JP5330768B2 - Electrodeless discharge lamp lighting device and lighting apparatus using the same - Google Patents

Electrodeless discharge lamp lighting device and lighting apparatus using the same Download PDF

Info

Publication number
JP5330768B2
JP5330768B2 JP2008217372A JP2008217372A JP5330768B2 JP 5330768 B2 JP5330768 B2 JP 5330768B2 JP 2008217372 A JP2008217372 A JP 2008217372A JP 2008217372 A JP2008217372 A JP 2008217372A JP 5330768 B2 JP5330768 B2 JP 5330768B2
Authority
JP
Japan
Prior art keywords
voltage
discharge lamp
circuit
electrodeless discharge
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008217372A
Other languages
Japanese (ja)
Other versions
JP2010055823A (en
Inventor
明 中城
大志 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008217372A priority Critical patent/JP5330768B2/en
Publication of JP2010055823A publication Critical patent/JP2010055823A/en
Application granted granted Critical
Publication of JP5330768B2 publication Critical patent/JP5330768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無電極放電灯点灯装置及びそれを用いた照明器具に関する。   The present invention relates to an electrodeless discharge lamp lighting device and a lighting fixture using the same.

従来から、透明な球状のガラスバルブ又は内壁面に蛍光体が塗布された球状のガラスバルブ内に不活性ガス、金属蒸気などの放電ガス(例えば、水銀蒸気及び希ガス)が封入された無電極放電灯の近傍に誘導コイルを配置し、この誘導コイルに数十kHzから数百MHzの高周波電流を流すことにより、誘導コイルに高周波電磁界を発生させて無電極放電灯に高周波電力を供給し、無電極放電灯のガラスバルブ内に高周波プラズマ電流を発生させて紫外線若しくは可視光を発生させる無電極放電灯点灯装置が知られている。このような無電極放電灯点灯装置として、例えば特許文献1に開示されているようなものがある。   Conventionally, a transparent spherical glass bulb or a spherical glass bulb coated with a phosphor on the inner wall surface has been filled with a discharge gas (for example, mercury vapor or rare gas) such as inert gas or metal vapor. An induction coil is arranged in the vicinity of the discharge lamp, and a high frequency current of several tens of kHz to several hundreds of MHz is passed through the induction coil, thereby generating a high frequency electromagnetic field in the induction coil and supplying high frequency power to the electrodeless discharge lamp. There is known an electrodeless discharge lamp lighting device that generates high-frequency plasma current in a glass bulb of an electrodeless discharge lamp to generate ultraviolet light or visible light. An example of such an electrodeless discharge lamp lighting device is disclosed in Patent Document 1.

この従来例は、図8に示すように、商用電源ACの交流出力から所望の直流出力を作成する直流電源回路200と、直流電源回路200の直流出力を高周波出力に変換して無電極放電灯204の近傍に配置された誘導コイル203に供給する高周波電源回路201と、高周波電源回路201の出力端間に設けられて無電極放電灯204とともに負荷回路を構成する共振回路202と、高周波電源回路201から誘導コイル203への電力供給に異常がある際に、誘導コイル203に印加する高周波出力を無電極放電灯204が点灯しない大きさにする保護期間と無電極放電灯204が始動する大きさにする動作期間とを交互に繰り返すように高周波電源回路201を制御する保護回路205とを備える。そして、保護期間から動作期間に移行する移行期間において誘導コイル203に与える高周波出力の大きさを保護期間における大きさと動作期間における大きさとの間の大きさにするオーバーシュート回路206を備え、移行期間において誘導コイル203に印加される高周波出力を緩やかに立ち上げることで誘導コイル203の両端間電圧に発生するオーバーシュートを防止するものである。   In this conventional example, as shown in FIG. 8, a DC power supply circuit 200 that creates a desired DC output from an AC output of a commercial power supply AC, and an electrodeless discharge lamp that converts the DC output of the DC power supply circuit 200 into a high-frequency output. A high-frequency power supply circuit 201 that is supplied to an induction coil 203 disposed in the vicinity of 204, a resonance circuit 202 that is provided between the output terminals of the high-frequency power supply circuit 201 and forms a load circuit together with the electrodeless discharge lamp 204, and a high-frequency power supply circuit When there is an abnormality in the power supply from 201 to the induction coil 203, the high-frequency output applied to the induction coil 203 is set to a size during which the electrodeless discharge lamp 204 is not lit and the size at which the electrodeless discharge lamp 204 is started. And a protection circuit 205 that controls the high-frequency power supply circuit 201 so as to alternately repeat the operation period to be performed. An overshoot circuit 206 is provided for changing the magnitude of the high-frequency output given to the induction coil 203 during the transition period from the protection period to the operation period between the magnitude during the protection period and the magnitude during the operation period. In FIG. 2, the high frequency output applied to the induction coil 203 is gently raised to prevent overshoot that occurs in the voltage across the induction coil 203.

ところで、無電極放電灯204は内部に電極を有しないので、無電極放電灯204の始動時には蛍光灯等よりも高い始動電圧を誘導コイル203に印加する必要がある。このため、無電極放電灯204の始動時における共振の鋭さを鋭くして(即ち、共振回路202のQ値を高く設定する)高い始動電圧を低損失で印加することのできる無電極放電灯点灯装置を設計する必要がある。ここで共振が鋭いとは、微小な周波数や回路を構成する素子のパラメータ等の変動に対して始動電圧が大きく変動する状態にあることを意味する。   Incidentally, since the electrodeless discharge lamp 204 does not have an electrode inside, it is necessary to apply a starting voltage higher than that of the fluorescent lamp or the like to the induction coil 203 when the electrodeless discharge lamp 204 is started. For this reason, the sharpness of resonance at the time of starting the electrodeless discharge lamp 204 is sharpened (that is, the Q value of the resonance circuit 202 is set high), and an electrodeless discharge lamp that can apply a high starting voltage with low loss is lit. The device needs to be designed. Here, the sharp resonance means that the starting voltage greatly fluctuates with respect to fluctuations of minute frequencies and parameters of elements constituting the circuit.

また、始動時における無電極放電灯204がインダクタ負荷であり、蛍光灯等の電極を有する他の放電灯に比較して、特に点灯していない状態(始動時や無負荷時等)に大きな電力を必要とするという問題がある。例えば、高周波電源回路201の無負荷時における消費電力は通常点灯時の消費電力の2倍以上に達することもある。しかしながら、無電極放電灯点灯装置における直流電源回路200は、装置のサイズやコストを考慮して通常点灯時の負荷状態を基準にして設計されるのが一般的である。したがって、始動時、特に暗所時や無負荷時では、重負荷のために直流電源回路200の電圧レギュレーションが十分でなく直流電源回路200の出力電圧が低下してしまう。その結果、誘導コイル203に印加される高周波電圧の不安定化や装置の誤動作といった不具合が発生する虞がある。   In addition, the electrodeless discharge lamp 204 at the time of start-up is an inductor load, and compared with other discharge lamps having electrodes such as a fluorescent lamp, the power is particularly large in a state where the lamp is not lit (startup, no-load, etc.). There is a problem of needing. For example, the power consumption of the high frequency power supply circuit 201 when there is no load may reach twice or more the power consumption during normal lighting. However, the DC power supply circuit 200 in the electrodeless discharge lamp lighting device is generally designed based on the load state during normal lighting in consideration of the size and cost of the device. Therefore, during start-up, particularly in a dark place or when there is no load, the voltage regulation of the DC power supply circuit 200 is not sufficient due to the heavy load, and the output voltage of the DC power supply circuit 200 decreases. As a result, there is a possibility that problems such as instability of the high-frequency voltage applied to the induction coil 203 and malfunction of the device may occur.

一方、上記従来例は、始動時に誘導コイル203に高周波電圧を急峻に印加させるのではなく、始動前及び再始動前に所定出力の高周波電圧を予備出力として一定期間(以下、この期間を「始動準備期間」と呼ぶ)誘導コイル203に印加させる構成であり、この構成は、高周波電源回路201に適度な負荷を与えることで始動時の急峻な負荷変動を抑え、始動時において誘導コイル203に印加される高周波電圧のオーバーシュートを防止する効果を得るものである。これに加えて、直流電源回路200の制御も負荷変動についていき易いことから、始動時の直流電源回路200の出力電圧の低下を抑えて高周波電源回路201に安定して直流電圧を供給する効果も得ることができる。このため、上記従来例は上記不具合を解決することができるが、直流電源回路200の出力電圧の低下を抑える効果を十分に得るためには、始動準備期間の誘導コイル203への印加電圧を無電極放電灯204が点灯しない範囲で出来る限り大きくする必要がある。
特開2005−158459号公報
On the other hand, in the above conventional example, the high frequency voltage is not applied sharply to the induction coil 203 at the start, but the high frequency voltage of a predetermined output is set as a preliminary output before starting and before restarting (hereinafter, this period is referred to as “starting”). This is a configuration that is applied to the induction coil 203 (referred to as a “preparation period”). This configuration suppresses steep load fluctuations at the start by applying an appropriate load to the high-frequency power supply circuit 201, and is applied to the induction coil 203 at the start. The effect which prevents the overshoot of the high frequency voltage to be performed is acquired. In addition to this, since the control of the DC power supply circuit 200 is easy to follow the load fluctuation, the effect of supplying the DC voltage stably to the high-frequency power supply circuit 201 by suppressing the decrease in the output voltage of the DC power supply circuit 200 at the time of starting. Can be obtained. For this reason, the above conventional example can solve the above problems, but in order to sufficiently obtain the effect of suppressing the decrease in the output voltage of the DC power supply circuit 200, the voltage applied to the induction coil 203 in the start preparation period is not required. It is necessary to make it as large as possible within a range where the electrode discharge lamp 204 is not lit.
Japanese Patent Laid-Open No. 2005-158459

ところで、商用電源ACは数百msにも満たないような短時間だけ出力が低下、即ち瞬時低電する場合がある(ここで、低電には出力が略零となる停電も含まれる)。この場合、瞬時低電後に無電極放電灯204を早期に再点灯することが望まれる。しかしながら、図9に示すように、無電極放電灯204を初めて始動する場合と同様の始動準備期間を瞬時低電後の再始動時においても設けてしまうと、その分瞬時低電後の再点灯までの時間が長くなってしまうという問題があった。更に、上述のように始動準備期間では誘導コイル203への印加電圧を無電極放電灯204が点灯しない範囲で出来る限り大きくする必要があるため、再始動時の始動準備期間が長くなるとそれだけ回路を構成する部品へのストレスが増大するという問題があった。   By the way, there is a case where the output of the commercial power supply AC is reduced for a short time that is less than several hundred ms, that is, the power is instantaneously reduced (here, the low power includes a power failure in which the output becomes substantially zero). In this case, it is desired that the electrodeless discharge lamp 204 is re-lighted early after an instantaneous low power. However, as shown in FIG. 9, if a start preparation period similar to that when the electrodeless discharge lamp 204 is started for the first time is provided at the time of restart after an instantaneous low power, re-lighting after the instantaneous low power will be provided accordingly. There was a problem that it took a long time. Furthermore, as described above, since it is necessary to increase the voltage applied to the induction coil 203 as much as possible within a range in which the electrodeless discharge lamp 204 does not light during the start preparation period, the circuit is increased as the start preparation period at the time of restart increases. There has been a problem that the stress on the component parts increases.

本発明は、上記の点に鑑みて為されたもので、瞬時低電後の再始動時において再点灯までに要する時間を短縮するとともに、回路を構成する部品へのストレスが増大するのを防ぐことができる無電極放電灯点灯装置及びそれを用いた照明器具を提供することを目的とする。   The present invention has been made in view of the above points, and shortens the time required for relighting at the time of restart after an instantaneous power failure and prevents an increase in stress on the components constituting the circuit. It is an object of the present invention to provide an electrodeless discharge lamp lighting device and a lighting fixture using the same.

請求項1の発明は、上記目的を達成するために、交流電源からの交流電圧を直流電圧に変換して出力する直流電源回路と、高周波でスイッチングされる1乃至複数のスイッチング素子並びに共振回路を具備し直流電源回路の出力電圧を高周波電圧に変換して無電極放電灯に近接配置された誘導コイルに供給する高周波電源回路と、スイッチング素子をスイッチングさせる駆動信号を出力する駆動回路と、駆動回路を制御して駆動信号の周波数を変化させることにより誘導コイルへの印加電圧を可変して無電極放電灯を始動する始動回路と、交流電源から直流電源回路へ供給される電圧の瞬時低電を検出する瞬時低電検出回路とを備え、始動回路は、無電極放電灯が始動しない大きさの高周波電圧を誘導コイルに印加する始動準備期間、及び無電極放電灯が始動可能な大きさの高周波電圧を誘導コイルに印加する始動期間を経て無電極放電灯を始動させ、瞬時低電検出回路が瞬時低電を検出した際に再始動時の始動準備期間が瞬時低電後の始動準備期間以外の始動準備期間よりも短くなるように駆動回路を制御することを特徴とする。   In order to achieve the above object, the invention of claim 1 includes a DC power supply circuit that converts an AC voltage from an AC power supply into a DC voltage and outputs it, and one or more switching elements and a resonance circuit that are switched at a high frequency. A high-frequency power supply circuit that converts the output voltage of the DC power supply circuit into a high-frequency voltage and supplies the high-frequency voltage to an induction coil disposed close to the electrodeless discharge lamp; a drive circuit that outputs a drive signal for switching the switching element; and a drive circuit The start circuit that starts the electrodeless discharge lamp by changing the voltage applied to the induction coil by controlling the frequency of the drive signal and the instantaneous low power of the voltage supplied from the AC power supply to the DC power supply circuit A start-up circuit for applying a high-frequency voltage of a magnitude that does not start the electrodeless discharge lamp to the induction coil; The electrodeless discharge lamp is started after a start-up period in which a high-frequency voltage that can be started by the polar discharge lamp is applied to the induction coil, and when the instantaneous low-power detection circuit detects an instantaneous low-power, preparation for starting at restart The drive circuit is controlled so that the period is shorter than the start preparation period other than the start preparation period after the instantaneous low power.

請求項2の発明は、請求項1の発明において、始動回路は、始動準備期間において高周波電界放電を発生させるための高周波電界放電電圧を高周波電界放電が発生するまで誘導コイルに印加するように駆動回路を制御するとともに、始動期間において高周波電磁界放電を発生させるための高周波電磁界放電電圧を誘導コイルに印加するように駆動回路を制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the starting circuit is driven to apply a high-frequency field discharge voltage for generating a high-frequency field discharge to the induction coil until the high-frequency field discharge is generated in the start preparation period. The circuit is controlled, and the drive circuit is controlled so that a high-frequency electromagnetic discharge voltage for generating a high-frequency electromagnetic discharge is applied to the induction coil during the starting period.

請求項3の発明は、少なくとも無電極放電灯を保持する器具本体と、無電極放電灯に近接配置される誘導コイルと、誘導コイルに高周波電力を供給する請求項1又は2に記載の無電極放電灯点灯装置とを備えたことを特徴とする。   The invention according to claim 3 is an electrode body according to claim 1 or 2, wherein at least an appliance main body for holding the electrodeless discharge lamp, an induction coil disposed close to the electrodeless discharge lamp, and high frequency power is supplied to the induction coil. And a discharge lamp lighting device.

請求項1の発明によれば、始動準備期間が短くても直ぐに再点灯することのできる瞬時低電後の始動準備期間を短くすることで、瞬時低電後の再始動時において再点灯までに要する時間を短縮することができる。また、高電圧が印加される始動準備期間を短くすることで、回路を構成する部品へのストレスが増大するのを防ぐことができる。   According to the invention of claim 1, by shortening the start preparation period after the instantaneous low power that can be re-lighted immediately even if the start preparation period is short, the re-lighting at the time of restart after the instantaneous low power The time required can be shortened. Further, by shortening the start preparation period in which the high voltage is applied, it is possible to prevent an increase in stress on the components constituting the circuit.

請求項2の発明によれば、始動準備期間において高周波電界放電を発生させた後に始動期間において高周波電磁界放電を発生させるので、始動準備期間を設けずに無電極放電灯を始動させる場合と比較して始動性を高めることができる。また、高周波電界放電を発生させた後に始動期間に移行するため、直ぐに高周波電磁界放電を発生させることができて高電圧を誘導コイルに印加する始動期間を短縮することができ、したがって回路を構成する部品へのストレスを低減することができる。   According to the invention of claim 2, since the high frequency electromagnetic field discharge is generated in the starting period after the high frequency electric field discharge is generated in the starting preparation period, it is compared with the case of starting the electrodeless discharge lamp without providing the starting preparation period. Thus, startability can be improved. In addition, since the transition to the start period after generating the high frequency electric field discharge, the high frequency electromagnetic field discharge can be generated immediately and the start period during which the high voltage is applied to the induction coil can be shortened. It is possible to reduce stress on the parts to be performed.

請求項3の発明によれば、請求項1又は2の発明の効果を奏する照明器具を実現することができる。   According to the invention of claim 3, it is possible to realize a lighting fixture that exhibits the effect of the invention of claim 1 or 2.

(実施形態1)
以下、本発明に係る無電極放電灯点灯装置の実施形態1について図面を用いて説明する。本実施形態は、図1に示すように、交流電源である商用電源ACからの交流電圧を直流電圧に変換して出力する直流電源回路1と、高周波でスイッチングされる2つのスイッチング素子Q2,Q3並びに共振回路21を具備し直流電源回路1の出力電圧を高周波電圧Vcoilに変換して無電極放電灯4に近接配置された誘導コイル3に供給する高周波電源回路2と、スイッチング素子Q2,Q3をスイッチングさせる駆動信号を出力する駆動回路と、駆動回路を制御して駆動信号の周波数を変化させることにより誘導コイル3への印加電圧を漸増させて無電極放電灯4を始動する始動回路と、商用電源ACから直流電源回路1へ供給される電圧の瞬時低電を検出する瞬時低電検出回路5とを備える。尚、本実施形態では、駆動回路及び始動回路は何れの機能も有する集積回路(IC)から成る制御部20に纏めて構成されている。
(Embodiment 1)
Hereinafter, Embodiment 1 of the electrodeless discharge lamp lighting device according to the present invention will be described with reference to the drawings. In the present embodiment, as shown in FIG. 1, a DC power supply circuit 1 that converts an AC voltage from a commercial power supply AC, which is an AC power supply, into a DC voltage and outputs it, and two switching elements Q2 and Q3 that are switched at a high frequency. A high-frequency power supply circuit 2 that includes a resonance circuit 21 and converts the output voltage of the DC power supply circuit 1 into a high-frequency voltage Vcoil and supplies it to the induction coil 3 disposed close to the electrodeless discharge lamp 4; and switching elements Q2 and Q3. A drive circuit that outputs a drive signal to be switched, a starter circuit that starts the electrodeless discharge lamp 4 by gradually increasing the voltage applied to the induction coil 3 by controlling the drive circuit and changing the frequency of the drive signal; And an instantaneous low power detection circuit 5 that detects an instantaneous low power of a voltage supplied from the power source AC to the DC power supply circuit 1. In the present embodiment, the driving circuit and the starting circuit are collectively configured in the control unit 20 including an integrated circuit (IC) having any function.

直流電源回路1は、商用電源ACの交流出力を整流する整流回路10と、インダクタL1、ダイオードD1、スイッチング素子Q1、平滑コンデンサC1並びにスイッチング素子Q1を駆動する駆動回路11を具備した従来周知の昇圧チョッパ回路から成り、直流電圧Vdcを出力する。また、整流回路10の後段には、整流回路10の出力端間に接続された抵抗R1,R2の直列回路、及び抵抗R2と並列に接続されたコンデンサC4から成り、整流回路10の出力電圧Vinを分圧して検出する電圧検出回路12が設けられている。   The DC power supply circuit 1 includes a rectifier circuit 10 that rectifies an AC output of a commercial power supply AC, a well-known booster that includes a drive circuit 11 that drives an inductor L1, a diode D1, a switching element Q1, a smoothing capacitor C1, and a switching element Q1. It consists of a chopper circuit and outputs a DC voltage Vdc. The rectifier circuit 10 includes a series circuit of resistors R1 and R2 connected between output terminals of the rectifier circuit 10 and a capacitor C4 connected in parallel with the resistor R2. A voltage detection circuit 12 for dividing and detecting the voltage is provided.

高周波電源回路2は、直流電源回路1の出力端間に直列接続された一対のスイッチング素子Q2,Q3を具備し、ローサイドのスイッチング素子Q3にインダクタL2、コンデンサC2,C3から成る共振回路21が接続された所謂ハーフブリッジ型のインバータ回路で構成され、電界効果トランジスタからなる一対のスイッチング素子Q2,Q3を、駆動回路から出力される矩形波パルスの駆動信号VDH,VDLにより交互にスイッチングすることで共振回路21を介して誘導コイル3に高周波電圧Vcoilを供給する。尚、スイッチング素子Q2を駆動する駆動信号VDHとスイッチング素子Q3を駆動する駆動信号VDLは略180度の位相差を有している。   The high-frequency power supply circuit 2 includes a pair of switching elements Q2 and Q3 connected in series between the output terminals of the DC power supply circuit 1, and a resonance circuit 21 including an inductor L2 and capacitors C2 and C3 is connected to the low-side switching element Q3. The so-called half-bridge type inverter circuit is configured to resonate by switching a pair of switching elements Q2 and Q3 made of field effect transistors alternately by driving signals VDH and VDL of rectangular wave pulses output from the driving circuit. A high frequency voltage Vcoil is supplied to the induction coil 3 via the circuit 21. The driving signal VDH for driving the switching element Q2 and the driving signal VDL for driving the switching element Q3 have a phase difference of about 180 degrees.

始動回路は、図2に示すように、無電極放電灯4が始動しない大きさの高周波電圧Vcoilを誘導コイル3に印加する始動準備期間、及び無電極放電灯4が始動可能な大きさの高周波電圧Vcoilを誘導コイル3に印加する始動期間を経て無電極放電灯4を始動させる。尚、始動回路の動作は従来例のオーバーシュート防止回路206の動作と同様で周知であるので、ここでは詳細な説明を省略するものとする。また、従来例のオーバーシュート防止回路206と異なる機能として、後述するオペアンプOP1からの制御電圧Vmに応じて始動準備期間の長さを制御する機能を有する。   As shown in FIG. 2, the starting circuit includes a start preparation period in which a high-frequency voltage Vcoil having a magnitude that does not start the electrodeless discharge lamp 4 is applied to the induction coil 3, and a high-frequency that can start the electrodeless discharge lamp 4. The electrodeless discharge lamp 4 is started through a starting period in which the voltage Vcoil is applied to the induction coil 3. The operation of the starting circuit is similar to the operation of the overshoot prevention circuit 206 of the conventional example and is well known, and therefore detailed description thereof will be omitted here. Further, as a function different from the overshoot prevention circuit 206 of the conventional example, there is a function of controlling the length of the start preparation period in accordance with a control voltage Vm from an operational amplifier OP1 described later.

共振回路21の出力端には導電性を有する線材を複数ターン巻回して成る誘導コイル3が接続され、当該誘導コイル3に無電極放電灯4が近接配置される。無電極放電灯4は、図5(a)に示すように、不活性ガス・金属蒸気等の放電ガス(例えば、水銀及び希ガス)が封入された透明な略球状のバルブ40と、バルブ40に封止されてバルブ40の内方に突出した略円筒状のキャビティ41とから成り、キャビティ41には、バルブ40を保持するとともにバルブ40に対する誘導コイル3の位置決めをするカプラ7が挿入される。   An induction coil 3 formed by winding a plurality of conductive wires is connected to the output end of the resonance circuit 21, and the electrodeless discharge lamp 4 is disposed close to the induction coil 3. As shown in FIG. 5A, the electrodeless discharge lamp 4 includes a transparent substantially spherical bulb 40 in which a discharge gas (for example, mercury and a rare gas) such as an inert gas or a metal vapor is sealed, and a bulb 40. And a substantially cylindrical cavity 41 projecting inward of the valve 40, and a coupler 7 for holding the valve 40 and positioning the induction coil 3 with respect to the valve 40 is inserted into the cavity 41. .

カプラ7は、図5(b)に示すように、誘導コイルを保持するボビン70と、ボビン70内部に収納された略筒状のコア71とを備えている。コア71は、例えば高周波磁気特性の良好な、Mn−Znのフェライトから成り、アルミ等の金属材料で形成された放熱体(図示せず)によって保持される。コア71の発熱は、放熱体を介して台座部72に捨てられる。尚、同図に示すように、本実施形態及び後述の各実施形態は何れもケース73に収納され、誘導コイル3と出力線74を介して電気的に接続されることで高周波出力を誘導コイル3に供給するようになっている。   As illustrated in FIG. 5B, the coupler 7 includes a bobbin 70 that holds the induction coil, and a substantially cylindrical core 71 that is housed inside the bobbin 70. The core 71 is made of, for example, Mn—Zn ferrite having good high-frequency magnetic characteristics, and is held by a radiator (not shown) formed of a metal material such as aluminum. The heat generated by the core 71 is thrown away to the pedestal portion 72 via the radiator. As shown in the figure, both of the present embodiment and each of the embodiments described later are housed in a case 73 and electrically connected to the induction coil 3 via the output line 74, whereby high frequency output is induced. 3 is supplied.

瞬時低電検出回路5は、平滑コンデンサC1から電圧供給され出力端に基準電圧を生じる基準電源回路50と、基準電源回路50の出力端と整流回路10の低圧側の出力端との間に挿入される抵抗R3及びコンデンサC5の直列回路と、基準電源回路50の出力端と抵抗R3との間に挿入されるスイッチング素子Q4とを備え、スイッチング素子Q4がオンである期間に基準電源回路50によってコンデンサC5を充電する。スイッチング素子Q4はpnp形のトランジスタから成り、ベースが電圧検出回路12における抵抗R1,R2の接続点に接続されることによって、抵抗R1,R2の接続点の電位が所定電位よりも小さくなるとオンする。また、反転入力端子に基準電源回路50の出力電圧を抵抗R6,R7で分圧した電圧が入力されるとともに、非反転入力端子にコンデンサC5の両端間電圧Vcが入力されるオペアンプOP1を備え、コンデンサC5の両端間電圧Vcが基準電源回路50の出力電圧を分圧した電圧よりも大きくなると制御電圧Vmを制御部20に与えるようになっている。更に、スイッチング素子Q4がオフすることによってコンデンサC5に充電された電荷を放電できるように、スイッチング素子Q4と抵抗R3との接続点と整流回路10の低圧側の出力端との間に抵抗R4が挿入されている。   The instantaneous low power detection circuit 5 is inserted between a reference power supply circuit 50 that is supplied with a voltage from the smoothing capacitor C1 and generates a reference voltage at the output end, and between the output end of the reference power supply circuit 50 and the output end on the low voltage side of the rectifier circuit 10. A series circuit of a resistor R3 and a capacitor C5, and a switching element Q4 inserted between the output terminal of the reference power supply circuit 50 and the resistor R3. Capacitor C5 is charged. The switching element Q4 is formed of a pnp transistor, and is turned on when the base is connected to the connection point of the resistors R1 and R2 in the voltage detection circuit 12 so that the potential at the connection point of the resistors R1 and R2 becomes smaller than a predetermined potential. . The inverting input terminal includes an operational amplifier OP1 to which a voltage obtained by dividing the output voltage of the reference power supply circuit 50 by the resistors R6 and R7 is input, and a voltage Vc across the capacitor C5 is input to the non-inverting input terminal. When the voltage Vc across the capacitor C5 becomes larger than the voltage obtained by dividing the output voltage of the reference power supply circuit 50, the control voltage Vm is supplied to the control unit 20. Further, a resistor R4 is provided between the connection point of the switching element Q4 and the resistor R3 and the output terminal on the low voltage side of the rectifier circuit 10 so that the charge charged in the capacitor C5 can be discharged by turning off the switching element Q4. Has been inserted.

以下、本実施形態の動作について図1,2を用いて説明する。先ず、商用電源ACから直流電源回路1への電圧供給が開始されると、直流電源回路1の出力電圧Vdcが立ち上がり、始動回路が駆動回路を制御して始動準備期間の間(時刻t1から時刻t2まで)無電極放電灯4が点灯しない範囲で出来る限り大きい高周波電圧Vcoilを誘導コイル3に印加させる。   Hereinafter, the operation of the present embodiment will be described with reference to FIGS. First, when the supply of voltage from the commercial power supply AC to the DC power supply circuit 1 is started, the output voltage Vdc of the DC power supply circuit 1 rises, the start circuit controls the drive circuit, and the start preparation period (from time t1 to time) (until t2) A high frequency voltage Vcoil as large as possible is applied to the induction coil 3 within a range where the electrodeless discharge lamp 4 is not lit.

ここで、電圧供給開始時には瞬時低電検出回路5においてスイッチング素子Q4はオンになっているが、平滑コンデンサC1が充電されていないためにオペアンプOP1に動作電圧が供給されず、したがって制御電圧Vmが制御部20に入力されることがない。一定期間が経過すると、平滑コンデンサC1が充電されてオペアンプOP1に動作電圧が供給されるが、この時には電圧検出回路12における抵抗R1,R2の接続点の電位が所定電位よりも大きくなるため、スイッチング素子Q4がオフとなり、したがって制御電圧Vmが制御部20に入力されることがない。この状態は瞬時低電が発生するまで維持される。   Here, at the start of voltage supply, the switching element Q4 is turned on in the instantaneous low voltage detection circuit 5, but the operating voltage is not supplied to the operational amplifier OP1 because the smoothing capacitor C1 is not charged. There is no input to the controller 20. After a certain period of time, the smoothing capacitor C1 is charged and the operating voltage is supplied to the operational amplifier OP1. At this time, the potential at the connection point of the resistors R1 and R2 in the voltage detection circuit 12 becomes larger than the predetermined potential, so that switching is performed. The element Q4 is turned off, and therefore the control voltage Vm is not input to the control unit 20. This state is maintained until an instantaneous low power is generated.

次に、始動準備期間が経過すると、始動回路が駆動回路を制御して無電極放電灯4が始動可能な大きさの高周波電圧Vcoilを誘導コイル3に印加させる。一定期間の後、無電極放電灯4が点灯して高周波電圧Vcoilが低下し(時刻t3)、点灯状態が維持される。この時刻t2から時刻t3までが始動期間、時刻t3以降が点灯期間となる。しばらくの間点灯状態が維持された後、時刻t4において瞬時低電が発生すると、直流電源回路1及び高周波電源回路2が停止して誘導コイル3への電圧供給も停止され、無電極放電灯4が消灯する。そして、時刻t5において商用電源ACからの電圧供給が復電すると、直流電源回路1及び高周波電源回路2に電圧が供給されて無電極放電灯4の再始動が開始する(時刻t5)。   Next, when the start preparation period elapses, the start circuit controls the drive circuit to apply a high-frequency voltage Vcoil having a magnitude capable of starting the electrodeless discharge lamp 4 to the induction coil 3. After a certain period, the electrodeless discharge lamp 4 is turned on, the high frequency voltage Vcoil is lowered (time t3), and the lighting state is maintained. The starting period is from time t2 to time t3, and the lighting period is after time t3. When a momentary low power occurs at time t4 after the lighting state is maintained for a while, the DC power supply circuit 1 and the high-frequency power supply circuit 2 are stopped, the voltage supply to the induction coil 3 is also stopped, and the electrodeless discharge lamp 4 Goes off. Then, when the voltage supply from the commercial power supply AC is restored at time t5, the voltage is supplied to the DC power supply circuit 1 and the high frequency power supply circuit 2 to restart the electrodeless discharge lamp 4 (time t5).

ここで、瞬時低電時には電圧検出回路12における抵抗R1,R2の接続点の電位が一時的に所定電位よりも下降するため、瞬時低電検出回路5のスイッチング素子Q4がオンとなりコンデンサC5の充電が開始される。そして、コンデンサC5の両端間電圧Vcが基準電源回路50の出力電圧を分圧した電圧よりも大きくなると、オペアンプOP1から制御部20に制御電圧Vmが入力される。復電後には、電圧検出回路12における抵抗R1,R2の接続点の電位が所定電位よりも大きくなるためにスイッチング素子Q4がオフとなり、抵抗R4を介してコンデンサC5の放電が開始される。この時、コンデンサC5の両端間電圧Vcが一定期間の間基準電源回路50の出力電圧を分圧した電圧よりも大きくなるように各素子の定数が設定され、当該一定期間(時刻t5から時刻t6まで)の間は制御電圧Vmが制御部20に入力される。   Here, since the potential at the connection point of the resistors R1 and R2 in the voltage detection circuit 12 temporarily falls below a predetermined potential during an instantaneous low power, the switching element Q4 of the instantaneous low power detection circuit 5 is turned on and the capacitor C5 is charged. Is started. When the voltage Vc across the capacitor C5 becomes larger than the voltage obtained by dividing the output voltage of the reference power supply circuit 50, the control voltage Vm is input from the operational amplifier OP1 to the control unit 20. After the power recovery, the potential at the connection point of the resistors R1 and R2 in the voltage detection circuit 12 becomes larger than the predetermined potential, so that the switching element Q4 is turned off and the capacitor C5 starts to be discharged via the resistor R4. At this time, the constants of the respective elements are set so that the voltage Vc across the capacitor C5 becomes larger than the voltage obtained by dividing the output voltage of the reference power supply circuit 50 for a certain period, and the constant period (from time t5 to time t6). Until the control voltage Vm is input to the control unit 20.

制御部20は、制御電圧Vmが入力されない状態では上記のように所定の始動準備期間、始動期間を経て無電極放電灯4を始動するように制御するが、制御電圧Vmが入力されている状態では、制御電圧Vmが制御部20に入力されている間を始動準備期間とし、制御電圧Vmが入力されなくなると始動期間に移行するように制御する。ここで、本実施形態では、制御電圧Vmが制御部20に入力される期間を通常の始動準備期間よりも短くなるように設定している。通常、無電極放電灯4を始動するために始動期間を長くしなければならないのは暗所や低温時等の始動が困難な状況の場合であり、無電極放電灯4を初めて始動する場合にはこれに伴って十分な始動準備期間を設ける必要がある。しかしながら、瞬時低電後は一度無電極放電灯4が点灯しているため、このような状況にならない。したがって、瞬時低電後の再始動時は始動期間に移行すると無電極放電灯4が直ぐに点灯するため、直流電源回路1の出力電圧Vdcの低下も小さいことから気にする必要が無く、始動準備期間を初めて始動する場合と比較して短縮しても問題無い。   When the control voltage Vm is not input, the control unit 20 controls the electrodeless discharge lamp 4 to start after a predetermined start preparation period and a start period as described above, but the control voltage Vm is input. Then, the control unit 20 performs control so that the period during which the control voltage Vm is input to the control unit 20 is a start preparation period, and the control period Vm is shifted to the start period when the control voltage Vm is not input. Here, in this embodiment, the period during which the control voltage Vm is input to the control unit 20 is set to be shorter than the normal start preparation period. Usually, in order to start the electrodeless discharge lamp 4, it is necessary to lengthen the starting period when it is difficult to start in a dark place or at a low temperature, and when the electrodeless discharge lamp 4 is started for the first time. Accordingly, it is necessary to provide a sufficient start-up preparation period. However, since the electrodeless discharge lamp 4 is lit once after the instantaneous low power, this situation does not occur. Therefore, at the time of restart after an instantaneous low power, since the electrodeless discharge lamp 4 is turned on immediately after the start period, the decrease in the output voltage Vdc of the DC power supply circuit 1 is small, so there is no need to worry about preparation for starting. There is no problem even if the period is shortened compared to the case of starting for the first time.

而して、上述のように始動準備期間が短くても直ぐに再点灯することのできる瞬時低電後の始動準備期間を短くすることで、瞬時低電後の再始動時において再点灯までに要する時間を短縮することができる。また、高電圧が印加される始動準備期間を短くすることで、回路を構成する部品へのストレスが増大するのを防ぐことができる。尚、本実施形態では瞬時低電後の始動準備期間を短くするようにしているが、始動準備期間を極端に短くして略零とする、即ち、瞬時低電後の始動準備期間が無い構成であっても構わない。   Thus, as described above, even if the start preparation period is short, the start preparation period after the instantaneous low power that can be turned on immediately is shortened. Time can be shortened. Further, by shortening the start preparation period in which the high voltage is applied, it is possible to prevent an increase in stress on the components constituting the circuit. In this embodiment, the start preparation period after the instantaneous low power is shortened, but the start preparation period is extremely shortened to be substantially zero, that is, there is no start preparation period after the instantaneous low power. It does not matter.

尚、本実施形態は商用電源ACから直流電源回路1に交流電圧を供給することで動作しているが、図3に示すように、商用電源AC及び例えば密閉型のNi−Cd蓄電池等の2次電池BTと接続された電源装置Bを直流電源回路1の入力端子に接続する構成であっても構わない。この場合、通常時には商用電源ACから交流電圧を直流電源回路1に供給することで無電極放電灯4を点灯させるとともに2次電池BTを充電し、商用電源ACからの電力供給が遮断される等の非常時には、2次電池BTから直流電圧を直流電源回路1に供給することで無電極放電灯4を点灯させることができる。   Although the present embodiment operates by supplying an AC voltage from the commercial power supply AC to the DC power supply circuit 1, as shown in FIG. 3, the commercial power supply AC and, for example, a sealed Ni—Cd storage battery 2 The power supply device B connected to the secondary battery BT may be connected to the input terminal of the DC power supply circuit 1. In this case, normally, by supplying an AC voltage from the commercial power source AC to the DC power source circuit 1, the electrodeless discharge lamp 4 is turned on, the secondary battery BT is charged, and the power supply from the commercial power source AC is shut off. In an emergency, the electrodeless discharge lamp 4 can be turned on by supplying a DC voltage from the secondary battery BT to the DC power supply circuit 1.

ところで、無電極放電灯4の始動は、一般の有電極放電灯と違いバルブ40と誘導コイル3とを一体として考慮する必要があり、以下の2つのモードの放電がある。その放電の順序として、誘導コイル3に高周波電圧Vcoilが印加されると、誘導コイル3と無電極放電灯4のランプ管壁を介してバルブ40内のガスが励起し、高周波電界放電(以下、「E放電」と呼ぶ)が発生して放電の種火が作られ、グロー放電状態となる。その後、更に誘導コイル3に高い高周波電圧Vcoilが印加されると高周波電磁界放電(以下、「H放電」と呼ぶ)が発生し、無電極放電灯4が点灯して安定なアーク放電状態となる。   By the way, the start of the electrodeless discharge lamp 4 needs to consider the bulb 40 and the induction coil 3 as a whole unlike the general electrode discharge lamp, and there are the following two modes of discharge. As a discharge sequence, when a high frequency voltage Vcoil is applied to the induction coil 3, the gas in the bulb 40 is excited through the lamp tube wall of the induction coil 3 and the electrodeless discharge lamp 4, and a high frequency electric field discharge (hereinafter, (Referred to as “E discharge”), and a discharge seed is created, resulting in a glow discharge state. Thereafter, when a higher high-frequency voltage Vcoil is further applied to the induction coil 3, a high-frequency electromagnetic field discharge (hereinafter referred to as “H discharge”) is generated, and the electrodeless discharge lamp 4 is lit to enter a stable arc discharge state. .

先ず、E放電について説明する。E放電とは、無電極放電灯4のランプ管壁の静電容量を介して放電電流が流れるものであり、誘導コイル3に高周波電圧Vcoilを印加していくと、誘導コイル3と無電極放電灯4のランプ管壁の静電容量を介してバルブ40内のガスが励起されて発光する。この放電は微放電(グロー放電状態)となり、誘導コイル3に印加する高周波電圧Vcoilを高くしていくと主放電に移行する。   First, the E discharge will be described. The E discharge is a discharge current that flows through the capacitance of the lamp tube wall of the electrodeless discharge lamp 4. When the high frequency voltage Vcoil is applied to the induction coil 3, the induction coil 3 and the electrodeless discharge are discharged. The gas in the bulb 40 is excited through the electrostatic capacity of the lamp tube wall of the lamp 4 to emit light. This discharge becomes a slight discharge (glow discharge state), and shifts to the main discharge when the high-frequency voltage Vcoil applied to the induction coil 3 is increased.

次に、H放電について説明する。H放電とは、誘導コイル3の電磁誘導で誘導電流を流すものであり、誘導コイル3を複数ターンの1次巻線とし、バルブ40内に発生するプラズマリングを1ターンの2次巻線とするトランスとして理解できる。ここで、H放電は無電極放電灯4の発光に寄与する主放電(アーク放電状態)である。   Next, the H discharge will be described. The H discharge is to cause an induction current to flow by electromagnetic induction of the induction coil 3, and the induction coil 3 is a primary winding of a plurality of turns, and the plasma ring generated in the bulb 40 is a secondary winding of one turn. Can be understood as a transformer. Here, the H discharge is a main discharge (arc discharge state) that contributes to the light emission of the electrodeless discharge lamp 4.

本実施形態では、始動準備期間において誘導コイル3にE放電が発生し且つH放電が発生しない程度の大きさの高周波電圧Vcoilを印加することでE放電を発生させ、始動期間において誘導コイル3にH放電が発生する程度の大きさの高周波電圧Vcoilを印加することでH放電を発生させて無電極放電灯4を点灯させている。このため、始動準備期間において暗所や低温等周囲の状況によって多少ばらつきがあってもE放電を発生させることができる。また、E放電を発生させた後に始動期間に移行することから、直ぐにH放電を発生させることができて高電圧を誘導コイル3に印加する始動期間を短縮することができる。而して、始動準備期間を設けずに無電極放電灯4を始動させる場合と比較して無電極放電灯4の始動性を高めることができるとともに、回路を構成する部品へのストレスを低減することができる。   In the present embodiment, an E discharge is generated by applying a high frequency voltage Vcoil having such a magnitude that an E discharge is generated in the induction coil 3 and no H discharge is generated in the start preparation period, and the induction coil 3 is generated in the start period. The electrodeless discharge lamp 4 is turned on by generating a H discharge by applying a high-frequency voltage Vcoil that is large enough to generate an H discharge. For this reason, E discharge can be generated even if there is some variation in ambient conditions such as dark places and low temperatures in the start preparation period. Further, since the start period is shifted to after the E discharge is generated, the H discharge can be immediately generated and the start period for applying the high voltage to the induction coil 3 can be shortened. Thus, the startability of the electrodeless discharge lamp 4 can be improved as compared with the case where the electrodeless discharge lamp 4 is started without providing a start preparation period, and the stress on the parts constituting the circuit is reduced. be able to.

(実施形態2)
以下、本発明に係る無電極放電灯点灯装置の実施形態2について図面を用いて説明する。但し、本実施形態の基本的な構成は実施形態1と共通であるので、共通する部位には同一の番号を付して説明を省略するものとする。実施形態1では、無電極放電灯4が一度始動した状態で瞬時低電が発生した場合を想定したものであるが、無電極放電灯4を初めて始動する際において無電極放電灯4が点灯する前に瞬時低電が発生した場合を想定していない。この場合、無電極放電灯4が未だ点灯していないため、瞬時低電後の再始動は暗所や低温時等の始動が困難な状況での始動となる虞がある。したがって、実施形態1と同様の制御を行うと、再始動時における始動準備期間が短いために直流電源回路1の電圧レギュレーションが十分でなく、直流電源回路1の出力電圧が低下して始動性の悪化を招く。そこで、本実施形態では、図4に示すように、無電極放電灯4を初めて始動する際において無電極放電灯4が点灯する前に瞬時低電が発生した場合に、始動準備期間が短くなるように制御部20が制御されるのを防ぐマスク回路6を設けている。
(Embodiment 2)
Hereinafter, Embodiment 2 of the electrodeless discharge lamp lighting device according to the present invention will be described with reference to the drawings. However, since the basic configuration of this embodiment is the same as that of the first embodiment, common portions are denoted by the same reference numerals and description thereof is omitted. In the first embodiment, it is assumed that an instantaneous low power is generated in a state where the electrodeless discharge lamp 4 has been started once. However, when the electrodeless discharge lamp 4 is started for the first time, the electrodeless discharge lamp 4 is turned on. It is not assumed that there was an instantaneous low power before. In this case, since the electrodeless discharge lamp 4 is not yet lit, the restart after the instantaneous low power may be a start in a situation where starting is difficult in a dark place or at a low temperature. Therefore, when the same control as that of the first embodiment is performed, the voltage preparation of the DC power supply circuit 1 is not sufficient because the start preparation period at the time of restart is short, and the output voltage of the DC power supply circuit 1 is lowered, so that the startability is improved. Deteriorating. Therefore, in the present embodiment, as shown in FIG. 4, when the electrodeless discharge lamp 4 is started for the first time, the start preparation period is shortened when an instantaneous low power occurs before the electrodeless discharge lamp 4 is turned on. Thus, the mask circuit 6 is provided to prevent the control unit 20 from being controlled.

マスク回路6は、非反転入力端子に平滑コンデンサC1の両端間電圧、即ち直流電源回路1の出力電圧Vdcが入力されるとともに、反転入力端子に整流回路10の低圧側の出力端が接続されるオペアンプOP2と、オペアンプOP2の出力端子に接続されて抵抗R8及びコンデンサC6から成る遅延回路と、瞬時低電検出回路5のオペアンプOP1の出力端子と制御部20との間に挿入されて遅延回路の出力電圧が所定電圧を超えるとオンに切り替わるスイッチSWとから構成される。   In the mask circuit 6, the voltage across the smoothing capacitor C1, that is, the output voltage Vdc of the DC power supply circuit 1 is input to the non-inverting input terminal, and the low-voltage side output terminal of the rectifier circuit 10 is connected to the inverting input terminal. An operational amplifier OP2, a delay circuit connected to the output terminal of the operational amplifier OP2 and composed of a resistor R8 and a capacitor C6, and an output terminal of the operational amplifier OP1 of the instantaneous low power detection circuit 5 and the control unit 20 are inserted. The switch SW is turned on when the output voltage exceeds a predetermined voltage.

以下、本実施形態の動作について説明する。先ず、商用電源ACから直流電源回路1への電圧供給が開始されると、平滑コンデンサC1が充電され、それに伴ってマスク回路6のコンデンサC6も抵抗R8を介して充電される。そして、コンデンサC6の両端間電圧が所定電圧を超えると、スイッチSWがオンに切り替わり瞬時低電検出回路5のオペアンプOP1の出力端子と制御部20との間が接続される。即ち、電圧供給が開始してからスイッチSWがオンに切り替わるまでの一定期間の間は、瞬時低電が発生して再始動が行われても制御電圧Vmが制御部20に入力されることがない。   Hereinafter, the operation of this embodiment will be described. First, when voltage supply from the commercial power supply AC to the DC power supply circuit 1 is started, the smoothing capacitor C1 is charged, and accordingly, the capacitor C6 of the mask circuit 6 is also charged through the resistor R8. When the voltage across the capacitor C6 exceeds a predetermined voltage, the switch SW is turned on, and the output terminal of the operational amplifier OP1 of the instantaneous low power detection circuit 5 and the control unit 20 are connected. That is, the control voltage Vm may be input to the control unit 20 even during a certain period from when the voltage supply starts to when the switch SW is turned on, even if an instantaneous low power is generated and restarted. Absent.

したがって、抵抗R8及びコンデンサC6の各定数を適宜設定することで、無電極放電灯4を初めて始動する際において無電極放電灯4が点灯する前に瞬時低電が発生したとしても、瞬時低電後における再始動時に始動準備期間を短縮する制御が行われないために始動性が悪化するのを防ぐことができる。尚、上記一定期間を経過した後はスイッチSWは常時オンであるために、上記実施形態1と同様の動作を実施することができる。   Accordingly, by appropriately setting the constants of the resistor R8 and the capacitor C6, even if an instantaneous low power occurs before the electrodeless discharge lamp 4 is turned on when the electrodeless discharge lamp 4 is started for the first time, the instantaneous low power Since the control for shortening the start preparation period is not performed during the subsequent restart, it is possible to prevent the startability from being deteriorated. Since the switch SW is always on after the predetermined period has elapsed, the same operation as in the first embodiment can be performed.

尚、上記各実施形態は、無電極放電灯4とともに街路灯や防犯灯等の照明器具の器具本体に搭載されて用いられる。例えば、図6(a)に示すように、道路上に設けられた電柱等の支柱101に無電極放電灯4を収納した器具本体100を取り付けて成る防犯灯や、図6(b)に示すように、笠形の器具本体110、反射部を構成するプリズム111、プリズム111の基部に設けられたランプソケット部112、ランプソケット部112の下方に設けられた回路収納部113から成る防犯灯などに用いられる。   In addition, each said embodiment is mounted and used for the fixture main body of lighting fixtures, such as a street light and a crime prevention light, with the electrodeless discharge lamp 4. FIG. For example, as shown in FIG. 6 (a), a crime prevention light in which an appliance main body 100 in which an electrodeless discharge lamp 4 is housed is attached to a support pole 101 such as a utility pole provided on a road, or a security light shown in FIG. 6 (b). As shown in the figure, for example, a security light comprising a shade-shaped fixture body 110, a prism 111 constituting a reflecting portion, a lamp socket portion 112 provided at the base of the prism 111, and a circuit housing portion 113 provided below the lamp socket portion 112. Used.

また、図7(a)〜(c)に示すように、扁平な箱形の器具本体120と、無電極放電灯4からの光を反射する反射板121とを備えたトンネル灯に上記何れかの実施形態の無電極放電灯点灯装置Aを搭載してもよい。尚、無電極放電灯4は長寿命で且つメンテナンスの頻度が少なくて済むという利点があり、メンテナンスが面倒なトンネル灯に採用するメリットが大きい。また、トンネル灯はトンネル内の安全性を向上するために、停電後出来る限り早く復帰して再点灯することが望まれる。ここで、上記各実施形態の無電極放電灯点灯装置を採用すれば、瞬時停電後に非常用電源に切り替えて無電極放電灯4を直ぐに再始動することができるため、停電時におけるトンネル内の消灯時間が短くなり、結果としてトンネル内の安全性を向上することができる。   Further, as shown in FIGS. 7A to 7C, any one of the above-described tunnel lights including a flat box-shaped instrument body 120 and a reflection plate 121 that reflects light from the electrodeless discharge lamp 4. The electrodeless discharge lamp lighting device A of the embodiment may be mounted. In addition, the electrodeless discharge lamp 4 has an advantage that it has a long life and requires less frequent maintenance, and has a great advantage of being adopted for a tunnel lamp that is troublesome to maintain. Moreover, in order to improve the safety in the tunnel, it is desired that the tunnel light be restored and re-lighted as soon as possible after a power failure. Here, if the electrodeless discharge lamp lighting device of each of the above embodiments is employed, the electrodeless discharge lamp 4 can be restarted immediately after switching to the emergency power supply after an instantaneous power failure, so that the tunnel is turned off at the time of the power failure. Time is shortened, and as a result, safety in the tunnel can be improved.

勿論、上記各実施形態が搭載される照明器具は上記のものに限定される必要は無く、少なくとも無電極放電灯4を保持する器具本体(図示せず)と、無電極放電灯4に近接配置される誘導コイル3とを備えた照明器具であればよい。   Of course, the lighting fixture on which each of the above embodiments is mounted is not limited to the above-described one, and at least a fixture main body (not shown) that holds the electrodeless discharge lamp 4 and the electrodeless discharge lamp 4 are disposed in proximity to each other. The lighting fixture provided with the induction coil 3 to be used may be used.

本発明に係る無電極放電灯点灯装置の実施形態1を示す回路図である。It is a circuit diagram which shows Embodiment 1 of the electrodeless discharge lamp lighting device which concerns on this invention. 同上の動作を示すタイムチャートである。It is a time chart which shows operation | movement same as the above. 同上の電源装置を設けた場合を示す回路図である。It is a circuit diagram which shows the case where the power supply device same as the above is provided. 本発明に係る無電極放電灯点灯装置の実施形態2を示す回路図である。It is a circuit diagram which shows Embodiment 2 of the electrodeless discharge lamp lighting device which concerns on this invention. 本発明の無電極放電灯点灯装置に関連する部位の説明図で、(a)は無電極放電灯の断面図で、(b)はカプラの斜視図である。It is explanatory drawing of the site | part relevant to the electrodeless discharge lamp lighting device of this invention, (a) is sectional drawing of an electrodeless discharge lamp, (b) is a perspective view of a coupler. 本発明の無電極放電灯点灯装置を用いる照明器具を示す図で、(a)は防犯灯の側面図で、(b)は(a)とは異なる防犯灯の一部破断した正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the lighting fixture using the electrodeless discharge lamp lighting device of this invention, (a) is a side view of a crime prevention light, (b) is the partially broken front view of the crime prevention light different from (a). . 同上のトンネル灯を示す図で、(a)は正面図で、(b)は側面図で、(c)は(b)とは異なる方向から見た側面図である。It is a figure which shows a tunnel light same as the above, (a) is a front view, (b) is a side view, (c) is a side view seen from the direction different from (b). 従来の無電極放電灯点灯装置を示す回路図である。It is a circuit diagram which shows the conventional electrodeless discharge lamp lighting device. 同上の動作を示すタイムチャートである。It is a time chart which shows operation | movement same as the above.

符号の説明Explanation of symbols

1 直流電源回路
2 高周波電源回路
20 駆動回路・始動回路
21 共振回路
3 誘導コイル
4 無電極放電灯
5 瞬時低電検出回路
Q2,Q3 スイッチング素子
DESCRIPTION OF SYMBOLS 1 DC power supply circuit 2 High frequency power supply circuit 20 Drive circuit / starting circuit 21 Resonance circuit 3 Inductive coil 4 Electrode discharge lamp 5 Instantaneous low power detection circuit Q2, Q3 Switching element

Claims (3)

交流電源からの交流電圧を直流電圧に変換して出力する直流電源回路と、高周波でスイッチングされる1乃至複数のスイッチング素子並びに共振回路を具備し直流電源回路の出力電圧を高周波電圧に変換して無電極放電灯に近接配置された誘導コイルに供給する高周波電源回路と、スイッチング素子をスイッチングさせる駆動信号を出力する駆動回路と、駆動回路を制御して駆動信号の周波数を変化させることにより誘導コイルへの印加電圧を可変して無電極放電灯を始動する始動回路と、交流電源から直流電源回路へ供給される電圧の瞬時低電を検出する瞬時低電検出回路とを備え、始動回路は、無電極放電灯が始動しない大きさの高周波電圧を誘導コイルに印加する始動準備期間、及び無電極放電灯が始動可能な大きさの高周波電圧を誘導コイルに印加する始動期間を経て無電極放電灯を始動させ、瞬時低電検出回路が瞬時低電を検出した際に再始動時の始動準備期間が瞬時低電後の始動準備期間以外の始動準備期間よりも短くなるように駆動回路を制御することを特徴とする無電極放電灯点灯装置。   A DC power supply circuit that converts an AC voltage from an AC power supply into a DC voltage and outputs the DC voltage, and one or more switching elements that are switched at a high frequency and a resonance circuit, and converts the output voltage of the DC power supply circuit to a high frequency voltage. A high frequency power supply circuit for supplying to an induction coil arranged close to the electrodeless discharge lamp, a drive circuit for outputting a drive signal for switching the switching element, and an induction coil by controlling the drive circuit to change the frequency of the drive signal A starting circuit for starting the electrodeless discharge lamp by varying the voltage applied to the power source, and an instantaneous low power detecting circuit for detecting an instantaneous low power of the voltage supplied from the AC power source to the DC power source circuit. A start-up preparation period in which a high-frequency voltage large enough to prevent the electrodeless discharge lamp from starting is applied to the induction coil, and a high-frequency voltage large enough to start the electrodeless discharge lamp. The electrodeless discharge lamp is started after the start period applied to the coil, and when the instantaneous low power detection circuit detects the instantaneous low power, the start preparation period at restart is other than the start preparation period after the instantaneous low power An electrodeless discharge lamp lighting device, wherein a drive circuit is controlled to be shorter than a period. 前記始動回路は、始動準備期間において高周波電界放電を発生させるための高周波電界放電電圧を高周波電界放電が発生するまで誘導コイルに印加するように駆動回路を制御するとともに、始動期間において高周波電磁界放電を発生させるための高周波電磁界放電電圧を誘導コイルに印加するように駆動回路を制御することを特徴とする請求項1記載の無電極放電灯点灯装置。   The starting circuit controls the drive circuit to apply a high-frequency field discharge voltage for generating a high-frequency electric field discharge to the induction coil until the high-frequency electric field discharge is generated in the start-up preparation period. 2. The electrodeless discharge lamp lighting device according to claim 1, wherein the driving circuit is controlled so as to apply a high-frequency electromagnetic field discharge voltage for generating a voltage to the induction coil. 少なくとも無電極放電灯を保持する器具本体と、無電極放電灯に近接配置される誘導コイルと、誘導コイルに高周波電力を供給する請求項1又は2に記載の無電極放電灯点灯装置とを備えたことを特徴とする照明器具。
The apparatus main body which hold | maintains an electrodeless discharge lamp at least, the induction coil arrange | positioned close to an electrodeless discharge lamp, and the electrodeless discharge lamp lighting device of Claim 1 or 2 which supplies high frequency electric power to an induction coil A lighting apparatus characterized by that.
JP2008217372A 2008-08-26 2008-08-26 Electrodeless discharge lamp lighting device and lighting apparatus using the same Expired - Fee Related JP5330768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217372A JP5330768B2 (en) 2008-08-26 2008-08-26 Electrodeless discharge lamp lighting device and lighting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217372A JP5330768B2 (en) 2008-08-26 2008-08-26 Electrodeless discharge lamp lighting device and lighting apparatus using the same

Publications (2)

Publication Number Publication Date
JP2010055823A JP2010055823A (en) 2010-03-11
JP5330768B2 true JP5330768B2 (en) 2013-10-30

Family

ID=42071532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217372A Expired - Fee Related JP5330768B2 (en) 2008-08-26 2008-08-26 Electrodeless discharge lamp lighting device and lighting apparatus using the same

Country Status (1)

Country Link
JP (1) JP5330768B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186788B2 (en) * 2003-10-28 2008-11-26 松下電工株式会社 Electrodeless discharge lamp lighting device
JP4144506B2 (en) * 2003-10-28 2008-09-03 松下電工株式会社 Electrodeless discharge lamp lighting device
EP1940204B1 (en) * 2005-09-28 2011-09-28 Panasonic Electric Works Co., Ltd. Electronic stabilizer capable of adjusting light for electrodeless discharge lamp and illumination device

Also Published As

Publication number Publication date
JP2010055823A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP2005078910A (en) High luminance discharge lamp lighting device
JP2004349213A (en) Device and method for lighting high intensity discharge lamp
JP4569067B2 (en) High pressure discharge lamp lighting device and lighting device
JP2008536275A (en) Device for operating or lighting a high-pressure discharge lamp, lamp base, lighting system comprising such a device, and method for operating a high-pressure discharge lamp
JP5330768B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP4155249B2 (en) Electrodeless discharge lamp lighting device and lighting device
JP5227112B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP4186788B2 (en) Electrodeless discharge lamp lighting device
JP5497450B2 (en) Induction drive gas discharge lamp circuit
JP5129703B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
JP2010009870A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP4186789B2 (en) Electrodeless discharge lamp lighting device
JP4144506B2 (en) Electrodeless discharge lamp lighting device
JP4697114B2 (en) Electrodeless discharge lamp lighting device and its lighting fixture
JP5145865B2 (en) High pressure discharge lamp lighting device and high pressure discharge lamp starting method
US20120025731A1 (en) Ballast for high pressure discharge lamp
JP2010009858A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP3720744B2 (en) Lighting control device and control method for high-frequency lighting type high-intensity discharge lamp that can be easily relighted instantly
JP4210913B2 (en) Power supply device, discharge lamp lighting device, and lighting device
JPH0244695A (en) Discharge lamp lighting device
JP2010147011A (en) Electrodeless discharge lamp lightning device and lighting equipment using the same
JP2010055915A (en) High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp
JP2011028912A (en) Electrodeless discharge lamp lighting device, and lighting fixture
JPH08264290A (en) Discharge lamp lighting device
JPH0765976A (en) Electrodeless discharge lamp lighting device and light fixture

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees