JP2010055915A - High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp - Google Patents

High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp Download PDF

Info

Publication number
JP2010055915A
JP2010055915A JP2008219182A JP2008219182A JP2010055915A JP 2010055915 A JP2010055915 A JP 2010055915A JP 2008219182 A JP2008219182 A JP 2008219182A JP 2008219182 A JP2008219182 A JP 2008219182A JP 2010055915 A JP2010055915 A JP 2010055915A
Authority
JP
Japan
Prior art keywords
discharge lamp
pressure discharge
high pressure
circuit
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008219182A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
信一 鈴木
Toru Nagase
徹 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2008219182A priority Critical patent/JP2010055915A/en
Publication of JP2010055915A publication Critical patent/JP2010055915A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure discharge lamp lighting device in which problems of blackening, going-out, sputtering or the like due to controlling at starting up are solved without changing a conventional circuit configuration. <P>SOLUTION: In the high pressure discharge lamp lighting device provided with a chopper circuit outputting DC power, a full-bridge circuit converting the output of the chopper circuit into AC output and supplying it a high pressure discharge lamp, an ignitor circuit generating pulse voltage for starting up the high pressure discharge lamp, and a controlling part controlling the chopper circuit and the full-bridge circuit, the ignitor circuit is provided with a lighting detection means detecting an existence of lighting of the high pressure discharge lamp and outputting it to the controlling part, and the controlling part is structured so that the chopper circuit or the full-bridge circuit is controlled so that a lamp current for a first period after the lighting is detected may become the first peak value or lower and moreover the lamp current during a second period after a given period elapses may become a second peak value, and the first period is 0.5-3 seconds and the second peak value is set to become 1.2-5 times the first peak value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は高圧放電灯を点灯させるための高圧放電灯点灯装置の改良、特に高圧放電灯の始動方法の改良に関する。   The present invention relates to an improvement of a high pressure discharge lamp lighting device for lighting a high pressure discharge lamp, and particularly to an improvement of a starting method of the high pressure discharge lamp.

近年、高圧放電灯点灯装置の電子化による小型、軽量化が進み図1に示すような降圧チョッパ回路20とフルブリッジ回路30、およびイグナイタ回路40の組合せにより高圧放電灯(以下、「ランプ」という)50を高周波始動、または矩形波始動させ、その後、低周波の矩形波で安定に点灯させる高圧放電灯点灯装置が普及しつつある。なお、本明細書において高周波とは1kHzより高い周波数、低周波とは1kHz以下の周波数を言うものとする。   In recent years, the high pressure discharge lamp lighting device has become smaller and lighter due to the digitization, and a combination of the step-down chopper circuit 20, the full bridge circuit 30, and the igniter circuit 40 as shown in FIG. ) High-pressure discharge lamp lighting devices that start 50 at a high frequency or a rectangular wave and then stably light at a low-frequency rectangular wave are becoming widespread. In this specification, high frequency means a frequency higher than 1 kHz, and low frequency means a frequency of 1 kHz or less.

図1の回路の動作を説明する。降圧チョッパ回路20を構成するPWM制御回路28の制御において、抵抗26によってランプ電圧に比例したランプ電圧信号が検出され、抵抗27によってランプ電流に比例したランプ電流信号が検出される。ランプ電流信号とランプ電圧信号を乗算器にて乗算した電圧信号またはマイコンにて演算した電圧信号と、ランプ50の定格ランプ電圧時に定格ランプ電力で点灯できるように予め設定した基準電圧とが誤差増幅器にて比較され、ランプ電流信号とランプ電圧信号を乗算した電圧信号またはマイコンにて演算した電圧信号が一定となるようにトランジスタ21のデューティ比がパルス幅制御される。これによってランプ50が所望の電力で点灯される。   The operation of the circuit of FIG. 1 will be described. In the control of the PWM control circuit 28 constituting the step-down chopper circuit 20, a lamp voltage signal proportional to the lamp voltage is detected by the resistor 26, and a lamp current signal proportional to the lamp current is detected by the resistor 27. A voltage signal obtained by multiplying the lamp current signal and the lamp voltage signal by a multiplier or a voltage signal calculated by a microcomputer, and a reference voltage set in advance so that the lamp 50 can be lit at the rated lamp power at the rated lamp voltage are error amplifiers. The duty ratio of the transistor 21 is pulse width controlled so that the voltage signal obtained by multiplying the lamp current signal and the lamp voltage signal or the voltage signal calculated by the microcomputer becomes constant. As a result, the lamp 50 is turned on with desired power.

次に、降圧チョッパ回路20の直流出力受けて動作するフルブリッジ回路30の動作を説明する。トランジスタ31及び34とトランジスタ32及び33がブリッジ制御回路35によって所定の周波数で交互に導通・非導通を繰り返すように制御され、これにより降圧チョッパ回路20の直流出力が交流電流に変換されてランプ50に供給される。   Next, the operation of the full bridge circuit 30 that operates by receiving the DC output of the step-down chopper circuit 20 will be described. The transistors 31 and 34 and the transistors 32 and 33 are controlled by the bridge control circuit 35 so as to repeat conduction and non-conduction alternately at a predetermined frequency, whereby the direct current output of the step-down chopper circuit 20 is converted into alternating current and the lamp 50 To be supplied.

ここでランプ50の始動時において、高周波始動の場合、一定時間ブリッジ制御回路35で制御される周波数を数十kHzに高めることにより、トランジスタ31及び34とトランジスタ32及び33の中点に接続されたチョークコイル36とコンデンサ37の直列回路が共振し、チョークコイル36のインダクタンスとコンデンサ37の容量とブリッジ制御回路35の周波数で決まる正弦波の共振電圧がチョークコイル36およびコンデンサ37端に発生し、コンデンサ37に並列に接続されているランプ50端にもその高周波の共振電圧が印加される。   Here, when the lamp 50 is started, in the case of high-frequency starting, the frequency controlled by the bridge control circuit 35 is increased to several tens of kHz for a certain period of time, so that the transistors 31 and 34 and the transistors 32 and 33 are connected to the middle point. The series circuit of the choke coil 36 and the capacitor 37 resonates, and a sine wave resonance voltage determined by the inductance of the choke coil 36, the capacitance of the capacitor 37, and the frequency of the bridge control circuit 35 is generated at the ends of the choke coil 36 and the capacitor 37. The high-frequency resonance voltage is also applied to the end of the lamp 50 connected in parallel to 37.

次に、ランプ50を始動させるためのイグナイタ回路40の動作を説明する。先に説明したフルブリッジ回路が数十kHzの高周波で動作しているときのコンデンサ37端に発生する高周波の正弦波電圧を受け、チョークコイル36とコンデンサ37の接続点側がプラス電位のときにダイオード41、抵抗43、コンデンサ45の向きに電流が流れコンデンサ45が充電される。   Next, the operation of the igniter circuit 40 for starting the lamp 50 will be described. When the full-bridge circuit described above receives a high-frequency sine wave voltage generated at the end of the capacitor 37 when operating at a high frequency of several tens of kHz, a diode is connected when the connection point side of the choke coil 36 and the capacitor 37 has a positive potential. Current flows in the direction of 41, resistor 43, and capacitor 45, and capacitor 45 is charged.

また、高周波の正弦波電圧の極性が反転し、チョークコイル36とコンデンサ37の接続点がマイナス電位のときはコンデンサ46、抵抗44、ダイオード42の向きに電流が流れコンデンサ46が充電される。   Further, when the polarity of the high frequency sine wave voltage is reversed and the connection point of the choke coil 36 and the capacitor 37 is a negative potential, a current flows in the direction of the capacitor 46, the resistor 44, and the diode 42 to charge the capacitor 46.

上記の動作を繰り返すことにより、コンデンサ45とコンデンサ46の直列回路端の電位は徐々に上昇していく。一般的にはコンデンサ37端に発生する電圧はチョークコイル36とコンデンサ37の共振回路による共振周波数で決まり、その周波数特性を図8に示す。従来的には、始動時には共振周波数foの5分の1の周波数f付近の周波数特性が用いられる(例えば、特許文献1)。 By repeating the above operation, the potential at the series circuit end of the capacitor 45 and the capacitor 46 gradually increases. In general, the voltage generated at the end of the capacitor 37 is determined by the resonance frequency of the resonance circuit of the choke coil 36 and the capacitor 37, and the frequency characteristics are shown in FIG. Conventionally, at the time of starting frequency characteristics near the frequency f 5 of one-fifth of the resonance frequency fo it is used (e.g., Patent Document 1).

より詳細には、まずフルブリッジ回路30を例えばスタート周波数fsで動作を開始させ、時間と共に周波数を低くしていく。そうすると共振電圧は図8の周波数特性に応じて曲線的に上昇していく。図9に示すように、例えば周波数fh、すなわち電圧Vhにて放電ギャップ48がブレークダウンした場合、電圧検知回路49がそのブレークダウンを検出することでフルブリッジ回路30の周波数が固定され、一定間隔のパルス電圧を継続して発生することになる。   More specifically, first, the operation of the full bridge circuit 30 is started at, for example, the start frequency fs, and the frequency is lowered with time. Then, the resonance voltage rises in a curve according to the frequency characteristics of FIG. As shown in FIG. 9, for example, when the discharge gap 48 breaks down at the frequency fh, that is, the voltage Vh, the voltage detection circuit 49 detects the breakdown, so that the frequency of the full bridge circuit 30 is fixed, and a constant interval is obtained. The pulse voltage is continuously generated.

この時のチョッパ回路20の出力電圧は、例えばDC380Vの入力直流電圧を受け、設定された一定の電圧、例えばDC200Vを出力している。なお、高圧放電灯の放電電圧は一般的には高くても150V程度が上限となる。   The output voltage of the chopper circuit 20 at this time receives an input DC voltage of, for example, DC 380V, and outputs a set constant voltage, for example, DC 200V. Note that the upper limit of the discharge voltage of the high-pressure discharge lamp is generally about 150 V at the highest.

前記のように放電ギャップ48がブレークダウンすると、パルストランス47の二次巻線には、一次巻線に印加された電圧に対してパルストランス47の昇圧比に応じたパルス電圧が発生し、その電圧はコンデンサ37を介してランプ50に印加されるため高圧放電灯50が、そのパルス電圧により絶縁破壊し、ランプ電流は図4で示すようにグロー放電(A)を経てアーク放電(B〜E)へ移行していく。   When the discharge gap 48 breaks down as described above, a pulse voltage corresponding to the boost ratio of the pulse transformer 47 is generated in the secondary winding of the pulse transformer 47 with respect to the voltage applied to the primary winding. Since the voltage is applied to the lamp 50 via the capacitor 37, the high-pressure discharge lamp 50 breaks down due to the pulse voltage, and the lamp current is subjected to arc discharge (B to E) via glow discharge (A) as shown in FIG. ).

この時のアーク放電時のランプ電流値は、先のフルブリッジ回路30からの矩形波高周波電圧を受け、チョークコイル36のインダクタンス値、パルストランス47のインダクタンス値とその周波数により決まる値に限流されたものになる。   The lamp current value at the time of arc discharge at this time is limited to a value determined by the rectangular wave high-frequency voltage from the previous full bridge circuit 30 and determined by the inductance value of the choke coil 36, the inductance value of the pulse transformer 47 and its frequency. It becomes a thing.

この過程をもう少し詳細に説明すると、液晶プロジェクタ等に使用される放電灯は一般的に空冷条件下で使用するものであり、また反射鏡付となるため左右の電極近傍の熱容量が異なり、かつ空冷の受け方も異なるため、ランプ消灯時の電極近傍の温度の下がり方に差が生じる。そして、図5Aに示すように温度が早く低下する側の電極近傍に、蒸発していた水銀が偏って液化し付着することとなる。   Explaining this process in a little more detail. Discharge lamps used in liquid crystal projectors and the like are generally used under air-cooling conditions, and are equipped with reflectors, so the heat capacities near the left and right electrodes are different, and air-cooling is used. Therefore, there is a difference in how the temperature near the electrode decreases when the lamp is extinguished. Then, as shown in FIG. 5A, the evaporated mercury is unevenly liquefied and adheres to the vicinity of the electrode on the side where the temperature rapidly decreases.

図5Aの状態でランプにパルス電圧をかけ絶縁破壊を起こすとグロー放電を開始する。このグロー放電は偏っていた水銀の影響を受け、熱容量の小さい方、すなわち水銀なし側の電極が先に加熱されていく。すると、電極の中でも図5Bで示す外側コイルのエッジように熱容量の小さい部分が先に温度が上昇し、その部分が充分加熱されると、その点をスポットとして熱電子放射であるアーク放電が開始される。   In the state shown in FIG. 5A, glow discharge is started when a pulse voltage is applied to the lamp to cause dielectric breakdown. This glow discharge is affected by the biased mercury, and the electrode having the smaller heat capacity, that is, the electrode without mercury is heated first. Then, in the electrode, the temperature of the portion having a small heat capacity such as the edge of the outer coil shown in FIG. 5B first rises, and when that portion is sufficiently heated, arc discharge, which is thermionic emission, starts at that point as a spot. Is done.

アーク放電に移行しても、水銀が付着していなかった側の電極が陰極となる方向で半波でしか電流は流れないが、半波のアーク放電を持続させることにより、もう一方の水銀が付着していた側の電極の水銀も徐々に蒸発していくにつれ、電極の温度も上昇し非対称ながらも電流が流れ始め(図4の期間C)、十分温度が上昇すると対称な高周波電流(図4の期間D)となる。   Even after the transition to arc discharge, current flows only in half-waves in the direction where the electrode on which mercury was not attached becomes the cathode, but by maintaining half-wave arc discharge, the other mercury is As the mercury on the attached electrode gradually evaporates, the temperature of the electrode also rises and current begins to flow in an asymmetrical manner (period C in FIG. 4). 4 period D).

そして、対称な高周波電流となってから、50〜400Hzの低周波の矩形波(図4の期間E)電流へ移行させることにより、その時点での立ち消えや電極への必要以上のスパッタを防止することが可能となる。   Then, after becoming a symmetric high-frequency current, the current is shifted to a low-frequency rectangular wave (period E in FIG. 4) current of 50 to 400 Hz, thereby preventing extinction at that time and unnecessary sputtering of the electrode. It becomes possible.

次に、図3に液晶プロジェクタ用光源装置に用いられる放電灯の発光管の一例を示す。電極3の根元側に放熱コイル4が形成されており、電極3の根元3a側のコイルエンド4aから放電管5の内壁5aまでの距離Lが大きいと、封止部6に埋設された電極3の根元3a周辺が温まらずに水銀の蒸発が遅れ、始動立ち上がり時間がかかり、プロジェクタ装置の電源投入後(点灯開始後)から画面が所定の明るさに達するまでの所要時間が長引くため、その距離は1mm以下に設計されている。   Next, FIG. 3 shows an example of an arc tube of a discharge lamp used in a light source device for a liquid crystal projector. When the distance L from the coil end 4a on the base 3a side of the electrode 3 to the inner wall 5a of the discharge tube 5 is large, the electrode 3 embedded in the sealing portion 6 is formed. Since the vicinity of the root 3a is not warmed, the evaporation of mercury is delayed, it takes a start-up startup time, and the time required for the screen to reach a predetermined brightness after the projector device is turned on (after starting lighting) is prolonged. Is designed to be 1 mm or less.

しかしながら、その距離を1mm以下とした高圧水銀ランプ2では、その点灯が繰り返し行われると、先の説明のように始動パルスを印加して放電を開始させグロー放電からアーク放電へ移行する際に、瞬間的にアークが広がり特に図5Cのようにアーク放電に移行した際のアークスポットと放電管5の内壁5aの距離が近い場合、図4の丸点線で示す時点で瞬間的に広がったアークが内壁5aに接触し電極構成材料であるタングステンが付着し黒化現象を起こすことがある。この現象は、例えば図8の共振周波数fの5分の1の周波数f付近で高周波点灯させた場合の高周波始動時のピーク電流が大きい状態でグロー放電からアーク放電へ移行する際に起こることがわかっている。そしてこの黒化は早期に照度低下を生じ、黒化が激しい場合は内壁への熱的な負荷が増大して放電管を破損させ、ランプ寿命を短縮させるという問題があった。 However, in the high-pressure mercury lamp 2 whose distance is 1 mm or less, when the lighting is repeatedly performed, as described above, when starting the discharge by applying the start pulse and shifting from the glow discharge to the arc discharge, When the arc spreads instantaneously and particularly when the distance between the arc spot and the inner wall 5a of the discharge tube 5 is close as shown in FIG. 5C, the arc spreading instantaneously at the time indicated by the dotted line in FIG. Tungsten, which is an electrode constituent material, may come into contact with the inner wall 5a and cause blackening. This phenomenon occurs, for example, when a transition is made from glow discharge to arc discharge with a high peak current at the time of high-frequency starting when high-frequency lighting is performed in the vicinity of the frequency f 5 that is one fifth of the resonance frequency f 0 in FIG. I know that. This blackening causes a decrease in illuminance at an early stage, and when blackening is severe, there is a problem that a thermal load on the inner wall is increased to break the discharge tube and shorten the lamp life.

そこで、上記問題を回避するため予め共振周波数fの3分の1の周波数f(f>f)付近で高周波点灯させ、図6に示すように高周波始動時のピーク電流を低減することで、アーク放電移行時に瞬間的にアークが広がっても内壁5aに接触しないようにする方法がある。しかしこの場合、電極への予熱不充分が起こり得る。つまり半波点灯時に陽極側となっていた電極の温度が上昇せず、一定時間後に低周波の矩形波点灯へ移行した際に、その電極が陰極となった時、図6の点線で示す時点でアーク放電を行えず必要以上にスパッタされたり、立ち消えを起したりする場合がある。 Therefore, in order to avoid the above problem, high frequency lighting is performed in the vicinity of the frequency f 3 (f 3 > f 5 ), which is one third of the resonance frequency f 0 , and the peak current at high frequency start is reduced as shown in FIG. Thus, there is a method of preventing the inner wall 5a from being contacted even if the arc spreads momentarily during the arc discharge transition. In this case, however, insufficient preheating of the electrode may occur. In other words, when the temperature of the electrode on the anode side during half-wave lighting does not rise, and when it shifts to low-frequency rectangular wave lighting after a certain time, the electrode becomes the cathode, the time indicated by the dotted line in FIG. In some cases, arc discharge cannot be performed, and sputtering may occur more than necessary, or the lamp may disappear.

また、予め上記のような高周波点灯時のピーク電流を低減させた方法において、高周波点灯時間を長くし小さい電流にした高周波で両電極の温度を充分高めてから低周波の矩形波点灯へ移行させるという方法もある。しかしこの場合、再始動(発光管が冷えていない段階での始動)させた時を考えると、最初から発光管内の圧力が高いため、高周波点灯時間を長くすることにより発光管内に圧力の高い部分と低い部分の定在波が成長し、音響的共鳴現象によるチラツキや立ち消えの原因となってしまう場合がある。   Further, in the method of reducing the peak current at the time of high frequency lighting as described above, the temperature of both electrodes is sufficiently increased at a high frequency with a long high frequency lighting time and a small current, and then a transition to low frequency rectangular wave lighting is performed. There is also a method. However, in this case, considering the time of restart (starting when the arc tube is not cooled), since the pressure in the arc tube is high from the beginning, the high-pressure lighting time is increased to increase the pressure in the arc tube. The standing wave in the lower part grows and may cause flickering or disappearance due to the acoustic resonance phenomenon.

上記の問題の対策として、図7、8のように、期間B1でfsからスタートし一定期間(50ms〜500ms)高周波点灯時のピーク電流を低減させ、その後の期間B2にfへ移行し通常の高周波始動電流にて点灯させる方法もある(例えば、特許文献2)。 As a countermeasure for the above problem, as shown in FIGS. 7 and 8, the peak current at the time of high-frequency lighting is reduced for a certain period (50 ms to 500 ms) starting from f 3 s in period B1, and the process shifts to f 5 in subsequent period B2. There is also a method of lighting with a normal high-frequency starting current (for example, Patent Document 2).

特開2004−127656号JP 2004-127656 A 特開2008−108670号JP 2008-108670 A

しかし、特許文献2(図7)の場合、仮にランプがfの期間B1内で点灯せずfの期間B2で点灯した場合、やはり前記のような黒化現象を起こすことがある。 However, in the case of Patent Document 2 (FIG. 7), if when the lamp is lit in the period B2 of f 5 not lit in the period f 3 B1, it may also cause blackening as described above.

そこでランプが点灯したことを検出し、点灯後一定期間は黒化しないように小さくした高周波始動電流をランプに流し、一定期間後は電極を充分に予熱できるような前記よりも大きい高周波始動電流をランプに流す必要がある。しかし、高周波動作によりパルスが発生しランプが点灯しても高周波動作期間は周波数が高いため、チョークコイル36のインピーダンスは大きくなってしまう。このためチョッパ回路部20の出力は上限値DC200Vに保たれつつも、ランプにはほとんど電流が流れない。よって通常の低周波動作時にランプ電圧を検出している図1の電圧検出部A、あるいは図1の電流検知抵抗27ではランプが点灯したかどうかは検出できない。また別の方法として、チョークコイル36に補助巻き線など巻き、その部分の電圧を検出してランプが点灯したかどうかを判断することができるが、それには検出用の部品が増えるため、コストの面でも基板を設計する際のスペースの面でも妥当でない。   Therefore, it is detected that the lamp is lit, and a high frequency starting current that is small so as not to be blackened for a certain period after lighting is supplied to the lamp. It needs to flow through the lamp. However, even if a pulse is generated by the high frequency operation and the lamp is turned on, the impedance of the choke coil 36 becomes large because the frequency is high during the high frequency operation period. For this reason, almost no current flows through the lamp while the output of the chopper circuit unit 20 is maintained at the upper limit value DC200V. Therefore, it is impossible to detect whether the lamp is lit by the voltage detector A in FIG. 1 that detects the lamp voltage during normal low-frequency operation or the current detection resistor 27 in FIG. As another method, an auxiliary winding or the like is wound around the choke coil 36, and the voltage at that portion can be detected to determine whether or not the lamp has been lit. Neither the surface nor the space in designing the board is appropriate.

従って、本発明は上記問題、即ち、図4の期間Bや図7の期間B2で起こり得る黒化や、図6の期間CからEへの移行時に起こり得る立消えの問題を、従来の回路構成(ハード部分)を変更せずに制御面で解決し、ランプの始動性改善及び長寿命化を図ることを技術的課題としている。   Therefore, the present invention solves the above problem, that is, the blackening that can occur in the period B in FIG. 4 and the period B2 in FIG. 7 and the disappearance that can occur in the transition from the period C to E in FIG. The technical problem is to solve the problem in terms of control without changing the (hard part), and to improve the startability of the lamp and extend its life.

本発明の第1の側面は、直流電力を出力するチョッパ回路、チョッパ回路の出力を交流出力に変換して高圧放電灯に供給するフルブリッジ回路、高圧放電灯を始動させるためのパルス電圧を発生させるイグナイタ回路、並びにチョッパ回路及びフルブリッジ回路を制御する制御部を備えた高圧放電灯点灯装置において、イグナイタ回路が高圧放電灯の点灯の有無を検出して制御部に出力する点灯検出手段を備え、点灯検出後の第1の期間のランプ電流が第1のピーク値以下となるように、かつ、所定期間経過後の第2の期間のランプ電流が第1のピーク値よりも大きい第2のピーク値となるように、制御部がチョッパ回路又はフルブリッジ回路を制御するように構成され、第1の期間が0.5秒より長く3秒以下であり、第2のピーク値が第1のピーク値の1.2倍以上5倍以下である高圧放電灯点灯装置である。   A first aspect of the present invention is a chopper circuit that outputs DC power, a full-bridge circuit that converts the output of the chopper circuit into an AC output and supplies it to a high-pressure discharge lamp, and generates a pulse voltage for starting the high-pressure discharge lamp. In a high pressure discharge lamp lighting device having a control unit for controlling an igniter circuit and a chopper circuit and a full bridge circuit, the igniter circuit includes lighting detection means for detecting the presence or absence of lighting of the high pressure discharge lamp and outputting it to the control unit The second current so that the lamp current in the first period after the lighting detection becomes equal to or less than the first peak value and the lamp current in the second period after the predetermined period has elapsed is larger than the first peak value. The control unit is configured to control the chopper circuit or the full bridge circuit so as to have a peak value, the first period is longer than 0.5 seconds and not longer than 3 seconds, and the second peak value is A high pressure discharge lamp lighting device less than 5-fold 1.2-fold or more of the peak value.

ここで、共振回路が高圧放電灯に直列接続されるインダクタを含み、第1の期間から第2の期間に移行する際に制御部がフルブリッジ回路の駆動周波数を下げる構成としてもよい。   Here, the resonance circuit may include an inductor connected in series to the high-pressure discharge lamp, and the control unit may lower the drive frequency of the full bridge circuit when the first period is shifted to the second period.

また、第1の期間から第2の期間に移行する際に制御部がチョッパ回路の出力電圧を上昇させる構成としてもよい。   In addition, the control unit may increase the output voltage of the chopper circuit when shifting from the first period to the second period.

さらに、フルブリッジ回路がフルブリッジのスイッチング動作により共振電圧を発生させる共振回路を備え、イグナイタ回路が、共振電圧を充電する充電回路、充電回路に発生した電圧が所定値以上になると短絡する放電ギャップ、及び1次巻線が放電ギャップに2次巻線が高圧放電灯に接続されるパルストランスからなり、点灯検出手段が充電回路の電圧を検知する電圧検知回路からなる構成とした。   Further, the full bridge circuit includes a resonance circuit that generates a resonance voltage by a switching operation of the full bridge, and the igniter circuit is a charging circuit that charges the resonance voltage, and a discharge gap that is short-circuited when the voltage generated in the charging circuit exceeds a predetermined value. The primary winding is composed of a discharge transformer and the secondary winding is connected to a high-pressure discharge lamp, and the lighting detection means is composed of a voltage detection circuit for detecting the voltage of the charging circuit.

本発明の第2の側面は、上記第1の側面の高圧放電灯点灯装置、高圧放電灯、高圧放電灯が取り付けられるリフレクタ、及び少なくとも高圧放電灯点灯装置を内包する筐体からなる光源装置である。   According to a second aspect of the present invention, there is provided a light source device comprising the high pressure discharge lamp lighting device, the high pressure discharge lamp, the reflector to which the high pressure discharge lamp is attached, and a housing containing at least the high pressure discharge lamp lighting device. is there.

本発明の第3の側面は、高圧放電灯を始動するための方法であって、(A)イグナイタ回路によって高圧放電灯に始動パルスを印加するステップ、(B)イグナイタ回路において高圧放電灯の点灯開始を検出するステップ、(C)点灯開始が検出された後の所定期間に、交流出力回路によって第1のピーク値以下の高周波電流を高圧放電灯に通電するステップ、及び(D)所定期間経過後に、交流出力回路によって第1のピーク値よりも高い第2のピーク値の高周波電流を高圧放電灯に通電するステップからなり、第1の期間が0.5秒より長く3秒以下であり、第2のピーク値が第1のピーク値の1.2倍以上5倍以下である方法である。   A third aspect of the present invention is a method for starting a high pressure discharge lamp, wherein (A) a step of applying a start pulse to the high pressure discharge lamp by an igniter circuit, and (B) lighting of the high pressure discharge lamp in the igniter circuit. A step of detecting the start, (C) a step of energizing the high-pressure discharge lamp with a high-frequency current equal to or lower than the first peak value by the AC output circuit in a predetermined period after the start of lighting is detected, and (D) elapse of the predetermined period Later, the method includes a step of energizing the high-pressure discharge lamp with a high-frequency current having a second peak value higher than the first peak value by an AC output circuit, wherein the first period is longer than 0.5 seconds and not longer than 3 seconds, In this method, the second peak value is not less than 1.2 times and not more than 5 times the first peak value.

ここで、高圧放電灯にインダクタが直列接続され、ステップ(D)が交流出力回路の駆動周波数を下げるステップを含んでもよい。   Here, an inductor may be connected in series to the high-pressure discharge lamp, and step (D) may include a step of reducing the drive frequency of the AC output circuit.

また、ステップ(D)が交流出力回路の出力電圧を上昇させるステップを含んでもよい。   Further, step (D) may include a step of increasing the output voltage of the AC output circuit.

本発明によると、始動時の制御に起因する黒化、立消え、スパッタリング等の問題を、従来の回路構成を変更せずに解決し、ランプの始動性改善及び長寿命化を図ることができる。   According to the present invention, it is possible to solve problems such as blackening, disappearance, and sputtering caused by control at the time of starting without changing the conventional circuit configuration, and to improve the startability and extend the life of the lamp.

本発明は、ランプの放電開始を検出しアーク放電移行時の半波点灯のピーク電流を所定時間制限し、その後、全波電流によるアーク放電を想定した設計値の高周波電流値へ移行させるものである。特に、従来の回路構成(回路図に表れる部分)を変更することなく、上記所定期間の計測等を確実に行なうことにより、上記のシーケンスを達成するものである。   The present invention detects the start of lamp discharge, limits the peak current of half-wave lighting at the time of arc discharge transition for a predetermined time, and then shifts to a high-frequency current value of a design value that assumes arc discharge due to full-wave current. is there. In particular, the above-described sequence is achieved by reliably performing the measurement for the predetermined period without changing the conventional circuit configuration (portion shown in the circuit diagram).

本発明における高圧放電灯点灯装置の回路構成は従来例である図1と同じであり、その制御のみが異なるため、制御について以下に説明する。   Since the circuit configuration of the high pressure discharge lamp lighting device in the present invention is the same as that of FIG. 1 as a conventional example, and only the control is different, the control will be described below.

従来例と同様にフルブリッジ回路のトランジスタ31、34トランジスタ32、33を交互に数十kHzの高周波でON/OFFさせることによりチョークコイル36とコンデンサ37は共振し、チョークコイル36とコンデンサ37の接続点側がプラス電位のときにダイオード41、抵抗43、コンデンサ45の向きに電流が流れコンデンサ45が充電される。高周波の正弦波電圧の極性が反転し、チョークコイル36とコンデンサ37の接続点がマイナス電位のときはコンデンサ46、抵抗44、ダイオード42の向きに電流が流れコンデンサ46が充電される。上記の動作を繰り返すことにより、コンデンサ45とコンデンサ46の直列回路端の電位は徐々に上昇する。このコンデンサ45、46の直列回路端が放電ギャップ48のブレークオーバー電圧を超えると放電ギャップ48は絶縁破壊を起こし、コンデンサ45、46に蓄積された電荷がパルストランス47の一次側に一気に放出され、二次側には巻き数比に応じたパルス電圧が発生する。   Similar to the conventional example, the choke coil 36 and the capacitor 37 resonate by alternately turning on and off the transistors 31 and 34 transistors 32 and 33 of the full bridge circuit at a high frequency of several tens of kHz, and the choke coil 36 and the capacitor 37 are connected. When the point side has a positive potential, current flows in the direction of the diode 41, the resistor 43, and the capacitor 45, and the capacitor 45 is charged. When the polarity of the high-frequency sine wave voltage is reversed and the connection point between the choke coil 36 and the capacitor 37 is a negative potential, a current flows in the direction of the capacitor 46, the resistor 44, and the diode 42, and the capacitor 46 is charged. By repeating the above operation, the potential at the series circuit end of the capacitor 45 and the capacitor 46 gradually increases. When the end of the series circuit of the capacitors 45 and 46 exceeds the breakover voltage of the discharge gap 48, the discharge gap 48 causes dielectric breakdown, and the electric charge accumulated in the capacitors 45 and 46 is discharged to the primary side of the pulse transformer 47 all at once. A pulse voltage corresponding to the turn ratio is generated on the secondary side.

そして、パルス電圧を印加されたランプ50は絶縁破壊を起こし図2Aのようにグロー放電が開始される。すると従来例と同様に偏っていた水銀の影響を受け、水銀なし側の電極の特に図5Bのように熱容量の小さい外側コイルのエッジの温度が高くなり、その部分を起点にアーク放電へ移行する。この際、電極や発光管形状にもよるが半波放電したアーク放電の電流のピーク値を例えば図2のBのようにピーク2A以下になるような周波数を設定することにより、図5Cのように内側コイルエッジがアークスポットとなり、グロー放電からアーク放電へ移行した際に、瞬間的にアークが広がってもアークが図3の内壁5aに接触するほどの大きさとならないため電極材料の飛散による、放電管内部の黒化現象が生じない。   Then, the lamp 50 to which the pulse voltage is applied causes dielectric breakdown, and glow discharge is started as shown in FIG. 2A. Then, similarly to the conventional example, it is influenced by the biased mercury, and the temperature of the edge of the outer coil having a small heat capacity becomes high as shown in FIG. 5B, and the transition to arc discharge starts from that portion. . At this time, although depending on the shape of the electrode and the arc tube, by setting the frequency at which the peak value of the arc discharge current half-wave discharged becomes, for example, 2A or less as shown in FIG. When the inner coil edge becomes an arc spot and the transition from glow discharge to arc discharge occurs, even if the arc spreads instantaneously, the arc does not become large enough to contact the inner wall 5a in FIG. No blackening occurs inside the discharge tube.

また、上記半波放電で例えば2Aピークの電流値のままでは電極の温度上昇が不充分となり、立ち消える場合がある。そのため、半波放電で2Aピーク(ゼロ−ピーク)の電流に制限する期間を、例えばランプが点灯したのを検出してから1秒間のみ(図2の期間B)と限定し、以降を電極が充分予熱できる電流、例えば2秒間6Aピーク(ピーク−ピーク)に設定する(期間D)。そうすることにより、水銀が付着していない側の電極も高周波点灯期間に充分に温度が上昇し、スムーズなアーク放電への移行が可能となる。そして、仮に1秒経っても半波状態が継続していたとしても、小さい高周波始動電流の状態で電極が温められるので、大きい電流に移行した際に全波に移行し易いというメリットもある。   In addition, if the current value is, for example, 2A peak in the half-wave discharge, the temperature rise of the electrode becomes insufficient and may disappear. Therefore, the period during which the half-wave discharge is limited to the 2 A peak (zero-peak) current is limited to, for example, only one second (period B in FIG. 2) after detecting that the lamp is lit, A current that can be sufficiently preheated, for example, 6 A peak (peak-peak) for 2 seconds is set (period D). By doing so, the temperature of the electrode on the side to which mercury is not attached sufficiently rises during the high-frequency lighting period, and a smooth transition to arc discharge becomes possible. Even if the half-wave state continues even after 1 second, since the electrode is heated in a state of a small high-frequency starting current, there is a merit that it is easy to shift to a full wave when shifting to a large current.

なお、期間Bは0.5秒より長く3秒以下、そのピーク電流値(ゼロ−ピーク)は1A以上4A以下が適切である。期間Dは0.5秒以上3秒以下、そのピーク電流値が期間Bの電流値の1.2倍以上5倍以下が適切である。特に、期間Bと期間Dの合計時間は3秒(±0.5秒)程度が望ましいが、これに限られない。   The period B is suitably longer than 0.5 seconds and not longer than 3 seconds, and the peak current value (zero-peak) is not less than 1A and not more than 4A. It is appropriate that the period D is 0.5 seconds or more and 3 seconds or less and the peak current value is 1.2 times or more and 5 times or less the current value of the period B. In particular, the total time of the period B and the period D is preferably about 3 seconds (± 0.5 seconds), but is not limited thereto.

ここで、ランプが点灯したことを検出する手段について、部品追加をせず図1の従来回路によりランプが点灯したことを検出する手段を以下に説明する。   Here, as means for detecting that the lamp has been turned on, means for detecting that the lamp has been turned on by the conventional circuit of FIG. 1 without adding components will be described.

前記のようにパルス電圧が発生してもランプ50が点灯しなかった場合は、コンデンサ45、46は充放電を繰り返す。すなわち放電ギャップ端電圧も図9のように絶縁破壊・非絶縁破壊を繰り返すことになり、電圧は常に変動している。   As described above, when the lamp 50 is not lit even when the pulse voltage is generated, the capacitors 45 and 46 are repeatedly charged and discharged. That is, the discharge gap end voltage repeats dielectric breakdown / non-dielectric breakdown as shown in FIG. 9, and the voltage constantly fluctuates.

ところがパルス電圧が発生し、絶縁破壊を起こしてランプ50が点灯すると、共振による電圧はランプに印加されることになる。よってコンデンサ45、46には電荷が溜まらなくなるので電位は上昇せず、すなわち図9のように放電ギャップ端電圧も上昇しない。この一定期間電圧が上昇しないことを電圧検知回路49で検出し、ランプ50が点灯したかどうかを確実に判断することができる。   However, when a pulse voltage is generated to cause dielectric breakdown and the lamp 50 is lit, a resonance voltage is applied to the lamp. Therefore, no electric charge is accumulated in the capacitors 45 and 46, so that the potential does not rise, that is, the discharge gap end voltage does not rise as shown in FIG. The voltage detection circuit 49 detects that the voltage does not increase for a certain period of time, and it can be reliably determined whether or not the lamp 50 is lit.

ランプ50が点灯したことさえ正確に検出できれば点灯後の高周波電流を適切に制御できる。例えばスムーズなアーク放電への移行をするために高周波電流のピーク値を2段階に切り替えるとするならば、前記の方法でランプの点灯を検出してから、(1)フルブリッジ回路部30の周波数を変更する(点灯後の共振点に近づける)、(2)図1の直流電力供給回路部20の出力電圧を切り替える(回路部品の高耐圧化が必要な場合もあるが部品点数、部品配置に変更は生じない)手段が考えられる。そして、それらを組み合わせ、又は2段階ではなく多段階的で切り替えても同等以上の効果を得ることができる。   If it is possible to accurately detect that the lamp 50 is lit, the high-frequency current after lighting can be controlled appropriately. For example, if the peak value of the high-frequency current is switched to two stages in order to make a smooth arc discharge, (1) the frequency of the full bridge circuit unit 30 after detecting the lighting of the lamp by the above method. (2) Switch the output voltage of the DC power supply circuit unit 20 in FIG. 1 (the circuit component may need to have a higher withstand voltage, but the number of components and the component arrangement may be changed.) (There will be no change). Even if they are combined or switched in multiple stages instead of two stages, the same or higher effect can be obtained.

また、従来回路の構成を変更しないとする本発明の趣旨からは外れるが、期間Bから期間Dへの移行の際にランプ電流を増加させることだけが目的であれば、上記の(1)又は(2)の他に、共振回路に追加インダクタを直列接続し、追加インダクタにスイッチを並列接続してそのスイッチの開閉により共振回路の共振点を変える手段(スイッチ閉で電流増)も考えられる。基板のスペースに追加インダクタやスイッチを実装する余裕がある場合等に有効な手段である。   Further, if the purpose of the present invention is not to change the configuration of the conventional circuit, but only to increase the lamp current during the transition from the period B to the period D, the above (1) or In addition to (2), means for connecting an additional inductor in series to the resonant circuit, connecting a switch in parallel to the additional inductor, and changing the resonance point of the resonant circuit by opening and closing the switch (current increase when the switch is closed) is also conceivable. This is an effective means when there is room for mounting additional inductors and switches in the board space.

上記実施例では、始動動作に起因する黒化、立ち消え及びスパッタリングを防止する高圧放電灯点灯装置を示したが、それを用いたアプリケーションとしての光源装置を図10に示す。図10において、61は上記で説明した実施例の高圧放電灯点灯装置、62は高圧放電灯50が取り付けられるリフレクタ、63は高圧放電灯点灯装置61、高圧放電灯50及びリフレクタ62を内蔵する筐体である。なお、図は実施例を模擬的に図示したものであり、寸法、配置などは図面通りではない。そして、図示されない映像系の部材等を筐体63内に適宜配置してプロジェクタが構成される。   In the above-described embodiment, a high pressure discharge lamp lighting device that prevents blackening, extinction, and sputtering due to the starting operation is shown. A light source device as an application using the high pressure discharge lamp lighting device is shown in FIG. In FIG. 10, 61 is the high pressure discharge lamp lighting device of the embodiment described above, 62 is a reflector to which the high pressure discharge lamp 50 is attached, 63 is a housing containing the high pressure discharge lamp lighting device 61, the high pressure discharge lamp 50 and the reflector 62. Is the body. In addition, the figure is a schematic illustration of the embodiment, and the dimensions, arrangement, and the like are not as illustrated. Then, a projector is configured by appropriately arranging a video system member or the like (not shown) in the housing 63.

これにより、始動性が良く、ランプの交換サイクルが長く、信頼性の高い光源装置を得ることができる。   Thereby, it is possible to obtain a light source device with good startability, a long lamp replacement cycle, and high reliability.

従来の高圧放電灯点灯装置の回路図である。It is a circuit diagram of the conventional high pressure discharge lamp lighting device. 本発明における放電灯点灯装置の始動時ランプ電流波形を示す図である。It is a figure which shows the lamp current waveform at the time of starting of the discharge lamp lighting device in this invention. 一般的な高圧放電灯の発光管を示す図である。It is a figure which shows the arc tube of a general high pressure discharge lamp. 従来の高圧放電灯点灯装置の始動時ランプ電流波形例を示す図である。It is a figure which shows the lamp current waveform example at the time of starting of the conventional high pressure discharge lamp lighting device. 高圧放電灯の発光管の水銀とアークスポットを説明する図である。It is a figure explaining the mercury and arc spot of the arc tube of a high pressure discharge lamp. 高圧放電灯の発光管の水銀とアークスポットを説明する図である。It is a figure explaining the mercury and arc spot of the arc tube of a high pressure discharge lamp. 高圧放電灯の発光管の水銀とアークスポットを説明する図である。It is a figure explaining the mercury and arc spot of the arc tube of a high pressure discharge lamp. 従来の放電灯点灯装置の始動時ランプ電流波形を示す図である。It is a figure which shows the lamp current waveform at the time of starting of the conventional discharge lamp lighting device. 従来の放電灯点灯装置の始動時ランプ電流波形を示す図である。It is a figure which shows the lamp current waveform at the time of starting of the conventional discharge lamp lighting device. 高圧放電灯点灯装置の動作を説明する共振回路の特性図である。It is a characteristic figure of the resonance circuit explaining operation of a high pressure discharge lamp lighting device. 高圧放電灯点灯装置の高周波動作期間での動作を示す各動作波形を示す図である。It is a figure which shows each operation | movement waveform which shows the operation | movement in the high frequency operation period of a high pressure discharge lamp lighting device. 本発明の光源装置を示す図である。It is a figure which shows the light source device of this invention.

符号の説明Explanation of symbols

10:直流電源
20:チョッパ回路
21:トランジスタ
22:ダイオード
23:チョークコイル
24:コンデンサ
25、26、27:抵抗
28:PWM制御回路
30:フルブリッジ回路
31、32、33、34:トランジスタ
35:ブリッジ制御回路
36:チョークコイル
37:コンデンサ
40:イグナイタ回路
41、42:ダイオード
43、44:抵抗
45、46:コンデンサ
47:パルストランス
48:放電ギャップ
49:電圧検知回路
50:高圧放電灯(ランプ)
61:高圧放電灯点灯装置
62:リフレクタ
63:筐体
10: DC power supply 20: Chopper circuit 21: Transistor 22: Diode 23: Choke coil 24: Capacitors 25, 26, 27: Resistor 28: PWM control circuit 30: Full bridge circuits 31, 32, 33, 34: Transistor 35: Bridge Control circuit 36: choke coil 37: capacitor 40: igniter circuit 41, 42: diode 43, 44: resistor 45, 46: capacitor 47: pulse transformer 48: discharge gap 49: voltage detection circuit 50: high pressure discharge lamp (lamp)
61: High pressure discharge lamp lighting device 62: Reflector 63: Housing

Claims (8)

直流電力を出力するチョッパ回路、該チョッパ回路の出力を交流出力に変換して該高圧放電灯に供給するフルブリッジ回路、該高圧放電灯を始動させるためのパルス電圧を発生させるイグナイタ回路、並びに該チョッパ回路及び該フルブリッジ回路を制御する制御部を備えた高圧放電灯点灯装置において、前記イグナイタ回路が該高圧放電灯の点灯の有無を検出して前記制御部に出力する点灯検出手段を備え、
点灯検出後の第1の期間のランプ電流が第1のピーク値以下となるように、かつ、該所定期間経過後の第2の期間のランプ電流が該第1のピーク値よりも大きい第2のピーク値となるように、前記制御部が前記チョッパ回路又は前記フルブリッジ回路を制御するように構成され、該第1の期間が0.5秒より長く3秒以下であり、該第2のピーク値が該第1のピーク値の1.2倍以上5倍以下である高圧放電灯点灯装置。
A chopper circuit for outputting DC power, a full bridge circuit for converting the output of the chopper circuit into an AC output and supplying the high pressure discharge lamp, an igniter circuit for generating a pulse voltage for starting the high pressure discharge lamp, and the In a high pressure discharge lamp lighting device including a chopper circuit and a control unit that controls the full bridge circuit, the igniter circuit includes a lighting detection unit that detects whether or not the high pressure discharge lamp is lit and outputs it to the control unit,
A second current in which the lamp current in the first period after the lighting is detected is less than or equal to the first peak value, and the lamp current in the second period after the predetermined period has elapsed is greater than the first peak value. The control unit is configured to control the chopper circuit or the full bridge circuit so that the first period is longer than 0.5 seconds and not longer than 3 seconds. A high pressure discharge lamp lighting device having a peak value of 1.2 times or more and 5 times or less of the first peak value.
請求項1記載の高圧放電灯点灯装置において、前記共振回路が前記高圧放電灯に直列接続されるインダクタを含み、
前記第1の期間から前記第2の期間に移行する際に前記制御部が前記フルブリッジ回路の駆動周波数を下げるように構成された高圧放電灯点灯装置。
The high pressure discharge lamp lighting device according to claim 1, wherein the resonance circuit includes an inductor connected in series to the high pressure discharge lamp,
The high pressure discharge lamp lighting device configured such that the control unit lowers the drive frequency of the full bridge circuit when the first period is shifted to the second period.
請求項1記載の高圧放電灯点灯装置において、前記第1の期間から前記第2の期間に移行する際に前記制御部が前記チョッパ回路の出力電圧を上昇させるように構成された高圧放電灯点灯装置。   2. The high pressure discharge lamp lighting device according to claim 1, wherein the control unit increases the output voltage of the chopper circuit when shifting from the first period to the second period. apparatus. 請求項1記載の高圧放電灯点灯装置において、前記フルブリッジ回路が該フルブリッジのスイッチング動作により共振電圧を発生させる共振回路を備え、
前記イグナイタ回路が、前記共振電圧を充電する充電回路、該充電回路に発生した電圧が所定値以上になると短絡する放電ギャップ、及び1次巻線が該放電ギャップに2次巻線が前記高圧放電灯に接続されるパルストランスからなり、
前記点灯検出手段が前記充電回路の電圧を検知する電圧検知回路からなる高圧放電灯点灯装置。
The high pressure discharge lamp lighting device according to claim 1, wherein the full bridge circuit includes a resonance circuit that generates a resonance voltage by a switching operation of the full bridge,
The igniter circuit charges the resonance voltage, a discharge gap that is short-circuited when a voltage generated in the charging circuit exceeds a predetermined value, and a primary winding in the discharge gap and a secondary winding in the high-voltage discharge. It consists of a pulse transformer connected to an electric light,
A high pressure discharge lamp lighting device comprising a voltage detection circuit in which the lighting detection means detects the voltage of the charging circuit.
請求項1記載の高圧放電灯点灯装置、高圧放電灯、該高圧放電灯が取り付けられるリフレクタ、及び少なくとも該高圧放電灯点灯装置を内包する筐体からなる光源装置。   A light source device comprising: the high pressure discharge lamp lighting device according to claim 1; a high pressure discharge lamp; a reflector to which the high pressure discharge lamp is attached; and a housing containing at least the high pressure discharge lamp lighting device. 高圧放電灯を始動するための方法であって、
(A)イグナイタ回路によって前記高圧放電灯に始動パルスを印加するステップ、
(B)前記イグナイタ回路において前記高圧放電灯の点灯開始を検出するステップ、
(C)点灯開始が検出された後の所定期間に、交流出力回路によって第1のピーク値以下の高周波電流を前記高圧放電灯に通電するステップ、及び
(D)前記所定期間経過後に、前記交流出力回路によって第1のピーク値よりも高い第2のピーク値の高周波電流を前記高圧放電灯に通電するステップ
からなり、
該第1の期間が0.5秒より長く3秒以下であり、該第2のピーク値が該第1のピーク値の1.2倍以上5倍以下である方法。
A method for starting a high pressure discharge lamp, comprising:
(A) applying a starting pulse to the high pressure discharge lamp by an igniter circuit;
(B) detecting the start of lighting of the high-pressure discharge lamp in the igniter circuit;
(C) energizing the high-pressure discharge lamp with a high-frequency current equal to or lower than a first peak value by an AC output circuit during a predetermined period after the start of lighting is detected; and (D) after the predetermined period has elapsed, Energizing the high-pressure discharge lamp with a high-frequency current having a second peak value higher than the first peak value by an output circuit;
The method, wherein the first period is longer than 0.5 seconds and not longer than 3 seconds, and the second peak value is not less than 1.2 times and not more than 5 times the first peak value.
請求項6記載の方法において、前記高圧放電灯にインダクタが直列接続され、前記ステップ(D)が前記交流出力回路の駆動周波数を下げるステップを含む方法。   The method according to claim 6, wherein an inductor is connected in series to the high-pressure discharge lamp, and the step (D) includes a step of reducing a driving frequency of the AC output circuit. 請求項6記載の方法において、前記ステップ(D)が前記交流出力回路の出力電圧を上昇させるステップを含む方法。   The method according to claim 6, wherein the step (D) includes a step of increasing an output voltage of the AC output circuit.
JP2008219182A 2008-08-28 2008-08-28 High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp Pending JP2010055915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219182A JP2010055915A (en) 2008-08-28 2008-08-28 High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219182A JP2010055915A (en) 2008-08-28 2008-08-28 High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp

Publications (1)

Publication Number Publication Date
JP2010055915A true JP2010055915A (en) 2010-03-11

Family

ID=42071614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219182A Pending JP2010055915A (en) 2008-08-28 2008-08-28 High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp

Country Status (1)

Country Link
JP (1) JP2010055915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132528A (en) * 2013-01-07 2014-07-17 Seiko Epson Corp Discharge lamp lighting device, discharge lamp lighting method and projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132528A (en) * 2013-01-07 2014-07-17 Seiko Epson Corp Discharge lamp lighting device, discharge lamp lighting method and projector

Similar Documents

Publication Publication Date Title
JP5193445B2 (en) High pressure discharge lamp lighting device and lighting fixture
US6975077B2 (en) High intensity discharge lamp ballast apparatus
US8115405B2 (en) High pressure discharge lamp lighting device and luminaire using same
JP4631817B2 (en) Discharge lamp lighting device and lighting fixture
EP1768468A2 (en) High intensity discharge lamp lighting device and illumination apparatus
US8198824B2 (en) Electronic ballast for restarting high-pressure discharge lamps in various states of operation
JP2004158273A (en) Lighting method and lighting device of high-pressure discharge lamp
JP4650795B2 (en) High pressure discharge lamp lighting device
JP2010080137A (en) High pressure discharge lamp lighting device and luminaire
JP5348497B2 (en) High pressure discharge lamp lighting device, projector, and high pressure discharge lamp starting method
JP2010055915A (en) High pressure discharge lamp lighting device, light source device, and starting method of high pressure discharge lamp
JP2010080138A (en) High-pressure discharge lamp lighting device, and lighting fixture
JP2007273439A (en) High-voltage discharge lamp lighting device and starting method
JP4752136B2 (en) Discharge lamp lighting device
JP2010108650A (en) Discharge lamp lighting device and lighting fixtu
JP4186788B2 (en) Electrodeless discharge lamp lighting device
GB2397182A (en) Gas discharge lamp driver
JP2005038814A (en) Discharge lamp lighting device, illumination device, and projector
JP4088049B2 (en) Discharge lamp lighting device
JP4399650B2 (en) High pressure discharge lamp lighting device
JP2006085962A (en) Cold-cathode tube lighting device
JP2002352987A (en) Electric discharge lamp lighting equipment
JP2006085992A (en) Discharge lamp lighting device
JP2004253301A (en) High-pressure discharge lamp lighting device
JP2010055823A (en) Electrodeless discharge lamp lighting device, and lighting fixture using the same