JP5331961B2 - Method for producing blue light emitting member - Google Patents

Method for producing blue light emitting member Download PDF

Info

Publication number
JP5331961B2
JP5331961B2 JP2007080148A JP2007080148A JP5331961B2 JP 5331961 B2 JP5331961 B2 JP 5331961B2 JP 2007080148 A JP2007080148 A JP 2007080148A JP 2007080148 A JP2007080148 A JP 2007080148A JP 5331961 B2 JP5331961 B2 JP 5331961B2
Authority
JP
Japan
Prior art keywords
blue light
ion implantation
light emitting
annealing
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007080148A
Other languages
Japanese (ja)
Other versions
JP2008244005A (en
Inventor
修 花泉
健太 三浦
正人 吉川
春也 山本
雅樹 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Japan Atomic Energy Agency
Original Assignee
Gunma University NUC
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Japan Atomic Energy Agency filed Critical Gunma University NUC
Priority to JP2007080148A priority Critical patent/JP5331961B2/en
Publication of JP2008244005A publication Critical patent/JP2008244005A/en
Application granted granted Critical
Publication of JP5331961B2 publication Critical patent/JP5331961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、青色発光部材の製造方法及び発光素子に関し、特に、Siイオン注入法により波長400nm付近に発光ピークを持つ青色発光部材を製造する方法、及びその方法により製造された青色発光部材を用いた発光素子に関する。   The present invention relates to a method for manufacturing a blue light-emitting member and a light-emitting element, and in particular, a method for manufacturing a blue light-emitting member having a light emission peak in the vicinity of a wavelength of 400 nm by Si ion implantation, and a blue light-emitting member manufactured by the method. The present invention relates to a light emitting element.

従来、ポーラスシリコン(Si)、ナノ結晶Si、Si/SiO超格子など、量子閉じ込め効果を利用したSi系発光材料の研究が数多くなされている。これらのうち、ナノ結晶Si(nc−Si)においては、既に三原色(赤、青、緑)の発光が観測されるに至っており、多くの研究開発が進められている。 Conventionally, many studies have been made on Si-based light-emitting materials utilizing the quantum confinement effect, such as porous silicon (Si), nanocrystalline Si, and Si / SiO 2 superlattices. Among these, in nanocrystalline Si (nc-Si), light emission of three primary colors (red, blue, green) has already been observed, and many researches and developments are underway.

nc−Siの代表的な作製方法としては、SiとSiOの同時スパッタリング法やレーザーアブレーション法、あるいは石英(SiO)板や熱酸化SiO膜へのSiイオン注入法などが挙げられる。例えば、Si:SiO同時スパッタ膜では、アニール等の後処理無しでもSiO中にSiナノクラスターが形成されて青色や白色の発光を示すことが報告されている(特許文献1、2参照)。 As a typical production method of nc-Si, there are a simultaneous sputtering method of Si and SiO 2, a laser ablation method, a Si ion implantation method into a quartz (SiO 2 ) plate or a thermally oxidized SiO 2 film, and the like. For example, it has been reported that in a Si: SiO 2 co-sputtered film, Si nanoclusters are formed in SiO 2 without post-treatment such as annealing and emit blue or white light (see Patent Documents 1 and 2). .

一方、イオン注入法により得たnc−Si試料にアニール処理を施すことで赤色から近赤外域のフォトルミネッセンス(PL)が観測されており(特許文献3参照)、更にIII−V族化合物半導体に匹敵する光利得100cm−1が報告されている。そのため、イオン注入法により形成されるnc−Siを応用したSi系発光素子の実現への期待が高まっている。 On the other hand, photoluminescence (PL) in the red to near infrared region has been observed by annealing the nc-Si sample obtained by the ion implantation method (see Patent Document 3). A comparable light gain of 100 cm −1 has been reported. For this reason, there is an increasing expectation for realizing a Si-based light emitting device using nc-Si formed by an ion implantation method.

特許第3830876号公報Japanese Patent No. 3830876 特許第3830874号公報Japanese Patent No. 3830874 特許第2758849号公報Japanese Patent No. 2758849

前述のように、イオン注入法により形成されるnc−Siからは、主に赤色から近赤外域にかけての発光が観測されているが、長波長側に限定されるため、発光素子としての応用も限られてしまう。このようなイオン注入法によるnc−Siを発光素子用材料として広く利用するためには、異なる波長帯での発光も示すことが望まれる。上記のようにSi系材料にイオン注入とアニール処理を施して発光材料が得られることは従来知られていたが、青色発光帯が発現することはこれまで報告されていなかった。   As described above, from nc-Si formed by the ion implantation method, light emission mainly from the red to the near-infrared region is observed, but since it is limited to the long wavelength side, it can be applied as a light-emitting element. It will be limited. In order to widely use nc-Si by such an ion implantation method as a material for a light emitting element, it is desired to show light emission in different wavelength bands. As described above, it has been conventionally known that a light emitting material can be obtained by performing ion implantation and annealing treatment on a Si-based material, but it has not been reported so far that a blue light emitting band appears.

本発明は、イオン注入法を用い、青色領域で発光するSi系発光材料の製造方法、及びその方法により製造された青色発光部材を用いた発光素子を提供することを主な目的とする。   The main object of the present invention is to provide a method for producing a Si-based light emitting material that emits light in a blue region using an ion implantation method, and a light emitting element using a blue light emitting member produced by the method.

上記目的を達成するため、本発明者らは、イオン注入法によりSi系発光材料を製造する技術について研究を重ねたところ、水晶又は溶融石英(SiO)部材に所定の照射条件下でSiイオン注入を行い、好ましくは、その後アニール処理を行うことで、波長400nm付近をピークとする青色発光帯が発現することを見出した。本発明では、以下の青色発光部材の製造方法等が提供される。 In order to achieve the above object, the present inventors have conducted research on a technique for producing a Si-based light-emitting material by an ion implantation method. As a result, Si ions are irradiated on a quartz or fused silica (SiO 2 ) member under a predetermined irradiation condition. It has been found that a blue light emission band having a peak at a wavelength of about 400 nm is developed by performing implantation and preferably performing annealing treatment thereafter. The present invention provides the following method for producing a blue light-emitting member.

<1> 水晶又は溶融石英部材に対し、所定の照射条件でSiイオンを注入することにより、青色光を発する部材を製造することを特徴とする青色発光部材の製造方法。 <1> A method for manufacturing a blue light emitting member, wherein a member that emits blue light is manufactured by injecting Si ions into a quartz or fused quartz member under predetermined irradiation conditions.

本発明によれば、Siイオン注入法により発光素子用材料として有用な青色発光部材を製造することができ、発光素子への応用に大いに資することができる。   According to the present invention, a blue light-emitting member useful as a light-emitting element material can be manufactured by a Si ion implantation method, which can greatly contribute to application to a light-emitting element.

<2> 前記水晶又は溶融石英部材に対し、前記Siイオン注入後、所定温度で所定時間アニール処理を施すことを特徴とする<1>に記載の青色発光部材の製造方法。
上記のようにSiイオン注入後、さらにアニール処理を施すことで、青色領域での発光強度を高めることができる。
<2> The method for producing a blue light-emitting member according to <1>, wherein the quartz or fused quartz member is annealed at a predetermined temperature for a predetermined time after the Si ion implantation.
As described above, after the Si ion implantation, the light emission intensity in the blue region can be increased by further annealing.

<3> 前記アニール処理の前記所定温度を、1100℃より高く、1300℃以下としたことを特徴とする<2>に記載の青色発光部材の製造方法。
上記の温度範囲でアニール処理を行えば、青色領域での発光強度を一層高めることができる。
<3> The method for producing a blue light-emitting member according to <2>, wherein the predetermined temperature of the annealing treatment is higher than 1100 ° C. and lower than 1300 ° C.
If the annealing treatment is performed in the above temperature range, the emission intensity in the blue region can be further increased.

<4> 前記アニール処理の前記所定時間を、15分〜1時間としたことを特徴とする<2>又は<3>に記載の青色発光部材の製造方法。 <4> The method for producing a blue light-emitting member according to <2> or <3>, wherein the predetermined time for the annealing treatment is 15 minutes to 1 hour.

<5> 前記照射条件を、少なくとも80keVのエネルギーで、注入Siイオンの注入量を5×1016ions/cm以上としたことを特徴とする<1>〜<4>のいずれかに記載の青色発光部材の製造方法。 <5> The irradiation condition according to any one of <1> to <4>, wherein the irradiation condition is an energy of at least 80 keV and an implantation amount of implanted Si ions is 5 × 10 16 ions / cm 2 or more. A method for producing a blue light emitting member.

上記のような条件下でSiイオン注入を行えば、青色発光する部材をより確実に得ることができる。   If Si ion implantation is performed under the above conditions, a member emitting blue light can be obtained more reliably.

<6> <1>〜<5>のいずれかに記載の方法により製造された青色発光部材を用いた発光素子。 <6> A light emitting device using the blue light emitting member manufactured by the method according to any one of <1> to <5>.

本発明に係る青色発光部材は、少ないエネルギーでSiイオン注入法では従来得られなかった400nm付近で発光ピークを持つ青色発光を示すものとなり、これを用いることで種々の光機能や部品を集積した発光素子とすることができる。   The blue light-emitting member according to the present invention exhibits blue light emission having a light emission peak near 400 nm, which has not been obtained by Si ion implantation with a small amount of energy, and by using this, various optical functions and components are integrated. A light emitting element can be obtained.

本発明によれば、イオン注入法により、波長400nm付近に発光ピークを持つ青色発光を示す部材を製造することができる。本発明により製造される青色発光部材は、発光素子用材料として広く利用することが可能となる。   According to the present invention, a member exhibiting blue light emission having an emission peak in the vicinity of a wavelength of 400 nm can be manufactured by an ion implantation method. The blue light emitting member produced by the present invention can be widely used as a light emitting element material.

以下、図面を参照しながら本発明の実施の形態を詳細に説明する。
図1は、本発明に係る青色発光部材を製造する工程の一例を概略的に示している。本発明では、溶融石英部材10に対し、所定の条件でSiイオンを注入し(図1(A))、好ましくは、Siイオン注入後、この溶融石英部材10に対して所定の条件でアニール処理を施すことにより(図1(B))、青色光を発する部材を製造することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 schematically shows an example of a process for producing a blue light emitting member according to the present invention. In the present invention, Si ions are implanted into the fused quartz member 10 under a predetermined condition (FIG. 1A), and preferably, after the Si ions are implanted, the molten quartz member 10 is annealed under the prescribed condition. (FIG. 1B), a member that emits blue light can be manufactured.

<原料部材>
石英は、一般的に製造方法の違いにより、溶融石英と合成石英に分類されるが、本発明では溶融石英を使用する。溶融石英部材であれば、その形状、サイズ等は限定されず、製造する発光部材の用途等に応じて適宜選択すればよい。なお、本発明では、溶融石英のほか、水晶(結晶性の高い石英)を用いることもできる。ただし、より強い発光を得るには、溶融石英を用いることが望ましい。
<Raw materials>
Quartz is generally classified into fused quartz and synthetic quartz depending on the manufacturing method. In the present invention, fused quartz is used. As long as it is a fused quartz member, its shape, size, and the like are not limited, and may be appropriately selected according to the use of the light emitting member to be manufactured. In the present invention, quartz (highly crystalline quartz) can be used in addition to fused quartz. However, in order to obtain stronger light emission, it is desirable to use fused silica.

<Siイオン注入>
本発明では、好ましくは溶融石英部材に対し、イオン注入法によりSiイオンを注入する。イオン注入法は、主に半導体製造プロセスで利用されており、これを本発明のSiイオン注入に適用することができる。引出電極系、質量分析系、注入室等を備えたイオン注入装置を用い、イオン化されたSiを所定のエネルギーに加速して溶融石英部材の表層部に注入すればよい。
<Si ion implantation>
In the present invention, Si ions are preferably implanted into the fused quartz member by an ion implantation method. The ion implantation method is mainly used in a semiconductor manufacturing process, and can be applied to the Si ion implantation of the present invention. An ion implantation apparatus including an extraction electrode system, a mass spectrometry system, an implantation chamber, and the like may be used to accelerate ionized Si to a predetermined energy and inject it into the surface layer portion of the fused quartz member.

本発明においては、水晶又は溶融石英部材を用いているため、Siイオンを少ないエネルギーで効率よく注入することができる。Siイオン注入を行う際の注入エネルギーは、好ましくは80keV以上とする。また、イオン注入量は、5×1016〜6×1017ions/cm、好ましくは1×1017〜3×1017ions/cm、より好ましくは1×1017〜2×1017ions/cmの範囲である。
上記のように、溶融石英部材の表層部に、好ましくは注入エネルギーを少なくとも80keVとし、イオン注入量:5×1016〜6×1017ions/cmでSiイオンを注入し、より好ましくは、さらに後述のアニール処理を施すことで、波長400nm付近、例えば400nm〜430nmの間に発光ピークを持つ青色光を発する部材を得ることができる。
In the present invention, since a quartz or fused quartz member is used, Si ions can be efficiently implanted with less energy. The implantation energy for performing Si ion implantation is preferably 80 keV or more. The ion implantation amount is 5 × 10 16 to 6 × 10 17 ions / cm 2 , preferably 1 × 10 17 to 3 × 10 17 ions / cm 2 , more preferably 1 × 10 17 to 2 × 10 17 ions. / Cm 2 range.
As described above, the surface energy of the fused silica member is preferably set to an implantation energy of at least 80 keV and an ion implantation amount of 5 × 10 16 to 6 × 10 17 ions / cm 2 , and more preferably, Furthermore, a member that emits blue light having a light emission peak in the vicinity of a wavelength of 400 nm, for example, 400 nm to 430 nm can be obtained by performing an annealing process described later.

<アニール処理>
溶融石英部材にSiイオン注入を行った後、好ましくは、この石英部材に対してアニール処理を施す。なお、アニール温度が高すぎると、部材が変形するなどの問題が生じるため、石英の軟化点を超えない温度とするが、例えば1100℃以下のアニール処理を施すと、青色域のほかに、赤色から近赤外域にも発光ピークが現れてしまう場合がある。
<Annealing treatment>
After Si ion implantation is performed on the fused quartz member, the quartz member is preferably annealed. If the annealing temperature is too high, problems such as deformation of the member occur. Therefore, the temperature does not exceed the softening point of quartz. For example, when annealing at 1100 ° C. or lower is applied, red is added in addition to the blue region. In some cases, an emission peak also appears in the near infrared region.

青色発光ピークは、1100℃より高く、かつ、1300℃以下のアニール処理を行う場合に顕著となり、上記の照射条件でSiイオンを注入した後、より好ましくは1150〜1250℃、さらに好ましくは1200℃前後(1200℃±10℃)でアニール処理を行う。特に1200℃のアニール処理を行えば、1100℃のアニール処理を施した場合に見られるような赤色から近赤外域の発光ピークに比べ約4倍もの強度にまで向上させることができる。   The blue emission peak becomes prominent when annealing is performed at a temperature higher than 1100 ° C. and lower than 1300 ° C., and more preferably 1150 to 1250 ° C., more preferably 1200 ° C. after Si ions are implanted under the irradiation conditions described above. Annealing is performed before and after (1200 ° C. ± 10 ° C.). In particular, if annealing at 1200 ° C. is performed, the intensity can be improved to about four times the intensity of red to near-infrared emission peaks as seen when annealing at 1100 ° C. is performed.

アニール時間はアニール温度にもよるが、青色発光の特性を確実に生じさせるとともに、生産性の低下を防ぐため、好ましくは15分〜1時間の範囲内、より好ましくは20分〜50分、特に好ましくは、20分〜30分の範囲内とする。   Although the annealing time depends on the annealing temperature, in order to surely produce the characteristics of blue light emission and to prevent a decrease in productivity, it is preferably within a range of 15 minutes to 1 hour, more preferably 20 minutes to 50 minutes, particularly Preferably, it is within the range of 20 minutes to 30 minutes.

アニール雰囲気は特に限定されず、例えば、窒素ガス雰囲気、空気雰囲気などでアニール処理を行うことができるが、石英部材中のnc−Siの酸化を促進させるため、酸素含有雰囲気が好ましい。
また、アニール装置は、イオン注入後の溶融石英部材に対して前記のような条件でアニール処理を施すことができれば特に限定されず、例えば、電気炉アニール装置、ハロゲンランプアニール装置、グラファイトヒータアニール装置等を使用することができる。
The annealing atmosphere is not particularly limited. For example, the annealing treatment can be performed in a nitrogen gas atmosphere, an air atmosphere, or the like, but an oxygen-containing atmosphere is preferable in order to promote the oxidation of nc-Si in the quartz member.
The annealing apparatus is not particularly limited as long as the annealing treatment can be performed on the fused quartz member after the ion implantation under the above-described conditions. For example, an electric furnace annealing apparatus, a halogen lamp annealing apparatus, a graphite heater annealing apparatus Etc. can be used.

溶融石英部材に対し、上記のような条件でSiイオン注入を行った後、好ましくはアニール処理を行うことで、波長400nm付近に発光ピークを持つ青色発光を示す石英部材を得ることができる。このような青色領域の光を発する石英部材であれば、種々の発光素子への適用や、発光材料と光機能デバイスとの集積化が容易となり、光ピックアップ用光源、LSI間光インターコネクション用光源、更には各種ディスプレイなど、様々な発光デバイスヘの幅広い範囲に応用することができる。   The fused quartz member is subjected to Si ion implantation under the conditions as described above, and then preferably annealed to obtain a quartz member exhibiting blue light emission having an emission peak in the vicinity of a wavelength of 400 nm. Such a quartz member that emits light in the blue region makes it easy to apply to various light emitting elements and to integrate light emitting materials and optical functional devices. The light source for optical pickup and the light source for optical interconnection between LSIs Furthermore, it can be applied to a wide range of various light emitting devices such as various displays.

例えば、溶融石英基板においてSiイオンが注入された部分は屈折率が高くなるため、光導波路としたい部分だけにSiイオンが照射されるような開口部を有するメタル等のマスクを用いることで光導波路型の素子を容易に製造することができる。
また、溶融石英部材にSiイオンを注入した後、p型やn型のドーパントイオンも引き続き注入すれば、pn接合を持った電流駆動型あるいは逆バイアスで電圧駆動型の素子への応用を容易に行うことができる。
For example, since the refractive index is high in a portion where Si ions are implanted in a fused silica substrate, an optical waveguide can be obtained by using a mask made of metal or the like having an opening that allows Si ions to be irradiated only on the portion desired to be an optical waveguide. The mold element can be easily manufactured.
Also, if Si ions are implanted into a fused quartz member and then p-type and n-type dopant ions are subsequently implanted, it can be easily applied to current-driven or reverse-biased voltage-driven devices with pn junctions. It can be carried out.

さらに、イオン注入法によれば、Siイオン照射の直進性から、何らかのパターニングがされた溶融石英板の表面にも一様にイオン注入が可能である。例えば、図2(A)〜(C)に示すように、青色発光する溶融石英基板10の表面に周期的な凹凸パターン12を加工した後、その上に自己クローニング法にて交互多層膜14,16を堆積させれば、発光材料とフォトニック結晶構造とを組み合わせることができ、発光分布が尖鋭になり、発光効率の向上など高機能化を図ることもできる。   Furthermore, according to the ion implantation method, the ion implantation can be uniformly performed on the surface of the fused quartz plate that has been subjected to some patterning because of the straightness of the Si ion irradiation. For example, as shown in FIGS. 2A to 2C, after processing the periodic uneven pattern 12 on the surface of the fused quartz substrate 10 that emits blue light, the alternating multilayer films 14, If 16 is deposited, the light emitting material and the photonic crystal structure can be combined, the light emission distribution becomes sharp, and high functionality such as improvement in light emission efficiency can be achieved.

以下、実施例について説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, examples will be described, but the present invention is not limited to the following examples.

[実施例1〜5]
<Siイオン注入>
10mm角、厚さ1mmの溶融SiO基板を5つ(試料1〜5)用意し、各基板の片面にSiイオンを注入した。このSiイオン注入は、日本原子力研究開発機構のイオン照射研究施設(TIARA:Takasaki Ion Accelerators for Advanced Radiation Application)にて行った。Siイオン注入条件は、注入エネルギー:80keV、注入量:1×1017ions/cmとし、室温で注入を行った。
[Examples 1 to 5]
<Si ion implantation>
Five fused SiO 2 substrates (samples 1 to 5) of 10 mm square and 1 mm thickness were prepared, and Si ions were implanted into one side of each substrate. This Si ion implantation was performed at an ion irradiation research facility (TIARA) of the Japan Atomic Energy Research Organization (TIARA: Takashi Ion Accelerators for Advanced Radiation Application). The Si ion implantation conditions were implantation energy: 80 keV, implantation amount: 1 × 10 17 ions / cm 2, and implantation was performed at room temperature.

<アニール処理>
Siイオン注入後、5つの試料のうち、試料1〜4の溶融SiO基板にアニール処理を施した。アニール処理は、シリコニット(登録商標)ヒーター(シリコニット株式会社製)を用いた電気炉により空気中で行った。具体的には、試料1〜4に対し、アニール温度をそれぞれ1100℃、1150℃、1200℃、1250℃に設定し、アニール時間はいずれも25分間としてアニール処理を行った。なお、試料5に対しては、アニール処理を行わなかった。
<Annealing treatment>
After the Si ion implantation, annealing treatment was performed on the fused SiO 2 substrates of Samples 1 to 4 among the five samples. The annealing treatment was performed in air using an electric furnace using a siliconit® (registered trademark) heater (manufactured by Siliconit). Specifically, the annealing treatment was performed on samples 1 to 4 with the annealing temperatures set to 1100 ° C., 1150 ° C., 1200 ° C., and 1250 ° C., respectively, and the annealing time was 25 minutes. Sample 5 was not annealed.

<発光特性の測定>
アニール後、上記5つの試料の発光特性を調べるため、室温におけるフォトルミネッセンス(PL)スペクトルを測定した。
励起光源としてHe−Cdレーザ(株式会社金門光波製、IK3251R−F、波長325nm)を使用した。
PLスペクトルの測定にはモノクロメータ(株式会社ニコン製、P250)、光電子増倍管(浜松ホトニクス株式会社製、R2658)、及びロックインアンプ(NF回路ブロック、LI−572B)を使用した。また、白色光を光スペクトラムアナライザ(アンリツ株式会社製、MS9701C+MS9030A、測定波長範囲:350〜1750nm)で測定したデータを基にして、モノクロメータと光電子増倍管の波長感度特性を補正した。
<Measurement of luminous characteristics>
After annealing, photoluminescence (PL) spectra at room temperature were measured in order to investigate the light emission characteristics of the above five samples.
A He—Cd laser (manufactured by Kinmon Konami Co., Ltd., IK3251R-F, wavelength 325 nm) was used as an excitation light source.
A monochromator (Nikon Corporation, P250), a photomultiplier (Hamamatsu Photonics Corporation, R2658), and a lock-in amplifier (NF circuit block, LI-572B) were used for the PL spectrum measurement. Further, the wavelength sensitivity characteristics of the monochromator and the photomultiplier tube were corrected based on data obtained by measuring white light with an optical spectrum analyzer (manufactured by Anritsu Corporation, MS9701C + MS9030A, measurement wavelength range: 350 to 1750 nm).

PLスペクトルの測定結果を図3に示す。全ての試料において、波長400nm付近でピークが現れる青色発光スペクトルが観測されたが、アニール温度を1100℃としてアニール処理を施した試料1からは、波長800nm付近をピークとする赤色から近赤外域にかけての長波長側の発光も観測された。これは、過去に報告されている長波長側の発光と同様の発光起源によるものと思われ、イオン注入後、アニール温度を1100℃としてアニール処理を行った場合には、nc−Siが形成されたものと考えられる。   The measurement results of the PL spectrum are shown in FIG. In all samples, a blue emission spectrum having a peak near a wavelength of 400 nm was observed, but from sample 1 which was annealed at an annealing temperature of 1100 ° C., from red to the near infrared region having a peak near a wavelength of 800 nm. Long-wavelength emission was observed. This is considered to be due to the emission origin similar to the emission on the long wavelength side reported in the past, and nc-Si is formed when the annealing treatment is performed after the ion implantation at an annealing temperature of 1100 ° C. It is thought that.

一方、アニール温度を、1150℃、1200℃、1250℃でアニール処理した試料2〜4では、試料中のnc−Siの酸化が進行し、そのサイズが小さくなると思われるが、青色発光帯のピーク波長は400nm付近であり、アニール温度によらずほぼ一定である。更に、これらの発光ピーク波長は、Si:SiOスパッタ膜から観測されているバンドギャップエネルギーに依存しない青色発光ピークとほぼ一致することから、上記試料2〜4における青色発光も、これと同様、nc−Siの周囲に形成されたSiO層が関与しているものと考えられる。 On the other hand, in the samples 2 to 4 annealed at the annealing temperatures of 1150 ° C., 1200 ° C., and 1250 ° C., the nc-Si oxidation in the sample proceeds and the size seems to be small. The wavelength is around 400 nm and is almost constant regardless of the annealing temperature. Furthermore, since these emission peak wavelengths substantially coincide with the blue emission peak that does not depend on the band gap energy observed from the Si: SiO 2 sputtered film, the blue emission in the samples 2 to 4 is the same as this. It is considered that the SiO x layer formed around nc-Si is involved.

すなわち、アニール温度を上げると、前述のように、nc−Siの酸化が進み、SiO層がより強調されていくため、長波長側のピークは見られなくなる一方、SiO層が関与する波長400nm付近の発光ピーク強度が増大していくものと思われる。アニール温度1200℃でピーク強度が最大になり、その強度は、アニール温度1100℃の試料における長波長側のピークに対し、約4.2倍であった。
なお、アニール処理を行わなかった試料5でも、試料2〜4に比べて発光強度は弱いが、波長400nm付近で発光ピークが現れる青色発光が観測された。
That is, when the annealing temperature is increased, as described above, the oxidation of nc-Si proceeds and the SiO x layer is further emphasized, so that the peak on the long wavelength side is not seen, while the wavelength involving the SiO x layer is not observed. It is considered that the emission peak intensity near 400 nm increases. The peak intensity was maximized at an annealing temperature of 1200 ° C., and the intensity was about 4.2 times the peak on the long wavelength side in the sample at the annealing temperature of 1100 ° C.
Note that, even in the sample 5 that was not subjected to the annealing treatment, the emission intensity was weaker than that of the samples 2 to 4, but blue light emission in which an emission peak was observed in the vicinity of a wavelength of 400 nm was observed.

[実施例6]
水晶基板に対し、試料3と同条件でSiイオン注入後、アニール処理(1200℃、25分間)を行った。アニール後、水晶基板のPLスペクトルを測定したところ、図4に示すように波長400nm付近で発光ピークが現れる青色発光が観測され、その発光強度は溶融石英基板(試料3)の5分の1程度であった。
[Example 6]
The quartz substrate was subjected to annealing treatment (1200 ° C., 25 minutes) after Si ion implantation under the same conditions as in Sample 3. After annealing, the PL spectrum of the quartz substrate was measured, and as shown in FIG. 4, blue light emission having a light emission peak near a wavelength of 400 nm was observed, and the light emission intensity was about 1/5 that of the fused quartz substrate (sample 3). Met.

本発明に係る青色発光部材の製造工程の一例の概略を示す図である。It is a figure which shows the outline of an example of the manufacturing process of the blue light emission member which concerns on this invention. 凹凸パターンを形成した青色発光基板上に自己クローニング法にて交互多層膜を堆積して構成される発光素子の一例を示す概略図である。It is the schematic which shows an example of the light emitting element comprised by depositing an alternating multilayer film by the self-cloning method on the blue light emitting substrate in which the uneven | corrugated pattern was formed. 実施例におけるPLスペクトルの測定結果を示す図である。It is a figure which shows the measurement result of PL spectrum in an Example. 水晶基板及び溶融石英基板を使用した場合のPLスペクトルの測定結果を示す図である。It is a figure which shows the measurement result of PL spectrum at the time of using a quartz substrate and a fused quartz substrate.

符号の説明Explanation of symbols

10 溶融石英部材(基板)
12 凹凸パターン
14,16 交互多層膜
10 Fused quartz member (substrate)
12 Concave and convex patterns 14, 16 Alternating multilayer film

Claims (3)

水晶又は溶融石英部材に対し、所定の照射条件でSiイオンを注入し、前記Siイオン注入後、酸素含有雰囲気下において1150℃〜1250℃で所定時間アニール処理を施すことにより、青色光を発する部材を製造することを特徴とする青色発光部材の製造方法。   A member that emits blue light by injecting Si ions into a quartz or fused quartz member under predetermined irradiation conditions, and performing annealing treatment at 1150 ° C. to 1250 ° C. for a predetermined time in an oxygen-containing atmosphere after the Si ion implantation. A method for producing a blue light-emitting member, characterized in that 前記アニール処理の前記所定時間を、15分〜1時間としたことを特徴とする請求項1に記載の青色発光部材の製造方法。   The method for manufacturing a blue light emitting member according to claim 1, wherein the predetermined time for the annealing treatment is set to 15 minutes to 1 hour. 前記照射条件を、少なくとも80keVのエネルギーで、注入Siイオンの注入量を5×1016ions/cm以上としたことを特徴とする請求項1又は請求項2に記載の青色発光部材の製造方法。 3. The method of manufacturing a blue light emitting member according to claim 1, wherein the irradiation condition is an energy of at least 80 keV and an implantation amount of implanted Si ions is 5 × 10 16 ions / cm 2 or more. .
JP2007080148A 2007-03-26 2007-03-26 Method for producing blue light emitting member Active JP5331961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080148A JP5331961B2 (en) 2007-03-26 2007-03-26 Method for producing blue light emitting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080148A JP5331961B2 (en) 2007-03-26 2007-03-26 Method for producing blue light emitting member

Publications (2)

Publication Number Publication Date
JP2008244005A JP2008244005A (en) 2008-10-09
JP5331961B2 true JP5331961B2 (en) 2013-10-30

Family

ID=39915010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080148A Active JP5331961B2 (en) 2007-03-26 2007-03-26 Method for producing blue light emitting member

Country Status (1)

Country Link
JP (1) JP5331961B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363149A (en) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd Light emitting element and its manufacturing method, and phosphor substrate and its manufacturing method

Also Published As

Publication number Publication date
JP2008244005A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
Wu et al. Visible luminescence from silicon surfaces microstructured in air
Nizamoglu et al. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning
Morales–Morales et al. Study of zinc oxide/porous silicon interface for optoelectronic devices
Spindlberger et al. Thermal stability of defect‐enhanced Ge on Si quantum dot luminescence upon millisecond flash lamp annealing
JP5331961B2 (en) Method for producing blue light emitting member
Hryciw et al. Effects of particle size and excitation spectrum on the photoluminescence of silicon nanocrystals formed by ion implantation
JP3785721B2 (en) ZnO ultraviolet light emitter and method for producing the same
Tan et al. Pulsed Laser Photopatterning of Cesium Lead Halide Perovskite Structures as Robust Solution‐Processed Optical Gain Media
Salh et al. Si and Ge nanocluster formation in silica matrix
Pérez-Díaz et al. Study of silicon rich oxide light emitter capacitors using textured substrates by metal assisted chemical etching
Wang et al. Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing
Huy et al. Structural and optical properties of Si-nanoclusters embedded in silicon dioxide
Novikov et al. Free-standing SiO2 films containing Si nanocrystals directly suitable for transmission electron microscopy
Serna et al. Improving the photoluminescence of thin films by nanostructuring the rare-earth ion distribution
Gebel et al. Electroluminescence from thin SiO2 layers after Si-and C-coimplantation
Parkhomenko et al. Radiative recombination in zinc blende ZnSe nanocrystals ion-beam synthesized in silica
Sahoo et al. Cathodoluminescence of α-quartz after hot Ge ion irradiation
Vasin et al. Attribution of white-light emitting centers with carbonized surface in nano-structured SiO2: C layers
Wenzl et al. On the adjustment of the color temperature of white light-emitting diodes by femtosecond laser patterning
US10964856B1 (en) Method of preparing white light-emitting material
JP4929469B2 (en) Light emitting element manufacturing method using compound containing Si-O-Si bond
KR20010090952A (en) Light emitting material using cerium silicate and its manufacturaing method
Bregolin et al. Photoluminescence induced by Si implantation into Si3N4 matrix
Vishwakarma et al. Structural and Optical Investigations of SiO2 Layers Implanted with 100 keV Silicon Negative Ions
Zhu et al. Structures and photoluminescence properties of silicon thin films prepared by pulsed ion-beam evaporation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350