle mass of PM is set based on the engine operating state. That is, the size of PM contained in the exhaust gas can be changed according to the engine operating state every time. Therefore, in the present embodiment, the average particle mass is set in consideration of the fact that the size of PM changes according to the engine operating state every time, thereby improving the calculation accuracy of the number of PM particles.

図6は、本実施形態におけるPMセンサ19を構成するセンサ素子51と、主要な電気的構成とを示す図である。   FIG. 6 is a diagram showing a sensor element 51 that constitutes the PM sensor 19 in this embodiment, and main electrical configurations.

図6に示すように、センサ素子51は、長尺板状をなす2枚の絶縁基板52,53を有しており、一方の絶縁基板52にはPM検出部54が設けられ、他方の絶縁基板53にはヒータ部55が設けられている。絶縁基板52が被付着部に相当する。絶縁基板52には、他方の絶縁基板53とは反対側の基板表面に、互いに離間して設けられる一対の検出電極54a,54bが設けられており、この一対の検出電極54a,54bによりPM検出部54が構成されている。検出電極54a,54bは、各々複数の櫛歯を有する櫛歯形状をなしており、各検出電極54a,54bの櫛歯同士が互い違いとなるようして所定間隔をあけて対向配置されている。   As shown in FIG. 6, the sensor element 51 has two insulating substrates 52 and 53 each having a long plate shape. One insulating substrate 52 is provided with a PM detector 54, and the other insulating substrate 52 is insulated. A heater portion 55 is provided on the substrate 53. The insulating substrate 52 corresponds to the adherend. The insulating substrate 52 is provided with a pair of detection electrodes 54a and 54b which are provided apart from each other on the surface of the substrate opposite to the other insulating substrate 53, and PM detection is performed by the pair of detection electrodes 54a and 54b. Part 54 is configured. Each of the detection electrodes 54a and 54b has a comb shape having a plurality of comb teeth, and the detection electrodes 54a and 54b are opposed to each other with a predetermined interval so that the comb teeth of the detection electrodes 54a and 54b are alternately arranged.

PM検出部54の一方の検出電極54aには電源装置41が接続され、他方の検出電極54bにはシャント抵抗42が接続されている。これら電源装置41やシャント抵抗42については既述済みである(図2参照)。この場合、PM検出部54とシャント抵抗42との間の中間点電圧がPM検出電圧Vpm(センサ検出値)としてマイコン45に入力されるようになっている。   A power supply device 41 is connected to one detection electrode 54a of the PM detection unit 54, and a shunt resistor 42 is connected to the other detection electrode 54b. These power supply device 41 and shunt resistor 42 have already been described (see FIG. 2). In this case, an intermediate voltage between the PM detector 54 and the shunt resistor 42 is input to the microcomputer 45 as the PM detection voltage Vpm (sensor detection value).

図7は、本実施形態におけるPM粒子数の算出手順を示すフローチャートであり、本処理はマイコン45により所定周期で繰り返し実行される。   FIG. 7 is a flowchart showing the procedure for calculating the number of PM particles in the present embodiment, and this process is repeatedly executed by the microcomputer 45 at a predetermined cycle.

図7において、ステップS21では、粒子数算出の実行条件の成否を判定する(図5のS11と同様)。その後、ステップS22では、PM検出電圧Vpmに基づいてPM検出部54におけるPM付着量を算出する。また、ステップS23では、エンジン運転状態を表す所定の運転状態パラメータを取得する。本実施形態では、運転状態パラメータとして、燃圧センサ23の検出結果から算出される燃圧と、水温センサ24の検出結果から算出される水温と、回転センサ21の検出結果から算出されるエンジン回転速度とを取得することとしている。   In FIG. 7, in step S <b> 21, it is determined whether or not the execution condition for calculating the number of particles is satisfied (similar to S <b> 11 in FIG. 5). After that, in step S22, the PM adhesion amount in the PM detection unit 54 is calculated based on the PM detection voltage Vpm. In step S23, a predetermined operating state parameter representing the engine operating state is acquired. In the present embodiment, the fuel pressure calculated from the detection result of the fuel pressure sensor 23, the water temperature calculated from the detection result of the water temperature sensor 24, and the engine rotation speed calculated from the detection result of the rotation sensor 21 as the operation state parameters Are going to get.

その後、ステップS24では、PMの平均粒子質量を、今現在の運転状態パラメータに基づいて設定する。このとき、図8に示す関係に基づいてPMの平均粒子質量を設定する。より具体的には、図8において、(a)は燃圧とPM粒径(=1個当たりの粒子質量)との関係を示す図であり、(b)は水温とPM粒径(=1個当たりの粒子質量)との関係を示す図である。これら図8(a)、(b)では、燃圧が高いほどPM粒径が小さくなり、また、水温が高いほどPM粒径が小さくなるという関係が示されている。燃圧や水温が、燃料粒径の決定要因となる運転状態パラメータに相当する。   Thereafter, in step S24, the average particle mass of PM is set based on the current operation state parameter. At this time, the average particle mass of PM is set based on the relationship shown in FIG. More specifically, in FIG. 8, (a) is a diagram showing the relationship between the fuel pressure and the PM particle size (= particle mass per particle), and (b) is the water temperature and the PM particle size (= 1 particle). It is a figure which shows the relationship with the (particulate particle mass). 8A and 8B show a relationship that the PM particle size decreases as the fuel pressure increases, and the PM particle size decreases as the water temperature increases. The fuel pressure and water temperature correspond to the operating state parameters that are the determining factors of the fuel particle size.

要するに、燃圧が比較的高い場合、又は水温が比較的高い場合には、燃料噴射弁12から噴射される燃料粒径が小さくなり、逆に燃圧が比較的低い場合、又は水温が比較的低い場合には、燃料噴射弁12から噴射される燃料粒径が大きくなる。この場合、燃料粒径が小さいほど、排気中のPMが小さくなる傾向にあり、その関係に基づいて図8(a),(b)が規定されている。   In short, when the fuel pressure is relatively high or when the water temperature is relatively high, the particle size of the fuel injected from the fuel injection valve 12 becomes small, and conversely, when the fuel pressure is relatively low or when the water temperature is relatively low. The particle size of fuel injected from the fuel injection valve 12 increases. In this case, the PM in the exhaust tends to be smaller as the fuel particle size is smaller, and FIGS. 8A and 8B are defined based on the relationship.

また、図8(c)はエンジン回転速度とPM粒径(=1個当たりの粒子質量)との関係を示す図である。この図8(c)では、エンジン回転速度が高いほどPM粒径が大きくなるという関係が示されている。エンジン回転速度が高低相違するとエンジン燃焼サイクルにおいて燃料噴射終了から着火されて燃焼するまでの「霧化時間」が変わり、それによってもPMの大きさに影響が及ぶと考えられる。例えばエンジン回転速度が高い状態では霧化時間が短くなり、PM粒径の比較的大きいPMが排気管に排出される。   FIG. 8C is a graph showing the relationship between the engine speed and the PM particle size (= particle mass per particle). FIG. 8C shows the relationship that the PM particle size increases as the engine speed increases. If the engine rotational speed is different, the “atomization time” from the end of fuel injection to the ignition and combustion in the engine combustion cycle changes, which may also affect the PM size. For example, when the engine speed is high, the atomization time is short, and PM having a relatively large PM particle size is discharged to the exhaust pipe.

なお、上記3つの運転状態パラメータを全て用いてPMの平均粒子質量を設定する以外に、いずれか1つのパラメータを用いる構成や、2つのパラメータを用いる構成であってもよい。   In addition, the structure using any one parameter or the structure using two parameters may be used in addition to setting the average particle mass of PM using all the three operation state parameters.

その後、ステップS25では、PM付着量と平均粒子質量とに基づいて、排気中のPM粒子数を算出する。   Thereafter, in step S25, the number of PM particles in the exhaust is calculated based on the PM adhesion amount and the average particle mass.

以上詳述した第2の実施形態によれば、都度のエンジン運転状態に基づいてPMの平均粒子質量を設定する構成とした。そのため、エンジン運転状態の変化に伴いPMの大きさが変化した場合に、それに合わせて平均粒子質量を可変に設定でき、結果としてPM粒子数の算出精度を高めることができる。   According to the second embodiment described in detail above, the average particle mass of PM is set based on the engine operating state each time. Therefore, when the magnitude of PM changes with a change in the engine operating state, the average particle mass can be set variably accordingly, and as a result, the calculation accuracy of the number of PM particles can be increased.

具体的には、燃圧や水温を燃料粒径の決定要因となる運転状態パラメータとして定めておき、燃料粒径が大きくなるエンジン運転状態では燃料粒径が小さくなるエンジン運転状態に比べて平均粒子質量を大きい値に設定する構成とした。これにより、エンジン燃焼室内での燃料粒径(燃料噴射弁12からの噴射燃料の粒径)が大小変化する場合に、その燃料粒径の変化に起因するPMの大きさ変化を加味しつつ、高精度にPM粒子数を算出することができる。また、エンジン回転速度が高いほど、平均粒子質量を大きい値に設定する構成とした。これにより、エンジン回転速度が高低変化する場合に、そのエンジン回転速度の変化に起因するPMの大きさ変化を加味しつつ、高精度にPM粒子数を算出することができる。   Specifically, fuel pressure and water temperature are determined as operating state parameters that determine fuel particle size, and the average particle mass is smaller in the engine operating state where the fuel particle size becomes larger than in the engine operating state where the fuel particle size becomes smaller. Is set to a large value. Thereby, when the fuel particle size in the engine combustion chamber (particle size of the injected fuel from the fuel injection valve 12) changes in size, while taking into account the change in the size of PM due to the change in the fuel particle size, The number of PM particles can be calculated with high accuracy. Further, the average particle mass is set to a larger value as the engine speed is higher. As a result, when the engine rotation speed changes, the number of PM particles can be calculated with high accuracy while taking into account the change in the magnitude of PM due to the change in the engine rotation speed.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

・上記第1の実施形態において、各PM検出部34〜36における印加電圧を可変に設定できる構成としてもよい。つまり、電源装置41により印加される各PM検出部34〜36の電圧を可変とし、各PM検出部での印加電圧の差を変更できる構成とする。例えば、エンジン運転状態に基づいて、各PM検出部34〜36に印加する電圧を変更する。このとき、排気中に含まれるPMの大きさが増大する傾向にあれば、各PM検出部34〜36の印加電圧、又は電圧最大となるPM検出部34の印加電圧を高電圧側に変更するとよい。   -In the said 1st Embodiment, it is good also as a structure which can variably set the applied voltage in each PM detection part 34-36. That is, the voltage of each PM detection part 34-36 applied by the power supply device 41 can be made variable, and the difference of the applied voltage in each PM detection part can be changed. For example, the voltage applied to each PM detection unit 34 to 36 is changed based on the engine operating state. At this time, if the magnitude of the PM contained in the exhaust gas tends to increase, the applied voltage of each PM detector 34 to 36 or the applied voltage of the PM detector 34 that has the maximum voltage is changed to the high voltage side. Good.

・上記第1の実施形態において、複数のPM検出部34〜36のいずれかの検出結果に基づいて、排気中に含まれるPMの大きさの全範囲のうち一部となる一部範囲のPMについて粒子数を算出する構成としてもよい。例えば、図5のステップS14では、PM検出部34〜36ごとに、PM付着量と平均粒子質量とに基づいてPM粒子数が算出される。このとき、各PM検出部34〜36のうちPM検出部36の検出結果から算出されるPM粒子数は、排気中のPMについて大きさの全範囲(0〜0.5μm)のうち軽小範囲(0〜0.3μm)のPMだけの粒子数となる。このように、各PM検出部34〜36の検出結果から算出されるPM粒子数を抽出することで、所望とする大きさの範囲のPM粒子数を求めることができる。   -In said 1st Embodiment, based on the detection result in any one of several PM detection parts 34-36, PM of the partial range used as a part among the full range of the magnitude | size of PM contained in exhaust_gas | exhaustion The number of particles may be calculated for. For example, in step S14 in FIG. 5, the number of PM particles is calculated for each PM detection unit 34 to 36 based on the PM adhesion amount and the average particle mass. At this time, the number of PM particles calculated from the detection result of the PM detection unit 36 among the PM detection units 34 to 36 is a light and small range of the entire size range (0 to 0.5 μm) of the PM in the exhaust gas. The number of particles is only PM of (0 to 0.3 μm). Thus, by extracting the number of PM particles calculated from the detection results of the PM detection units 34 to 36, the number of PM particles in a desired size range can be obtained.

なお、PM検出部34の検出結果に基づいて算出されるPM付着量から、PM検出部35の検出結果に基づいて算出されるPM付着量を減算する処理を行うことにより、PM検出部34での付着PMの粒径範囲(0〜0.5μm)内であり、かつPM検出部35での付着PMの粒径範囲(0〜0.4μm)内ではない粒径範囲、すなわち0.4〜0.5μmの粒径範囲のPMについてPM付着量を算出でき、その粒径範囲(0.4〜0.5μm)の大きさのPMを対象に粒子数を算出することができる。同様に、PM検出部35,36の両検出結果によれば、0.3〜0.4μmの粒径範囲のPMについてPM付着量を算出でき、その粒径範囲(0.3〜0.4μm)の大きさのPMを対象に粒子数を算出することができる。   The PM detection unit 34 performs processing for subtracting the PM adhesion amount calculated based on the detection result of the PM detection unit 35 from the PM adhesion amount calculated based on the detection result of the PM detection unit 34. The particle size range of the attached PM is within the particle size range (0 to 0.5 μm) and is not within the particle size range (0 to 0.4 μm) of the attached PM at the PM detector 35, that is, 0.4 to The PM adhesion amount can be calculated for a PM having a particle size range of 0.5 μm, and the number of particles can be calculated for a PM having a particle size range (0.4 to 0.5 μm). Similarly, according to both detection results of the PM detectors 35 and 36, the PM adhesion amount can be calculated for PM in the particle size range of 0.3 to 0.4 μm, and the particle size range (0.3 to 0.4 μm). ), The number of particles can be calculated.

・上記第1の実施形態において、PM粒子数を算出する処理周期と、PM付着量を算出する処理周期とを個別に定め、前者の処理周期を後者の処理周期よりも長くする構成において、PM付着量を算出する場合には、3つのPM検出部34〜36のうち1つのみに電圧を印加し(他の2つは印加電圧=0)、PM粒子数を算出する場合にのみ、各PM検出部34〜36に対して各々異なる電圧を印加する構成であってもよい。   In the first embodiment, in the configuration in which the processing cycle for calculating the number of PM particles and the processing cycle for calculating the PM adhesion amount are individually determined, and the former processing cycle is longer than the latter processing cycle, PM In the case of calculating the adhesion amount, only one of the three PM detection units 34 to 36 is applied with a voltage (the other two are applied voltage = 0), and only when calculating the number of PM particles, A configuration in which different voltages are respectively applied to the PM detection units 34 to 36 may be employed.

・上記第1の実施形態では、1つのPMセンサ19を用い、その1つのPMセンサ19が有する複数のPM検出部34〜36から各々PM検出電圧をECU25に入力する構成としたが、これを変更し、複数のPMセンサを用い、それら複数のPMセンサから各々PM検出電圧をECU25に入力する構成としてもよい。この場合、PMセンサはそれぞれ1つずつのPM検出部を有するものであればよい(ただし、複数のPM検出部を有するものでもよい)。   In the first embodiment, one PM sensor 19 is used, and each PM detection voltage is input to the ECU 25 from the plurality of PM detection units 34 to 36 included in the one PM sensor 19. It is good also as a structure which changes and uses PM sensors and inputs PM detection voltage into ECU25 from these PM sensors, respectively. In this case, each PM sensor only needs to have one PM detection unit (however, it may have a plurality of PM detection units).

・上記第1の実施形態で用いるセンサ素子の構成を以下のように変更してもよい。図9は、センサ素子の別の構成を示す平面図である。なお図9では、説明の便宜上、図2に示すセンサ素子31と同様の構成については同じ符号を付すとともに、詳細な説明を割愛する。   -You may change the structure of the sensor element used in the said 1st Embodiment as follows. FIG. 9 is a plan view showing another configuration of the sensor element. In FIG. 9, for convenience of explanation, the same reference numerals are given to the same components as those of the sensor element 31 shown in FIG. 2, and detailed description thereof is omitted.

図9(a)に示すセンサ素子61では、各PM検出部34〜36において各々に検出電極間の間隔が相違しており、PM検出部34の検出電極間の間隔d1、PM検出部35の検出電極間の間隔d2、PM検出部36の検出電極間の間隔d3は、d1<d2<d3の関係となっている。   In the sensor element 61 shown in FIG. 9A, the intervals between the detection electrodes are different in each PM detection unit 34 to 36, and the interval d <b> 1 between the detection electrodes of the PM detection unit 34 and the PM detection unit 35. The distance d2 between the detection electrodes and the distance d3 between the detection electrodes of the PM detection unit 36 have a relationship of d1 <d2 <d3.

上記構成によれば、各PM検出部34〜36で検出電極間の間隔が相違していることで、各PM検出部34〜36の検出電極間に生じる電界強度を相違させることができる。したがって、センサ素子61に付着するPMについて、各PM検出部34〜36での付着PMの大きさ(粒径や質量)をそれぞれ異ならせることができる。この場合、各PM検出部34〜36で印加電圧を同一した構成であってもよい。こうして印加電圧を同一にする構成では、電源装置として簡易な構成のものを適用できることとなる。   According to the said structure, the electric field intensity produced between the detection electrodes of each PM detection part 34-36 can be varied because the space | interval between detection electrodes is different in each PM detection part 34-36. Therefore, regarding the PM adhering to the sensor element 61, the size (particle diameter or mass) of the adhering PM in each PM detection unit 34 to 36 can be varied. In this case, the PM detectors 34 to 36 may have the same applied voltage. In this way, in the configuration in which the applied voltage is the same, a power supply device having a simple configuration can be applied.

また、図9(b)に示すセンサ素子62は、3つのPM検出部34〜36に対してヒータ部37を偏った位置に設けることで、各PM検出部34〜36で温度勾配(温度差)を付けたものである。より具体的には、3つのPM検出部34〜36のうち、絶縁基板32の最も先端側にあるPM検出部34に対応させてヒータ部37(発熱部)を配置している。そして、その温度勾配により、各PM検出部34〜36での付着PMの大きさ(粒径や質量)をそれぞれ異ならせるようにしている。   Further, the sensor element 62 shown in FIG. 9B has a temperature gradient (temperature difference) in each PM detection unit 34 to 36 by providing the heater unit 37 at a position biased with respect to the three PM detection units 34 to 36. ). More specifically, the heater unit 37 (heat generating unit) is disposed in correspondence with the PM detection unit 34 located on the most distal side of the insulating substrate 32 among the three PM detection units 34 to 36. And according to the temperature gradient, the magnitude | size (particle size and mass) of adhesion PM in each PM detection part 34-36 is varied, respectively.

上記構成によれば、PM検出部34〜36ごとにヒータ部37(発熱部)との距離が相違するため、ヒータ加熱状態において各PM検出部34〜36の温度が各々相違し、その温度の相違により各々異なる空気の対流が生じる。例えば、高温のPM検出部(本実施形態ではPM検出部34)ほど、空気流の流れが速くなり、大きな対流が生じることとなる。このとき、各PM検出部34〜36では、各自で発生する対流の違いにより、付着するPMの大きさが異なることとなる。例えば、対流が大きいPM検出部34では、比較的大きなPM(質量大となるPM)が捕集され、対流が小さいPM検出部36では、比較的小さいなPM(質量小となるPM)が捕集される。   According to the above configuration, since the distance from the heater unit 37 (heat generation unit) is different for each PM detection unit 34 to 36, the temperature of each PM detection unit 34 to 36 is different in the heater heating state. Differences cause different air convection. For example, the higher the temperature of the PM detection unit (PM detection unit 34 in the present embodiment), the faster the air flow and the greater the convection. At this time, in each PM detection part 34-36, the magnitude | size of adhering PM will differ with the difference in the convection which each generate | occur | produces. For example, a relatively large PM (a PM having a large mass) is collected by the PM detector 34 having a large convection, and a relatively small PM (a PM having a small mass) is captured by the PM detector 36 having a small convection. Be collected.

図9(c)に示すセンサ素子63は、3つのPM検出部34〜36にそれぞれ対応させて発熱部37a,37b,37cを設けるとともに、それらの各発熱部37a〜37cにおいて発熱量を相違させることで、各PM検出部34〜36で温度差(温度勾配)を付けたものである。この場合、発熱部37aによりPM検出部34及びその周辺が加熱され、発熱部37bによりPM検出部35及びその周辺が加熱され、発熱部37cによりPM検出部36及びその周辺が加熱される。例えば、発熱部37aの発熱量Q1、発熱部37bの発熱量Q2、発熱部37cの発熱量Q3は、Q1>Q2>Q3の関係となっている。   The sensor element 63 shown in FIG. 9C is provided with heat generating portions 37a, 37b, and 37c corresponding to the three PM detecting portions 34 to 36, respectively, and the heat generating portions 37a to 37c have different heat generation amounts. Thus, a temperature difference (temperature gradient) is added to each PM detector 34 to 36. In this case, the PM detecting unit 34 and its surroundings are heated by the heat generating unit 37a, the PM detecting unit 35 and its surroundings are heated by the heating unit 37b, and the PM detecting unit 36 and its surroundings are heated by the heating unit 37c. For example, the heat generation amount Q1 of the heat generating portion 37a, the heat generation amount Q2 of the heat generating portion 37b, and the heat generation amount Q3 of the heat generating portion 37c have a relationship of Q1> Q2> Q3.

上記構成によれば、ヒータ加熱状態において各PM検出部34〜36の温度が各々相違し、その温度の相違により各々異なる空気の対流が生じる。例えば、高温のPM検出部(本実施形態ではPM検出部34)ほど、空気流の流れが速くなり、大きな対流が生じることとなる。このとき、各PM検出部34〜36では、各自で発生する対流の違いにより、付着するPMの大きさが異なることとなる。例えば、対流が大きいPM検出部34では、比較的大きなPM(質量大となるPM)が捕集され、対流が小さいPM検出部36では、比較的小さいなPM(質量小となるPM)が捕集される。   According to the said structure, in the heater heating state, the temperature of each PM detection part 34-36 differs, respectively, and the convection of a different air arises according to the difference in the temperature. For example, the higher the temperature of the PM detection unit (PM detection unit 34 in the present embodiment), the faster the air flow and the greater the convection. At this time, in each PM detection part 34-36, the magnitude | size of adhering PM will differ with the difference in the convection which each generate | occur | produces. For example, a relatively large PM (a PM having a large mass) is collected by the PM detector 34 having a large convection, and a relatively small PM (a PM having a small mass) is captured by the PM detector 36 having a small convection. Be collected.

なお、図9(c)の構成では、同(b)の構成に比べて、各PM検出部34〜36で確実に温度差をつけることができ、各PM検出部34〜36において大きさの違いによる付着PMの振分をより適正に行うことができる。   In the configuration of FIG. 9 (c), the PM detectors 34 to 36 can reliably set a temperature difference compared to the configuration of FIG. It is possible to appropriately distribute the adhered PM due to the difference.

・上記各実施形態では、PM粒子の大きさの指標として平均粒子質量[mg]を用いたが、平均粒径[μm]を用いることも可能である。PM粒子の1個当たりの質量と粒径とはほぼ比例関係にあるため、平均粒子質量を用いることと、平均粒径を用いることとは同義であると言える。   In each of the above embodiments, the average particle mass [mg] is used as an index of the size of PM particles, but the average particle size [μm] can also be used. Since the mass per one PM particle and the particle size are in a substantially proportional relationship, it can be said that using the average particle mass is synonymous with using the average particle size.

・エンジン排気管にPMを捕集するためのPMフィルタを設け、その下流側又は上流側の少なくともいずれかにPMセンサを設けた構成において、PMセンサの検出値に基づいてPMフィルタの再生タイミングを制御する構成としてもよい。また、PMセンサの検出値に基づいてPMフィルタの故障診断を実施する構成としてもよい。   In a configuration in which a PM filter for collecting PM is provided in the engine exhaust pipe, and a PM sensor is provided on at least one of the downstream side and the upstream side, the regeneration timing of the PM filter is determined based on the detection value of the PM sensor. It is good also as a structure to control. Moreover, it is good also as a structure which performs failure diagnosis of PM filter based on the detected value of PM sensor.

・上記実施形態では、直噴式ガソリンエンジンについての適用を例示したが、他の形式のエンジンにも適用できる。例えば、ディーゼルエンジン(特に、直噴式ディーゼルエンジン)に適用することとし、ディーゼルエンジンの排気管に設けられたPMセンサについて本発明を用いることも可能である。また、エンジンの排気以外のガスを対象としてPM量を検出するものであってもよい。   -In the above-mentioned embodiment, although application about a direct-injection type gasoline engine was illustrated, it is applicable also to other types of engines. For example, the present invention can be applied to a diesel engine (particularly, a direct injection type diesel engine), and the present invention can be used for a PM sensor provided in an exhaust pipe of the diesel engine. Alternatively, the PM amount may be detected for a gas other than the engine exhaust.

11…エンジン(内燃機関)、12…燃料噴射弁(燃料噴射手段)、19…PMセンサ(粒子状物質検出センサ)、21…回転センサ、23…燃圧センサ、24…水温センサ、25…ECU、32…絶縁基板(被付着部)、34〜36…PM検出部、34a,34b,35a,35b,36a,36b…検出電極(対向電極)、37…ヒータ部、45…マイコン(付着量算出手段、粒子質量設定手段、粒子数算出手段)、52…絶縁基板(被付着部)、54…PM検出部、54a,54b…検出電極(対向電極)。   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Fuel injection valve (fuel injection means), 19 ... PM sensor (particulate matter detection sensor), 21 ... Rotation sensor, 23 ... Fuel pressure sensor, 24 ... Water temperature sensor, 25 ... ECU, 32 ... Insulating substrate (attachment portion), 34 to 36 ... PM detection portion, 34a, 34b, 35a, 35b, 36a, 36b ... Detection electrode (counter electrode), 37 ... Heater portion, 45 ... Microcomputer (attachment amount calculation means) , Particle mass setting means, particle number calculation means), 52... Insulating substrate (attached part), 54... PM detection part, 54 a and 54 b.

Claims (6)

内燃機関から排出される排気中に含まれる導電性の粒子状物質を付着させる被付着部と、前記被付着部に設けられた一対の対向電極からなる複数の検出部とを有し、それら各検出部において前記一対の対向電極間の抵抗値に応じた検出信号を出力する粒子状物質検出センサに適用されるセンサ制御装置であり、
前記複数の検出部は、付着する粒子状物質の大きさの範囲が各々異なり、それら各範囲は、それぞれ中央値が相違するとともに、前記排気中の粒子状物質の大きさの全範囲内において重複して定められており、
前記粒子状物質検出センサの検出信号に基づいて前記複数の検出部ごとに前記粒子状物質の付着量を算出する付着量算出手段と、
前記被付着部に付着した粒子状物質の粒子1個当たりの平均粒子質量として前記複数の検出部において各々異なる複数の平均粒子質量を設定可能であり、そのうちいずれかの平均粒子質量を設定する粒子質量設定手段と、
前記付着量算出手段により算出した前記複数の検出部ごとの前記粒子状物質の付着量と、前記粒子質量設定手段により設定した前記複数の検出部ごとの平均粒子質量とに基づいて、前記複数の検出部ごとに前記粒子状物質の粒子数を算出するとともに、それらの各算出結果に基づいて前記粒子状物質の粒子数を算出する粒子数算出手段と、
前記複数の検出部における各検出信号に基づいて、前記被付着部に付着した前記粒子状物質の量である総付着量を算出する総付着量算出手段と、
を備えることを特徴とするセンサ制御装置。
It has a target attachment for attaching the conductive particulate matter contained in exhaust gas discharged from the internal combustion engine, and a plurality of detection units comprising a pair of opposing electrodes provided on the object to be adhered portion, each of these A sensor control device applied to a particulate matter detection sensor that outputs a detection signal according to a resistance value between the pair of counter electrodes in the detection unit ,
The plurality of detection units have different size ranges of adhering particulate matter, and each range has a different median value and overlaps within the entire range of the size of the particulate matter in the exhaust gas. Is established,
An adhesion amount calculating means for calculating an adhesion amount of the particulate matter for each of the plurality of detection units based on a detection signal of the particulate matter detection sensor;
A plurality of average particle masses different from each other in the plurality of detection units can be set as the average particle mass per particle of the particulate matter adhering to the adherend, and one of which sets the average particle mass Mass setting means;
Wherein the adhesion amount of the particulate matter for each of the plurality of detection units which is calculated by the adhesion amount calculating means, on the basis of the average particle mass of each particle mass setting the plurality of detection units which is set by means of the plurality of While calculating the number of particles of the particulate matter for each detection unit, a particle number calculating means for calculating the number of particles of the particulate matter based on the respective calculation results ;
Based on each detection signal in the plurality of detection units, a total adhesion amount calculating means for calculating a total adhesion amount that is the amount of the particulate matter adhered to the adherend portion;
A sensor control device comprising:
前記粒子数算出手段は、前記複数の検出部のいずれかの検出信号に基づいて、排気中に含まれる粒子状物質の大きさの全範囲のうち一部となる一部範囲の粒子状物質について粒子数を算出する請求項に記載のセンサ制御装置。 The particle number calculation unit is configured to detect a part of the particulate matter that is a part of the whole range of the particulate matter contained in the exhaust gas based on the detection signal of any of the plurality of detection units. The sensor control device according to claim 1 , wherein the number of particles is calculated. 前記粒子数算出手段は、前記粒子状物質の大きさの範囲が一部重複している2つの検出部の検出信号を用い、それら2つの検出部で非重複となっている非重複範囲の前記粒子状物質について粒子数を算出する請求項1に記載のセンサ制御装置。The particle number calculation means uses the detection signals of two detection units that partially overlap the size range of the particulate matter, and the non-overlapping ranges of the non-overlapping ranges that are non-overlapping in the two detection units. The sensor control device according to claim 1, wherein the number of particles is calculated for the particulate matter. 前記内燃機関の運転状態を検出する運転状態検出手段を備え、
前記粒子質量設定手段は、前記運転状態検出手段により検出した機関運転状態に基づいて前記粒子状物質の平均粒子質量を設定する請求項1乃至3のいずれか一項に記載のセンサ制御装置。
Comprising an operating state detecting means for detecting an operating state of the internal combustion engine;
The sensor control apparatus according to any one of claims 1 to 3, wherein the particle mass setting unit sets an average particle mass of the particulate matter based on an engine operation state detected by the operation state detection unit.
前記内燃機関は、燃料噴射手段により燃焼室内に燃料が直接噴射される筒内噴射式内燃機関であり、
前記運転状態検出手段は、前記運転状態として、前記燃料噴射手段から噴射される燃料粒径の決定要因となる機関運転状態を検出し、
前記粒子質量設定手段は、前記燃料粒径が大きくなる機関運転状態では前記燃料粒径が小さくなる機関運転状態に比べて前記平均粒子質量を大きい値に設定する請求項4に記載のセンサ制御装置。
The internal combustion engine is a direct injection internal combustion engine in which fuel is directly injected into a combustion chamber by fuel injection means,
The operating state detecting means detects an engine operating state that is a determining factor of the particle size of fuel injected from the fuel injection means as the operating state,
5. The sensor control device according to claim 4, wherein the particle mass setting means sets the average particle mass to a larger value in an engine operation state in which the fuel particle size becomes larger than in an engine operation state in which the fuel particle size becomes smaller. .
前記運転状態検出手段は、前記運転状態として前記内燃機関の回転速度を検出し、
前記粒子質量設定手段は、前記検出した内燃機関の回転速度が高いほど、前記平均粒子質量を大きい値に設定する請求項4又は5に記載のセンサ制御装置。
The operating state detecting means detects the rotational speed of the internal combustion engine as the operating state,
6. The sensor control device according to claim 4, wherein the particle mass setting means sets the average particle mass to a larger value as the detected rotational speed of the internal combustion engine is higher.
JP2010193100A 2010-08-31 2010-08-31 Sensor control device Expired - Fee Related JP5333383B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010193100A JP5333383B2 (en) 2010-08-31 2010-08-31 Sensor control device
DE102011081808.1A DE102011081808B4 (en) 2010-08-31 2011-08-30 Sensor control unit for calculating a number of PM particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193100A JP5333383B2 (en) 2010-08-31 2010-08-31 Sensor control device

Publications (2)

Publication Number Publication Date
JP2012052811A JP2012052811A (en) 2012-03-15
JP5333383B2 true JP5333383B2 (en) 2013-11-06

Family

ID=45566396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193100A Expired - Fee Related JP5333383B2 (en) 2010-08-31 2010-08-31 Sensor control device

Country Status (2)

Country Link
JP (1) JP5333383B2 (en)
DE (1) DE102011081808B4 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012024258A1 (en) * 2012-12-12 2014-06-12 Man Truck & Bus Ag Sensor and measuring arrangement for detecting the particle concentration in an exhaust gas flow
JP2015175319A (en) * 2014-03-17 2015-10-05 株式会社デンソー Internal combustion engine pm detector
JP6444063B2 (en) * 2014-05-29 2018-12-26 株式会社Soken Particulate matter detection device and particulate matter detection method
JP6426072B2 (en) 2014-10-02 2018-11-21 株式会社Soken Filter failure detection device, particulate matter detection device
JP6367735B2 (en) 2015-02-20 2018-08-01 株式会社Soken Particulate matter quantity estimation system
JP2016217849A (en) * 2015-05-19 2016-12-22 株式会社デンソー Particulate matter detection sensor
WO2017047606A1 (en) * 2015-09-15 2017-03-23 株式会社デンソー Particulate matter detection sensor
JP6536507B2 (en) * 2015-09-15 2019-07-03 株式会社デンソー Particulate matter detection sensor
JP6680001B2 (en) * 2016-03-10 2020-04-15 株式会社デンソー Liquid detector
JP6492035B2 (en) 2016-03-22 2019-03-27 株式会社Soken Particulate matter detector
KR101990497B1 (en) * 2016-03-31 2019-06-19 주식회사 아모텍 Particular Matter Sensor
JP6596482B2 (en) 2016-12-15 2019-10-23 株式会社Soken Particulate matter detector
FR3069058A1 (en) * 2017-07-17 2019-01-18 Association Pour La Recherche Et Le Developpement Des Methodes Et Processus Industriels - Armines SYSTEM FOR CHARACTERIZING CONDUCTIVE NANOPARTICLES
EP3771897A1 (en) * 2019-08-01 2021-02-03 Heraeus Nexensos GmbH Sensor system, exhaust system of a vehicle and use of a sensor system
DE102020215291A1 (en) * 2020-12-03 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Method and computing unit for operating an internal combustion engine with a particle filter
TWI782577B (en) * 2021-06-11 2022-11-01 簡芊羽 The electrical signal measuring device inside the fuel tank to determine the metal impurity content in the fuel tank
DE102022208085A1 (en) 2022-08-03 2024-02-08 Robert Bosch Gesellschaft mit beschränkter Haftung Method, computing unit and a computer program for determining particle number emissions in a vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196453A (en) 1983-04-21 1984-11-07 Nippon Denso Co Ltd Particulate detecting element
US4656832A (en) 1982-09-30 1987-04-14 Nippondenso Co., Ltd. Detector for particulate density and filter with detector for particulate density
JPH05195839A (en) * 1992-01-22 1993-08-03 Mitsubishi Electric Corp Electronic control unit for internal combustion engine
JP3303638B2 (en) * 1995-12-05 2002-07-22 トヨタ自動車株式会社 Air-fuel ratio sensor heater control device
JPH09318574A (en) * 1996-05-27 1997-12-12 Komatsu Ltd Metal particle sensor and particle size measuring method
JP3985960B2 (en) * 2003-07-02 2007-10-03 独立行政法人交通安全環境研究所 Fine particle measuring apparatus and measuring method in exhaust gas
JP4270121B2 (en) * 2004-12-03 2009-05-27 株式会社島津製作所 Optical measuring device
JP4227991B2 (en) * 2005-12-28 2009-02-18 トヨタ自動車株式会社 Exhaust gas analyzer and exhaust gas analysis method
KR20090125114A (en) * 2007-03-15 2009-12-03 니뽄 가이시 가부시키가이샤 Particulate matter detection device and particulate matter detection method
JP2010014518A (en) * 2008-07-03 2010-01-21 Hitachi Constr Mach Co Ltd Metal particle inspecting system
KR101668469B1 (en) * 2008-10-31 2016-10-21 코닌클리케 필립스 엔.브이. Device for characterizing the evolution over time of a size distribution of electrically-charged airborne particles in an airflow
EP2525215B1 (en) 2010-01-08 2019-02-27 Toyota Jidosha Kabushiki Kaisha Particle detection device

Also Published As

Publication number Publication date
DE102011081808B4 (en) 2022-03-31
DE102011081808A1 (en) 2012-03-01
JP2012052811A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5333383B2 (en) Sensor control device
JP5531849B2 (en) Sensor control device
JP2013024097A (en) Sensor control device
JP5408070B2 (en) Sensor control device
JP5408069B2 (en) Sensor control device and exhaust treatment system including the same
JP6070659B2 (en) Particulate filter abnormality diagnosis device
EP2221598B1 (en) Particulate matter detection device
US8707761B2 (en) Particulate matter detection element
US20110320171A1 (en) Failure detection device for exhaust gas purification filter
JP6520898B2 (en) Abnormality diagnosis device of exhaust purification system
EP2549070B1 (en) Exhaust emission control device for internal combustion engine
JP2012037372A (en) Sensor controller
CN111441850B (en) Abnormality detection device for electrically heated catalyst
CN103987932A (en) Failure detection device for electrically heated catalyst
CN107345496B (en) Method and apparatus for monitoring the particulate matter in exhaust feedstream
US20150301009A1 (en) Abnormality detection system of engine exhaust system (as amended)
JP5533477B2 (en) Engine control device
JP5488451B2 (en) Fine particle detector
JP7184056B2 (en) Exhaust purification device for internal combustion engine
WO2017002828A1 (en) Plasma reactor applied voltage control device and plasma reactor control device
JP6444063B2 (en) Particulate matter detection device and particulate matter detection method
JP6439706B2 (en) Sensor control device
US10422295B2 (en) Apparatus for determining whether there is malfunction in filter device
JP2012036816A (en) Control device of internal combustion engine
JP2014015914A (en) Abnormality determination device of pm sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees