JP5329332B2 - Ice machine - Google Patents

Ice machine Download PDF

Info

Publication number
JP5329332B2
JP5329332B2 JP2009176968A JP2009176968A JP5329332B2 JP 5329332 B2 JP5329332 B2 JP 5329332B2 JP 2009176968 A JP2009176968 A JP 2009176968A JP 2009176968 A JP2009176968 A JP 2009176968A JP 5329332 B2 JP5329332 B2 JP 5329332B2
Authority
JP
Japan
Prior art keywords
ice making
water
water supply
time
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009176968A
Other languages
Japanese (ja)
Other versions
JP2011033206A (en
Inventor
慎吾 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009176968A priority Critical patent/JP5329332B2/en
Publication of JP2011033206A publication Critical patent/JP2011033206A/en
Application granted granted Critical
Publication of JP5329332B2 publication Critical patent/JP5329332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

この発明は、製氷部に対して製氷水タンクから製氷水を供給するポンプを備えた製氷機に関するものである。   The present invention relates to an ice making machine including a pump for supplying ice making water from an ice making water tank to an ice making unit.

製氷機は、製氷部における1回分の製氷に足りる製氷水を貯留し得る製氷水タンクを備え、製氷運転の開始に先立って水道等の水源に接続する給水手段から必要量の製氷水を供給するようになっている。製氷水タンクには、オーバーフローが設けられており、このオーバーフローにより規定される上限水位を超えた必要量以上の製氷水が外部に排出される。   The ice making machine includes an ice making water tank capable of storing ice making water sufficient for one ice making in the ice making unit, and supplies a necessary amount of ice making water from a water supply means connected to a water source such as a water supply prior to the start of ice making operation. It is like that. The ice making water tank is provided with an overflow, and more ice making water than the required amount exceeding the upper limit water level defined by this overflow is discharged to the outside.

例えば、比較的大型の製氷機では、製氷水タンクの内部にフロートスイッチを設け、製氷水タンクの水位が所定値まで上昇したことをフロートスイッチで検出した際に、給水手段による給水を停止している(例えば、特許文献1参照)。しかしながら、水位検知による給水制御は、比較的小型の製氷機においてフロートスイッチの配設スペースを製氷水タンクに確保するのが難しく、またフロートスイッチ分のコストがかかる問題がある。   For example, in a relatively large ice making machine, a float switch is provided inside the ice making water tank, and when the float switch detects that the water level in the ice making water tank has risen to a predetermined value, water supply by the water supply means is stopped. (See, for example, Patent Document 1). However, the water supply control based on the water level detection has a problem that it is difficult to secure a space for installing the float switch in the ice making water tank in a relatively small ice making machine, and the cost of the float switch is high.

別の製氷機では、フロートスイッチと比べて安価なタイマに予め設定された設定時間の経過に基づいて、給水手段の給水経路に設けた給水弁を開閉制御することで、製氷水タンクに必要量の製氷水を供給する構成が採用されている。この場合、給水経路の水圧は製氷機が設置される地域や場所によって異なるので、タイマの設定時間は比較的水圧の低い地域を想定して、単位時間当たりの給水量が少ないときでも必要量以上の製氷水が給水されるように設定されている。このように、設定時間による給水制御では、単位時間当たり給水量が少ない場合を基準としているので、水圧が高い地域に製氷機を設置した場合に、過剰に給水された製氷水の多くがオーバーフローしてしまい、無駄に製氷水を消費してしまう問題がある。また、設定時間による給水制御では、基準としている単位時間当たりの給水量より著しく少ない地域において製氷水の必要量を確保することができず、製氷運転において製氷水不足を引き起こしてしまう。そして、製氷運転において製氷部に供給する製氷水が不足すると、得られる氷の大きさや形状が悪化したり、氷が白濁したりする弊害がある。   In another ice making machine, the required amount for the ice making water tank is controlled by opening and closing the water supply valve provided in the water supply path of the water supply means based on the passage of a preset time set in a timer that is cheaper than a float switch. The structure that supplies ice-making water is adopted. In this case, since the water pressure in the water supply path varies depending on the area and location where the ice maker is installed, the timer setting time exceeds the required amount even when the water supply per unit time is small, assuming an area where the water pressure is relatively low. The ice making water is set to be supplied. As described above, the water supply control based on the set time is based on the case where the amount of water supply per unit time is small, so when an ice making machine is installed in an area where the water pressure is high, most of the ice-making water supplied excessively overflows. As a result, there is a problem that ice making water is consumed wastefully. In addition, in the water supply control based on the set time, the necessary amount of ice making water cannot be secured in an area that is significantly smaller than the reference water supply amount per unit time, which causes a shortage of ice making water in ice making operation. If the ice making water supplied to the ice making unit is insufficient in the ice making operation, the size and shape of the obtained ice are deteriorated and the ice becomes cloudy.

そこで、給水手段の給水経路に圧力センサを設け、圧力センサで検知した給水経路の水圧に応じて給水を開始してから停止するまでの設定時間を調節する構成が提案されている(例えば特許文献2参照)。特許文献2の製氷機は、給水経路の給水圧が所定値より低い場合に、前記設定時間の算定基準となる基準流量より給水経路の流量が低いと判断して、給水タイマに設定された前記設定時間を一定時間延長するようになっている。これにより、給水手段の単位時間当たりの給水量が想定より少ないときであっても、経路の製氷水タンクへの給水不足を回避している。また、特許文献2の製氷機では、給水経路に介挿されて該経路を開閉可能な給水電磁弁として流量調整機能を有するものを用い、前記基準流量を越える流量である場合に給水電磁弁が流量を絞るようになっている。このことによって、給水手段の単位時間当たりの給水量が想定より多いときであっても、製氷水タンクへの給水過多を回避し、製氷水の無駄な排出を抑制している。   Therefore, a configuration has been proposed in which a pressure sensor is provided in the water supply path of the water supply means, and the set time from the start of water supply to the stop is adjusted according to the water pressure of the water supply path detected by the pressure sensor (e.g., patent document). 2). When the water supply pressure of the water supply path is lower than a predetermined value, the ice making machine of Patent Literature 2 determines that the flow rate of the water supply path is lower than the reference flow rate that is the calculation reference of the set time, and is set in the water supply timer. The set time is extended for a certain time. Thereby, even when the amount of water supply per unit time of the water supply means is smaller than expected, shortage of water supply to the ice making water tank on the route is avoided. Moreover, in the ice making machine of patent document 2, what has a flow rate adjustment function is used as a water supply electromagnetic valve that is inserted in a water supply path and can open and close the path, and when the flow rate exceeds the reference flow rate, The flow rate is reduced. As a result, even when the amount of water supply per unit time of the water supply means is larger than expected, excessive water supply to the ice making water tank is avoided, and wasteful discharge of ice making water is suppressed.

特開昭62−102067号公報Japanese Patent Laid-Open No. Sho 62-102067 特開平7−71848号公報Japanese Unexamined Patent Publication No. 7-71848

特許文献2の製氷機では、給水制御を担う機器として、給水タイマに加えて圧力センサと、流量調整弁あるいは流量調整機能を有する電磁弁とが必要となるので、これらの機器や設置工数分のコストが上昇してしまう難点がある。   The ice making machine of Patent Document 2 requires a pressure sensor and a flow rate adjustment valve or an electromagnetic valve having a flow rate adjustment function in addition to a water supply timer as a device responsible for water supply control. There is a drawback that costs increase.

すなわち本発明は、従来の技術に係る製氷機に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、コストの上昇を抑えつつ、給水手段からの給水量が変化しても製氷水の無駄を最小限にし得る製氷機を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the ice making machine according to the prior art, and the amount of water supplied from the water supply means is changed while suppressing an increase in cost. It is an object of the present invention to provide an ice making machine that can minimize waste of ice making water.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の製氷機は、
製氷水タンクに貯留された製氷水を、該製氷水タンクの底部に吸込口が接続されたポンプによって製氷部に供給するよう構成した製氷機において、
計時手段に予め設定された基準給水時間に亘って給水手段によって前記製氷水タンクに対して製氷水を給水することで、該製氷水タンクの満水に満たない量の製氷水を供給し、
電圧を変えることで回転数を制御可能な前記ポンプを駆動し、調節手段で検出したポンプの電圧または回転数に応じて計時手段に追加給水時間を設定し、
前記計時手段に設定された前記追加給水時間に亘って給水手段によって前記製氷水タンクに対して製氷水を追加給水するよう構成したことを特徴とする。
請求項1に係る発明によれば、給水手段からの単位時間当たりの給水量が変化しても、当該変化に応じて総給水量を調整し得るので、製氷水タンクから排出される製氷水を最小限に抑えることができる。しかも、製氷部へ製氷水タンクから製氷水を供給するポンプの電圧または回転数を調整のための指標としているので、コストの上昇を抑えることができる。
In order to overcome the above-mentioned problems and achieve the intended purpose, an ice making machine according to claim 1 of the present application provides:
In an ice making machine configured to supply ice making water stored in an ice making water tank to an ice making part by a pump having a suction port connected to the bottom of the ice making water tank,
Supplying ice-making water to the ice-making water tank by the water-supplying means over a reference water supply time set in advance in the time measuring means to supply an amount of ice-making water that is less than the full capacity of the ice-making water tank,
Drive the pump that can control the rotation speed by changing the voltage, set the additional water supply time in the time measuring means according to the voltage or rotation speed of the pump detected by the adjustment means,
The ice making water is additionally supplied to the ice making water tank by the water supply means over the additional water supply time set in the time measuring means.
According to the first aspect of the present invention, even if the amount of water supply per unit time from the water supply means changes, the total amount of water supply can be adjusted according to the change, so that the ice making water discharged from the ice making water tank can be adjusted. Can be minimized. In addition, since the voltage or rotation speed of the pump that supplies ice making water from the ice making water tank to the ice making unit is used as an index for adjustment, an increase in cost can be suppressed.

請求項2に係る発明では、前記調節手段は、前記ポンプを規定回転数になるように電圧を制御したもとで駆動して、該規定回転数時の電圧を検出し、この電圧の大小に比例した前記追加給水時間を前記計時手段に設定することを要旨とする。
請求項2に係る発明によれば、ポンプの回転数を指標として追加給水時間を設定することで、給水手段の単位時間当たりの給水量が変化しても、製氷水タンクへの総給水量を適切に調整し得る。
In the invention according to claim 2, the adjusting means drives the pump while controlling the voltage so as to become the specified rotational speed, detects the voltage at the specified rotational speed, and increases or decreases the voltage. The gist is to set the proportional additional water supply time in the time measuring means.
According to the invention which concerns on Claim 2, even if the amount of water supply per unit time of a water supply means changes by setting the additional water supply time using the rotation speed of a pump as a parameter | index, the total amount of water supply to an ice-making water tank is changed. Can be adjusted appropriately.

請求項3に係る発明では、前記調節手段は、前記ポンプを規定電圧で駆動して該規定電圧時の回転数を検出し、この回転数の大小に反比例した前記追加給水時間を前記計時手段に設定することを要旨とする。
請求項3に係る発明によれば、ポンプの電圧を指標として追加給水時間を設定することで、給水手段の単位時間当たりの給水量が変化しても、製氷水タンクへの総給水量を適切に調整し得る。
In the invention according to claim 3, the adjusting means detects the rotational speed at the specified voltage by driving the pump at a specified voltage, and supplies the additional water supply time in inverse proportion to the rotational speed to the time measuring means. The gist is to set.
According to the invention which concerns on Claim 3, even if the amount of water supply per unit time of a water supply means changes by setting the additional water supply time using the voltage of a pump as a parameter | index, the total amount of water supply to an ice-making water tank is appropriate Can be adjusted.

本発明に係る製氷機によれば、コストの上昇を抑えつつ、給水手段からの給水量が変化しても製氷水の無駄を最小限にし得る。   According to the ice making machine of the present invention, waste of ice making water can be minimized even if the amount of water supplied from the water supply means changes while suppressing an increase in cost.

本発明の好適な実施例1に係る製氷機を示す概略図である。It is the schematic which shows the ice making machine which concerns on suitable Example 1 of this invention. 実施例1に係る製氷機の制御ブロック図である。1 is a control block diagram of an ice making machine according to Embodiment 1. FIG. 製氷水タンクの貯水量と製氷水ポンプの電圧との関係を示すグラフ図である。It is a graph which shows the relationship between the water storage amount of an ice making water tank, and the voltage of an ice making water pump. 実施例1の製氷機における給水制御を示すフローチャート図である。It is a flowchart figure which shows water supply control in the ice making machine of Example 1. FIG. 製氷水タンクの貯水量と製氷水ポンプの回転数との関係を示すグラフ図である。It is a graph which shows the relationship between the amount of water storage of an ice-making water tank, and the rotation speed of an ice-making water pump. 実施例2の製氷機における給水制御を示すフローチャート図である。It is a flowchart figure which shows the water supply control in the ice making machine of Example 2. FIG.

次に、本発明に係る製氷機につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。   Next, a preferred embodiment of the ice making machine according to the present invention will be described below with reference to the accompanying drawings.

図1に示すように、実施例1に係る製氷機10は、所謂クローズドセルタイプである。製氷機は、氷塊(角氷)を生成する製氷機構11と、この製氷機構11を冷却する冷凍機構30と、各機器を制御するマイクロコンピュータ等の制御手段C(図2参照)を備え、製氷運転および除氷運転を繰り返して氷塊を製造するようになっている。製氷機構11は、下向きに開口した製氷小室14を多数形成した製氷室(製氷部)12と、この製氷室12の下方に配設され、製氷小室14の開口を開閉可能な水皿16と、この水皿16の下部に配設された製氷水タンク18と、これら水皿16および製氷水タンク18を一体的に傾動させる水皿開閉機構20から構成されている。製氷室12の上面には、冷凍機構30を構成する蒸発管32が蛇行配置され、蒸発管32を流通する冷媒またはホットガスとの熱交換によって製氷室12が冷却または加温されるようになっている。   As shown in FIG. 1, the ice making machine 10 according to the first embodiment is a so-called closed cell type. The ice making machine includes an ice making mechanism 11 that generates ice blocks (square ice), a refrigeration mechanism 30 that cools the ice making mechanism 11, and control means C (see FIG. 2) such as a microcomputer that controls each device. Ice blocks are produced by repeating the operation and the deicing operation. The ice making mechanism 11 includes an ice making chamber (ice making unit) 12 in which a large number of ice making chambers 14 opened downward, a water tray 16 disposed below the ice making chamber 12 and capable of opening and closing the ice making chamber 14, An ice-making water tank 18 disposed in the lower part of the water tray 16 and a water-plate opening / closing mechanism 20 that tilts the water tray 16 and the ice-making water tank 18 together are configured. An evaporation pipe 32 constituting the refrigeration mechanism 30 is meandered on the upper surface of the ice making chamber 12, and the ice making chamber 12 is cooled or heated by heat exchange with a refrigerant or hot gas flowing through the evaporation pipe 32. ing.

前記水皿16は、一方の側端部が製氷機本体に対して支軸16aを介して揺動可能に支持されると共に、他方の側端部が水皿開閉機構20を構成するカムアーム22にコイルスプリング24を介して接続されている(図1参照)。水皿16は、カムアーム22を開閉モータ26で正逆回転することで、製氷運転において製氷室12を閉成した閉成姿勢と、除氷運転において製氷室12から下方に傾斜した開放姿勢とに姿勢変位し得るようになっている。なお、開閉モータ26は、制御手段Cに電気的に接続しており、制御手段Cにより駆動制御される(図2参照)。   The water tray 16 is supported such that one side end portion thereof is swingable with respect to the ice making machine body via a support shaft 16a, and the other side end portion is attached to a cam arm 22 constituting the water tray opening / closing mechanism 20. It is connected via a coil spring 24 (see FIG. 1). The water pan 16 rotates the cam arm 22 forward and backward by an opening / closing motor 26, thereby closing the ice making chamber 12 in the ice making operation and opening the posture inclined downward from the ice making chamber 12 in the ice removing operation. The posture can be changed. The open / close motor 26 is electrically connected to the control means C and is driven and controlled by the control means C (see FIG. 2).

前記製氷水タンク18は、水皿16より一回り大きく形成された上方に開口する箱状体であって、水皿16を内側に収容した状態で該水皿16に固定されて、水皿16の姿勢変位につれて姿勢変位するようになっている。製氷水タンク18は、製氷小室14の下方を塞いだ閉成姿勢で水皿16の支軸16a側の領域が深くなるように形成されており(図1参照)、この深く形成した部位の底部に製氷水ポンプ(ポンプ)PMの吸込口が接続されている。また、製氷水タンク18には、水皿16の開放端側の側部に、排水口(図示せず)が設けられており、閉成姿勢の排水口の位置により製氷水タンク18の内部に貯留し得る製氷水の上限水位を規定している。すなわち、製氷水タンク18は、閉成姿勢で底部と排水口との間に製氷運転1回分の製氷に足りる必要量の製氷水が貯留され、余剰の製氷水が排水口からオーバーフローして外部へ排出するようになっている。製氷水タンク18は、閉成姿勢にある製氷運転において、水皿16に上下に貫通形成された戻り孔(図示せず)あるいは該水皿16の外縁から流下する製氷室12で氷結しなかった製氷水(製氷残水)を回収するようになっている。そして、製氷水タンク18は、水皿16が製氷小室14の開口から離間するよう傾動した開放姿勢で、排水口から製氷残水を排出するよう構成される。   The ice-making water tank 18 is a box-like body that is formed to be slightly larger than the water tray 16 and opens upward. The ice-making water tank 18 is fixed to the water tray 16 in a state in which the water tray 16 is accommodated inside the water tray 16. The posture is displaced as the posture is displaced. The ice making water tank 18 is formed so that the region on the side of the support shaft 16a of the water tray 16 is deep in a closed posture with the lower part of the ice making chamber 14 closed (see FIG. 1), and the bottom of this deeply formed portion The suction port of the ice making water pump (pump) PM is connected to. In addition, the ice making water tank 18 is provided with a drain outlet (not shown) on the side of the open end side of the water tray 16, and the ice making water tank 18 has an inside depending on the position of the drain outlet in the closed position. The upper limit level of ice-making water that can be stored is specified. That is, in the ice making water tank 18, a necessary amount of ice making water sufficient for ice making for one ice making operation is stored between the bottom portion and the drain outlet in a closed posture, and excess ice making water overflows from the drain outlet to the outside. It comes to discharge. In the ice making operation in the closed position, the ice making water tank 18 did not freeze in the return hole (not shown) penetratingly formed in the water dish 16 or the ice making chamber 12 flowing down from the outer edge of the water dish 16. Ice-making water (ice-making residual water) is collected. The ice making water tank 18 is configured to discharge the ice making residual water from the drain outlet in an open posture in which the water tray 16 is tilted away from the opening of the ice making chamber 14.

前記製氷機構11は、製氷水タンク18から水皿16に製氷水を圧送し、該水皿16の噴射孔(図示せず)から製氷水を製氷小室14に対して噴射供給する製氷水ポンプPMと、製氷水タンク18に対して製氷水を供給する給水手段28とを備えている(図1参照)。製氷水ポンプPMは、製氷水タンク18の内部に連通する吸込口から製氷水を吸い込むようになっている。製氷運転において、各製氷小室14へ噴射供給された製氷水は、製氷室12が冷却されることにより該製氷小室14で氷結し、氷結しなかった製氷水が製氷水タンク18に回収されて製氷水ポンプPMによって再循環される。製氷水ポンプPMは、制御手段Cに電気的に接続しており、制御手段Cにより駆動制御される(図2参照)。そして、製氷水ポンプPMは、基本的に製氷運転で駆動されて除氷運転で駆動停止されるが、製氷水タンク18へ製氷水を給水する給水運転においても一時的に駆動(判定駆動)される。   The ice making mechanism 11 pumps ice making water from the ice making water tank 18 to the water tray 16, and supplies ice making water to the ice making chamber 14 through an injection hole (not shown) of the water tray 16. And a water supply means 28 for supplying ice making water to the ice making water tank 18 (see FIG. 1). The ice making water pump PM sucks ice making water from a suction port communicating with the inside of the ice making water tank 18. In the ice making operation, the ice making water sprayed and supplied to each ice making chamber 14 freezes in the ice making chamber 14 when the ice making chamber 12 is cooled, and the ice making water that has not been frozen is collected in the ice making water tank 18 to make ice. Recirculated by water pump PM. The ice making water pump PM is electrically connected to the control means C and is driven and controlled by the control means C (see FIG. 2). The ice making water pump PM is basically driven in the ice making operation and stopped in the deicing operation. However, the ice making water pump PM is also temporarily driven (determination drive) in the water supply operation for supplying ice making water to the ice making water tank 18. The

前記製氷水ポンプPMは、羽根状の回転子を備えている非容積式のポンプが採用されている。また、実施例の製氷水ポンプPMとしては、入力される電圧と回転数とが一意的に対応する直流(DC)モータを駆動源とするポンプが用いられる。製氷機10は、制御手段Cの制御のもとに製氷水ポンプPMに印加する電圧(制御電圧)を調節する電圧制御手段40および製氷水ポンプPMの回転数を検出し得るエンコーダ等の回転数検出手段42とを有している(図2参照)。すなわち、製氷機10では、製氷水ポンプPMに印加する電圧を電圧制御手段40により適宜制御して、製氷水ポンプPMの回転数を変化させることが可能であり、例えば製氷運転中に製氷水ポンプPMの回転数を低下させることで空気の噛み込みを防止する等の運転制御が行われる。また、製氷機10は、回転数検出手段42により検出された製氷水ポンプPMの回転数を電圧制御手段40にフィードバックして、製氷水ポンプPMの制御電圧を調節することで回転数を安定化することができる。なお、実施例1では、制御手段Cの一部として電圧制御手段40が組み込まれており、製氷水ポンプPMの一部として回転数検出手段42が組み込まれているが、夫々が独立する構成であってもよい。実施例1の回転数検出手段42は、製氷水ポンプPMのモーター回転パルスを検出することで回転数を検出し、この検出結果が制御手段C(電圧制御手段40)に入力されるようになっている。   The ice making water pump PM employs a non-volumetric pump having a blade-like rotor. Further, as the ice making water pump PM of the embodiment, a pump using a direct current (DC) motor whose input voltage and rotation speed uniquely correspond to a driving source is used. The ice making machine 10 includes the voltage control means 40 for adjusting the voltage (control voltage) applied to the ice making water pump PM under the control of the control means C, and the rotation speed of an encoder or the like that can detect the rotation speed of the ice making water pump PM. And detecting means 42 (see FIG. 2). That is, in the ice making machine 10, the voltage applied to the ice making water pump PM can be appropriately controlled by the voltage control means 40 to change the rotation speed of the ice making water pump PM. For example, during the ice making operation, the ice making water pump Operation control such as preventing air from being caught by lowering the rotational speed of PM is performed. Further, the ice making machine 10 feeds back the rotation speed of the ice making water pump PM detected by the rotation speed detecting means 42 to the voltage control means 40, and stabilizes the rotation speed by adjusting the control voltage of the ice making water pump PM. can do. In the first embodiment, the voltage control means 40 is incorporated as a part of the control means C, and the rotational speed detection means 42 is incorporated as a part of the ice making water pump PM. There may be. The rotation speed detection means 42 of the first embodiment detects the rotation speed by detecting the motor rotation pulse of the ice making water pump PM, and the detection result is input to the control means C (voltage control means 40). ing.

前記給水手段28は、水道や貯水タンク等の水源に接続された給水管28aと、この給水管28aの途中に配設された給水弁WVと、給水管28aの流出端に設けられ、水皿16の支軸16a側上方に設置された給水部28bとから構成されている(図1参照)。給水手段28は、制御手段Cの制御下に所定のタイミングで給水弁WVを開閉して、製氷水を給水部28bから水皿16の上面に供給している。例えば、製氷機10は、除氷運転終了時に水皿16の閉成姿勢または開放姿勢から閉成姿勢に戻す途中で給水手段28から製氷水を供給することで(給水運転)、水皿16の戻り孔を介して製氷水タンク18に流下した製氷水が製氷運転で使用される。また、製氷機10は、製氷運転終了時に水皿16の閉成姿勢で給水手段28から製氷水を供給することで、製氷小室14に生成された氷塊と水皿16との氷結状態を解除している。更に、製氷機10は、除氷運転初期の水皿16の開放姿勢で給水手段28から製氷水を供給することで、水皿16の上面に付着した氷片等を洗い流している。   The water supply means 28 is provided at a water supply pipe 28a connected to a water source such as a water supply or a storage tank, a water supply valve WV disposed in the middle of the water supply pipe 28a, and an outlet end of the water supply pipe 28a. 16 and a water supply portion 28b installed on the upper side of the support shaft 16a (see FIG. 1). The water supply means 28 opens and closes the water supply valve WV at a predetermined timing under the control of the control means C, and supplies ice-making water from the water supply part 28 b to the upper surface of the water tray 16. For example, the ice making machine 10 supplies ice-making water from the water supply means 28 (water supply operation) while returning the water tray 16 from the closed position or the open position to the closed position at the end of the deicing operation. The ice making water flowing down to the ice making water tank 18 through the return hole is used in the ice making operation. In addition, the ice making machine 10 supplies ice making water from the water supply means 28 with the water tray 16 in the closed posture at the end of the ice making operation, thereby releasing the ice state between the ice block generated in the ice making chamber 14 and the water tray 16. ing. Further, the ice making machine 10 supplies ice-making water from the water supply means 28 in the open posture of the water dish 16 at the initial stage of the deicing operation, thereby washing away ice pieces and the like adhering to the upper surface of the water dish 16.

前記給水弁WVは、電磁弁や電動弁等の制御手段Cの制御下に給水管28aの管路を開閉可能なものが採用され、流量調整機能を有していないゲートバルブやニードルバルブの如き単純な開閉構造を有するものが採用可能である。実施例1の給水手段28は、給水弁WVで給水管28aの管路を閉じて製氷水の供給を停止し、給水弁WVが給水管28aの管路を開放して、製氷水を製氷水タンク18(水皿16)に供給するようになっている。ここで、給水手段28は、水源からの水圧等の影響を受けて該給水手段28からの単位時間当たりの給水量が決まり、水源の水圧が低い場合は給水量が少なくなる一方、水源の水圧が高い場合は給水量が多くなる。   As the water supply valve WV, a valve that can open and close the pipe of the water supply pipe 28a under the control of the control means C such as an electromagnetic valve or an electric valve is adopted, such as a gate valve or a needle valve that does not have a flow rate adjusting function. Those having a simple opening / closing structure can be adopted. The water supply means 28 of the first embodiment closes the pipe of the water supply pipe 28a by the water supply valve WV to stop the supply of the ice making water, and the water supply valve WV opens the pipe of the water supply pipe 28a, and the ice making water is supplied to the ice making water. The tank 18 (water tray 16) is supplied. Here, the water supply means 28 is affected by the water pressure or the like from the water source, the water supply amount per unit time from the water supply means 28 is determined, and when the water source water pressure is low, the water supply amount decreases, while the water source water pressure When is high, the amount of water supply increases.

前記製氷機10では、製氷水タンク18へ製氷水を供給する給水運転が製氷運転の開始に先立って行われる。実施例では、給水運転が製氷小室14から氷塊が離脱した除氷運転終盤において水皿16の閉成姿勢に戻ってからまたは開放姿勢から閉成姿勢に戻す途中のタイミングで開始されるようになっている。製氷機10では、給水運転の終了が時間で制御されており、制御手段Cに電気的に接続したタイマ等の計時手段TM(図2参照)によるカウントに基づいて、給水弁WVが制御手段Cによって開閉制御されるようになっている。計時手段TMには、基準給水時間が予め設定されており、給水弁WVを開放して給水運転を開始してから基準給水時間のカウントが開始されるようになっている。なお、実施例では、計時手段TMを制御手段Cと独立して設ける例を挙げているが、計時手段TMを制御手段Cに組み込んでもよい。製氷機10は、計時手段TMが給水運転開始から基準給水時間をカウントすることで、制御手段Cにより給水弁WVが閉成されて製氷水タンク18への基準給水が一時停止される。ここで、基準給水時間は、当該時間に亘って給水手段28から製氷水タンク18へ給水した際に、製氷水タンク18が満水にならないように設定され、例えば満水時の水量の5〜8割になるよう給水される。なお、基準給水時間は、給水手段28からの給水量が多い場合(水圧が高い場合)を想定して設定されて、基準給水時間に亘って給水手段28から製氷水タンク18へ給水してもオーバーフローしないようになっている。   In the ice making machine 10, a water supply operation for supplying ice making water to the ice making water tank 18 is performed prior to the start of the ice making operation. In the embodiment, the water supply operation is started at the timing when the water dish 16 is returned to the closed position at the end of the deicing operation when the ice block is detached from the ice making chamber 14 or at the middle of returning from the open position to the closed position. ing. In the ice making machine 10, the end of the water supply operation is controlled by time, and the water supply valve WV is controlled by the control means C on the basis of the count by the time measuring means TM (see FIG. 2) such as a timer electrically connected to the control means C. Is controlled to open and close. In the time measuring means TM, a reference water supply time is set in advance, and counting of the reference water supply time is started after the water supply valve WV is opened and the water supply operation is started. In addition, although the example which provides the time measuring means TM independently of the control means C is given in the embodiment, the time measuring means TM may be incorporated in the control means C. In the ice making machine 10, when the time measuring means TM counts the reference water supply time from the start of the water supply operation, the water supply valve WV is closed by the control means C, and the reference water supply to the ice making water tank 18 is temporarily stopped. Here, the reference water supply time is set so that the ice-making water tank 18 does not become full when water is supplied from the water supply means 28 to the ice-making water tank 18 over the time, for example, 50 to 80% of the water amount when the water is full. It is watered to become. The reference water supply time is set assuming that the amount of water supplied from the water supply means 28 is large (when the water pressure is high), and even if water is supplied from the water supply means 28 to the ice making water tank 18 over the reference water supply time. It is designed not to overflow.

前記製氷機10は、給水運転における基準給水時間での給水量を判定して、給水運転において追加して給水する量を決定する調節手段を有している。調節手段は、製氷水ポンプPMに印加する電圧を制御する電圧制御手段40と、製氷水ポンプPMの回転数を検出する回転数検出手段42と、電圧制御手段40の制御電圧および回転数検出手段42で検出した回転数に応じて、追加給水時間を決定する制御手段Cとから基本的に構成される。製氷機10は、基準給水後に、制御手段Cで決定した追加給水時間を計時手段TMに設定して、計時手段TMによって追加給水時間のカウントを開始すると共に、給水弁WVを開放して製氷水タンク18へ対して追加給水を行うようになっている。そして、製氷機10は、計時手段TMが追加給水時間をカウントすることで、制御手段Cにより給水弁WVが閉成されて製氷水タンク18への追加給水を停止し、給水運転が終了するよう構成される。   The ice making machine 10 includes an adjusting unit that determines the amount of water supplied during the reference water supply time in the water supply operation and determines the amount of water to be additionally supplied in the water supply operation. The adjustment means includes a voltage control means 40 for controlling the voltage applied to the ice making water pump PM, a rotation speed detection means 42 for detecting the rotation speed of the ice making water pump PM, and a control voltage and a rotation speed detection means for the voltage control means 40. The control means C basically determines the additional water supply time according to the rotational speed detected at 42. The ice making machine 10 sets the additional water supply time determined by the control means C to the time measuring means TM after the reference water supply, starts counting the additional water supply time by the time measuring means TM, and opens the water supply valve WV to make the ice making water. Additional water is supplied to the tank 18. Then, the ice making machine 10 counts the additional water supply time by the time measuring means TM so that the water supply valve WV is closed by the control means C, the additional water supply to the ice making water tank 18 is stopped, and the water supply operation is finished. Composed.

実施例1の調節手段は、基準給水が終了した後、製氷水ポンプPMを規定回転数になるように電圧制御手段で電圧を制御したもとで駆動して、該規定回転数時の制御電圧を回転数検出手段で検出し、この制御電圧の大小に比例した追加給水時間を制御手段Cにより計時手段TMに設定するよう構成される。製氷水ポンプPMは、製氷水タンク18の底部に設けた吸込口から製氷水を吸い込む構成であるので、製氷水タンク18に貯留した製氷水の量に応じて回転子にかかる負荷が変化する。すなわち、製氷水タンク18に貯留された製氷水が多い場合には、吸込口にかかる水圧が大きくなるので、製氷水ポンプPMの回転が水圧により補助され、負荷が小さくなる。これに対して、製氷水タンク18に貯留された製氷水が少ない場合には、吸込口にかかる水圧が小さくなるので、製氷水ポンプPMの回転が水圧により補助されず、負荷が大きくなる。実施例1の調節手段は、製氷水ポンプPMを一定の規定回転数になるように電圧制御した際に、規定回転数で安定したときの制御電圧が、基準給水による製氷水タンク18の貯水量に応じて変化する(図3参照)。基準給水による製氷水タンク18の貯水量が多い場合には、製氷水ポンプPMへの負荷が小さくなるので、規定回転数時の制御電圧が低くなり、基準給水による製氷水タンク18の貯水量が少ない場合には、製氷水ポンプPMへの負荷が大きくなるので、規定回転数時の制御電圧が高くなる傾向がある。   The adjusting means of the first embodiment drives the ice making water pump PM under the control of the voltage by the voltage control means so that the specified speed is reached after the completion of the reference water supply, and the control voltage at the specified speed is set. Is detected by the rotation speed detecting means, and the additional water supply time proportional to the magnitude of the control voltage is set in the time measuring means TM by the control means C. Since the ice making water pump PM is configured to suck ice making water from a suction port provided at the bottom of the ice making water tank 18, the load on the rotor changes according to the amount of ice making water stored in the ice making water tank 18. That is, when the ice making water stored in the ice making water tank 18 is large, the water pressure applied to the suction port is increased, so that the rotation of the ice making water pump PM is assisted by the water pressure and the load is reduced. On the other hand, when the ice making water stored in the ice making water tank 18 is small, the water pressure applied to the suction port is reduced, so that the rotation of the ice making water pump PM is not assisted by the water pressure and the load is increased. The adjusting means according to the first embodiment is configured such that when the ice making water pump PM is voltage-controlled so as to have a constant specified rotation speed, the control voltage when the ice making water pump PM is stabilized at the specified rotation speed is the amount of water stored in the ice making water tank 18 by the reference water supply. (See FIG. 3). When the amount of water stored in the ice making water tank 18 by the reference water supply is large, the load on the ice making water pump PM is reduced, so that the control voltage at the specified rotational speed is low, and the amount of water stored in the ice making water tank 18 by the reference water supply is low. When the number is small, the load on the ice making water pump PM becomes large, so that the control voltage at the specified rotational speed tends to increase.

このように、規定回転数時の制御電圧の高低は、基準給水による製氷水タンク18の貯水量と反比例する関係であるので(図3参照)、実施例1の調節手段は、規定回転数時の制御電圧の高低に比例する関係で追加給水時間の長さを決定するようになっている。すなわち、規定回転数時の制御電圧が高い場合は、基準給水による製氷水タンク18の貯水量が少ないので、追加給水時間が長く設定され、これに対して規定回転数時の制御電圧が低い場合は、基準給水による製氷水タンク18の貯水量が多いので、追加給水時間が短く設定される。追加給水時間は、制御電圧と基準給水による製氷水タンク18の貯水量との関係から求められる給水手段28の単位時間当たりの給水量で、満水時の貯水量と基準給水による製氷水タンクの貯水量との差分を給水し得るように設定される。   Thus, since the level of the control voltage at the specified rotational speed is inversely proportional to the amount of water stored in the ice making water tank 18 by the reference water supply (see FIG. 3), the adjusting means of the first embodiment is at the specified rotational speed. The length of the additional water supply time is determined in a relationship proportional to the level of the control voltage. That is, when the control voltage at the specified rotation speed is high, the amount of water stored in the ice making water tank 18 by the reference water supply is small, so that the additional water supply time is set longer, whereas the control voltage at the specified rotation speed is low. Since the amount of water stored in the ice making water tank 18 by the reference water supply is large, the additional water supply time is set short. The additional water supply time is the amount of water supplied per unit time of the water supply means 28 obtained from the relationship between the control voltage and the amount of water stored in the ice making water tank 18 based on the reference water supply. It is set so that the difference from the amount can be supplied.

前記冷凍機構30は、図1に示すように、圧縮機CM、凝縮器CD、この凝縮器CDを冷却する冷却ファンFM、膨張弁EVおよび蒸発管32を備え、圧縮機CM、凝縮器CD、膨張弁EVおよび蒸発管32を、冷媒配管34で順次連結して冷凍回路36を構成している。圧縮機CMで圧縮された気化冷媒は、冷媒配管34を経て凝縮器CDで凝縮液化された後、膨張弁EVで減圧され、蒸発管32に流入してここで膨張して蒸発し、製氷室12と熱交換することで、製氷室12が氷点以下に強制冷却される。また冷凍機構30は、冷凍回路36に加えて、除氷運転時に、凝縮器CDおよび膨張弁EVを介さず圧縮機CMから高温冷媒(ホットガス)を蒸発管32に直接供給するバイパス回路38を備えている。このバイパス回路38は、圧縮機CMの吐出側と蒸発管32の吸込み側とを連結するバイパス管39と、このバイパス管39の途中に配設され、制御手段Cにより開閉制御されるホットガス弁HVとから構成される。そして、製氷運転時には、ホットガス弁HVを閉鎖して冷凍回路36に冷媒が循環され、これに対し除氷運転時には、ホットガス弁HVが開放されてバイパス回路38にホットガスが循環されるようになっている。   As shown in FIG. 1, the refrigeration mechanism 30 includes a compressor CM, a condenser CD, a cooling fan FM that cools the condenser CD, an expansion valve EV, and an evaporation pipe 32. The compressor CM, the condenser CD, The refrigerating circuit 36 is configured by sequentially connecting the expansion valve EV and the evaporation pipe 32 through a refrigerant pipe 34. The vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD via the refrigerant pipe 34, then depressurized by the expansion valve EV, flows into the evaporation pipe 32, and expands and evaporates there. By exchanging heat with 12, the ice making chamber 12 is forcibly cooled below the freezing point. In addition to the refrigeration circuit 36, the refrigeration mechanism 30 includes a bypass circuit 38 that directly supplies high-temperature refrigerant (hot gas) from the compressor CM to the evaporation pipe 32 without passing through the condenser CD and the expansion valve EV during the deicing operation. I have. The bypass circuit 38 includes a bypass pipe 39 that connects the discharge side of the compressor CM and the suction side of the evaporation pipe 32, and a hot gas valve that is disposed in the middle of the bypass pipe 39 and controlled to be opened and closed by the control means C. HV. During the ice making operation, the hot gas valve HV is closed and the refrigerant is circulated through the refrigeration circuit 36. On the other hand, during the deicing operation, the hot gas valve HV is opened and the hot gas is circulated through the bypass circuit 38. It has become.

(実施例1の作用)
次に、実施例1に係る製氷機10の作用について、図4に示すフローチャートに基づいて説明する。給水運転が開始されると(ステップS1)、給水弁WVが開放されて(WV:開)製氷水タンク18に対して基準給水が開始されると同時に、計時手段TMで基準給水時間のカウントが開始される(TM:ON)。給水手段28によって基準給水を開始してから基準給水時間を経過すると(ステップS2:YES)、制御手段Cにより給水弁WVが閉成制御されて(WV:閉)、製氷水タンク18への基準給水が停止される。この際、製氷水タンク18には、満水に満たない量(満水時の5〜8割程度)の製氷水が供給されている。
(Operation of Example 1)
Next, the operation of the ice making machine 10 according to the first embodiment will be described based on the flowchart shown in FIG. When the water supply operation is started (step S1), the water supply valve WV is opened (WV: open), and the reference water supply to the ice-making water tank 18 is started. At the same time, the reference water supply time is counted by the time measuring means TM. Started (TM: ON). When the reference water supply time elapses after the reference water supply is started by the water supply means 28 (step S2: YES), the water supply valve WV is closed by the control means C (WV: closed), and the reference to the ice making water tank 18 is made. Water supply is stopped. At this time, the ice making water tank 18 is supplied with an amount of ice making water that is less than full (about 50 to 80% when full).

前記製氷機10では、製氷水ポンプPMが駆動されて(ステップS3)、給水量判定が行われる。この際、製氷水ポンプPMは、電圧制御手段40で該製氷水ポンプPMに印加する電圧を制御することで、制御手段Cに予め設定された規定回転数になるように駆動される(ステップS4)。製氷機10は、回転数検出手段42で検出した回転数に基づいて当該回転数を規定回転数に近づけるように、電圧制御手段40により電圧を制御するフィードバック制御が行われている。例えば、回転数検出手段42は、1秒当たりの回転パルス数を1msの割り込みでカウントし、1秒おきに古い値を破棄して新しい値を入れて、トータル6個の値のうちの最小・最大を除いた4個の値の平均を回転数のデータとして用い、求められた現在の回転数と規定回転数との差に応じて、電圧制御手段40が電圧を制御することが繰り返される。そして、製氷機10では、製氷水ポンプPMが規定回転数で安定した際(ステップS5:YES)の電圧制御手段40による制御電圧が、基準給水での給水量の判定基準として用いられる(ステップS6)。   In the ice making machine 10, the ice making water pump PM is driven (step S3), and the water supply amount is determined. At this time, the ice making water pump PM is driven by the voltage control means 40 to control the voltage to be applied to the ice making water pump PM, so that the control means C has a predetermined rotational speed set in advance (step S4). ). The ice making machine 10 is subjected to feedback control in which the voltage is controlled by the voltage control means 40 so that the rotation speed approaches the specified rotation speed based on the rotation speed detected by the rotation speed detection means 42. For example, the rotation speed detection means 42 counts the number of rotation pulses per second with an interrupt of 1 ms, discards the old value every 1 second and inserts a new value, and sets the minimum value of the total of 6 values. The average of the four values excluding the maximum is used as the rotational speed data, and the voltage control means 40 repeatedly controls the voltage according to the difference between the current rotational speed and the specified rotational speed. Then, in the ice making machine 10, the control voltage by the voltage control means 40 when the ice making water pump PM is stabilized at the specified rotation speed (step S5: YES) is used as a criterion for determining the amount of water supply in the reference water supply (step S6). ).

前記制御手段Cでは、判定基準となる制御電圧と、予め設定されている制御電圧および製氷水タンク18の水位の相関データとを対比し、追加給水時間を決定する。すなわち、制御手段Cは、判定基準となる制御電圧に対応して前記相関データから導き出される基準給水による給水量が少ない場合には追加給水時間を長く設定し、基準給水による給水量が多い場合には追加給水時間を短く設定する。このように、制御手段Cは、製氷水タンク18に対して基準給水において現実に供給された製氷水の量に応じて、追加給水における追加給水時間を計時手段TMに設定する(ステップS7)。なお、製氷水ポンプPMは、追加給水時間を決定した段階で停止される。   The control means C compares the control voltage serving as a determination criterion with the preset control voltage and the correlation data of the water level of the ice making water tank 18 to determine the additional water supply time. That is, the control means C sets the additional water supply time longer when the amount of water supplied by the reference water derived from the correlation data is small corresponding to the control voltage serving as the determination reference, and when the amount of water supplied by the reference water is large. Set the additional water supply time short. Thus, the control means C sets the additional water supply time in the additional water supply to the time measuring means TM according to the amount of ice making water actually supplied to the ice making water tank 18 in the reference water supply (step S7). The ice making water pump PM is stopped when the additional water supply time is determined.

前記製氷機10では、給水運転において、給水弁WVが再び開放されて(WV:開)製氷水タンク18に対して追加給水が開始されると同時に、計時手段TMで追加給水時間のカウントが開始される(ステップS8、TM:ON)。給水手段28によって追加給水を開始してから追加給水時間を経過すると、制御手段Cにより給水弁WVが閉成制御されて(ステップS9:YES)、製氷水タンク18への追加給水が停止される。この際、製氷水タンク18には、満水量と基準給水での給水量との差分またはこの差分を僅かに超える水量が給水されて満水になる。そして、製氷機は、給水運転が終了し(ステップS10,WV:閉)、製氷運転が開始される。   In the ice making machine 10, in the water supply operation, the water supply valve WV is opened again (WV: open), and additional water supply to the ice making water tank 18 is started, and at the same time, counting of the additional water supply time is started by the time measuring means TM. (Step S8, TM: ON). When the additional water supply time elapses after the additional water supply is started by the water supply means 28, the water supply valve WV is closed and controlled by the control means C (step S9: YES), and the additional water supply to the ice making water tank 18 is stopped. . At this time, the ice making water tank 18 is filled with a difference between the full water amount and the reference water supply amount or a water amount slightly exceeding this difference. Then, the ice making machine finishes the water supply operation (step S10, WV: closed), and the ice making operation is started.

実施例1の製氷機10によれば、給水手段28の水圧が低い場合に追加給水時間が長く設定されて、基準給水で少なかった給水量を追加給水で補って製氷水タンク18が満水にされる。また、給水手段28の水圧が高い場合に追加給水時間が短く設定されて、基準給水で多かった給水量を勘案して追加給水を少なくすることで、製氷水タンク18が満水にされる。すなわち、製氷機10は、基準給水での現実の給水量の多寡を制御電圧の大小から求めて、追加給水の量を決めているので、給水運転において製氷水タンク18に供給される製氷水の量は、給水手段28の水圧(単位時間当たりの給水量)にかかわらず常に略一定になる。従って、製氷機10は、給水運転において製氷水タンク18から製氷水が無駄に排出されることを抑えて節水できると共に、無駄な給水をなくすことにより節電も可能である。このように、実施例1の製氷機10は、設置地域や設置場所等による給水手段28の水圧変動に対応して、使用者の調節を要さずに給水運転における給水量を略一定に保つことができる。   According to the ice making machine 10 of the first embodiment, when the water pressure of the water supply means 28 is low, the additional water supply time is set to be long, and the ice making water tank 18 is filled up by supplementing the water supply amount that was small in the reference water supply with the additional water supply. The Further, when the water pressure of the water supply means 28 is high, the additional water supply time is set to be short, and the additional water supply is reduced in consideration of the amount of water supplied in the reference water supply, thereby filling the ice making water tank 18 with water. That is, since the ice making machine 10 determines the amount of the actual water supply amount in the reference water supply from the magnitude of the control voltage and determines the amount of additional water supply, the ice making water supplied to the ice making water tank 18 in the water supply operation is determined. The amount is always substantially constant regardless of the water pressure of the water supply means 28 (water supply amount per unit time). Therefore, the ice making machine 10 can save water by preventing the ice making water from being discharged from the ice making water tank 18 during the water supply operation, and can also save electricity by eliminating unnecessary water supply. As described above, the ice making machine 10 according to the first embodiment keeps the water supply amount in the water supply operation substantially constant without requiring the user's adjustment in response to the water pressure fluctuation of the water supply means 28 depending on the installation area, the installation place, and the like. be able to.

前記製氷機10は、電圧を変えることで回転数を制御可能なタイプの製氷水ポンプPMが有している電圧制御手段40および回転数検出手段42を用いて、給水手段28による現実の給水量を求めているので、給水運転に関わる機器やセンサを増加させることなく、簡単な構成で給水手段28の水圧変動に対応し得る。また、製氷機10は、フロートスイッチ等の水位センサ、圧力センサや水温センサ等の別途の測定機器を必要とせず、比較的高価な測定機器を用いることなく、給水手段28の水圧変動に対応し得る。すなわち、製氷機10は、給水手段28の水圧変動に対応する機構を設けても、コストの上昇を抑えることができ、水位センサ等の測定機器の配設スペースを確保する必要がないので、構成機器の配置や形状等の自由度を高くし得る。   The ice making machine 10 uses the voltage control means 40 and the rotation speed detection means 42 of the ice making water pump PM of the type that can control the rotation speed by changing the voltage, and the actual water supply amount by the water supply means 28. Therefore, it is possible to cope with fluctuations in the water pressure of the water supply means 28 with a simple configuration without increasing the number of equipment and sensors involved in the water supply operation. In addition, the ice making machine 10 does not require a separate measuring device such as a water level sensor such as a float switch, a pressure sensor, or a water temperature sensor, and can cope with fluctuations in the water pressure of the water supply means 28 without using a relatively expensive measuring device. obtain. That is, the ice making machine 10 can suppress an increase in cost even if a mechanism corresponding to fluctuations in the water pressure of the water supply means 28 is provided, and it is not necessary to secure an installation space for measuring equipment such as a water level sensor. The degree of freedom of arrangement and shape of equipment can be increased.

前記回転数検出手段42によって検出される回転数は、一定時間内に製氷水ポンプPMのモータ回転パルスを検出して得られる単位時間当りの平均回転数が用いられているので、微小時間における回転数の変動に影響を受けず、安定度の高い検出が可能となっている。また、電圧制御手段Cの制御負荷も低減し得る。   As the rotation speed detected by the rotation speed detection means 42, the average rotation speed per unit time obtained by detecting the motor rotation pulse of the ice making water pump PM within a certain time is used. Highly stable detection is possible without being affected by fluctuations in the number. Further, the control load of the voltage control means C can be reduced.

次に、実施例2に係る製氷機について説明する。実施例1では、基準給水による給水量判定で制御電圧を指標としたが、実施例2では、基準給水による給水量判定で回転数を指標としている。すなわち、実施例2の製氷機は、基本的な構成が実施例1と同じであるので、異なる部分を主に説明する。   Next, an ice making machine according to Embodiment 2 will be described. In the first embodiment, the control voltage is used as an index in the water supply amount determination based on the reference water supply. In the second embodiment, the rotation speed is used as an index in the water supply amount determination based on the reference water supply. That is, since the basic configuration of the ice making machine according to the second embodiment is the same as that of the first embodiment, different parts will be mainly described.

実施例2の調節手段は、基準給水が終了した後、製氷水ポンプPMを規定電圧で駆動して、該規定電圧時の回転数を検出し、この回転数の大小に反比例した追加給水時間を計時手段TMに設定するよう構成される。製氷水ポンプPMは、前述の如く、製氷水タンク18の底部に設けた吸込口から製氷水を吸い込む構成であるので、製氷水タンク18に貯留した製氷水の量に応じて回転子にかかる負荷が変化する。実施例2の調節手段は、製氷水ポンプPMを一定の規定電圧で駆動した際に、安定したときの回転数が、基準給水による製氷水タンク18の貯水量に応じて変化する(図5参照)。基準給水による製氷水タンク18の貯水量が多い場合には、製氷水ポンプPMへの負荷が小さくなるので、規定電圧時の回転数が多くなり、基準給水による製氷水タンク18の貯水量が少ない場合には、製氷水ポンプPMへの負荷が大きくなるので、規定電圧時の回転数が少なくなる傾向がある。   The adjusting means of the second embodiment drives the ice making water pump PM at a specified voltage after the reference water supply is completed, detects the rotation speed at the specified voltage, and sets an additional water supply time inversely proportional to the rotation speed. The time measuring means TM is configured to be set. Since the ice making water pump PM is configured to suck ice making water from the suction port provided at the bottom of the ice making water tank 18 as described above, the load applied to the rotor according to the amount of ice making water stored in the ice making water tank 18. Changes. In the adjusting means of the second embodiment, when the ice making water pump PM is driven at a constant specified voltage, the rotational speed when it is stabilized changes according to the amount of water stored in the ice making water tank 18 by the reference water supply (see FIG. 5). ). When the amount of water stored in the ice making water tank 18 by the reference water supply is large, the load on the ice making water pump PM is reduced, so the number of rotations at the specified voltage increases, and the amount of water stored in the ice making water tank 18 by the reference water supply is small. In this case, since the load on the ice making water pump PM increases, the rotational speed at the specified voltage tends to decrease.

このように、規定電圧時の回転数の多寡は、基準給水による製氷水タンク18の貯水量と比例する関係であるので、実施例2の調節手段は、規定電圧時の回転数の多寡に反比例する関係で追加給水時間の長さを決定するようになっている。すなわち、規定電圧時の回転数が少ない場合は、基準給水による製氷水タンク18の貯水量が少ないので、追加給水時間が長く設定され、これに対して規定電圧時の回転数が多い場合は、基準給水による製氷水タンク18の貯水量が多いので、追加給水時間が短く設定される。追加給水時間は、回転数と基準給水による製氷水タンク18の貯水量との関係から求められる給水手段28の単位時間当たりの給水量で、満水時の貯水量と基準給水による製氷水タンクの貯水量との差分を給水し得るように設定される。   Thus, since the amount of rotation at the specified voltage is proportional to the amount of water stored in the ice making water tank 18 by the reference water supply, the adjusting means of the second embodiment is inversely proportional to the amount of rotation at the specified voltage. Therefore, the length of the additional water supply time is determined. That is, when the number of rotations at the specified voltage is small, the amount of water stored in the ice making water tank 18 by the reference water supply is small, so that the additional water supply time is set long, whereas when the number of rotations at the specified voltage is large, Since the amount of water stored in the ice making water tank 18 by the reference water supply is large, the additional water supply time is set short. The additional water supply time is the amount of water supplied per unit time of the water supply means 28 obtained from the relationship between the rotational speed and the amount of water stored in the ice making water tank 18 based on the reference water supply. It is set so that the difference from the amount can be supplied.

(実施例2の作用)
次に、実施例2に係る製氷機の作用について、図6に示すフローチャートに基づいて説明する。給水運転が開始されると(ステップS11)、給水弁WVが開放されて(WV:開)製氷水タンク18に対して基準給水が開始されると同時に、計時手段TMで基準給水時間のカウントが開始される(TM:ON)。給水手段28によって基準給水を開始してから基準給水時間を経過すると(ステップS12:YES)、制御手段Cにより給水弁WVが閉成制御されて(WV:閉)、製氷水タンク18への基準給水が停止される。この際、製氷水タンク18には、満水に満たない量の製氷水が供給されている。
(Operation of Example 2)
Next, the operation of the ice making machine according to the second embodiment will be described based on the flowchart shown in FIG. When the water supply operation is started (step S11), the water supply valve WV is opened (WV: open), and the reference water supply to the ice-making water tank 18 is started. At the same time, the reference water supply time is counted by the time measuring means TM. Started (TM: ON). When the reference water supply time elapses after the reference water supply is started by the water supply means 28 (step S12: YES), the water supply valve WV is closed by the control means C (WV: closed), and the reference to the ice making water tank 18 is made. Water supply is stopped. At this time, the ice making water tank 18 is supplied with an amount of ice making water that is less than full.

前記製氷機では、製氷水ポンプPMが駆動されて(ステップS13)、給水量判定が行われる。この際、製氷水ポンプPMは、電圧制御手段40で該製氷水ポンプPMに印加する電圧を規定電圧になるよう制御して駆動される(ステップS14)。そして、製氷機10では、製氷水ポンプPMの回転数が安定した際(ステップS15:YES)に、回転数検出手段42で回転数を検出し(ステップS16)、この回転数が基準給水での給水量の判定基準として用いられる。なお、実施例2の製氷機10は、回転数検出手段42での回転数の検出に際して、実施例1と同様に平均回転数を取得するようにしてもよい。   In the ice making machine, the ice making water pump PM is driven (step S13), and the water supply amount is determined. At this time, the ice making water pump PM is driven by controlling the voltage applied to the ice making water pump PM by the voltage control means 40 so as to become a specified voltage (step S14). And in the ice making machine 10, when the rotation speed of the ice making water pump PM is stabilized (step S15: YES), the rotation speed is detected by the rotation speed detection means 42 (step S16), and this rotation speed is the reference water supply. Used as a criterion for determining the amount of water supply. Note that the ice making machine 10 of the second embodiment may acquire the average rotational speed in the same manner as in the first embodiment when detecting the rotational speed by the rotational speed detecting means 42.

前記制御手段Cでは、判定基準となる回転数と、予め設定されている回転数および製氷水タンク18の水位の相関データとを対比し、追加給水時間を決定する。すなわち、制御手段Cは、判定基準となる回転数に対応して前記相関データから導き出される基準給水による給水量が少ない場合には追加給水時間を長く設定し、基準給水による給水量が多い場合には追加給水時間を短く設定する。このように、制御手段Cは、製氷水タンク18に対して基準給水において現実に供給された製氷水の量に応じて、追加給水における追加給水時間を計時手段TMに設定する(ステップS17)。なお、製氷水ポンプPMは、追加給水時間を決定した段階で停止される。   The control means C compares the rotation speed serving as a determination criterion with the correlation data of the rotation speed set in advance and the water level of the ice making water tank 18 to determine the additional water supply time. That is, the control means C sets the additional water supply time longer when the amount of water supplied by the reference water derived from the correlation data is small corresponding to the number of revolutions serving as the criterion, and when the amount of water supplied by the reference water is large. Set the additional water supply time short. Thus, the control means C sets the additional water supply time in the additional water supply to the time measuring means TM according to the amount of ice making water actually supplied to the ice making water tank 18 in the reference water supply (step S17). The ice making water pump PM is stopped when the additional water supply time is determined.

前記製氷機10では、給水運転において、給水弁WVが再び開放されて(WV:開)製氷水タンク18に対して追加給水が開始されると同時に、計時手段TMで追加給水時間のカウントが開始される(ステップS18、TM:ON)。給水手段28によって追加給水を開始してから追加給水時間を経過すると、制御手段Cにより給水弁WVが閉成制御されて(ステップS19:YES)、製氷水タンク18への追加給水が停止される。この際、製氷水タンク18には、満水量と基準給水での給水量との差分またはこの差分を僅かに超える水量が給水されて満水になる。そして、製氷機は、給水運転が終了し(ステップS20,WV:閉)、製氷運転が開始される。   In the ice making machine 10, in the water supply operation, the water supply valve WV is opened again (WV: open), and additional water supply to the ice making water tank 18 is started, and at the same time, counting of the additional water supply time is started by the time measuring means TM. (Step S18, TM: ON). When the additional water supply time elapses after the additional water supply is started by the water supply means 28, the control means C controls the closing of the water supply valve WV (step S19: YES), and the additional water supply to the ice making water tank 18 is stopped. . At this time, the ice making water tank 18 is filled with a difference between the full water amount and the reference water supply amount or a water amount slightly exceeding this difference. Then, the ice making machine finishes the water supply operation (step S20, WV: closed), and starts the ice making operation.

このように、実施例2の製氷機であっても、実施例1と同様の作用効果を得ることができる。また、実施例2の製氷機は、製氷水ポンプPMの判定駆動に際してフィードバッグ制御を必要としないので、制御を簡単にできる利点がある。   Thus, even with the ice making machine of the second embodiment, the same operational effects as the first embodiment can be obtained. Further, the ice making machine according to the second embodiment does not require feedback control when the ice making water pump PM is driven for determination, and thus has an advantage that the control can be simplified.

(変更例)
前述した実施例1および2に限定されず、以下の如く変更することも可能である。
(1)実施例1および2では、クローズドセルタイプの製氷機を例に挙げたが、オープンセルタイプや流下式等のポンプで製氷水を製氷水タンクから製氷部へ供給するものであれば適用できる。
(2)追加給水時間の設定は、検出された電圧または回転数に対して線形的な対応関係に限られず、検出された電圧または回転数の範囲毎に追加給水時間が段階的に対応する関係であってもよい。
(3)製氷水ポンプの駆動源として直流モータを挙げたが、ステッピングモータ等、電圧により回転数制御が可能なタイプであれば採用可能である。
(4)製氷機は、給水運転のたびに電圧または回転数から追加給水時間を設定してもよいが、特定のタイミングの給水運転で電圧または回転数から追加給水時間を設定し、他の給水運転では、製氷水ポンプを駆動することなく先に設定された追加給水時間と基準給水時間とを合わせた時間に亘って連続して給水を行ってもよい。ここで、特定のタイミングとは、製氷機の電源を投入した後に最初に行われる給水運転時、コントロールパネルで基準給水時間や規定電圧等の条件を変更した後に最初に行われる給水運転時、あるいは給水運転の適宜回数(例えば数十回)に1回の割合等が挙げられる。給水手段から給水される製氷水の水圧は、頻繁に変動するものではないので、特定のタイミングの給水運転だけ電圧または回転数から追加給水時間を設定すれば十分実用に足り、追加給水時間の設定にかかる時間を短縮して、製氷能力への影響を最小限に抑えることができる。
(Example of change)
The present invention is not limited to the first and second embodiments described above, and can be modified as follows.
(1) In Examples 1 and 2, a closed cell type ice maker was taken as an example, but it is applicable if ice making water is supplied from an ice making water tank to an ice making unit using an open cell type or a flow-down type pump. it can.
(2) The setting of the additional water supply time is not limited to a linear correspondence relationship with the detected voltage or rotation speed, but a relationship in which the additional water supply time corresponds step by step for each detected voltage or rotation speed range. It may be.
(3) Although a DC motor has been mentioned as the drive source for the ice making water pump, any type of stepping motor or the like that can control the rotational speed by voltage can be used.
(4) The ice making machine may set the additional water supply time from the voltage or the number of rotations every time the water supply operation is performed, but the water supply operation at a specific timing sets the additional water supply time from the voltage or the rotation number, and other water supply In operation, water supply may be continuously performed over a time obtained by combining the previously set additional water supply time and the reference water supply time without driving the ice making water pump. Here, the specific timing refers to the first water supply operation performed after turning on the power of the ice making machine, the first water supply operation performed after changing the conditions such as the reference water supply time and the specified voltage on the control panel, or For example, a ratio of one to the appropriate number of times of water supply operation (for example, several tens of times) can be given. Since the water pressure of ice making water supplied from the water supply means does not fluctuate frequently, setting the additional water supply time from the voltage or rotation speed is sufficient for the water supply operation at a specific timing, and setting the additional water supply time Can reduce the time it takes to minimize the impact on ice making capacity.

12 製氷室(製氷部),18 製氷水タンク,28 給水手段,
PM 製氷水ポンプ(ポンプ),TM 計時手段
12 ice making room (ice making part), 18 ice making water tank, 28 water supply means,
PM ice-making water pump (pump), TM timing means

Claims (3)

製氷水タンク(18)に貯留された製氷水を、該製氷水タンク(18)の底部に吸込口が接続されたポンプ(PM)によって製氷部(12)に供給するよう構成した製氷機において、
計時手段(TM)に予め設定された基準給水時間に亘って給水手段(28)によって前記製氷水タンク(18)に対して製氷水を給水することで、該製氷水タンク(18)の満水に満たない量の製氷水を供給し、
電圧を変えることで回転数を制御可能な前記ポンプ(PM)を駆動し、調節手段で検出したポンプ(PM)の電圧または回転数に応じて計時手段(TM)に追加給水時間を設定し、
前記計時手段(TM)に設定された前記追加給水時間に亘って給水手段(28)によって前記製氷水タンク(18)に対して製氷水を追加給水するよう構成した
ことを特徴とする製氷機。
In an ice making machine configured to supply ice making water stored in an ice making water tank (18) to an ice making part (12) by a pump (PM) having a suction port connected to the bottom of the ice making water tank (18),
By supplying ice making water to the ice making water tank (18) by the water supplying means (28) over a reference water supply time preset in the time measuring means (TM), the ice making water tank (18) is fully filled. Supply less ice-making water,
Drive the pump (PM) whose rotation speed can be controlled by changing the voltage, set the additional water supply time in the time measuring means (TM) according to the voltage or rotation speed of the pump (PM) detected by the adjusting means,
An ice making machine characterized in that ice making water is additionally supplied to the ice making water tank (18) by the water supply means (28) over the additional water supply time set in the time measuring means (TM).
前記調節手段は、前記ポンプ(PM)を規定回転数になるように電圧を制御したもとで駆動して、該規定回転数時の電圧を検出し、この電圧の大小に比例した前記追加給水時間を前記計時手段(TM)に設定する請求項1記載の製氷機。   The adjusting means drives the pump (PM) while controlling the voltage so as to become a specified rotational speed, detects a voltage at the specified rotational speed, and the additional water supply proportional to the magnitude of this voltage. The ice making machine according to claim 1, wherein the time is set in the time measuring means (TM). 前記調節手段は、前記ポンプ(PM)を規定電圧で駆動して該規定電圧時の回転数を検出し、この回転数の大小に反比例した前記追加給水時間を前記計時手段(TM)に設定する請求項1記載の製氷機。   The adjusting means drives the pump (PM) with a specified voltage, detects the rotation speed at the specified voltage, and sets the additional water supply time in inverse proportion to the rotation speed to the time measuring means (TM). The ice making machine according to claim 1.
JP2009176968A 2009-07-29 2009-07-29 Ice machine Expired - Fee Related JP5329332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176968A JP5329332B2 (en) 2009-07-29 2009-07-29 Ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176968A JP5329332B2 (en) 2009-07-29 2009-07-29 Ice machine

Publications (2)

Publication Number Publication Date
JP2011033206A JP2011033206A (en) 2011-02-17
JP5329332B2 true JP5329332B2 (en) 2013-10-30

Family

ID=43762460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176968A Expired - Fee Related JP5329332B2 (en) 2009-07-29 2009-07-29 Ice machine

Country Status (1)

Country Link
JP (1) JP5329332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182662U1 (en) * 2017-06-07 2018-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный сельскохозяйственный институт" ICE GRANULATION MACHINE
JP7321944B2 (en) * 2020-01-08 2023-08-07 ホシザキ株式会社 ice machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298173A (en) * 1985-10-21 1987-05-07 三洋電機株式会社 Method of supplying feedwater tank for ice machine with water
JPH0771848A (en) * 1993-08-31 1995-03-17 Sanyo Electric Co Ltd Ice making machine
JP2009019855A (en) * 2007-07-13 2009-01-29 Hoshizaki Electric Co Ltd Operation method of ice maker

Also Published As

Publication number Publication date
JP2011033206A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
US6725680B1 (en) Multi-compartment refrigerator control algorithm for variable speed evaporator fan motor
US6955056B1 (en) Refrigerator and control method thereof
US6694754B1 (en) Refrigeration appliance with pulsed defrost heater
KR101643220B1 (en) A refrigerator comprising an ice making device and a control method thereof
US9435548B2 (en) Outdoor unit of air conditioner and method for controlling the same
JP3828834B2 (en) Ice machine
JP4994087B2 (en) How to operate an automatic ice machine
JP5329332B2 (en) Ice machine
JP2009019855A (en) Operation method of ice maker
US5894734A (en) Water-circulating type ice maker
KR101507037B1 (en) Ice dispenser Housing for use of ice maker
JP5359143B2 (en) refrigerator
JP4912264B2 (en) refrigerator
JP5308049B2 (en) Ice machine
JP2000258009A (en) Automatic ice maker
JP3505466B2 (en) refrigerator
JP7489831B2 (en) Ice dispenser
JP5848081B2 (en) How to operate an automatic ice machine
JP4740072B2 (en) refrigerator
JP5262244B2 (en) refrigerator
JP3819498B2 (en) Ice machine
JP5512325B2 (en) Reverse cell ice machine
JP2007285641A (en) Freezer-refrigerator
JP2014119167A (en) Automatic ice making machine
KR20060102058A (en) Refrigerator with fuction of making ice rapidly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees