JP5327621B2 - Plasma torch for heating molten steel in tundish - Google Patents

Plasma torch for heating molten steel in tundish Download PDF

Info

Publication number
JP5327621B2
JP5327621B2 JP2009143169A JP2009143169A JP5327621B2 JP 5327621 B2 JP5327621 B2 JP 5327621B2 JP 2009143169 A JP2009143169 A JP 2009143169A JP 2009143169 A JP2009143169 A JP 2009143169A JP 5327621 B2 JP5327621 B2 JP 5327621B2
Authority
JP
Japan
Prior art keywords
nozzle
peripheral part
inner peripheral
outer peripheral
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009143169A
Other languages
Japanese (ja)
Other versions
JP2011000593A (en
Inventor
克己 天田
章 岡田
倫明 浦川
大輔 三木
政美 松嶋
薫 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009143169A priority Critical patent/JP5327621B2/en
Publication of JP2011000593A publication Critical patent/JP2011000593A/en
Application granted granted Critical
Publication of JP5327621B2 publication Critical patent/JP5327621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、タンディッシュ内の溶鋼を、プラズマトーチから発生するプラズマアークによって加熱を行う連続鋳造用タンディッシュ内溶鋼のプラズマ加熱装置に使用するプラズマトーチに関するものである。   The present invention relates to a plasma torch used in a plasma heating device for molten steel in a tundish for continuous casting in which the molten steel in the tundish is heated by a plasma arc generated from the plasma torch.

連続鋳造用タンディッシュ内溶鋼のプラズマ加熱装置に使用するプラズマトーチには、水冷式直流冷陰極移行型プラズマトーチと、水冷式直流熱陰極型プラズマトーチとがある。水冷式直流冷陰極移行型プラズマトーチは、トーチ先端を大量の循環冷却水で冷却する機能を備え、数メガワットレベルの大容量プラズマアークに対する耐熱性を有する。一方、水冷式直流熱陰極型プラズマトーチは、トーチ先端に耐熱性の高い材質を使用して極力冷却水量を減らすことで、循環冷却水の抜熱によるエネルギーロスをミニマム化できるためエネルギー効率の観点で優れている。   Plasma torches used in the plasma heating apparatus for tundish inner molten steel for continuous casting include a water-cooled DC cold cathode transfer plasma torch and a water-cooled DC hot cathode plasma torch. The water-cooled DC cold cathode transfer type plasma torch has a function of cooling the tip of the torch with a large amount of circulating cooling water, and has heat resistance against a large-capacity plasma arc of several megawatts level. On the other hand, the water-cooled DC hot cathode plasma torch uses a highly heat-resistant material at the torch tip to reduce the amount of cooling water as much as possible, thereby minimizing the energy loss due to heat removal from the circulating cooling water. Is excellent.

一般的に連続鋳造プロセスにおいては、水冷式直流熱陰極型プラズマトーチが使用されることが多く、該トーチにおいて、偏向アークの低減を図りトーチ電極寿命を延長させる技術が、例えば、特許文献1に開示されている。   In general, in a continuous casting process, a water-cooled direct current hot cathode plasma torch is often used, and a technique for reducing the deflection arc and extending the life of the torch electrode in the torch is disclosed in Patent Document 1, for example. It is disclosed.

連続鋳造設備の大型化に伴い、数メガワットレベルの大容量プラズマアークに対する耐熱性を有する水冷式直流冷陰極移行型プラズマトーチが採用される場合があるが、該水冷式直流冷陰極移行型プラズマトーチ特有の構造に起因したトーチ寿命劣化が問題となっている。   A water-cooled DC cold cathode transfer type plasma torch having heat resistance against a large-capacity plasma arc of several megawatt level may be adopted along with an increase in the size of a continuous casting facility. Deterioration of the torch life due to the unique structure is a problem.

図5に一般的な水冷式直流冷陰極移行型プラズマトーチ先端部の構造を示す。電極の下から旋回を与えてArガスを吹き込み、このArガスをタンディシュの溶鋼面側へ指向性を持たせて吹き付けるためのガイドの役目を果たすリング状のノズル部が設置される。溶鋼へ吹き付けられるArガスがプラズマ化して高温のプラズマアークを形成し、アークの輻射熱で溶鋼を加熱する。ノズル部の役割は、吹き込みArガスをガイドしてプラズマアークを確実に電極と溶鋼間の位置に制御し、タンディシュ蓋等へのミスアークによる電極の溶損やプラズマの失火を防ぐことであり、非常に重要な役割を果たしている。
図4に、一般的な水冷式直流冷陰極移行型プラズマトーチのノズル部構造を示している。水冷式直流冷陰極移行型プラズマトーチでは、ノズル部に複雑な冷却水経路の機械加工を施すことが必要となる。このため、該ノズル部は、鋳造による一体形成ではなく、通常、内周パーツ12と外周パーツ11からなる2ピース構造とし、それぞれを機械加工した後、溶接による一体化を行って形成される。図4のB詳細に溶接部近傍の拡大図を示すが、内周パーツ12と外周パーツ11にかい先を取り、肉盛り溶接を行っている。該ノズル部の材料として、一般的には、熱伝導率が高く、強度が高いリン脱酸銅の鍛造品が使用される。
FIG. 5 shows the structure of the tip of a general water-cooled DC cold cathode transfer type plasma torch. A ring-shaped nozzle part is provided which serves as a guide for blowing Ar gas from the bottom of the electrode and blowing Ar gas toward the molten steel surface side of the tundish with directivity. Ar gas blown to the molten steel is turned into plasma to form a high-temperature plasma arc, and the molten steel is heated by the radiant heat of the arc. The role of the nozzle part is to guide the blown Ar gas to reliably control the plasma arc to the position between the electrode and the molten steel, to prevent electrode melting and plasma misfire due to misarcing to the tundish lid, etc. Plays an important role.
FIG. 4 shows a nozzle structure of a general water-cooled DC cold cathode transfer type plasma torch. In the water-cooled DC cold cathode transfer type plasma torch, it is necessary to machine a complicated cooling water path in the nozzle portion. For this reason, the nozzle part is not integrally formed by casting, but is usually formed by a two-piece structure including an inner peripheral part 12 and an outer peripheral part 11, machined and then integrated by welding. The enlarged view of the vicinity of the welded portion is shown in detail in FIG. 4B, but the inner peripheral part 12 and the outer peripheral part 11 are pointed to perform overlay welding. As the material of the nozzle portion, generally, a forged product of phosphorous deoxidized copper having high thermal conductivity and high strength is used.

しかし、図4に示す従来の水冷式直流冷陰極移行型プラズマトーチはトーチ寿命が短く、平均17時間程度の使用により、該ノズル部の内周パーツ12と外周パーツ11との溶接部や、タンディッシュ内溶鋼に近接したノズル底面内周部から、水漏れが発生しやすいという問題があった。   However, the conventional water-cooled DC cold cathode transfer type plasma torch shown in FIG. 4 has a short torch life, and on average about 17 hours of use, the welded portion between the inner peripheral part 12 and the outer peripheral part 11 of the nozzle part, There was a problem that water leakage was likely to occur from the inner peripheral portion of the nozzle bottom surface close to the molten steel in the dish.

特開平11−291023号公報JP-A-11-291023

本発明の目的は、前記問題を解決し、ノズル部からの水漏れを防止してトーチ寿命を延長させた水冷式直流冷陰極移行型プラズマトーチを提供することである。   An object of the present invention is to provide a water-cooled DC cold cathode transfer type plasma torch that solves the above-mentioned problems and prevents the leakage of water from the nozzle portion to extend the torch life.

上記課題を解決するためになされた本発明の水冷式直流冷陰極移行型プラズマトーチは、ププラズマトーチ先端電極の外周下端部に配置されるノズル部を、リング状の外周パーツと、この外周パーツの内周及び下面に沿って延びる内周パーツから構成し、前記外周パーツの下部に形成したリング状突部の内周端部を、内周パーツの下部外周部と溶接して一体化し、これらのパーツ間にノズル内周面冷却水路を形成した水冷式直流冷陰極移行型プラズマトーチであって、前記ノズル内周面冷却水路と繋がるノズル下面冷却水路は、前記のパーツ間に形成される円形空洞部と、前記リング状突部に放射状に配置されて、入口下端部にR加工を施したノズル底面冷却水路からなり、前記溶接部を、前記円形空洞部とノズル底面冷却水路の入口下端部の接合箇所から8mm以上ずらして配置したことを特徴とするものである。 The water-cooled direct current cold cathode transfer type plasma torch of the present invention made to solve the above-mentioned problems is characterized in that a nozzle portion arranged at the lower end of the outer periphery of the plasma torch tip electrode includes a ring-shaped outer peripheral part and the outer peripheral part. The inner peripheral part of the ring-shaped protrusion formed on the lower part of the outer peripheral part is welded and integrated with the lower outer peripheral part of the inner peripheral part. A water-cooled direct current cold cathode transfer type plasma torch in which a nozzle inner peripheral surface cooling water channel is formed between parts of the nozzle, and a nozzle lower surface cooling water channel connected to the nozzle inner peripheral surface cooling water channel is a circle formed between the parts. It consists of a nozzle bottom surface cooling water channel radially disposed on the ring-shaped projecting portion and having a R-process on the lower end portion of the inlet, and the welded portion is connected to the lower end portion of the inlet of the circular cavity portion and the nozzle bottom surface cooling water channel. It is characterized in that the joint was staggered over 8 mm.

請求項2記載の発明は、請求項1記載の水冷式直流冷陰極移行型プラズマトーチにおいて、ノズル部の底面に、耐熱性及び耐磨耗性の表面処理を施したことを特徴とするものである。 The invention described in claim 2 is the water-cooled direct current cold cathode transfer type plasma torch according to claim 1 , characterized in that the bottom surface of the nozzle portion is subjected to a heat-resistant and wear-resistant surface treatment. is there.

水漏れが発生したノズル部の詳細調査の結果、ノズル部の溶鋼に対向する面に施された内周パーツ12と外周パーツ11 の溶接部において、冷却水路側から亀裂が伸展してノズル部1表面に到達して最終的に水漏れが発生していることを突き止めた。当該部分の水漏れ対策を検討する中で、本件発明者は、プラズマ印加時のプラズマトーチのノズル部の熱応力解析により、剛性の高い外周パーツ11と剛性の低い内周パーツ12の溶接接続部周辺に大きな熱応力が発生していることを見出した。プラズマ印加時、内周パーツ12の熱負荷が高く温度が上昇して線膨張が大きくなるため、剛性の高い外周パーツ11と接続された剛性の低い内周パーツ12の付け根部分Xに大きな熱応力が発生するためである。熱応力は、前述した内周パーツ12の付け根部分Xの非常に狭い範囲に局所的に発生しており、熱応力解析より、付け根部分Xから内周方向に8mm離れたところの熱応力は、約10%に大幅に低減することが判明した。また、一般的に溶接部の組織は、溶接時の入熱の影響で粗大化しているため鍛造された他部位よりも強度が弱いことが知られている。これらの知見に基づき、本件発明者は、熱応力集中位置と、強度の弱い溶接位置をずらす構成を発案した。ずらす距離としては8mm以上が好ましい。当該発案に基づく本発明の水冷式直流冷陰極移行型プラズマトーチは、内周パーツ12と外周パーツ11 との接続部を、プラズマ加熱時に熱応力が集中的に発生する熱応力集中部位を回避した箇所に設ける構成により、従来、内周パーツ12と外周パーツ11 との溶接部に生成した亀裂からの水漏れを防止し、トーチ寿命の延長を実現可能とした。トーチ寿命の延長により、水漏れ修繕費の削減、また水漏れに起因するプラズマ非稼動時間の短縮、これに伴いタンディシュ溶鋼温度バラツキの低減、鋳造速度高位安定による生産性向上、低温溶鋼による品質悪化防止、ノズル詰まり防止の各効果が最大限享受可能となる。   As a result of a detailed investigation of the nozzle part where water leakage occurred, a crack extended from the cooling water channel side at the welded part of the inner peripheral part 12 and outer peripheral part 11 applied to the surface of the nozzle part facing the molten steel, and the nozzle part 1 It reached the surface and finally found out that a water leak occurred. In examining the countermeasures against water leakage at the relevant part, the present inventor, based on the thermal stress analysis of the nozzle part of the plasma torch at the time of plasma application, the weld connection part of the outer peripheral part 11 having high rigidity and the inner peripheral part 12 having low rigidity. It was found that a large thermal stress was generated around. When plasma is applied, the thermal load on the inner peripheral part 12 is high and the temperature rises and the linear expansion increases. Therefore, a large thermal stress is applied to the base X of the inner peripheral part 12 having a low rigidity connected to the outer peripheral part 11 having a high rigidity. This is because of this. The thermal stress is locally generated in a very narrow range of the root portion X of the inner peripheral part 12 described above. From the thermal stress analysis, the thermal stress at 8 mm away from the root portion X in the inner peripheral direction is It has been found that it is significantly reduced to about 10%. Further, it is generally known that the structure of the welded portion is coarser due to the influence of heat input during welding, so that the strength is weaker than other forged parts. Based on these findings, the present inventor has devised a configuration in which the thermal stress concentration position is shifted from the welding position with low strength. The shifting distance is preferably 8 mm or more. The water-cooled direct current cold cathode transfer type plasma torch of the present invention based on the idea avoids the thermal stress concentration part where the thermal stress is intensively generated at the time of plasma heating at the connection part between the inner peripheral part 12 and the outer peripheral part 11. The structure provided at the location prevents water leakage from a crack generated in the welded portion between the inner peripheral part 12 and the outer peripheral part 11 and can extend the torch life. By extending the torch life, water leakage repair costs are reduced, plasma non-operation time due to water leakage is shortened, temperature fluctuation of tundish molten steel is reduced, productivity is improved by high casting speed stability, and quality deteriorates due to low temperature molten steel Each effect of prevention and prevention of nozzle clogging can be enjoyed to the maximum extent.

また、本発明によれば、プラズマ加熱時に熱応力が集中的に発生する熱応力集中部位Xであるノズル底面冷却水路の入口下端部にR加工11cを施す構成により、当該部分の熱応力を緩和することができる。 Further, according to the present invention, the R stress 11c is applied to the lower end of the inlet of the nozzle bottom surface cooling water channel which is the thermal stress concentration portion X where the thermal stress is generated intensively at the time of plasma heating. can do.

水漏れが発生したノズル部の詳細調査の結果、ノズル部のうち、タンディッシュ内溶鋼に近接したノズル底面内周部からも水漏れが発生していることを突き止めた。当該部分の水漏れ対策を検討する中で、本件発明者は、ノズル底面内周部の断面EPMA解析により、当該部分の水漏れは、大量に溶鋼に吹付けられるArプラズマガスの運動エネルギーで吹き飛ばされたタンディッシュ内溶鋼液滴のアタックによる薄肉化が原因であることを見出し、該部分に、耐熱性及び耐摩耗性に優れた表面処理を行うことを発案した。当該発案に基づく請求項記載の発明は、請求項記載の水冷式直流冷陰極移行型のプラズマトーチにおいて、該ノズル部の底面に、耐熱性及び耐磨耗性の表面処理を施す構成により、タンディッシュ内溶鋼に近接したノズル底面内周部からも水漏れを防止し、トーチ寿命の延長を実現している。 As a result of detailed investigation of the nozzle portion where water leakage occurred, it was found that water leakage occurred also from the inner peripheral portion of the nozzle bottom surface close to the molten steel in the tundish. While examining countermeasures against water leakage in the part, the present inventor blows away the water leakage in the part with the kinetic energy of Ar plasma gas sprayed on the molten steel in large quantities by the cross-sectional EPMA analysis of the inner peripheral part of the nozzle bottom surface. It was found that the cause was a thinning due to attack of the molten steel droplets in the tundish, and it was proposed to perform a surface treatment excellent in heat resistance and wear resistance on this portion. The invention described in claim 2 based on the idea is the water-cooled direct current cold cathode transfer type plasma torch according to claim 1 , wherein the bottom surface of the nozzle portion is subjected to a heat-resistant and wear-resistant surface treatment. In addition, water leakage is prevented from the inner peripheral part of the nozzle bottom close to the molten steel in the tundish and the torch life is extended.

実施形態1のノズル部の説明図である。FIG. 3 is an explanatory diagram of a nozzle unit according to the first embodiment. 図1のAA断面図である。It is AA sectional drawing of FIG. 参考形態2のノズル部の説明図である。It is explanatory drawing of the nozzle part of the reference form 2. 一般的な水冷式直流冷陰極移行型プラズマトーチのノズル部構造の説明図である。It is explanatory drawing of the nozzle part structure of a general water-cooling type direct current cold cathode transfer type plasma torch. プラズマトーチとノズル部の構造を表した説明図である。It is explanatory drawing showing the structure of the plasma torch and the nozzle part.

以下に本発明の好ましい実施形態を示す。   Preferred embodiments of the present invention are shown below.

(実施形態1)
図1には、実施形態1の水冷式直流冷陰極移行型プラズマトーチにおける、プラズマトーチ先端電極の外周下端部に配置されるノズル部の説明図を示し、図2には、図1のAA断面図を示している。
(Embodiment 1)
FIG. 1 shows an explanatory view of a nozzle portion arranged at the lower end of the outer periphery of the plasma torch tip electrode in the water-cooled DC cold cathode transfer type plasma torch according to the first embodiment, and FIG. 2 shows an AA cross section of FIG. The figure is shown.

プラズマアークの指向性を高めるため、プラズマトーチ先端電極の外周下端部に配置されるノズル部1は、外周パーツ11と、この外周パーツの内周及び下面に沿って延びる内周パーツ12とから構成される。各パーツの構成材料には、熱伝導率が高く、強度が強い、リン脱酸銅の鍛造品を使用した。   In order to enhance the directivity of the plasma arc, the nozzle portion 1 arranged at the lower outer periphery of the plasma torch tip electrode is composed of an outer peripheral part 11 and an inner peripheral part 12 extending along the inner periphery and the lower surface of the outer peripheral part. Is done. As the constituent material of each part, a forged product of phosphorous deoxidized copper having high thermal conductivity and high strength was used.

該ノズル部1を冷却する冷却水は、内周パーツ12と外周パーツ11との対峙空間に形成されたノズル内周面冷却水路13aを通って、ノズル内周を冷却する。   The cooling water for cooling the nozzle portion 1 cools the inner periphery of the nozzle through a nozzle inner peripheral surface cooling water passage 13 a formed in a confronting space between the inner peripheral part 12 and the outer peripheral part 11.

図2に示すように,外周パーツ11の下部には、放射状のノズル底面冷却水路11aを備えたリング状突部を形成している。   As shown in FIG. 2, a ring-shaped protrusion having a radial nozzle bottom surface cooling water channel 11 a is formed at the lower part of the outer peripheral part 11.

一般に、プラズマ加熱時に母材剛性の変化が最大となる位置が、最も大きい熱応力が発生する熱応力集中部位となる。本実施形態で、プラズマ加熱時に母材剛性の変化が最大となる位置とは、冷却水の水路形状が変更するノズル底面冷却水路11aの入口下端部となる。したがって、当該熱応力集中部位の応力緩和を目的として、ノズル底面冷却水路11aの入口下端部にR加工11cを施すことが好ましい。熱応力解析の結果、R加工の曲率半径を3.5mmとすることで、熱応力を50%低減できることが判明している。   In general, the position where the change in the rigidity of the base material is maximized during plasma heating is a thermal stress concentration portion where the greatest thermal stress is generated. In the present embodiment, the position where the change in the base material rigidity is maximized during the plasma heating is the lower end of the inlet of the nozzle bottom surface cooling water channel 11a where the shape of the cooling water channel changes. Therefore, it is preferable to perform R machining 11c on the lower end of the inlet of the nozzle bottom surface cooling water channel 11a for the purpose of stress relaxation at the thermal stress concentration site. As a result of thermal stress analysis, it has been found that thermal stress can be reduced by 50% by setting the radius of curvature of R processing to 3.5 mm.

一般的に溶接部の組織は、溶接時の入熱の影響で粗大化しているため鍛造された他部位よりも強度が弱くなるが、本実施形態では、ノズル部の底面における内周パーツの下部外周部12aと外周パーツ11との接続部を、使用時における熱応力集中部位を回避した箇所に設ける構成により、当該溶接部分から発生する損傷を効果的に予防している。   Generally, the structure of the welded part is coarser due to the effect of heat input during welding, so the strength is weaker than other forged parts. In this embodiment, the lower part of the inner peripheral part at the bottom of the nozzle part By providing the connection part between the outer peripheral part 12a and the outer peripheral part 11 at a place avoiding the thermal stress concentration part at the time of use, the damage generated from the welded part is effectively prevented.

タンディシュ内溶鋼の跳ね返りの影響を受けるノズル部底面には、耐熱・耐磨耗性表面処理を施すことが好ましい。表面処理手段としては、例えば、Crメッキや、W−C10%Ni溶射を採用することができる。Crの融点は1903℃と高くまた硬度も高いことから、耐熱・耐磨耗性向上を期待できる。W−Cの融点は2800℃と非常に高いため更なる耐熱性向上が期待できる。ノズル部1の底面全体に表面処理を施工しているが、母材の薄肉化が激しい底面内周部のみの施工でも効果が得られる。   It is preferable to apply a heat-resistant / abrasion-resistant surface treatment to the bottom surface of the nozzle that is affected by the rebound of molten steel in the tundish. As the surface treatment means, for example, Cr plating or W-C 10% Ni spraying can be employed. Since the melting point of Cr is as high as 1903 ° C. and the hardness is high, improvement in heat resistance and wear resistance can be expected. Since the melting point of WC is as high as 2800 ° C., further improvement in heat resistance can be expected. Although the surface treatment is applied to the entire bottom surface of the nozzle portion 1, the effect can be obtained even by performing only the inner peripheral portion of the bottom surface where the base material is extremely thinned.

参考形態2)
図3には、参考形態2の水冷式直流冷陰極移行型プラズマトーチにおける、プラズマトーチ先端電極の外周下端部に配置されるノズル部の説明図を示している。
( Reference form 2)
FIG. 3 shows the water-cooled DC cold cathode transferred plasma torch reference embodiment 2, an illustration of a nozzle portion which is disposed on the outer peripheral lower end portion of the plasma torch tip electrode.

参考形態においても、ノズル部1は、外周パーツ11と、内周パーツ12とから構成される。 Also in this reference embodiment, the nozzle unit 1 is composed of an outer peripheral part 11 and an inner peripheral part 12.

但し、本参考形態では、内周パーツ12をその下部外周部が外周パーツ11の底面全体を覆う形状として、これらのパーツ間にノズル底面冷却水路13bを形成し、内周パーツ12と外周パーツ11とを外周部でねじ込み接続14している。具体的には図3D詳細に示すように、内周パーツ12と外周パーツ11の接続部に噛み合うようにそれぞれネジを切り、このネジを合わせて締め合わせることで接続している。 However, in this reference embodiment, the inner peripheral part 12 is formed such that the lower outer peripheral portion covers the entire bottom surface of the outer peripheral part 11, and the nozzle bottom cooling water channel 13 b is formed between these parts, and the inner peripheral part 12 and the outer peripheral part 11 are formed. Are screwed together at the outer periphery. Specifically, as shown in detail in FIG. 3D, the screws are cut so as to be engaged with the connecting portions of the inner peripheral part 12 and the outer peripheral part 11, and the screws are connected and tightened.

該ノズル部1を冷却する冷却水は、内周パーツ12と外周パーツ11との対峙空間に形成されたノズル内周面冷却水路13を通ってノズル内周を冷却し、その後、ノズル底面冷却水路13b通ってノズル部から排出される。   The cooling water for cooling the nozzle portion 1 cools the nozzle inner periphery through the nozzle inner peripheral surface cooling water passage 13 formed in the space between the inner peripheral part 12 and the outer peripheral part 11, and then the nozzle bottom surface cooling water passage 13b is discharged from the nozzle part.

参考形態では、上記実施形態1と異なり、冷却水路形状の変更に伴い母材剛性が大きく変化する箇所を有さず、また、低強度の溶接部も有さない。本参考形態では、当該構成により、当該溶接部分から発生していた損傷を効果的に予防している。 Unlike the first embodiment, this reference embodiment does not have a portion where the base material rigidity changes greatly with the change of the cooling water channel shape, and does not have a low-strength weld. In this reference embodiment, this configuration effectively prevents damage that has occurred from the welded portion.

表1に、本発明の各請求項の構成要素の組み合わせによる、トーチ寿命検討結果を示す。   Table 1 shows the results of examination of the torch life according to the combination of the constituent elements of each claim of the present invention.

表1の実施例1に示すように、ノズル部の底面における内周パーツの下部外周部と外周パーツとの接続部を、使用時における熱応力集中部位から10mmずらした位置に設けることにより、比較例(図4の従来例)に比べて、3倍以上のトーチ寿命の延長が可能となった。また表1の実施例3に示すように、実施例1の構成に更に該ノズル底面冷却水路の入り口下端部に曲率半径3.5mmのR加工を施す構成を追加することにより、比較例(図4の従来例)に比べて、4倍以上のトーチ寿命の延長が可能となった。また表1の実施例4〜5に示すように、実施例3の構成に更に、ノズル部の底面に、耐熱性及び耐摩耗性の表面処理を施す構成を追加することにより、比較例(図4の従来例)に比べて、6倍以上のトーチ寿命の延長が可能となった。   As shown in Example 1 of Table 1, the connection between the lower outer peripheral part of the inner peripheral part and the outer peripheral part on the bottom surface of the nozzle part is provided at a position shifted by 10 mm from the thermal stress concentration part during use. Compared to the example (conventional example in FIG. 4), the torch life can be extended three times or more. Further, as shown in Example 3 of Table 1, a configuration in which R processing with a radius of curvature of 3.5 mm is further added to the configuration of Example 1 to the lower end of the inlet of the nozzle bottom surface cooling water channel, so that a comparative example (FIG. 4). Compared to the conventional example, the torch life can be extended by 4 times or more. Further, as shown in Examples 4 to 5 in Table 1, a configuration in which heat treatment and wear resistance surface treatment is applied to the bottom surface of the nozzle portion in addition to the configuration of Example 3 is added to the comparative example (Fig. Compared to the conventional example 4), the torch life can be extended by 6 times or more.

表1の参考例2に示すように、内周パーツをその下部外周部が外周パーツの底面全体を覆う形状としてこれらのパーツ間にノズル底面冷却水路を形成し、内周パーツと外周パーツとを外周部でねじ込み接続することにより比較例(図4の従来例)に比べて、3倍以上のトーチ寿命の延長が可能となった。 As shown in Reference Example 2 in Table 1, the inner peripheral part is shaped so that the lower outer peripheral part covers the entire bottom surface of the outer peripheral part, a nozzle bottom surface cooling water channel is formed between these parts, and the inner peripheral part and the outer peripheral part are By screwing in the outer periphery, the torch life can be extended three times or more compared to the comparative example (conventional example in FIG. 4).

また表1の参考例6〜7に示すように、実施例2の構成に更に、ノズル部の底面に、耐熱性及び耐摩耗性の表面処理を施す構成を追加することにより、比較例(図4の従来例)に比べて、6倍以上のトーチ寿命の延長が可能となった。 Further, as shown in Reference Examples 6 to 7 in Table 1, a configuration in which heat treatment and wear resistance surface treatment is applied to the bottom surface of the nozzle portion is further added to the configuration of the second embodiment. Compared to the conventional example 4), the torch life can be extended by 6 times or more.

更に、トーチ寿命の延長により、水漏れ修繕費の削減、また水漏れに起因するプラズマ非稼動時間の短縮、タンディシュ溶鋼温度バラツキの低減、鋳造速度高位安定による生産性向上、低温溶鋼による品質悪化防止、ノズル詰まり防止の各効果が最大限享受可能となった。   Furthermore, by extending the torch life, water leak repair costs are reduced, plasma non-operation time due to water leaks is shortened, tundish molten steel temperature variation is reduced, productivity is improved by high casting speed stability, and quality deterioration is prevented by low temperature molten steel Each effect of preventing nozzle clogging can be enjoyed to the maximum extent.

1 ノズル部
11 外周パーツ
11a ノズル底面冷却水路
11b ノズル底面冷却水路の内周端部
12 内周パーツ
12a 下部外周部
13a ノズル内周面冷却水路
13b ノズル底面冷却水路
14 ネジ込み接続部
X 熱応力集中部位
DESCRIPTION OF SYMBOLS 1 Nozzle part 11 Outer peripheral part 11a Nozzle bottom surface cooling water channel 11b Inner peripheral edge part 12 of nozzle bottom surface cooling water channel Inner peripheral part 12a Lower outer peripheral part 13a Nozzle inner peripheral surface cooling water channel 13b Nozzle bottom surface cooling water channel 14 Screw connection part X Thermal stress concentration Part

Claims (2)

プラズマトーチ先端電極の外周下端部に配置されるノズル部を、リング状の外周パーツと、この外周パーツの内周及び下面に沿って延びる内周パーツから構成し、前記外周パーツの下部に形成したリング状突部の内周端部を、内周パーツの下部外周部と溶接して一体化し、これらのパーツ間にノズル内周面冷却水路を形成した水冷式直流冷陰極移行型プラズマトーチであって、
前記ノズル内周面冷却水路と繋がるノズル下面冷却水路は、前記のパーツ間に形成される円形空洞部と、前記リング状突部に放射状に配置されて、入口下端部にR加工を施したノズル底面冷却水路からなり、
前記溶接部を、前記円形空洞部とノズル底面冷却水路の入口下端部の接合箇所から8mm以上ずらして配置したことを特徴とする水冷式直流冷陰極移行型プラズマトーチ。
The nozzle part arranged at the outer peripheral lower end of the plasma torch tip electrode is composed of a ring-shaped outer peripheral part and an inner peripheral part extending along the inner and lower surfaces of the outer peripheral part, and is formed at the lower part of the outer peripheral part. This is a water-cooled direct current cold cathode transfer plasma torch in which the inner peripheral edge of the ring-shaped protrusion is integrated by welding with the lower outer peripheral part of the inner peripheral part, and a nozzle inner peripheral cooling water channel is formed between these parts. And
The nozzle lower surface cooling water channel connected to the nozzle inner peripheral surface cooling water channel is a circular cavity formed between the parts, and a nozzle radially disposed on the ring-shaped protrusion and subjected to R processing at the lower end of the inlet It consists of a bottom cooling water channel,
The water-cooled direct current cold cathode transfer plasma torch characterized in that the welded portion is disposed 8 mm or more away from the joint portion between the circular cavity portion and the lower end of the inlet of the nozzle bottom surface cooling water channel .
ノズル部の底面に、耐熱性及び耐磨耗性の表面処理を施したことを特徴とする請求項1記載の水冷式直流冷陰極移行型プラズマトーチ。2. The water-cooled direct current cold cathode transfer plasma torch according to claim 1, wherein the bottom surface of the nozzle portion is subjected to a heat-resistant and wear-resistant surface treatment.
JP2009143169A 2009-06-16 2009-06-16 Plasma torch for heating molten steel in tundish Active JP5327621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143169A JP5327621B2 (en) 2009-06-16 2009-06-16 Plasma torch for heating molten steel in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143169A JP5327621B2 (en) 2009-06-16 2009-06-16 Plasma torch for heating molten steel in tundish

Publications (2)

Publication Number Publication Date
JP2011000593A JP2011000593A (en) 2011-01-06
JP5327621B2 true JP5327621B2 (en) 2013-10-30

Family

ID=43559004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143169A Active JP5327621B2 (en) 2009-06-16 2009-06-16 Plasma torch for heating molten steel in tundish

Country Status (1)

Country Link
JP (1) JP5327621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505408B1 (en) 2013-09-27 2015-03-25 현대제철 주식회사 A Heater for Ladle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717141B2 (en) * 2011-08-30 2015-05-13 日鐵住金溶接工業株式会社 Plasma torch
JP6015143B2 (en) * 2012-06-04 2016-10-26 新日鐵住金株式会社 Heat-resistant member of collimator nozzle for plasma irradiation heating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239657Y2 (en) * 1981-04-30 1990-10-24
JPH0658840B2 (en) * 1988-04-26 1994-08-03 新日本製鐵株式会社 Transfer type plasma torch
JP3908062B2 (en) * 2002-03-13 2007-04-25 新日鉄エンジニアリング株式会社 Plasma torch structure
JP2003269885A (en) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd Soot blower injection tube
US7342197B2 (en) * 2005-09-30 2008-03-11 Phoenix Solutions Co. Plasma torch with corrosive protected collimator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505408B1 (en) 2013-09-27 2015-03-25 현대제철 주식회사 A Heater for Ladle

Also Published As

Publication number Publication date
JP2011000593A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
CN102471841B (en) The ferrite-group stainless steel of excellent heat resistance
JP5327621B2 (en) Plasma torch for heating molten steel in tundish
JP5487376B2 (en) Laser cladding method and tool material
CN102294541A (en) Electron beam welding method for ultra supercritical partition plates
JP6484242B2 (en) Lined long life plasma nozzle
CN105171186A (en) Welding method for conducting build up welding through stellite alloy
US20110070088A1 (en) Steam turbine rotor and alloy therefor
CN104226689A (en) Roller cooling device and cooling method
CN105420454A (en) Heat treatment method for large heat-resisting high alloy steel castings
CN102941394A (en) Method for overlaying welding of duplex stainless steel
JP5193960B2 (en) Turbine rotor
CN106891131A (en) The surface repairing technique of high abrasion seal
CN109693026A (en) A kind of combination overlaying method for outer circle large area stellite hardfacing
US20050173496A1 (en) Method of build up welding to thin-walled portion
EP3538830B1 (en) Cooling panel coupled to an inner wall of a steel making furnace and associated steel making furnace
JP6200955B2 (en) Turbine component manufacturing method
US20130205789A1 (en) Fuel nozzle end cover, fuel nozzle, and process of fabricating a fuel nozzle end cover
CN105722630B (en) The welded joint structure of thick-wall large-diameter pipe and its welding procedure method
CN112453826B (en) Turbine blade crack welding repair method capable of refining tissue
JP4959744B2 (en) Turbine rotor for steam turbine and steam turbine
JP5910260B2 (en) Hot metal pan with excellent durability
CN110722307B (en) Welding tool and welding method for martensite heat-resistant steel gland
US20160003479A1 (en) Process of assembling fuel nozzle end cover
CN105772987A (en) Welding wire used for continuous casting roller surfacing
CN109277724A (en) Gas-shielded welding wire for local repair of core rod and welding process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R151 Written notification of patent or utility model registration

Ref document number: 5327621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350