JP5329908B2 - Seismic reinforcement structure of existing building and its construction method - Google Patents

Seismic reinforcement structure of existing building and its construction method Download PDF

Info

Publication number
JP5329908B2
JP5329908B2 JP2008269635A JP2008269635A JP5329908B2 JP 5329908 B2 JP5329908 B2 JP 5329908B2 JP 2008269635 A JP2008269635 A JP 2008269635A JP 2008269635 A JP2008269635 A JP 2008269635A JP 5329908 B2 JP5329908 B2 JP 5329908B2
Authority
JP
Japan
Prior art keywords
frame
shape
approximately
shaped
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008269635A
Other languages
Japanese (ja)
Other versions
JP2010095963A (en
Inventor
恒久 松浦
敏郎 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2008269635A priority Critical patent/JP5329908B2/en
Publication of JP2010095963A publication Critical patent/JP2010095963A/en
Application granted granted Critical
Publication of JP5329908B2 publication Critical patent/JP5329908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、既存建物の耐震補強構造及びその工法に関し、特に、既存建物の柱と梁とで囲まれた架構内又は架構の側面に、補強部材を一体的に設置固定する既存建物の耐震補強構造及びその工法に関する。   The present invention relates to a seismic reinforcement structure for an existing building and a construction method thereof, and more particularly, seismic reinforcement of an existing building in which a reinforcing member is integrally installed and fixed in a frame surrounded by columns and beams of the existing building. It relates to the structure and its construction method.

従来の鉄筋コンクリート造(RC造)又は鉄骨鉄筋コンクリート造(SRC造)の既存建物の耐震補強構造及び工法としては、図11、図12に示すように、柱11、12と梁13、14とで囲まれた架構1内又は架構1の側面1sに枠付き鉄骨ブレースや鉄筋コンクリート造の補強壁などの補強部材4を設置固定して、建物の剛性と耐力を大きくしたものが知られている。この工法は、既存建物(架構)と補強部材との接合方法の違いから、あと施工アンカー工法、接着工法、鋼管コッター工法に大別される。   As shown in FIGS. 11 and 12, the conventional reinforced concrete structure (RC structure) or steel-framed reinforced concrete structure (SRC structure) is constructed with pillars 11 and 12 and beams 13 and 14 as shown in FIGS. It is known that a reinforcing member 4 such as a steel brace with a frame or a reinforcing wall made of reinforced concrete is installed and fixed in the frame 1 or the side surface 1s of the frame 1 to increase the rigidity and proof strength of the building. This construction method is roughly divided into a post-construction anchor method, a bonding method, and a steel pipe cotter method, depending on the difference in the joining method between the existing building (frame) and the reinforcing member.

あと施工アンカー工法は、補強部材の外周面に多数のスタッドを設け、柱や梁などにアンカー鉄筋を打設して、その部分をスパイラル鉄筋で補強した後、架構と補強部材との間にモルタルなどの充填材を充填する方法で、既存建物(架構)と補強部材とを一体化させる技術として広く利用されている。この種の工法は特許文献1などに記載されている。   The post-installed anchor method is to provide a large number of studs on the outer peripheral surface of the reinforcing member, place anchor reinforcing bars on pillars and beams, etc., reinforce the portions with spiral reinforcing bars, and then mortar between the frame and the reinforcing member. It is widely used as a technique for integrating an existing building (frame) and a reinforcing member by a method of filling a filler. This type of construction method is described in Patent Document 1 and the like.

接着工法は、架構(の構面)と補強部材(の外周面)との間をエポキシ樹脂などの接着材で接着する方法で、この接着工法は他の工法にも併用されている。この種の工法は特許文献2などに記載されている。   The bonding method is a method in which a frame (its surface) and a reinforcing member (its outer peripheral surface) are bonded with an adhesive such as an epoxy resin, and this bonding method is also used in other methods. This type of construction method is described in Patent Document 2 and the like.

鋼管コッター工法は、補強部材の外周面に多数のスタッドを設け、架構(の構面に設けた孔)に鋼管コッターを接着材で固定し、架構と補強部材との間にモルタルなどの充填材を充填する方式を採っている。この種の工法は特許文献3などに記載されている。   In the steel pipe cotter method, a large number of studs are provided on the outer peripheral surface of the reinforcing member, the steel pipe cotter is fixed to the frame (the hole provided in the frame) with an adhesive, and a filler such as mortar between the frame and the reinforcing member The method of filling is used. This type of construction method is described in Patent Document 3 and the like.

特開2007−332555公報JP 2007-332555 A 特開平11−71906号公報Japanese Patent Laid-Open No. 11-71906 特開2003−49547公報JP 2003-49547 A

しかしながら、従来のあと施工アンカー工法では、柱や梁にハンマードリルなどで孔を開けるため、工事中は大きな振動や騒音が発生し、建物を使用しながらの補強工事には採用できない、という問題がある。また、従来の接着工法では、振動や騒音の問題が発生することはない点であと施工アンカー工法よりも優れているものの、補強効果があと施工アンカー工法に比べて低下する、という問題がある。さらに、従来の鋼管コッター工法では、コアドリルなどの機械で躯体に孔を穿孔するため、コアドリルは大掛かりな機械で移動性が悪く、施工性がよいとは言い難く、また、穿孔作業の際に粉塵が飛散するため水が必要となり、その処理は煩雑にならざるを得ない、という問題がある。   However, with the conventional post-installation anchor method, holes are drilled in pillars and beams with a hammer drill, etc., so there is a problem that large vibration and noise occur during construction, and it cannot be adopted for reinforcement work while using buildings. is there. In addition, the conventional bonding method is superior to the construction anchor method in that vibration and noise problems do not occur, but there is a problem that the reinforcing effect is reduced compared to the post-construction anchor method. Furthermore, in the conventional steel pipe cotter method, holes are drilled in the housing with a machine such as a core drill, so the core drill is a large-scale machine that has poor mobility and is difficult to say that workability is good. Water is necessary because the water scatters, and there is a problem that the treatment must be complicated.

本発明は、このような従来の課題を解決するものであり、この種の既存建物の耐震補強構造及びその工法において、振動や騒音の発生を可及的に抑えること、あと施工アンカー工法などの在来工法と同等の補強効果を有すること、大掛かりな工具や機械を使用することなく、また水を必要とせず乾式で施工すること、そして、RC造又はSRC造の建物に関わらず適用すること、などを目的とする。   The present invention solves such a conventional problem. In the seismic reinforcement structure of this type of existing building and its construction method, it is possible to suppress the occurrence of vibration and noise as much as possible, the post-construction anchor method, etc. Has the same reinforcing effect as the conventional method, does not use large tools and machines, installs in a dry manner without the need for water, and applies regardless of RC or SRC buildings For purposes.

上記目的を達成するために、本発明の既存建物の耐震補強構造は、既存建物の柱と梁とで囲まれた架構内又は架構の側面に補強部材が設され、前記補強部材と前記架構との間に固化材が充填されて一体的に固定される既存建物の耐震補強構造において、前記補強部材と前記架構との間で、前記架構の構面に複数のシアキーが設固定され、前記各シアキーは、線形の板材で複数の板材の組み合わせからなり、略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の水平断面形状を有し、前記架構の構面にコンクリートカッターにより前記各シアキーを差し込み可能に線形で略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の平面形状にかつ柱筋又は梁筋に達しない深さに切り込み形成された複数の切り溝に差し込み設置され、固化材により固定される、ことを要旨とする。 To achieve the above object, seismic reinforcement structure of an existing building according to the present invention, reinforcement member is Installation on the side surface of the rack premises or Frame surrounded by the columns and beams of the existing buildings, the said reinforcing member in seismic reinforcement structure of an existing building solidifying material is fixed integrally filled between the Frame, in between said reinforcing member Frames, a plurality of shear keys are Installation fixed to Plane of the Frames Each of the shear keys is a linear plate material and is a combination of a plurality of plate materials, and has a horizontal cross-sectional shape of approximately X shape, approximately V shape, approximately T shape, approximately H shape, approximately U shape, approximately B shape, or approximately I shape. And has a substantially X-shaped, V-shaped, T-shaped, H-shaped, U-shaped, B-shaped, or I-shaped flat surface so that each shear key can be inserted into the frame by a concrete cutter. Multiple cuts formed in the shape and not deep enough to reach the column or beam Placed inserted into the kerf, it is fixed by the solidified material, and summarized in that.

この場合、補強部材に枠付き鉄骨ブレース又は鉄筋コンクリート造の補強壁が採用されることが好ましい In this case, it is preferable that the framed Steel Brace or reinforced concrete reinforcing wall is employed reinforcement member.

上記目的を達成するために、本発明の既存建物の耐震補強工法は、既存建物の柱と梁とで囲まれた架構内又は架構の側面に補強部材を設し、前記補強部材と前記架構との間に固化材を充填して一体的に固定する既存建物の耐震補強工法において、前記補強部材と前記架構との接合に複数のシアキーを用い、前記各シアキーに、線形の板材で複数の板材の組み合わせからなり、略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の水平断面形状を有するものを採用し、前記補強部材と前記架構との間で、前記架構の構面に前記各シアキーを設置するための複数の切り溝を、コンクリートカッターにより前記各シアキーを差し込み可能に線形で略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の平面形状にかつ柱筋又は梁筋に達しない深さに切り込み形成して、前記各シアキーを前記各切り溝に差し込み設置し、固化材により固定する、ことを要旨とする。 To achieve the above object, Seismic Retrofit for existing buildings of the present invention, a reinforcement member and Installation on the side surface of the rack premises or Frame surrounded by the columns and beams of the existing buildings, the said reinforcing member In the seismic retrofitting method for an existing building , which is fixed integrally by filling with a solidifying material between the frame, a plurality of shear keys are used for joining the reinforcing member and the frame, and a plurality of linear plate materials are used for each shear key. Which has a horizontal cross-sectional shape of substantially X shape, approximately V shape, approximately T shape, approximately H shape, approximately U shape, approximately B shape, or approximately I shape, Between the frame, a plurality of kerfs for installing each shear key on the frame surface of the frame are linear, approximately X-shaped, approximately V-shaped, approximately T-shaped A flat of approximately H shape, approximately U shape, approximately B shape, or approximately I shape Shape and form cut to a depth not reaching the pillar muscle or beam muscles, the installed plug to a respective shear keys each kerf and fixed by solid reduction material is summarized in that.

本発明の耐震補強構造及び工法は、上記の構成及び方法により、次のような格別な効果を奏する。
(1)架構の構面に複数の切り溝を切り込んでこれらの切り溝に板状のシアキーを差し込み、各切り溝とともに架構と補強部材との間に固化材を充填して、架構と補強部材とを接合するので、架構と補強部材とを確実かつ容易に一体化することができる。
(2)この場合、架構の構面に複数の切り溝をコンクリートカッターなどの小さい工具で切り込むことができ、そしてこれらの切り溝に板状のシアキーを差し込んで固化材で固定するので、架構の構面内に補強部材を設置固定する工事の際に、従来のあと施工アンカー工法のように、架構の構面に多数のアンカー鉄筋を打ち込むのと異なり、振動や騒音の発生を可及的に抑えることができ、この耐震補強工事を、建物を使用しながら実施することができる。
(3)しかも、各切り溝とともに架構と補強部材との間の間隙に固化材を充填し、この固化材の硬化後の摩擦力によって、架構と補強部材とを一体化し、併せて構面の切り溝に固化材の硬化により固定されたシアキーにより、架構と補強部材の一体性を高度に高めるので、少なくとも従来のあと施工アンカー工法などの在来工法と同等の補強効果を得ることができる。
(4)また、このような構造、工法を採ることで、架構の構面に複数の切り溝を切り込む作業、これらの切り溝に板状のシアキーを差し込む作業、各切り溝とともに架構と補強部材との間に固化材を充填する作業のいずれの場合でも、大掛かりな工具、機械は不要で、さらに水を必要とすることなく乾式で施工することができる。
(5)さらに、シアキーを差し込む切り溝は深さが40mm以内でよく、RC造又はSRC造の建物に関わらず適用することができる。
The seismic reinforcement structure and method of the present invention have the following special effects by the above-described configuration and method.
(1) A plurality of grooves are cut into the frame surface of the frame, plate-like shear keys are inserted into these grooves, and a solidification material is filled between the frame and the reinforcing member together with the grooves, and the frame and the reinforcing member Therefore, the frame and the reinforcing member can be reliably and easily integrated.
(2) In this case, a plurality of grooves can be cut into the frame of the frame with a small tool such as a concrete cutter, and plate shears are inserted into these grooves and fixed with a solidifying material. When installing and fixing reinforcement members in the construction surface, unlike the conventional post-installed anchor method, a large number of reinforcing bars are driven into the construction surface of the frame to generate vibration and noise as much as possible. This seismic reinforcement work can be carried out while using the building.
(3) Moreover, the gap between the frame and the reinforcing member is filled with a solidifying material together with each kerf, and the frame and the reinforcing member are integrated by the friction force after curing of the solidifying material. The sheer key fixed to the kerf by hardening of the solidifying material highly enhances the integrity of the frame and the reinforcing member, so that at least the same reinforcing effect as that of the conventional construction method such as the conventional post-construction anchor method can be obtained.
(4) Also, by adopting such a structure and construction method, the work of cutting a plurality of kerfs into the construction surface of the frame, the work of inserting a plate-like shear key into these kerfs, the frame and the reinforcing member together with each kerf In any case of filling the solidifying material between the two, a large-scale tool and machine are not required, and the construction can be performed dry without the need for water.
(5) Furthermore, the depth of the kerf into which the shear key is inserted may be within 40 mm, and can be applied regardless of the RC or SRC building.

次に、この発明を実施するための最良の形態について図を用いて説明する。図1乃至図5に第1の実施の形態を示している。図1に示すように、この既存建物の耐震補強構造は、既存建物の柱11、12と梁13、14とで囲まれた架構1と、この架構1内に一体的に設置固定される補強部材4とにより構成される。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment. As shown in FIG. 1, the seismic reinforcement structure of the existing building includes a frame 1 surrounded by columns 11 and 12 and beams 13 and 14 of the existing building, and a reinforcement that is integrally installed and fixed in the frame 1. And the member 4.

図1に示すように、架構1は、鉄筋コンクリート造の既存の建物の柱11、12と梁13、14とにより構成され、所定間隔で立設される柱11、12と上下に横設される梁13、14が剛接合されたラーメン構造になっている。この架構1の構面10、すなわち右柱11の左側面及び左柱12の右側面、並びに上梁13の下面及び下梁14の上面には、幅方向に2列かつ長さ方向に所定の間隔で複数個所に線形の切り溝2が切り込み形成される。これらの切り溝2は、コンクリートカッターなどの工具を使って、板材を差し込み可能な線形に形成され、板状のシアキー3が差し込み設置される。ここで用いるシアキー3は線形、特に直線状の板材の組み合わせからなるもので、この場合、図2に示すように、水平断面形状が略V形に形成されたアングル材が採用され、図3に示すように、切り溝2はこのシアキー3を差し込み可能に略X形又は略V形又は略T形の平面形状に、かつ各柱11、12の柱筋、各梁13、14の梁筋に達しない深さに切り込み形成される。そして、これらの切り溝2にシアキー3、すなわちアングル材3が差し込み設置される。   As shown in FIG. 1, the frame 1 is composed of columns 11 and 12 and beams 13 and 14 of an existing building made of reinforced concrete, and is laid horizontally above and below the columns 11 and 12 standing at a predetermined interval. It has a rigid frame structure in which the beams 13 and 14 are rigidly joined. The frame 10 of the frame 1, that is, the left side of the right column 11 and the right side of the left column 12, the lower surface of the upper beam 13, and the upper surface of the lower beam 14 have two rows in the width direction and a predetermined length in the length direction. Linear kerfs 2 are cut and formed at a plurality of positions at intervals. These kerfs 2 are formed in a linear shape into which a plate material can be inserted using a tool such as a concrete cutter, and a plate-like shear key 3 is inserted and installed. The shear key 3 used here is composed of a combination of linear, in particular, linear plate materials. In this case, as shown in FIG. 2, an angle material having a substantially V-shaped horizontal cross section is adopted, and FIG. As shown in the figure, the kerf 2 has a substantially X-shaped, V-shaped or T-shaped planar shape so that the shear key 3 can be inserted, and the column bars of the columns 11 and 12 and the beam bars of the beams 13 and 14. Cut to a depth not reached. Then, a shear key 3, that is, an angle member 3 is inserted and installed in these kerfs 2.

図1に示すように、補強部材4は建物の剛性および耐力を大きくする部材で、この場合、補強部材4に枠付き鉄骨ブレースが採用される。鉄骨ブレース4は枠組41と斜材42とからなり、その外周にスタッドボルト5とスパイラル筋(螺旋状の補強鉄筋)6とを備える。枠組41は、架構1の構面10に接合可能に全体が略四角形の枠形に構成される。この場合、枠材にH形鋼が採用され、H形鋼の一方の溝が外周方向に他方の溝が内周方向に向けて正面視略ロ形に組み立てられる。この枠組41内に斜材42がV字形に接合される。この場合、斜材はH形鋼からなり、枠組41の上部の両角部と下部の中央との間にV字形に組み付けられる。このようにして枠付き鉄骨ブレース4の外周に、枠組41と架構1の接合性を高めるために、図4及び図5に示すように、複数のスタッドボルト5が枠組41の外周面に垂直に固着され、この場合、H形鋼の溝の底面で幅方向中央に所定の間隔で1列に溶接される。さらに、鉄骨ブレース4と架構1との接合部に発生する割裂を防止するため、スパイラル筋6が枠組41の各部と平行に配筋され、この場合、H形鋼の溝内に通して配筋される。   As shown in FIG. 1, the reinforcing member 4 is a member that increases the rigidity and proof stress of the building. In this case, a steel frame brace with a frame is adopted as the reinforcing member 4. The steel brace 4 is composed of a frame 41 and a diagonal member 42, and has a stud bolt 5 and a spiral reinforcement (spiral reinforcing reinforcement) 6 on the outer periphery thereof. The frame 41 is formed in a substantially rectangular frame shape so that it can be joined to the structural surface 10 of the frame 1. In this case, an H-shaped steel is adopted as the frame material, and one groove of the H-shaped steel is assembled in a substantially B shape when viewed from the front with the other groove facing the outer circumferential direction. A diagonal member 42 is joined in a V shape within the frame 41. In this case, the diagonal member is made of H-shaped steel, and is assembled in a V shape between the upper corners of the frame 41 and the lower center. In this way, in order to improve the bondability of the frame 41 and the frame 1 to the outer periphery of the framed steel brace 4, a plurality of stud bolts 5 are perpendicular to the outer peripheral surface of the frame 41 as shown in FIGS. 4 and 5. In this case, it is welded in a row at a predetermined interval in the center in the width direction at the bottom of the groove of the H-shaped steel. Furthermore, in order to prevent splitting occurring at the joint between the steel brace 4 and the frame 1, the spiral bars 6 are arranged in parallel with each part of the frame 41, and in this case, the bars are passed through the grooves of the H-shaped steel. Is done.

このようにして架構1に枠付き鉄骨ブレース4が設置され、構面10の各切り溝2、及び架構1と枠付き鉄骨ブレース4の枠組41との間の間隙にエポキシ樹脂接着材、グラウト材、コンクリートなどの固化材が充填されて、架構1と枠付き鉄骨ブレース4が接合される。この固化材の硬化後の摩擦力によって、架構1と枠付き鉄骨ブレース4は一体化され、併せて構面10の切り溝2に固化材の硬化により固定されたシアキー3により、架構1と枠付き鉄骨ブレース4の一体性が高度に高められ、さらに枠付き鉄骨ブレース4の外周に埋設されたスタッドボルト5及びスパイラル筋6により、枠付き鉄骨ブレース4と固化材との接合性が高められて、地震時に架構1と枠付き鉄骨ブレース4の間で応力伝達は十分となり、架構1と枠付き鉄骨ブレース4の間でせん断力が十分に伝達される。これにより、建物の剛性および耐力を大きくする構造を得ることができる。   In this way, the framed steel brace 4 is installed in the frame 1, and an epoxy resin adhesive and grout material are provided in each groove 2 of the frame 10 and the gap between the frame 1 and the frame 41 of the framed steel brace 4. Then, the solidified material such as concrete is filled, and the frame 1 and the framed steel brace 4 are joined. The frame 1 and the framed steel brace 4 are integrated by the frictional force after the solidifying material is hardened, and the frame 1 and the frame are fixed by the shear key 3 fixed to the kerf 2 of the structural surface 10 by the hardening of the solidifying material. The unity of the steel brace 4 with the frame is highly enhanced, and the joint strength between the steel brace 4 with the frame and the solidified material is enhanced by the stud bolt 5 and the spiral reinforcement 6 embedded in the outer periphery of the framed steel brace 4. In the event of an earthquake, the stress transmission between the frame 1 and the framed steel brace 4 is sufficient, and the shearing force is sufficiently transmitted between the frame 1 and the framed steel brace 4. Thereby, the structure which enlarges the rigidity and proof stress of a building can be obtained.

続いて、この補強構造の工法について図1、さらに図6及び図7を用いて説明する。まず、図6に示すように、架構1の構面10、すなわち右柱11の左側面及び左柱12の右側面、並びに上梁13の下面及び下梁14の上面に、シアキー3を設置するための切り溝2を切り込み形成する。この場合、切り溝2を構面10に幅方向に2列かつ長さ方向に所定の間隔で複数個所に、コンクリートカッターCなどの工具により、板材を差し込み可能に線形(直線状)に切る。この工法では、シアキー3に線形(直線状)の板材でかつ複数の板材の組み合わせからなるものを使用し、この場合、水平断面形状が略V形に形成されたアングル材を採用する。そこで、このシアキー3を切り溝2に差し込み可能に、各切り溝2を線形(直線状)で、略X形又は略V形又は略T形の平面形状に、かつ各柱11、12の柱筋S1、各梁13、14の梁筋S2に達しない深さに切り込む。そして、図7に示すように、これらの切り溝2にシアキーのアングル材3を差し込み設置する。   Subsequently, a method for constructing the reinforcing structure will be described with reference to FIG. 1 and FIGS. 6 and 7. First, as shown in FIG. 6, the shear key 3 is installed on the structural surface 10 of the frame 1, that is, the left side surface of the right column 11 and the right side surface of the left column 12, and the lower surface of the upper beam 13 and the upper surface of the lower beam 14. A cut groove 2 is formed by cutting. In this case, the kerfs 2 are cut linearly (in a straight line) so that the plate material can be inserted into a plurality of locations on the construction surface 10 in two rows in the width direction and at predetermined intervals in the length direction using a tool such as a concrete cutter C. In this construction method, a linear (straight) plate material composed of a combination of a plurality of plate materials is used for the shear key 3, and in this case, an angle material having a horizontal cross-sectional shape formed in a substantially V shape is employed. Therefore, the shear key 3 can be inserted into the kerf 2, and each kerf 2 is linear (straight), has a substantially X-shaped, substantially V-shaped or substantially T-shaped planar shape, and the pillars of the pillars 11, 12. Cut to a depth that does not reach the beam S1 and the beam S2 of each beam 13,14. Then, as shown in FIG. 7, a shear key angle member 3 is inserted and installed in these kerfs 2.

次に、図1を参照すると、補強部材4に枠付き鉄骨ブレースを採用し、枠付き鉄骨ブレースを組み立てて、架構1の構面10内に設置する。枠付き鉄骨ブレース4は枠組41、斜材42、スタッドボルト5、スパイラル筋6により組み立てられる。枠組41を架構1の構面10に接合可能に、全体を略四角形の枠形に構成する。この場合、枠材にH形鋼を使用し、H形鋼の一方の溝を外周方向に他方の溝を内周方向に向けて正面視略ロ形に組み立てる。そして、この枠組41内に斜材42をV字形に接合する。この場合、斜材にH形鋼を使用し、枠組41の上部の両角部と下部の中央との間にV字形に組み付ける。このようにして枠付き鉄骨ブレース4の外周に複数のスタッドボルト5及びスパイラル筋6を取り付ける。複数のスタッドボルト5は枠組41の外周面に垂直に固着し、この場合、H形鋼の溝の底面で幅方向中央に所定の間隔で1列に溶接する。スパイラル筋6は枠組41の各部と平行に配筋し、この場合、H形鋼の溝内に通して配筋する。   Next, referring to FIG. 1, a framed steel brace is adopted as the reinforcing member 4, and the framed steel brace is assembled and installed in the frame 10 of the frame 1. The framed steel brace 4 is assembled by a frame 41, diagonal members 42, stud bolts 5, and spiral bars 6. The entire frame 41 is formed into a substantially rectangular frame shape so that the frame 41 can be joined to the structural surface 10 of the frame 1. In this case, an H-shaped steel is used for the frame member, and one groove of the H-shaped steel is assembled in a substantially B shape when viewed from the front with the other groove facing the inner circumferential direction. And the diagonal member 42 is joined in this frame 41 in V shape. In this case, H-shaped steel is used for the diagonal member and is assembled in a V shape between the upper corners of the frame 41 and the lower center. In this way, a plurality of stud bolts 5 and spiral bars 6 are attached to the outer periphery of the framed steel brace 4. The plurality of stud bolts 5 are fixed to the outer peripheral surface of the frame 41 perpendicularly, and in this case, the stud bolts 5 are welded in a row at a predetermined interval to the center in the width direction at the bottom of the groove of the H-shaped steel. The spiral reinforcement 6 is arranged in parallel with each part of the frame 41, and in this case, the reinforcement is passed through the groove of the H-shaped steel.

そして、図示を省略するが、鉄骨ブレース4の枠組41と架構1との間を型枠で密閉し、架構1の構面10の切り溝2、及び架構1と枠組41との間の間隙にエポキシ樹脂接着材、グラウト材、コンクリートなどの固化材を充填して、架構1と枠付き鉄骨ブレース4を接合する。   Then, although not shown, the space between the frame 41 of the steel brace 4 and the frame 1 is sealed with a mold, and the gap 2 between the frame 10 of the frame 1 and the gap between the frame 1 and the frame 41 is formed. A solidified material such as an epoxy resin adhesive, a grout material, or concrete is filled to join the frame 1 and the framed steel brace 4 together.

以上説明したように、この耐震補強構造及び工法では、架構1の構面10に複数の切り溝2を切り込んでこれらの切り溝2に板状のシアキー3を差し込み、各切り溝2とともに架構1と枠付き鉄鋼ブレース4との間に固化材を充填して、架構1と枠付き鉄骨ブレース4とを接合するので、架構1と枠付き鉄骨ブレース4とを確実かつ容易に一体化することができる。この場合、架構1の構面10にコンクリートカッターCなどの小さい工具を使って複数の切り溝2を簡単に切り込むことができ、そして、これらの切り溝2に板状のシアキー3を差し込んで固化材で固定するので、架構1の構面10内に枠付き鉄骨ブレース4を設置固定する工事の際に、従来のあと施工アンカー工法のように、架構の構面に多数のタンカー鉄筋を打ち込むのと異なり、振動や騒音を大幅に低減することができ、この耐震補強工事を、建物を使用しながら実施することができる。しかも、構面10の各切り溝2、及び架構1と枠付き鉄骨ブレース4の枠組41との間の間隙にエポキシ樹脂接着材、グラウト材、コンクリートなどの固化材を充填し、この固化材の硬化後の摩擦力によって、架構1と枠付き鉄骨ブレース4とを一体化し、併せて構面10の各切り溝2に固化材の硬化により固定されたシアキー3により、架構1と枠付き鉄骨ブレース4の一体性を高度に高めるので、少なくとも従来のあと施工アンカー工法などの在来工法と同等の補強効果を得ることができる。また、このような補強構造及び工法を採ることにより、各作業において大掛かりな工具や機械を使用することがなく、また水を必要とせず乾式で施工することができる。さらに、切り溝2に必要な深さは40mm以内でよく、この補強構造及び工法をRC造又はSRC造の建物に関わらず適用することができる。   As described above, in this seismic reinforcement structure and construction method, a plurality of kerfs 2 are cut into the construction surface 10 of the frame 1, and plate-like shear keys 3 are inserted into these kerfs 2, together with the kerfs 2, the frame 1. Since the solidified material is filled between the frame 1 and the framed steel brace 4 and the frame 1 and the framed steel brace 4 are joined together, the frame 1 and the framed steel brace 4 can be reliably and easily integrated. it can. In this case, a plurality of kerfs 2 can be easily cut into the framing surface 10 of the frame 1 using a small tool such as a concrete cutter C, and a plate-like shear key 3 is inserted into these kerfs 2 and solidified. Because it is fixed with the material, when constructing and fixing the framed steel brace 4 in the structural surface 10 of the frame 1, a number of tanker rebars are driven into the frame surface as in the conventional post-installed anchor method. Unlike this, vibration and noise can be greatly reduced, and this seismic reinforcement work can be carried out while using the building. Moreover, a solidifying material such as an epoxy resin adhesive, a grout material, or a concrete is filled in each gap 2 of the structural surface 10 and a gap between the frame 1 and the frame 41 of the framed steel brace 4. The frame 1 and the framed steel brace 4 are integrated with each other by the frictional force after hardening, and the frame 1 and the framed steel brace are fixed together by shear keys 3 fixed to the kerfs 2 of the frame 10 by hardening of the solidified material. Since the unity of 4 is highly enhanced, it is possible to obtain at least a reinforcing effect equivalent to that of a conventional method such as a conventional post-construction anchor method. Further, by adopting such a reinforcing structure and construction method, large-scale tools and machines are not used in each work, and it is possible to perform a dry construction without requiring water. Furthermore, the depth required for the kerf 2 may be within 40 mm, and this reinforcing structure and construction method can be applied regardless of RC or SRC buildings.

図8及び図9に本発明の第2の実施の形態を示している。第2の実施の形態では、シアキーの形状及び構造と切り溝の形状のみが第1の実施の形態と異なり、その他の点は第1の実施の形態と共通である。この耐震補強構造及び工法では、シアキーに線形(直線状)の板材でかつ複数の板材の組み合わせからなるものを採用するが、この場合、図9に示すように、シアキー31を、水平断面形状が略I形形状を組み合わせてなる略II形の溝形鋼32と、この溝形鋼32の中間面上に固着したスタッドボルト33とにより構成する。また、切り溝は、コンクリートカッターなどの工具を使って、板材を差し込み可能に線形(直線状)に切り込み形成するが、この場合、図8に示すように、切り溝21を、当該シアキー31を差し込み可能に線形(直線状)で、略I形形状の組み合わせからなる略II形の平面形状に、かつ各柱の柱筋、各梁の梁筋に達しない深さに切り込む。そして、これらの切り溝21に溝形鋼32の両側面を差し込み、スタッドボルト33を溝形鋼32を介して架構1の構面10に設置する。このようにしても第1の実施の形態と同様の作用効果を奏することができる。   8 and 9 show a second embodiment of the present invention. In the second embodiment, only the shape and structure of the shear key and the shape of the kerf are different from the first embodiment, and the other points are common to the first embodiment. In this seismic reinforcement structure and construction method, a sheer key that is a linear (straight) plate material and a combination of a plurality of plate materials is employed. In this case, as shown in FIG. A substantially II-shaped groove steel 32 formed by combining substantially I-shapes, and a stud bolt 33 fixed on the intermediate surface of the groove steel 32 are formed. Further, the kerf is formed in a linear (straight) shape so that a plate material can be inserted by using a tool such as a concrete cutter. In this case, as shown in FIG. It is linear (straight) so that it can be inserted, and is cut into a substantially II-shaped planar shape consisting of a combination of approximately I-shaped shapes, and to a depth that does not reach the column reinforcement of each column and the beam reinforcement of each beam. Then, both side surfaces of the grooved steel 32 are inserted into these kerfs 21, and the stud bolts 33 are installed on the structural surface 10 of the frame 1 through the grooved steel 32. Even if it does in this way, there can exist the same effect as 1st Embodiment.

図10に第3の実施の形態を示している。なお、図10に示す耐震補強構造は右側の半面がこの実施の形態によるもので、左側の半面が従来のあと施工アンカー工法によるものである。第3の実施の形態では、補強部材に鉄筋コンクリート造(RC造)の補強壁が採用される。この補強構造及び工法では、架構1の構面10に、第1の実施の形態と同様に、切り溝2を線形(直線状)で略X形又は略V形又は略T形の平面形状に、かつ各柱11、12の柱筋、各梁13、14の梁筋に達しない深さに切り込み形成し、これらの切り溝2に線形(直線状)の板材からなるシアキー3、この場合、アングル材3を差し込み設置して、その部分にスパイラル筋6を配筋する。そして、これらのシアキー3を利用して補強壁4の鉄筋43を配筋した後、コンクリート44を打設する。このようにして架構1内に補強壁4を一体的に設置固定する。このようにしても第1の実施の形態と同様の作用効果を奏することができる。   FIG. 10 shows a third embodiment. In the seismic reinforcement structure shown in FIG. 10, the right half is according to this embodiment, and the left half is according to a conventional post-construction anchor method. In the third embodiment, a reinforced concrete (RC) reinforcing wall is employed as the reinforcing member. In this reinforcing structure and construction method, the kerf 2 is linear (straight) in a plane shape of approximately X shape, approximately V shape, or approximately T shape on the structural surface 10 of the frame 1 as in the first embodiment. In addition, a shear key 3 made of a linear (straight) plate material is formed in the kerf 2 at a depth not reaching the beam of each column 11, 12 and the beam of each beam 13, 14, The angle member 3 is inserted and installed, and a spiral line 6 is arranged in that part. And after arranging the reinforcing bar 43 of the reinforcement wall 4 using these shear keys 3, the concrete 44 is laid. In this manner, the reinforcing wall 4 is integrally installed and fixed in the frame 1. Even if it does in this way, there can exist the same effect as 1st Embodiment.

なお、上記各実施の形態では、シアキーを略V形又は略I形の水平断面形状に形成し、切り溝を、このシアキーを差し込み可能に略X形若しくは略V形若しくは略T形に切り込み形成したが、シアキーの形状はこれに限定されるものではなく、線形(直線状)の板材の組み合わせからなるものであればよく、例えば略X形、略T形、略H形、略コ形、略ロ形など種々の水平断面形状のものに適宜変更することができ、切り溝を線形(直線状)で、シアキーの形状に応じて差し込み可能に、例えば略X形、略T形、略H形、略コ形、略ロ形など種々の平面形状に適宜変更することができる。   In each of the above embodiments, the shear key is formed in a substantially V-shaped or substantially I-shaped horizontal cross-sectional shape, and the cut groove is formed in a substantially X-shaped, substantially V-shaped, or substantially T-shaped so that the shear key can be inserted. However, the shape of the shear key is not limited to this, and may be any combination of linear (straight) plate materials, for example, approximately X shape, approximately T shape, approximately H shape, approximately U shape, It can be appropriately changed to various horizontal cross-sectional shapes such as a generally round shape, and the kerf is linear (straight) and can be inserted according to the shape of the shear key, for example, approximately X-shaped, approximately T-shaped, approximately H-shaped It can be appropriately changed to various planar shapes such as a shape, a substantially U shape, and a substantially B shape.

また、上記各実施の形態では、既存建物の柱と梁とで囲まれた架構内に、補強部材を一体的に設置固定する既存建物の耐震補強構造及びその工法について説明したが、この発明は既存建物の柱と梁とで囲まれた架構の側面に補強部材を一体的に設置固定する場合(図12参照)にも同様に適用することができ、この場合、架構の側面、すなわち補強部材が対接される架構の構面に、板材を差し込み可能な線形(直線状)の切り溝を形成して、当該切り溝に板状のシアキーを差し込み設置し、切り溝、及び架構と補強部材との間に固化材を充填して、架構と補強部材を接合すればよい。また、この場合、シアキーを略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形などの水平断面形状に形成し、切り溝を、シアキーを差し込み可能に略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形などの平面形状に、かつ柱筋又は梁筋に達しない適宜の深さに切り込めばよい。このようにしても上記各実施の形態と同様の作用効果を得ることができる。   Further, in each of the above embodiments, the earthquake-proof reinforcement structure of an existing building and its construction method in which the reinforcing member is integrally installed and fixed in the frame surrounded by the columns and beams of the existing building have been described. The present invention can be similarly applied to a case where a reinforcing member is integrally installed and fixed to a side surface of a frame surrounded by columns and beams of an existing building (see FIG. 12). A linear (straight) kerf that can be inserted into a plate material is formed on the frame surface of the frame that is in contact with each other, and a plate-like shear key is inserted into the kerf, and the kerf, frame, and reinforcing member are installed. What is necessary is just to fill with a solidification material between and to join a frame and a reinforcement member. In this case, the shear key is formed in a horizontal cross-sectional shape such as approximately X-shaped, approximately V-shaped, approximately T-shaped, approximately H-shaped, approximately U-shaped, approximately B-shaped or approximately I-shaped, and the groove is inserted into the shear key. Possibly cut into a flat shape such as approximately X, approximately V, approximately T, approximately H, approximately U, approximately B or approximately I, and to an appropriate depth that does not reach the column or beam. Just put it in. Even if it does in this way, the effect similar to said each embodiment can be acquired.

本発明の第1の実施の形態における既存建物の耐震補強構造を示す正面断面図Front sectional view showing the seismic reinforcement structure of the existing building in the first embodiment of the present invention 同補強構造に採用するシアキーを示す水平断面図Horizontal sectional view showing the shear key used in the reinforcement structure 同補強構造に採用する架構の構面に形成する切り溝を示す平面図Plan view showing kerfs formed on the construction surface of the frame used in the reinforcement structure 同補強構造の要部を示す断面図(梁が架け渡される方向に対して直角の垂直断面図)Sectional view showing the main part of the reinforcing structure (vertical sectional view perpendicular to the direction in which the beam is bridged) 同補強構造の要部を示す断面図(梁が架け渡される方向に対して平行の垂直断面図)Sectional view showing the main part of the reinforcing structure (vertical sectional view parallel to the direction in which the beam is bridged) (a)本発明の第1の実施の形態における既存建物の耐震補強工法のうち、特に、架構の構面に切り溝を切り込み形成する状態を示す平面図(b)その断面図(A) Of the seismic reinforcement method for an existing building according to the first embodiment of the present invention, in particular, a plan view showing a state in which a cut groove is cut and formed in the frame of the frame (b) a sectional view thereof (a)本発明の第1の実施の形態における既存建物の耐震補強方法のうち、特に、架構の構面の切り溝にシアキーを差し込み設置する状態を示す平面図(b)その断面図(A) The top view which shows the state which inserts and installs a shear key in the cut groove of the structural surface of a frame among the seismic reinforcement methods of the existing building in the 1st Embodiment of this invention (b) The sectional drawing 本発明の第2の実施の形態における既存建物の耐震補強構造及び工法を示す部分正面断面図Partial front sectional view showing the seismic reinforcement structure and method of an existing building in the second embodiment of the present invention 同補強構造及び工法に採用するシアキーを示す斜視図Perspective view showing shear key used in the reinforcing structure and construction method 本発明の第3の実施の形態における既存建物の耐震補強構造及び工法を示す正面断面図Front sectional drawing which shows the seismic reinforcement structure and construction method of the existing building in the 3rd Embodiment of this invention (a)既存建物の柱と梁とで囲まれた架構内に枠付き鉄骨ブレースなどの補強部材を一体的に設置固定する従来の既存建物の耐震補強構造及びその工法の基本的な概念を示す図(b)(a)におけるA−A線断面図(A) Shows the basic concept of a conventional seismic reinforcement structure and its construction method for a conventional building in which a reinforcing member such as a steel brace with a frame is integrally installed and fixed in a frame surrounded by columns and beams of the existing building. A-A line sectional view in figures (b) and (a) (a)既存建物の柱と梁とで囲まれた架構の側面に枠付き鉄骨ブレースなどの補強部材を一体的に設置固定する既存建物の耐震補強構造及びその工法の基本的な概念を示す図(b)(a)におけるB−B線断面図(A) The figure which shows the basic concept of the seismic reinforcement structure of the existing building which integrally installs and fixes reinforcement members, such as a framed steel brace, on the side of the frame surrounded by the pillar and beam of the existing building, and its construction method (B) BB sectional view in (a)

符号の説明Explanation of symbols

1 架構
10 構面
11、12 柱
S1 柱筋
13、14 梁
S2 梁筋
2 切り溝
21 切り溝
3 シアキー
31 シアキー
32 溝形鋼
33 スタッドボルト
4 補強部材(枠付き鉄骨ブレース、鉄筋コンクリート造の補強壁)
41 枠組
42 斜材
43 鉄筋
44 コンクリート
5 スタッドボルト
6 スパイラル筋
C コンクリートカッター
DESCRIPTION OF SYMBOLS 1 Frame 10 Construction surface 11, 12 Column S1 Column reinforcement 13, 14 Beam S2 Beam reinforcement 2 Cut groove 21 Cut groove 3 Shea key 31 Shea key 32 Channel steel 33 Stud bolt 4 Reinforcement member (framed steel brace, reinforced concrete reinforcement wall )
41 Frame 42 Diagonal 43 Reinforcing bar 44 Concrete 5 Stud bolt 6 Spiral bar C Concrete cutter

Claims (3)

既存建物の柱と梁とで囲まれた架構内又は架構の側面に補強部材が設され、前記補強部材と前記架構との間に固化材が充填されて一体的に固定される既存建物の耐震補強構造において、
前記補強部材と前記架構との間で、前記架構の構面に複数のシアキーが設固定され、
前記各シアキーは、線形の板材で複数の板材の組み合わせからなり、略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の水平断面形状を有し、前記架構の構面にコンクリートカッターにより前記各シアキーを差し込み可能に線形で略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の平面形状にかつ柱筋又は梁筋に達しない深さに切り込み形成された複数の切り溝に差し込み設置され、固化材により固定される
ことを特徴とする既存建物の耐震補強構造。
Existing Buildings reinforcement member to the side of the rack premises or Frame surrounded by the columns and beams of existing buildings are Installation solidified material between said reinforcing member Frames are fixed integrally filled In the seismic reinforcement structure of
In between it said reinforcing member Frames, a plurality of shear keys are Installation fixed to Plane of the Frames,
Each of the shear keys is a linear plate material and is a combination of a plurality of plate materials, and has a horizontal cross-sectional shape of approximately X shape, approximately V shape, approximately T shape, approximately H shape, approximately U shape, approximately B shape, or approximately I shape. In addition, the plane shape of the linear shape is substantially X-shaped, substantially V-shaped, substantially T-shaped, substantially H-shaped, substantially U-shaped, substantially B-shaped, or substantially I-shaped so that each shear key can be inserted into the surface of the frame by a concrete cutter. And inserted into a plurality of kerfs formed at a depth not reaching the column or beam, and fixed by a solidifying material .
A seismic reinforcement structure for existing buildings.
補強部材に枠付き鉄骨ブレース又は鉄筋コンクリート造の補強壁が採用される請求項1に記載の既存建物の耐震補強構造。 The seismic reinforcement structure for an existing building according to claim 1, wherein a steel brace with a frame or a reinforcing wall made of reinforced concrete is adopted as the reinforcing member . 既存建物の柱と梁とで囲まれた架構内又は架構の側面に補強部材を設置し、前記補強部材と前記架構との間に固化材を充填して一体的に固定する既存建物の耐震補強工法において、
前記補強部材と前記架構との接合に複数のシアキーを用い、
前記各シアキーに、線形の板材で複数の板材の組み合わせからなり、略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の水平断面形状を有するものを採用し、
前記補強部材と前記架構との間で、前記架構の構面に前記各シアキーを設置するための複数の切り溝を、コンクリートカッターにより前記各シアキーを差し込み可能に線形で略X形又は略V形又は略T形又は略H形又は略コ形又は略ロ形又は略I形の平面形状にかつ柱筋又は梁筋に達しない深さに切り込み形成して、
前記各シアキーを前記各切り溝に差し込み設置し、固化材により固定する、
ことを特徴とする既存建物の耐震補強工法
Seismic reinforcement of an existing building in which a reinforcing member is installed in the frame surrounded by columns and beams of the existing building or on the side of the frame, and a solidifying material is filled between the reinforcing member and the frame and fixed integrally. In the construction method,
A plurality of shear keys are used for joining the reinforcing member and the frame,
Each of the shear keys is a linear plate material, which is a combination of a plurality of plate materials, and has a horizontal cross-sectional shape of approximately X shape, approximately V shape, approximately T shape, approximately H shape, approximately U shape, approximately B shape, or approximately I shape. Adopt the thing,
Between the reinforcing member and the frame, a plurality of kerfs for installing the shear keys on the frame surface of the frame are linear and substantially X-shaped or substantially V-shaped so that the shear keys can be inserted by a concrete cutter. Alternatively, a substantially T-shaped or substantially H-shaped or substantially U-shaped or substantially B-shaped or substantially I-shaped planar shape is formed by cutting to a depth that does not reach the column or beam.
Insert each shear key into each kerf and fix it with a solidifying material.
A seismic reinforcement method for existing buildings .
JP2008269635A 2008-10-20 2008-10-20 Seismic reinforcement structure of existing building and its construction method Active JP5329908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269635A JP5329908B2 (en) 2008-10-20 2008-10-20 Seismic reinforcement structure of existing building and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269635A JP5329908B2 (en) 2008-10-20 2008-10-20 Seismic reinforcement structure of existing building and its construction method

Publications (2)

Publication Number Publication Date
JP2010095963A JP2010095963A (en) 2010-04-30
JP5329908B2 true JP5329908B2 (en) 2013-10-30

Family

ID=42257836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269635A Active JP5329908B2 (en) 2008-10-20 2008-10-20 Seismic reinforcement structure of existing building and its construction method

Country Status (1)

Country Link
JP (1) JP5329908B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981224B2 (en) * 2012-05-29 2016-08-31 株式会社安藤・間 Seismic reinforcement structure and method of existing building
JP6159591B2 (en) * 2013-06-27 2017-07-05 株式会社長谷工コーポレーション Additional striking reinforcement structure for existing pillars
CN109610654B (en) * 2018-12-07 2020-05-19 青岛理工大学 Prefabricated assembly type double-steel-plate concrete shear wall connecting assembly and using method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100869U (en) * 1987-01-19 1989-07-06
JPH01158153A (en) * 1987-12-15 1989-06-21 Mitsui Constr Co Ltd Steel pipe concrete post
JPH0647196U (en) * 1992-12-08 1994-06-28 川崎重工業株式会社 Anchor for fixing outer tank liner plate in low temperature storage tank
JP2001254519A (en) * 2000-03-09 2001-09-21 Hazama Gumi Ltd Reinforcing construction and reinforcing method using steel plate with joint bar
JP4031919B2 (en) * 2001-08-03 2008-01-09 戸田建設株式会社 Seismic control and seismic reinforcement structure for existing buildings

Also Published As

Publication number Publication date
JP2010095963A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5113376B2 (en) Reinforcement structure of the frame
JP4942475B2 (en) Reinforcement method and structure of existing columns
JP4277212B2 (en) Seismic reinforcement structure
JP5329908B2 (en) Seismic reinforcement structure of existing building and its construction method
JP2012112218A (en) Method for constructing new foundation using existing pile, and foundation constructed by the method
JP2021071026A (en) Column-beam joint structure
JP6429652B2 (en) Stress transmission structure between seismic wall and lower beam in concrete column beam frame
JP7158231B2 (en) Composite column, bridge pier using same, construction method
JP2009046829A (en) Aseismatic reinforcing wall
JP2010090630A (en) Reinforcing member joint structure
KR101652621B1 (en) Aseismic structure for existing building
JP5934033B2 (en) Seismic reinforcement structure and method using compression braces
JP2005248651A (en) Earthquake resistant reinforcing structure
JP3991876B2 (en) Seismic reinforcement structure
JP2011021379A (en) Reinforcing method for existing building and reinforcing structure
JP3851563B2 (en) Frame reinforcement structure and its construction method
JP5981224B2 (en) Seismic reinforcement structure and method of existing building
JP4759301B2 (en) Seismic reinforcement method for buildings
JP2021063337A (en) Reinforcement structure of wooden member and reinforcement method of wooden member
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP6083001B1 (en) Reinforcement structure of building
JP4092651B2 (en) Seismic reinforcement structure for existing buildings
JP5926985B2 (en) Method for reinforcing steel structure and steel structure
JP2005023657A (en) Seismically strengthening method for reinforced concrete structure
JP2012112210A (en) Earthquake-resisting wall and construction method of earthquake-resisting wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5329908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350