JP5327677B2 - BaTi2O5 ferroelectric ceramic manufacturing method - Google Patents

BaTi2O5 ferroelectric ceramic manufacturing method Download PDF

Info

Publication number
JP5327677B2
JP5327677B2 JP2009148621A JP2009148621A JP5327677B2 JP 5327677 B2 JP5327677 B2 JP 5327677B2 JP 2009148621 A JP2009148621 A JP 2009148621A JP 2009148621 A JP2009148621 A JP 2009148621A JP 5327677 B2 JP5327677 B2 JP 5327677B2
Authority
JP
Japan
Prior art keywords
bati
temperature
ferroelectric ceramic
firing
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009148621A
Other languages
Japanese (ja)
Other versions
JP2011006266A (en
Inventor
幸邦 秋重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University Corp Shimane University
Original Assignee
National University Corp Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corp Shimane University filed Critical National University Corp Shimane University
Priority to JP2009148621A priority Critical patent/JP5327677B2/en
Publication of JP2011006266A publication Critical patent/JP2011006266A/en
Application granted granted Critical
Publication of JP5327677B2 publication Critical patent/JP5327677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、BaTi系強誘電性セラミックス製造方法、強誘電性セラミックス、コンデンサおよびFRAMに関し、特に、汎用の焼成技術を用いて成形性に優れるBaTi系の強誘電性セラミックスおよびその応用製品を提供する技術に関する。 The present invention relates to a BaTi 2 O 5 -based ferroelectric ceramic manufacturing method, a ferroelectric ceramic, a capacitor, and an FRAM, and in particular, a BaTi 2 O 5 -based ferroelectric ceramic that is excellent in formability using a general-purpose firing technique and It relates to the technology that provides the applied products.

BaTi単結晶は、本願発明者による特許第4051437号に開示するように、極めて高い誘電率を示す。具体的には、強誘電相転移温度Tが470℃と高く、Tにおけるb軸方向の誘電率が30000近くもあり、誘電損失は500℃でも0.1以下と小さい。加えて、組成に鉛を含んでいないので、いわゆる鉛フリーな強誘電材料としてPZTに代替するものとして注目を集めている。 The BaTi 2 O 5 single crystal exhibits a very high dielectric constant as disclosed in Japanese Patent No. 4051437 by the present inventor. Specifically, the ferroelectric phase transition temperature T C is as high as 470 ° C., the dielectric constant in the b-axis direction at T C is nearly 30000, and the dielectric loss is as low as 0.1 or less even at 500 ° C. In addition, since it does not contain lead in the composition, it has attracted attention as a substitute for PZT as a so-called lead-free ferroelectric material.

ここで、実験室系で得られるBaTi単結晶は数mmの大きさしかなく、実用性を高めるためにはセラミックス化が望まれている。チタン酸バリウムは、様々な組成を有する物質として知られるが、総じて、セラミックス化するためには1300℃以上の温度で焼成する必要がある。 Here, the BaTi 2 O 5 single crystal obtained in the laboratory system has a size of only a few mm, and in order to improve practicality, it is desired to use ceramics. Barium titanate is known as a substance having various compositions, but generally, it needs to be fired at a temperature of 1300 ° C. or higher in order to be converted into ceramic.

しかしながら、BaTiは1150℃以上ではBaTiOとBaTi1740に分解してしまうため、従来ではセラミックス化するために、高温・高圧化した反応やスパーク・プラズマ焼成といった特殊技術を用いる必要があり、簡便かつ工業的に緻密セラミックスを合成することはできないという問題点があった。また、このような特殊焼成は、平板形状といった簡単な形状のものしか得ることができず、成形性に劣るという問題点があった。 However, since BaTi 2 O 5 is decomposed into BaTiO 3 and Ba 6 Ti 17 O 40 at 1150 ° C. or higher, conventionally, special techniques such as high-temperature and high-pressure reactions and spark / plasma firing have been used to make ceramics. There was a problem that it was necessary to use, and it was not possible to synthesize the ceramics simply and industrially. In addition, such special firing has a problem that only a simple shape such as a flat plate shape can be obtained, and the formability is poor.

特許第4051437号公報Japanese Patent No. 4051437 特開2001−163664号公報JP 2001-163664 A Sea-Fue WANG et al, 'Properties of Hexagonal Ba(Ti1-xMnx)O3Ceramics:Effects of Sintering Temperature and Mn Content' Japanese Journal ofApplied Physics Vol.46, No.5A, 2007, pp.2978-2983Sea-Fue WANG et al, 'Properties of Hexagonal Ba (Ti1-xMnx) O3Ceramics: Effects of Sintering Temperature and Mn Content' Japanese Journal of Applied Physics Vol.46, No.5A, 2007, pp.2978-2983

すなわち、解決しようとする問題点は、たとえば、常圧下で温度を加えるだけといった、一般的な焼成手法を用いて、成形性のよいBaTi系強誘電性セラミックスを得る点である。また、BaTi系強誘電性セラミックスを利用した製品を提供する点である。 That is, the problem to be solved is that, for example, a BaTi 2 O 5 type ferroelectric ceramic with good formability is obtained by using a general firing method such as applying temperature under normal pressure. Also, a point to provide a product which utilizes the BaTi 2 O 5 based ferroelectric ceramics.

請求項1に記載のBaTi系強誘電性セラミックス製造方法は、BaTi粉末を、Mnを助剤として添加し1200℃以上で焼成してBaTi系の強誘電性セラミックスを得ることを最も主要な特徴とする。 The BaTi 2 O 5 type ferroelectric ceramic manufacturing method according to claim 1, wherein BaTi 2 O 5 powder is added with Mn as an auxiliary agent and fired at 1200 ° C. or higher to produce a BaTi 2 O 5 type ferroelectric ceramic. The most important feature is to obtain.

なお、BaTi系の系とは、分解が生じていない組成物であることを意味する(BaTiは、通常は、1150℃以上では、BaTiOとBaTi1740に分解し、1322℃で溶解し始める)。換言すれば、単一相の結晶型であることを意味する。この意味において、BaTi系とは、Mnが一部TiやBaと置換した組成物も含まれる。粉末とは、ナノ結晶ないし微細粉末を意味する。このような粉末は、たとえば、アルコキシドを用いたゾルゲル法により得ることができる。 Incidentally, the BaTi 2 O 5 system means a composition in which decomposition does not occur (BaTi 2 O 5 is usually BaTiO 3 and Ba 6 Ti 17 O 40 at 1150 ° C. or higher. Decomposes and begins to dissolve at 1322 ° C). In other words, it means a single phase crystal type. In this sense, the BaTi 2 O 5 system includes a composition in which Mn is partially substituted with Ti or Ba. The powder means nanocrystal or fine powder. Such a powder can be obtained, for example, by a sol-gel method using an alkoxide.

Mnは、金属そのものだけでなく、1200℃程度の温度で、チタン酸バリウムを変質させない(焼成に影響を与えない)ものであれば特に限定されず、化合物であってもよい。たとえば、MnOを挙げることができる。なお、MnOの融点は535℃である。Mnの添加量は、たとえば、原料の0.4wt%添加する例を挙げることができる。 Mn is not particularly limited as long as it does not alter barium titanate (does not affect firing) at a temperature of about 1200 ° C. as well as the metal itself, and may be a compound. For example, MnO 2 can be mentioned. The melting point of MnO 2 is 535 ° C. Examples of the amount of Mn added include an example in which 0.4 wt% of the raw material is added.

なお、焼成温度は後述するように1250℃以上が好ましい。   The firing temperature is preferably 1250 ° C. or higher as will be described later.

請求項2に記載の方法は、請求項1に記載のBaTi系強誘電性セラミックス製造方法において、1250℃以上で焼成し、測定周波数が1MHzであるときに誘電率実数部ε’≧350であるBaTi系の強誘電性セラミックスを得ることを主要な特徴とする。 The method according to claim 2 is the BaTi 2 O 5 based ferroelectric ceramic manufacturing method according to claim 1, wherein the real part of dielectric constant ε ′ ≧ when fired at 1250 ° C. or higher and the measurement frequency is 1 MHz. The main feature is to obtain a BaTi 2 O 5 type ferroelectric ceramic of 350.

なお、ε’は、粉末をそのまま焼成しているため無配向の状態の値をいう。   Note that ε ′ is a non-oriented value because the powder is fired as it is.

請求項3に記載の方法は、請求項1または2に記載のBaTi系強誘電性セラミックス製造方法において、焼成物を粉砕し再度成形して焼成する工程を繰り返し、焼結度が80%以上となるようにしたことを主要な特徴とする。 The method according to claim 3 is the BaTi 2 O 5 ferroelectric ceramic manufacturing method according to claim 1 or 2, wherein the sintered product is repeatedly pulverized, reshaped and fired, and the degree of sintering is 80. The main feature is that it is over%.

請求項4に記載の強誘電性セラミックスは、BaTi粉末にMnを助剤として添加して焼成することにより得られるセラミックスであって、測定周波数が1MHzであるときに誘電率実数部ε’≧350であることを最も主要な特徴とする。 The ferroelectric ceramic according to claim 4 is a ceramic obtained by adding Mn as an auxiliary agent to BaTi 2 O 5 powder and firing it, and when the measurement frequency is 1 MHz, the dielectric constant real part ε '≧ 350 is the main feature.

請求項5に記載のコンデンサは、請求項1、2または3に記載の方法により得られた強誘電性セラミックスまたは請求項4に記載の強誘電性セラミックスを用いたことを特徴とする。   The capacitor according to a fifth aspect is characterized by using the ferroelectric ceramic obtained by the method according to the first, second or third aspect, or the ferroelectric ceramic according to the fourth aspect.

本発明によれば、一般的な焼成手法を用いて、成形性のよいBaTi系強誘電性セラミックスを得ることができる。また、BaTi系強誘電性セラミックスを利用した製品を提供することができる。 According to the present invention, it is possible to obtain a BaTi 2 O 5 ferroelectric ceramic with good formability using a general firing method. In addition, a product using a BaTi 2 O 5 ferroelectric ceramic can be provided.

2回の焼成後の焼成物表面の様子と焼成温度との関係を示した図である。It is the figure which showed the relationship between the mode of the surface of the baked product after 2 times of baking, and baking temperature. 焼成物表面の斑点の大きさと焼成温度および焼成回数の関係を示した図である。It is the figure which showed the relationship between the magnitude | size of the spot on the surface of a baked product, baking temperature, and the frequency | count of baking. 焼成物の焼結度と焼成温度および焼成回数の関係を示した図である。It is the figure which showed the relationship between the sintering degree of baking products, baking temperature, and the frequency | count of baking. 1回焼成後の焼成物のXRDパタンを測定した図である。It is the figure which measured the XRD pattern of the baked product after baking once. 1100℃で2回焼成した焼成物の誘電率と温度および測定周波数との関係を調べた図である。It is the figure which investigated the relationship between the dielectric constant of the baked product baked twice at 1100 degreeC, temperature, and a measurement frequency. 1150℃で2回焼成した焼成物の誘電率と温度および測定周波数との関係を調べた図である。It is the figure which investigated the relationship between the dielectric constant of the baked product baked twice at 1150 degreeC, temperature, and a measurement frequency. 1200℃で2回焼成した焼成物の誘電率と温度および測定周波数との関係を調べた図である。It is the figure which investigated the relationship between the dielectric constant of the baked product baked twice at 1200 degreeC, temperature, and a measurement frequency. 1250℃で2回焼成した焼成物の誘電率と温度および測定周波数との関係を調べた図である。It is the figure which investigated the relationship between the dielectric constant of the baked product baked twice at 1250 degreeC, temperature, and a measurement frequency. 測定周波数が1MHzの場合の各焼成温度における焼成物の誘電率と温度との関係を重ねて示した図である。It is the figure which accumulated and showed the relationship between the dielectric constant and temperature of the baked product in each baking temperature in case a measurement frequency is 1 MHz. Mnの添加量をかえ、1250℃で2回焼成した焼成物の誘電率を示した図である。It is the figure which showed the dielectric constant of the baked product which changed the addition amount of Mn and baked twice at 1250 degreeC.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
本発明は、様々な組成形態を有するチタン酸バリウムのセラミックス化温度が総じて1300℃以上であるところ、本願発明者が鋭意検討した結果、Mnを添加すると50℃〜100℃も低い焼成温度であってもセラミックス化が可能であり、当該温度では通常分解して他の組成へ変化してしまう組成であっても当初組成を維持し、強誘電性も有することを発見したことに基づいてなされたものである。以下では、ゾルゲル法によるナノ粒子の作製、焼成、物性評価の順に説明していく。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present invention, barium titanate having various composition forms generally has a ceramization temperature of 1300 ° C. or higher, and as a result of intensive studies by the inventors of the present application, when Mn is added, the firing temperature is as low as 50 ° C. to 100 ° C. However, it was made on the basis that it was found that it can be ceramicized and maintains its initial composition and also has ferroelectricity even if it is a composition that normally decomposes at this temperature and changes to another composition. Is. Below, it demonstrates in order of preparation of a nanoparticle by a sol-gel method, baking, and physical-property evaluation.

<ゾルゲル法によるBaTiナノ粒子の作製>
まず、ゾルゲル法により原料を作製した。
Ba(OC(高純度化学研究所製:純度99.0%以上):Ti[OCH(CH]4(キシダ化学製:純度99.0%以上)=1:2(モル比)として、窒素ガス中においてメタノール(関東化学社製:純度99%)と2−メトキシエタノール(キシダ化学製:純度99%以上)の混合溶媒に溶解し、濃度1.0mol/Lの前駆体溶液を作った。
<Preparation of BaTi 2 O 5 nanoparticles by sol-gel method>
First, a raw material was prepared by a sol-gel method.
Ba (OC 2 H 5 ) 2 (manufactured by High-Purity Chemical Laboratory: purity 99.0% or higher): Ti [OCH (CH 3 ) 2 ] 4 (manufactured by Kishida Chemical: purity 99.0% or higher) = 1: 2 As (molar ratio), dissolved in a mixed solvent of methanol (manufactured by Kanto Chemical Co., Inc .: purity 99%) and 2-methoxyethanol (manufactured by Kishida Chemical Co., Ltd .: purity 99% or more) in nitrogen gas, and having a concentration of 1.0 mol / L A precursor solution was made.

これを0℃まで冷却し、攪拌しながら蒸留水を噴霧して加水分解をおこなった。
次に、50℃で24時間エージングし前駆体ゲルを作製した。
これを乾燥し、乳鉢で砕き粉末化した。
This was cooled to 0 ° C. and hydrolyzed by spraying distilled water while stirring.
Next, the precursor gel was produced by aging at 50 ° C. for 24 hours.
This was dried and crushed into a powder in a mortar.

得られた粉末をアルミナるつぼにいれ、電気炉内で650℃で12時間仮焼きをしてBaTiを得た。このとき、昇温速度を200℃/hとした。なお、得られた結晶は後述するようにXRDパタン解析により確かにBaTiであることを確認した。 The obtained powder was put into an alumina crucible and calcined at 650 ° C. for 12 hours in an electric furnace to obtain BaTi 2 O 5 . At this time, the temperature rising rate was 200 ° C./h. As will be described later, the obtained crystal was confirmed to be BaTi 2 O 5 by XRD pattern analysis.

<助剤の添加および成形>
次に、この粉末に0.4wt%のMnOを添加し湿式ボールミルにより細粒化した。具体的には、BaTi原料粉3.00gと、予め粉砕しておいたMnO(SIGMA−ALDRICH製:純度99.999%)0.012gとを、ボールミルに投入し、エタノールを容器の7分目まで添加した後、5mmφ10個、2mmφ50個のジルコニアボールを加えて150rpmの速度で容器を24時間回転し続けた。その後内容物を100℃で乾燥し、乳鉢で粉砕して一様に混合された粉末(BaTiとMnOとの混合粉末)を得た。
<Addition and molding of auxiliaries>
Next, 0.4 wt% of MnO 2 was added to the powder and the mixture was finely granulated by a wet ball mill. Specifically, 3.00 g of BaTi 2 O 5 raw material powder and 0.012 g of previously pulverized MnO 2 (manufactured by SIGMA-ALDRICH: purity 99.999%) are put into a ball mill, and ethanol is placed in a container. After adding up to 7 minutes, 5 mmφ10 pieces and 2 mmφ50 pieces of zirconia balls were added, and the container was continuously rotated at a speed of 150 rpm for 24 hours. Thereafter, the content was dried at 100 ° C. and pulverized in a mortar to obtain a uniformly mixed powder (a mixed powder of BaTi 2 O 5 and MnO 2 ).

次に、粉末にバインダとしてポリビニルアルコールを1wt%添加して、5mmφの金型に投入し、500MPaで10分間加圧してペレットを作製した。なお、ペレットの高さは約4.5mm、重さは約0.3gとなった。   Next, 1 wt% of polyvinyl alcohol as a binder was added to the powder, put into a 5 mmφ mold, and pressed at 500 MPa for 10 minutes to produce pellets. The height of the pellet was about 4.5 mm and the weight was about 0.3 g.

<焼成>
このペレットを、900℃、1000℃、1100℃、1150℃、1200℃、1250℃で5時間焼成した。なお、昇温工程において、バインダを除去するために600℃×4時間のステップをいれ、その後設定温度まで昇温するようにプログラムした。
<Baking>
The pellets were fired at 900 ° C., 1000 ° C., 1100 ° C., 1150 ° C., 1200 ° C., and 1250 ° C. for 5 hours. In the temperature raising process, a step of 600 ° C. × 4 hours was performed to remove the binder, and the temperature was raised to the set temperature.

焼成したものには、焼成温度の高いものほど明瞭な斑点が確認されたので、ペレットを粉砕し、再度ポリビニルアルコールを1wt%添加して、同様の金型を用いて成形し、同一の温度にて再度焼成し直した。なお、このときも、昇温のプログラムはバインダ除去の工程も含めて1回目の焼成と同一のプログラムに従った。   In the baked product, the clearer spots were confirmed as the calcination temperature was higher, so the pellets were pulverized, added again with 1 wt% of polyvinyl alcohol, molded using the same mold, and kept at the same temperature. And fired again. At this time, the temperature raising program was the same as that for the first firing, including the binder removal step.

<物性評価>
図1に、2回の焼成後の焼成物表面の様子と焼成温度との関係を示した。図示したように、焼成温度が高いほど斑点が目立つが、二度目の焼成では一度目の焼成のような目立つ斑点は観察されなかった。図2に、斑点の大きさと焼成温度および焼成回数の関係を示した。なお、金属顕微鏡で確認したところ、1回目の焼成のときに現れた斑点の大きさは、80μm〜100μmの大きさであった。
<Physical property evaluation>
FIG. 1 shows the relationship between the state of the surface of the fired product after firing twice and the firing temperature. As shown in the figure, the spots become more conspicuous as the firing temperature is higher, but in the second firing, noticeable spots as in the first firing were not observed. FIG. 2 shows the relationship between the size of the spots, the firing temperature, and the number of firings. In addition, when it confirmed with the metal microscope, the magnitude | size of the spot which appeared at the time of the 1st baking was a magnitude | size of 80 micrometers-100 micrometers.

図3に、焼結度と焼成温度および焼成回数の関係を示した。図示したように、1回の焼成では時間が短かったのか、バインダ散逸による空隙が大きかったのか、焼結度は大きくないものの、1150℃以上では2回の焼成により焼結度が80%を超え、セラミックス化が進んでいることが確認できる。特に1200℃以上では2度の焼成により、焼結度が85%を超え、1250℃の場合には、ほぼ100%セラミックス化していることが確認できる。なお、焼結度は、BaTi単結晶の密度(5.2g/cm)を基準としてペレットの体積と重量とから算出した。 FIG. 3 shows the relationship between the degree of sintering, the firing temperature, and the number of firings. As shown in the figure, although the firing time was short or the voids due to binder dissipation were large, the degree of sintering was not large, but at 1150 ° C or higher, the degree of sintering exceeded 80% by firing twice. It can be confirmed that ceramics are being developed. In particular, it can be confirmed that when the sintering degree exceeds 85% at 1,200 ° C. or more and the degree of sintering exceeds 85%, it is almost 100% ceramicized. The degree of sintering was calculated from the pellet volume and weight based on the density of the BaTi 2 O 5 single crystal (5.2 g / cm 3 ).

次に、2回焼成後のXRDパタンを測定した。結果を図4に示す。図示したように、ピークの強度は若干異なるが、1250℃まで原料粉末すなわちBaTi結晶とほぼ同一のパタンを有し、本来なら分解するはずの温度であっても分解せず単一相の結晶型を維持することが確認できた。 Next, the XRD pattern after firing twice was measured. The results are shown in FIG. As shown in the figure, the intensity of the peak is slightly different, but it has a pattern almost the same as that of the raw material powder, that is, BaTi 2 O 5 crystal up to 1250 ° C., and does not decompose even at a temperature that should normally be decomposed. It was confirmed that the crystal form of was maintained.

以上から、Mnを助剤として用いると、一般的にチタン酸バリウム系結晶のセラミックス化温度といわれている1300℃より50℃も低い当業者であっても想定外の温度でセラミックス化が可能であり、しかも、分解する温度とされる1150℃以上であっても分解せずにセラミックス化が可能であるという、驚くべき二つの結果となることが確認できた。   From the above, when Mn is used as an auxiliary agent, even a person skilled in the art, which is generally called the ceramicization temperature of barium titanate-based crystals, which is 50 ° C lower than 1300 ° C, can perform ceramicization at an unexpected temperature. In addition, it was confirmed that two surprising results were obtained that the ceramic could be produced without decomposition even at 1150 ° C. or higher, which is the decomposition temperature.

次に、2回焼成後の誘電率と温度および測定周波数との関係を調べた。図5には1100℃の焼成物を、図6には1150℃の焼成物を、図7には1200℃の焼成物を、図8には1250℃の焼成物をそれぞれ示した。また、図9には、測定周波数が1MHzの場合の各焼成温度における焼成物の誘電率と温度との関係を重ねて示した。   Next, the relationship between the dielectric constant after firing twice, the temperature, and the measurement frequency was examined. FIG. 5 shows a 1100 ° C. fired product, FIG. 6 shows a 1150 ° C. fired product, FIG. 7 shows a 1200 ° C. fired product, and FIG. 8 shows a 1250 ° C. fired product. FIG. 9 also shows the relationship between the dielectric constant and the temperature of the fired product at each firing temperature when the measurement frequency is 1 MHz.

図から明らかなように、焼成温度が1200℃である場合には、Tcが320℃〜330℃にあり、その誘電率実数部ε’は150以上であって、特に、焼成温度が1250℃である場合には、誘電率実数部ε’は350以上となり良好な強誘電性を示すことが確認できた。常圧(大気圧)における通常の焼成方法で得られるこの値は大きなものである。   As is apparent from the figure, when the firing temperature is 1200 ° C., Tc is 320 ° C. to 330 ° C., the real part ε ′ of the dielectric constant is 150 or more, and in particular, the firing temperature is 1250 ° C. In some cases, the real part ε ′ of the dielectric constant was 350 or more, and it was confirmed that good ferroelectricity was exhibited. This value obtained by a normal firing method at normal pressure (atmospheric pressure) is large.

以上より、原料粉末を任意の形状に成形して1200℃以上好ましくは1250℃以上で焼成することにより強誘電性を有するセラミックスが得られることが確認できた。なお、単結晶の場合は、配向性があり、b軸方向ではε’が30000となるが、本方法は粉末により成形するためε’が350程度になる。ただし、従来知られている方法により、適宜若干の配向性を持たせるようにすればε’を1000程度とすることも可能である。   From the above, it was confirmed that a ceramic having ferroelectricity can be obtained by forming the raw material powder into an arbitrary shape and firing at 1200 ° C. or higher, preferably 1250 ° C. or higher. In the case of a single crystal, there is orientation, and ε ′ is 30000 in the b-axis direction, but ε ′ is about 350 because this method is formed by powder. However, it is possible to set ε ′ to about 1000 by appropriately giving a slight orientation by a conventionally known method.

最後に、Mn添加量と誘電率との関係を調べた。図10は、誘電率と温度およびMn添加量の関係を示した図である。1250℃で2回焼成した焼成物を検討した結果、Mnは0.2wt%〜0.8wt%添加で強誘電性を示すことが分かった。なお、図示は省略するが、いずれも、XRDパタンはBaTi系の単一相結晶であった。 Finally, the relationship between the amount of Mn added and the dielectric constant was examined. FIG. 10 is a graph showing the relationship between dielectric constant, temperature, and Mn addition amount. As a result of examining the fired product fired twice at 1250 ° C., it was found that Mn exhibits ferroelectricity when 0.2 wt% to 0.8 wt% is added. Although not shown, both, XRD pattern was a single phase crystal of BaTi 2 O 5 system.

このように、本発明によれば、成形性のよいBaTi系強誘電性セラミックスを得ることが可能となる。 As described above, according to the present invention, it is possible to obtain a BaTi 2 O 5 ferroelectric ceramic with good formability.

本発明により、従来の生産ラインでおこなわれている、原料スラリーからグリーンシートを経て積層セラミックスコンデンサへとつづく、一連の工程でのコンデンサ作製が可能となる。また、サーミスタに用いられているPTCセラミックスの代替も可能となる。また、FRAMとしての応用も可能である。
According to the present invention, it is possible to produce a capacitor in a series of steps, which is performed in a conventional production line, from raw slurry to a multilayer ceramic capacitor through a green sheet. Moreover, substitution of the PTC ceramics used for the thermistor is also possible. Moreover, application as FRAM is also possible.

Claims (5)

BaTi粉末を、Mnを助剤として添加し1200℃以上で焼成してBaTi系の強誘電性セラミックスを得ることを特徴とするBaTi系強誘電性セラミックス製造方法。 A method for producing a BaTi 2 O 5 ferroelectric ceramic, characterized in that BaTi 2 O 5 powder is added with Mn as an auxiliary agent and fired at 1200 ° C. or higher to obtain a BaTi 2 O 5 ferroelectric ceramic. 1250℃以上で焼成し、測定周波数が1MHzであるときに誘電率実数部ε’≧350であるBaTi系の強誘電性セラミックスを得ることを特徴とする請求項1に記載のBaTi系強誘電性セラミックス製造方法。 And fired at 1250 ° C. or higher, BaTi 2 according to claim 1, the measurement frequency, characterized in that to obtain a BaTi 2 O 5 based ferroelectric ceramics is the permittivity real part epsilon '≧ 350 when it is 1MHz O 5 based ferroelectric ceramic manufacturing method. 焼成物を粉砕し再度成形して焼成する工程を繰り返し焼結度が80%以上となるようにしたことを特徴とする請求項1または2に記載のBaTi系強誘電性セラミックス製造方法。 The method for producing a BaTi 2 O 5 ferroelectric ceramic according to claim 1 or 2, wherein the sintered product is pulverized, reshaped and fired repeatedly so that the degree of sintering becomes 80% or more. . BaTi粉末にMnを助剤として添加して焼成することにより得られるセラミックスであって、測定周波数が1MHzであるときに誘電率実数部ε’≧350である強誘電性セラミックス。 Ferroelectric ceramics obtained by adding Mn as an auxiliary to BaTi 2 O 5 powder and firing, and having a dielectric constant real part ε ′ ≧ 350 when the measurement frequency is 1 MHz. 請求項1、2または3に記載の方法により得られた強誘電性セラミックスまたは請求項4に記載の強誘電性セラミックスを用いたことを特徴とするコンデンサ。   A capacitor using the ferroelectric ceramic obtained by the method according to claim 1, 2 or 3 or the ferroelectric ceramic according to claim 4.
JP2009148621A 2009-06-23 2009-06-23 BaTi2O5 ferroelectric ceramic manufacturing method Expired - Fee Related JP5327677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148621A JP5327677B2 (en) 2009-06-23 2009-06-23 BaTi2O5 ferroelectric ceramic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148621A JP5327677B2 (en) 2009-06-23 2009-06-23 BaTi2O5 ferroelectric ceramic manufacturing method

Publications (2)

Publication Number Publication Date
JP2011006266A JP2011006266A (en) 2011-01-13
JP5327677B2 true JP5327677B2 (en) 2013-10-30

Family

ID=43563413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148621A Expired - Fee Related JP5327677B2 (en) 2009-06-23 2009-06-23 BaTi2O5 ferroelectric ceramic manufacturing method

Country Status (1)

Country Link
JP (1) JP5327677B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660947B2 (en) * 2011-03-22 2015-01-28 セイコーインスツル株式会社 Method for producing BaTi2O5 composite oxide
JP5909319B2 (en) * 2011-03-22 2016-04-26 セイコーインスツル株式会社 BaTi2O5 precursor powder, method for producing BaTi2O5 precursor powder, and method for producing BaTi2O5
JP5842636B2 (en) * 2012-01-30 2016-01-13 Tdk株式会社 Piezoelectric ceramic composition and piezoelectric element
JP6091881B2 (en) * 2012-03-19 2017-03-08 セイコーインスツル株式会社 Method for producing BaTi2O5 composite oxide
KR102516759B1 (en) * 2016-01-05 2023-03-31 삼성전기주식회사 Dielectric ceramic composition, multilayer ceramic capacitor including the dielectric ceramic composition, and method for fabricating the multilayer ceramic capacitor
JP6575411B2 (en) * 2016-03-28 2019-09-18 Tdk株式会社 Dielectric thin film element
JP6963918B2 (en) * 2017-06-08 2021-11-10 セイコーインスツル株式会社 Barium titanate-based composite oxide and its manufacturing method
CN113788494A (en) * 2021-10-27 2021-12-14 上海大学(浙江·嘉兴)新兴产业研究院 Preparation method of barium dititanate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297009A (en) * 1994-04-27 1995-11-10 Matsushita Electric Ind Co Ltd Positive temperature coefficient thermistor and manufacturing method thereof
JP3305626B2 (en) * 1997-07-22 2002-07-24 太陽誘電株式会社 Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
JP5526422B2 (en) * 2006-05-09 2014-06-18 国立大学法人島根大学 Barium titanate crystal piezoelectric material containing KF

Also Published As

Publication number Publication date
JP2011006266A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5327677B2 (en) BaTi2O5 ferroelectric ceramic manufacturing method
Chaouchi et al. Characterization of sol–gel synthesised lead-free (1− x) Na0. 5Bi0. 5TiO3–xBaTiO3-based ceramics
JP4658689B2 (en) Method for producing barium titanate powder, barium titanate powder, and sintered barium titanate
KR100698440B1 (en) Process of preparing low- temperature sintered microwave dielectric ceramics
Lai et al. Effects of CaO–B2O3–SiO2 glass additive on the microstructure and electrical properties of BCZT lead-free ceramic
Tyagi Synthesis and characterization of ceramic dielectric resonator materials for microwave communication technology
Li et al. Relaxor behavior and Raman spectra of CuO-doped Pb (Mg 1/3 Nb 2/3) O 3-PbTiO 3 ferroelectric ceramics
JP4411483B2 (en) Method for producing barium titanate powder
Fukui et al. Preparation of Ba (Mg1/3Nb2/3) O3 ceramics as microwave dielectrics through alkoxide-hydroxide route
JP4049315B2 (en) Dielectric having high dielectric constant and method for manufacturing the same
JP3421810B2 (en) Method for producing ultrafine barium titanate dielectric ceramic material
Zhang et al. Enhanced sintering and nonlinear dielectric properties of Ba0. 6Sr0. 4TiO3 ceramics with a small amount of lithium additive
Nurmi et al. The effect of titanium excess and deficiency on the microstructure and dielectric properties of lanthanum doped Ba0. 55Sr0. 45TiO3 with colossal permittivity
JP5273468B2 (en) Method for producing barium titanate crystal
KR20090095491A (en) Method for producing perovskite-typed barium titanate powder
Khim et al. Phase stability and dielectric properties of (1− x) PFW+ xPZN derived from mechanical activation
JP5069444B2 (en) Method for manufacturing dielectric ceramics
Yue et al. Dielectric properties of (010) oriented polycrystalline Ta2O5 substituted BaTi2O5 prepared by arc melting
Gupta et al. Synthesis, dielectric and microstructure studies of lead magnesium niobate stabilised using lead titanate
JP2021123799A (en) Metal oxynitride thin film and capacitive element
Mazon et al. Influence of seed particle frequency on the phase formation and on the microstructure of 0.88 PZN–0.07 BT–0.05 PT ceramic
Zhang et al. The effect of lead-glass additives on densification and dielectric properties of Ba0. 4Sr0. 6TiO3 ceramics
CN117645475A (en) CaTiO (CaTiO) 3 -LaAlO 3 Basic microwave dielectric ceramic and preparation method thereof
Tan et al. High piezoelectric properties of batio3 ceramics prepared by two-step sintering technique through conventional solid-state reaction route
Kaur et al. Influence of increased sintering time on structure and dielectric behaviour of barium lanthanide titanates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5327677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees