JP5327307B2 - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP5327307B2
JP5327307B2 JP2011279968A JP2011279968A JP5327307B2 JP 5327307 B2 JP5327307 B2 JP 5327307B2 JP 2011279968 A JP2011279968 A JP 2011279968A JP 2011279968 A JP2011279968 A JP 2011279968A JP 5327307 B2 JP5327307 B2 JP 5327307B2
Authority
JP
Japan
Prior art keywords
passage
intake passage
air
exhaust gas
egr gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011279968A
Other languages
Japanese (ja)
Other versions
JP2012057634A (en
Inventor
正和 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011279968A priority Critical patent/JP5327307B2/en
Publication of JP2012057634A publication Critical patent/JP2012057634A/en
Application granted granted Critical
Publication of JP5327307B2 publication Critical patent/JP5327307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Description

本発明は、内燃機関の排気通路から排気を取り出して吸気通路に導く内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine that extracts exhaust gas from an exhaust passage of the internal combustion engine and guides the exhaust gas to an intake passage.

内燃機関の排気還流装置として、ターボチャージャーのタービン下流の排気通路から排気の一部をEGRガスとして取り出してコンプレッサ上流の吸気通路に導入する低圧排気還流通路と、タービン上流の排気通路から排気の一部をEGRガスとして取り出してコンプレッサ下流の吸気通路に導入する高圧排気還流通路とを内燃機関の運転状態に応じて使い分けるものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として、特許文献2及び3が存在する。   As an exhaust gas recirculation device for an internal combustion engine, a part of the exhaust gas is taken out as an EGR gas from an exhaust passage downstream of a turbine of a turbocharger and introduced into an intake passage upstream of a compressor, and an exhaust gas is exhausted from an exhaust passage upstream of the turbine. A high-pressure exhaust gas recirculation passage that takes out a part as EGR gas and introduces it into an intake passage downstream of the compressor is known depending on the operating state of the internal combustion engine (Patent Document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開2005−76456号公報JP-A-2005-76456 特許第2607175号公報Japanese Patent No. 2607175 特開2003−269260号公報JP 2003-269260 A

低圧排気還流通路を利用する場合、ターボチャージャーのコンプレッサの上流にEGRガスを導くので、EGRガスに含まれるカーボン微粒子や、EGRガスの冷却等を原因として発生する水蒸気、水滴及び氷結等の異物がコンプレッサに流入する。ターボチャージャーのコンプレッサは吸気通路の中央を貫く軸線の回りに回転するインペラーを備えていてそのインペラーは吸気通路内に臨んでいる。そのため、異物がインペラーに衝突してインペラーの破損や摩耗を促進するおそれがある。   When using the low pressure exhaust gas recirculation passage, the EGR gas is guided upstream of the compressor of the turbocharger, so that carbon fine particles contained in the EGR gas and foreign matters such as water vapor, water droplets and freezing generated due to the cooling of the EGR gas, etc. Flows into the compressor. The turbocharger compressor includes an impeller that rotates about an axis that passes through the center of the intake passage, and the impeller faces the intake passage. For this reason, foreign matter may collide with the impeller and promote damage or wear of the impeller.

そこで、本発明は、EGRガスに含まれる異物の衝突によるコンプレッサのインペラーの破損や摩耗を抑制できる内燃機関の排気還流装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an exhaust gas recirculation device for an internal combustion engine that can suppress damage and wear of a compressor impeller due to collision of foreign matter contained in EGR gas.

本発明の排気還流装置は、吸気通路に設けられたコンプレッサと排気通路に設けられて前記コンプレッサを駆動するタービンとを有したターボチャージャーが搭載された内燃機関に適用され、前記排気通路から排気の一部をEGRガスとして取り出して前記コンプレッサよりも上流の前記吸気通路内に導く排気還流通路を備えた内燃機関の排気還流装置において、前記吸気通路の前記中央部のEGRガスの濃度がその横断方向の端部のEGRガスの濃度よりも高いEGRガスの濃度分布を前記コンプレッサの上流に形成する濃度分布形成手段を備え、前記濃度分布形成手段として、前記排気還流通路と前記吸気通路とが合流する合流部よりも下流でかつ前記コンプレッサよりも上流の前記吸気通路にEGRガスを含まない空気を導くことができる空気通路が設けられており、前記空気通路は、前記吸気通路の外周側から内周側に開口して空気を前記吸気通路内に導くことができる空気導入部を有していることにより、上述した課題を解決する(請求項1)。 The exhaust gas recirculation device of the present invention is applied to an internal combustion engine equipped with a turbocharger having a compressor provided in an intake passage and a turbine provided in the exhaust passage and driving the compressor, and exhaust gas is exhausted from the exhaust passage. In an exhaust gas recirculation apparatus for an internal combustion engine having an exhaust gas recirculation passage that extracts a part as EGR gas and leads it into the intake air passage upstream of the compressor, the concentration of EGR gas in the central portion of the intake air passage A concentration distribution forming means for forming an EGR gas concentration distribution higher than the EGR gas concentration at the end of the compressor upstream of the compressor, and the exhaust gas recirculation passage and the intake passage join as the concentration distribution forming means Air that does not contain EGR gas can be guided to the intake passage downstream from the junction and upstream from the compressor. That the air passage is provided, wherein the air passage, by having an air introduction part that can guide air into the intake passage is opened from the outer periphery to the inner periphery of the intake passage, The problem described above is solved (claim 1).

この排気還流装置によれば、濃度分布形成手段によって、吸気通路の横断方向の中央部のEGRガスの濃度がその横断方向の端部のEGRガスの濃度よりも高いEGRガスの濃度分布をコンプレッサの上流に形成することができる。そのため、EGRガスにカーボン微粒子、水蒸気、水滴及び氷結等の異物が含まれていても、その異物の多くはコンプレッサに設けられたインペラーの周方向速度が相対的に低い回転中心部に衝突する。これにより、インペラーの周方向速度が相対的に高い外周部分への異物の衝突を回避することができるため、EGRガスに含まれる異物の衝突によるインペラーの破損や摩耗を抑制することができる。   According to this exhaust gas recirculation apparatus, the concentration distribution forming means converts the EGR gas concentration distribution at the central portion in the transverse direction of the intake passage to a concentration distribution of EGR gas higher than the EGR gas concentration at the end portion in the transverse direction. It can be formed upstream. Therefore, even if the EGR gas contains foreign matters such as carbon fine particles, water vapor, water droplets, and icing, most of the foreign matters collide with the rotation center portion where the impeller provided in the compressor has a relatively low circumferential speed. Thereby, since the collision of the foreign material to the outer peripheral portion where the circumferential speed of the impeller is relatively high can be avoided, the impeller can be prevented from being damaged or worn by the collision of the foreign material contained in the EGR gas.

また、本発明の排気還流装置によれば、EGRガスを含まない空気が空気通路によって吸気通路に導入されることにより、吸気通路内の径方向外側、即ち吸気通路の横断方向の端部に空気を偏在させることができる。これにより、合流部を経由して吸気通路に導かれたEGRガスが吸気通路の中央部に案内される。従って、吸気通路の横断方向の中央部のEGRガスの濃度がその横断方向の端部のEGRガスの濃度よりも高いEGRガスの濃度分布をコンプレッサの上流に形成することができる。 Further , according to the exhaust gas recirculation device of the present invention, air that does not contain EGR gas is introduced into the intake passage by the air passage, so that the air is introduced to the radially outer side in the intake passage, that is, at the end in the transverse direction of the intake passage. Can be unevenly distributed. As a result, the EGR gas guided to the intake passage via the merging portion is guided to the central portion of the intake passage. Therefore, it is possible to form an EGR gas concentration distribution upstream of the compressor in which the concentration of EGR gas in the central portion in the transverse direction of the intake passage is higher than the concentration of EGR gas in the end portion in the transverse direction.

本発明の一態様においては、前記空気導入部は、前記吸気通路の周方向に旋回する旋回流を前記吸気通路内に導く空気に対して付与する旋回流生成手段を有してもよい(請求項2)。この場合は、空気導入部にて導入される空気に対して旋回流が付与されるので、旋回流が与えられた空気を吸気通路の横断方向の端部へ偏在させることが容易になる。 In one aspect of the present invention, the air introduction section, the circumferential swirling flow swirling in the direction of the intake passage may have a swirl flow generating means for giving to the air leading to the intake passage (according Item 2 ). In this case, since the swirl flow is given to the air introduced by the air introduction part, it is easy to make the air given the swirl flow unevenly distributed at the end in the transverse direction of the intake passage.

本発明の一態様においては、前記合流部よりも上流に設けられて、前記空気通路にて導入される空気とは別に前記吸気通路に流れ込む空気の流量を制限する流量制限手段を更に備えてもよい(請求項3)。この場合、流量制限手段にて空気の流量を制限することにより、空気通路によって吸気通路の外周から導入される空気の流量を相対的に増量することができる。 In one aspect of the present invention, the apparatus may further include a flow rate limiting unit that is provided upstream of the merging portion and that limits a flow rate of air flowing into the intake passage separately from air introduced through the air passage. ( Claim 3 ) In this case, the flow rate of the air introduced from the outer periphery of the intake passage by the air passage can be relatively increased by restricting the air flow rate by the flow restriction means.

以上説明したように、本発明によれば、EGRガスが導入部から吸気通路内に導入されることにより、EGRガスはコンプレッサのインペラーの回転中心部に導かれる。このため、EGRガスにカーボン微粒子、水蒸気、水滴及び氷結等の異物が含まれていても、その異物の多くはインペラーの周方向速度が相対的に低い回転中心部に衝突するため、周方向速度が相対的に高い外周部分への異物の衝突を回避できる。これにより、EGRガスに含まれる異物の衝突によるインペラーの破損や摩耗を抑制することができる。   As described above, according to the present invention, the EGR gas is introduced into the intake passage from the introduction portion, whereby the EGR gas is guided to the rotation center portion of the compressor impeller. For this reason, even if the EGR gas contains foreign matters such as carbon fine particles, water vapor, water droplets, and icing, most of the foreign matters collide with the center of rotation of the impeller where the circumferential speed is relatively low. It is possible to avoid collision of a foreign object with the outer peripheral portion having a relatively high value. Thereby, the damage and wear of the impeller due to the collision of the foreign matter contained in the EGR gas can be suppressed.

本発明の実施の形態に対する第1の参考例に係る排気還流装置が組み込まれた内燃機関を示した図。 The figure which showed the internal combustion engine in which the exhaust gas recirculation apparatus which concerns on the 1st reference example with respect to embodiment of this invention was integrated. 図1に示された導入部及びその周辺を拡大した拡大図。The enlarged view to which the introduction part shown by FIG. 1 and its periphery were expanded. 図2のIII−III線に沿った断面模式図。The cross-sectional schematic diagram along the III-III line of FIG. 本発明の実施の形態に対する第2の参考例に係る導入部及びその周辺を拡大した拡大図。 The enlarged view which expanded the introduction part and its periphery which concern on the 2nd reference example with respect to embodiment of this invention . 図4のV−V線に沿った断面模式図。The cross-sectional schematic diagram along the VV line | wire of FIG. 本発明の実施の形態に対する第3の参考例に係る導入部及びその周辺を拡大した拡大図。 The enlarged view which expanded the introduction part and its periphery which concern on the 3rd reference example with respect to embodiment of this invention . 図6のVII−VII線に沿った断面模式図。FIG. 7 is a schematic sectional view taken along line VII-VII in FIG. 6. 本発明の実施の形態に対する第4の参考例に係る導入部及びその周辺を拡大した拡大図。 The enlarged view which expanded the introduction part and its periphery which concern on the 4th reference example with respect to embodiment of this invention . 図8のIX−IX線に沿った断面模式図。FIG. 9 is a schematic cross-sectional view taken along line IX-IX in FIG. 8. 本発明の第1の形態に係る排気還流装置が組み込まれた内燃機関を示した図。 The figure which showed the internal combustion engine in which the exhaust gas recirculation apparatus which concerns on the 1st form of this invention was integrated. 図10の空気導入部及びその周辺を拡大した拡大図。The enlarged view to which the air introduction part of FIG. 10 and its periphery were expanded. 図11のXII−XII線に沿った断面模式図。FIG. 12 is a schematic sectional view taken along line XII-XII in FIG. 11. 本発明の第2の形態に係る空気導入部及びその周辺を拡大した拡大図。 The enlarged view which expanded the air introduction part which concerns on the 2nd form of this invention, and its periphery. 図13のXIV−XIV線に沿った断面模式図。FIG. 14 is a schematic sectional view taken along line XIV-XIV in FIG. 13.

第1の参考例
図10〜図14が本発明の実施の形態を示しており、図1〜図9は本発明の実施の形態と共通部分を有する参考例を示している。まず、図1〜図9に示した参考例を説明する。図1は、本発明の実施の形態に対する第1の参考例に係る排気還流装置が組み込まれた内燃機関を示している。内燃機関1は車両に走行用の動力源として搭載され、4つの気筒2が一方向に並べられた直列4気筒型のディーゼルエンジンとして構成されている。各気筒2には燃料噴射弁3がその先端を気筒2内に臨ませるようにして一つずつ設けられており、それらの燃料噴射弁3は燃料を所定燃圧に保持するコモンレール4に接続されている。各気筒2には吸気通路6及び排気通路7がそれぞれ接続されている。吸気通路6は気筒2毎に分岐された吸気マニホルド8を含んでおり、排気通路7は各気筒2から排出される排気を集合する排気マニホルド9を含んでいる。内燃機関1は吸気ダクト10を通過して濾過された空気を吸気マニホルド8を介して各気筒2に充填し、燃料噴射弁3にて各気筒2内に噴射された燃料を圧縮行程で自着火させる。各気筒2から排出される排気は排気マニホールド9にて集合され、その集合された排気は排気浄化装置11にて有害物質が浄化されてから大気に放出される。
( First reference example )
10 to 14 show an embodiment of the present invention, and FIGS. 1 to 9 show a reference example having a common part with the embodiment of the present invention. First, reference examples shown in FIGS. 1 to 9 will be described. FIG. 1 shows an internal combustion engine in which an exhaust gas recirculation apparatus according to a first reference example for the embodiment of the present invention is incorporated. The internal combustion engine 1 is mounted on a vehicle as a driving power source, and is configured as an in-line four-cylinder type diesel engine in which four cylinders 2 are arranged in one direction. Each cylinder 2 is provided with a fuel injection valve 3 so that its tip faces the cylinder 2, and these fuel injection valves 3 are connected to a common rail 4 that holds the fuel at a predetermined fuel pressure. Yes. An intake passage 6 and an exhaust passage 7 are connected to each cylinder 2. The intake passage 6 includes an intake manifold 8 branched for each cylinder 2, and the exhaust passage 7 includes an exhaust manifold 9 that collects exhaust discharged from each cylinder 2. The internal combustion engine 1 fills each cylinder 2 with air filtered through the intake duct 10 via the intake manifold 8 and self-ignites the fuel injected into each cylinder 2 by the fuel injection valve 3 in the compression stroke. Let Exhaust gas discharged from each cylinder 2 is collected by an exhaust manifold 9, and the collected exhaust gas is discharged into the atmosphere after harmful substances are purified by an exhaust gas purification device 11.

内燃機関1には排気エネルギを利用して空気を過給するターボチャージャー12が搭載されている。ターボチャージャー12は吸気通路6に設けられたコンプレッサ13と排気通路7に設けられたタービン14とを備え、排気エネルギを得たタービン14によってコンプレッサ13を駆動する周知のものである。コンプレッサ13はインペラー15を備えており、そのインペラー15はコンプレッサハウジング16に収容される。タービン14はタービンブレード17を備えており、そのタービンブレード17はタービンハウジング18に収容される。これらのハウジング16、18はセンタハウジング19に接続されており、そのセンタハウジング19にはインペラー15とタービンブレード17とを一体回転可能に連結する回転軸20を回転自在に支持する軸受19aが装着されている。回転軸20は吸気通路6の横断方向の中央部6aを貫くように延びる軸線Ax1の回りに回転できるように支持されている。そのためインペラー15及びタービンブレード17はその軸線Ax1の回りにそれぞれ回転できる。コンプレッサハウジング16は吸気通路6の一部をなし、かつ軸線Ax1の方向に開口する開口部16aを備えている。また、タービンハウジング18は排気通路7の一部をなし、開口部18aを備えている。   The internal combustion engine 1 is equipped with a turbocharger 12 that supercharges air using exhaust energy. The turbocharger 12 includes a compressor 13 provided in the intake passage 6 and a turbine 14 provided in the exhaust passage 7, and is a known one that drives the compressor 13 by the turbine 14 that has obtained exhaust energy. The compressor 13 includes an impeller 15, and the impeller 15 is accommodated in a compressor housing 16. The turbine 14 includes a turbine blade 17, and the turbine blade 17 is accommodated in a turbine housing 18. These housings 16 and 18 are connected to a center housing 19, and a bearing 19 a that rotatably supports a rotating shaft 20 that connects the impeller 15 and the turbine blade 17 so as to rotate together is mounted on the center housing 19. ing. The rotary shaft 20 is supported so as to be rotatable about an axis Ax1 extending so as to penetrate the central portion 6a in the transverse direction of the intake passage 6. Therefore, the impeller 15 and the turbine blade 17 can rotate about the axis Ax1, respectively. The compressor housing 16 is part of the intake passage 6 and includes an opening 16a that opens in the direction of the axis Ax1. The turbine housing 18 forms a part of the exhaust passage 7 and includes an opening 18a.

吸気通路6には吸気冷却用のインタークーラ21がコンプレッサ13の下流側に設けられている。また、排気通路7には過給圧を許容限度内に調整する過給圧調整装置22が設けられており、その過給圧調整装置22はタービン14を迂回して排気をタービン14の下流に導くバイパス通路23と、バイパス通路23を開閉するウエイストゲートバルブ24とを備えている。   An intake air cooling intercooler 21 is provided in the intake passage 6 on the downstream side of the compressor 13. Further, the exhaust passage 7 is provided with a supercharging pressure adjusting device 22 that adjusts the supercharging pressure within an allowable limit. The supercharging pressure adjusting device 22 bypasses the turbine 14 and sends exhaust gas downstream of the turbine 14. A bypass passage 23 for guiding and a waste gate valve 24 for opening and closing the bypass passage 23 are provided.

内燃機関1には排気を吸気系に再循環させることにより、気筒2内の燃焼温度の上昇を抑える排気還流装置25が設けられている。排気還流装置25は排気通路7から排気の一部をEGRガスとして取り出してコンプレッサ13よりも上流の吸気通路6内に導く排気還流通路26と、EGRガスを冷却する冷却装置27と、排気還流通路26を流れるEGRガスの流量を調整する排気還流弁28とを備えている。吸気通路6に導入されるEGRガスのガス量(EGR量)は内燃機関1の運転状態に応じて設定され、そのEGR量の調整は排気還流弁28の開度と、EGRガスの導入位置よりも上流の吸気通路6に設けられたスロットル弁29の開度とを連係して操作することにより実施される。   The internal combustion engine 1 is provided with an exhaust gas recirculation device 25 that suppresses an increase in the combustion temperature in the cylinder 2 by recirculating exhaust gas to the intake system. The exhaust gas recirculation device 25 takes out part of the exhaust gas from the exhaust passage 7 as EGR gas and introduces it into the intake air passage 6 upstream of the compressor 13, a cooling device 27 that cools the EGR gas, and the exhaust gas recirculation passage. And an exhaust gas recirculation valve 28 for adjusting the flow rate of the EGR gas flowing through the exhaust gas 26. The amount of EGR gas introduced into the intake passage 6 (EGR amount) is set according to the operating state of the internal combustion engine 1, and the EGR amount is adjusted from the opening of the exhaust gas recirculation valve 28 and the EGR gas introduction position. This is also implemented by operating the throttle valve 29 provided in the upstream intake passage 6 in association with the opening.

排気還流通路26には吸気通路6内に配置された導入部30が設けられている。図2は導入部30及びその周辺を拡大した拡大図であり、図3は図2のIII−III線に沿った断面模式図である。これらの図に示すように、導入部30は吸気通路6の長手方向に延びる管状部材31と、その管状部材31に接続される接続通路部32とを備えている。管状部材31は吸気通路6の内壁6bに囲まれる状態でその中央部6aに配置されるとともに、吸気通路6の下流側に向かって開口する下流側開口部31aとその上流側に向かって開口する上流側開口部31bとを有している。これらの開口部31a、31bの開口面積は互いに同一面積に設定されている。管状部材31は本発明に係る内側通路部を構成する。接続通路部32は管状部材31の内周面に開口しており、これによって図2の破線の矢印で示すように接続通路部32はEGRガスを管状部材31に導くことができる。   The exhaust gas recirculation passage 26 is provided with an introduction portion 30 disposed in the intake passage 6. 2 is an enlarged view of the introduction portion 30 and its periphery, and FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. As shown in these drawings, the introduction portion 30 includes a tubular member 31 extending in the longitudinal direction of the intake passage 6 and a connection passage portion 32 connected to the tubular member 31. The tubular member 31 is disposed in the central portion 6a in a state surrounded by the inner wall 6b of the intake passage 6 and opens toward the upstream side and the downstream opening portion 31a that opens toward the downstream side of the intake passage 6. And an upstream opening 31b. The opening areas of these openings 31a and 31b are set to the same area. The tubular member 31 constitutes an inner passage portion according to the present invention. The connection passage portion 32 is opened on the inner peripheral surface of the tubular member 31, whereby the connection passage portion 32 can guide the EGR gas to the tubular member 31 as indicated by a broken arrow in FIG.

図2及び図3から明らかなように、EGRガスが管状部材31から吸気通路6内に導入されることにより、EGRガスはコンプレッサ13のインペラー15の回転中心部に導かれる。つまり、管状部材31からのEGRガスの導入によって、吸気通路6の横断方向の中央部のEGRガスの濃度がその横断方向の端部のEGRガスの濃度よりも高いEGRガスの濃度分布がコンプレッサ13の上流に形成される。そのため、EGRガスにカーボン微粒子、水蒸気、水滴及び氷結等の異物が含まれていても、その異物はインペラー15の周方向速度が相対的に低い回転中心部に衝突する。これにより、周方向速度が相対的に高い外周部分への異物の衝突が回避されるため、異物の衝突によるインペラー15の破損や摩耗を抑制することができる。下流側開口部31aとインペラー15との距離は、上述した濃度分布が維持される範囲内に設定される。この距離が過大になるとEGRガスが拡散するため意図した効果が低下するためである。   As is apparent from FIGS. 2 and 3, the EGR gas is introduced into the intake passage 6 from the tubular member 31, whereby the EGR gas is guided to the rotation center portion of the impeller 15 of the compressor 13. That is, due to the introduction of EGR gas from the tubular member 31, the EGR gas concentration distribution in which the concentration of EGR gas at the center in the transverse direction of the intake passage 6 is higher than the concentration of EGR gas at the end in the transverse direction is Formed upstream. Therefore, even if the EGR gas contains foreign matters such as carbon fine particles, water vapor, water droplets and freezing, the foreign matters collide with the rotation center portion of the impeller 15 having a relatively low circumferential speed. Thereby, since the collision of the foreign material to the outer peripheral portion having a relatively high circumferential speed is avoided, damage and wear of the impeller 15 due to the collision of the foreign material can be suppressed. The distance between the downstream opening 31a and the impeller 15 is set within a range in which the above-described concentration distribution is maintained. This is because if the distance is excessive, the intended effect is reduced because the EGR gas diffuses.

管状部材31は上流側開口部31bをも有しているので、管状部材31内にも空気が流入してEGRガスとともに下流側開口部31aから流出する。つまり、吸気通路6に導かれた空気が管状部材31を通過することができるので、管状部材31の配置に伴う空気抵抗の増加を抑えることができる。   Since the tubular member 31 also has the upstream opening 31b, air flows into the tubular member 31 and flows out from the downstream opening 31a together with the EGR gas. That is, since air guided to the intake passage 6 can pass through the tubular member 31, an increase in air resistance due to the arrangement of the tubular member 31 can be suppressed.

接続通路部32の通路断面積は管状部材31の下流側開口部31aの開口面積よりも小さくなるように設定されている。そのため、下流側開口部31aから流出するガスの流速と管状部材31の外側を流れるガスの流速との流速差を抑えることができる。これにより、下流側開口部31aから流出するガスと、管状部材31の外側を流れるガスとの混合を抑制できる。また、管状部材31の内部をEGRガスが通過するので、EGRガスが吸気通路6の横断方向に広がることを抑えることができる。これにより、EGRガスをインペラー15の回転中心部へ効果的に集中させることができる。   The passage cross-sectional area of the connection passage portion 32 is set to be smaller than the opening area of the downstream side opening portion 31 a of the tubular member 31. Therefore, the flow rate difference between the flow rate of the gas flowing out from the downstream opening 31a and the flow rate of the gas flowing outside the tubular member 31 can be suppressed. Thereby, mixing with the gas which flows out out of the downstream opening part 31a, and the gas which flows the outer side of the tubular member 31 can be suppressed. Further, since the EGR gas passes through the tubular member 31, it is possible to suppress the EGR gas from spreading in the transverse direction of the intake passage 6. Thereby, EGR gas can be effectively concentrated on the rotation center part of the impeller 15.

第2の参考例
次に、本発明の実施の形態に対する第2の参考例を図4及び図5を参照して説明する。この参考例は導入部の構成を除き第1の参考例と同一構成を有している。以下、第2の参考例の特徴部分を説明し第1の参考例との共通部分の説明を省略する。
( Second reference example )
Next, a second reference example for the embodiment of the present invention will be described with reference to FIGS. This reference example has the same configuration as the first reference example except for the configuration of the introduction part. Hereinafter, the characteristic part of the second reference example will be described, and the description of the common part with the first reference example will be omitted.

図4は第2の参考例に係る導入部40及びその周辺を拡大した拡大図であり、図5は図4のV−V線に沿った断面模式図である。これらの図に示すように、第2の参考例に係る導入部40は吸気通路6の中央部6aに配置されてその長手方向に延びる内側通路部41と、その内側通路部41に接続される接続通路部42とを有している。内側通路部41は吸気通路6の横断方向及び長手方向のそれぞれに延びて吸気通路6の内壁6bに接続された一対の仕切り壁部43と、これらの仕切り壁部43にて挟まれた吸気通路6の内壁6bとによって構成されている。一対の仕切り壁部43は所定間隔を開けて互いに平行な状態で配置されている。内側通路部41は吸気通路6の下流側に向かって開口する下流側開口部41aとその上流側に向かって開口する上流側開口部41bとを有している。これらの開口部41a、41bの開口面積は互いに同一面積に設定されている。接続通路部42は内側通路部41の内側に開口しており、これによって図4の破線の矢印で示すように接続通路部42はEGRガスを内側通路部41に導くことができる。接続通路部41の通路断面積は内側通路部41の下流側開口部41aの開口面積よりも小さくなるように設定されている。この参考例によれば、EGRガスが内側通路部41から吸気通路6内に導入されることにより、EGRガスはコンプレッサ13のインペラー15の回転中心部に導かれる。これにより、上述した第1の参考例の効果と略同等の効果が発揮される。 FIG. 4 is an enlarged view of the introduction portion 40 and its periphery according to the second reference example , and FIG. 5 is a schematic cross-sectional view taken along the line VV of FIG. As shown in these drawings, the introduction portion 40 according to the second reference example is disposed in the central portion 6a of the intake passage 6 and connected to the inner passage portion 41 and an inner passage portion 41 extending in the longitudinal direction thereof. A connecting passage 42. The inner passage portion 41 extends in the transverse direction and the longitudinal direction of the intake passage 6 and is connected to the inner wall 6 b of the intake passage 6, and the intake passage sandwiched between the partition wall portions 43. 6 inner walls 6b. The pair of partition wall portions 43 are arranged in parallel with each other at a predetermined interval. The inner passage 41 has a downstream opening 41a that opens toward the downstream side of the intake passage 6 and an upstream opening 41b that opens toward the upstream side thereof. The opening areas of these openings 41a and 41b are set to the same area. The connection passage portion 42 opens to the inner side of the inner passage portion 41, so that the connection passage portion 42 can guide EGR gas to the inner passage portion 41 as indicated by a broken line arrow in FIG. 4. The passage cross-sectional area of the connection passage portion 41 is set to be smaller than the opening area of the downstream side opening portion 41 a of the inner passage portion 41. According to this reference example , the EGR gas is introduced into the intake passage 6 from the inner passage portion 41, whereby the EGR gas is guided to the rotation center portion of the impeller 15 of the compressor 13. Thereby, an effect substantially equivalent to the effect of the 1st reference example mentioned above is exhibited.

第3の参考例
次に、本発明の実施の形態に対する第3の参考例を図6及び図7を参照して説明する。この参考例は導入部の構成を除き第1の参考例と同一構成を有している。以下、第3の参考例の特徴部分を説明し第1の参考例との共通部分の説明を省略する。
( Third reference example )
Next, a third reference example for the embodiment of the present invention will be described with reference to FIGS. This reference example has the same configuration as the first reference example except for the configuration of the introduction part. Hereinafter, the characteristic part of the third reference example will be described, and the description of the common part with the first reference example will be omitted.

図6は第3の参考例に係る導入部50及びその周辺を拡大した拡大図であり、図7は図6のVII−VII線に沿った断面模式図である。これらの図に示すように、第3の参考例に係る導入部50は吸気通路6の中央部6aに配置されてその長手方向に延びるとともに、吸気通路6の下流側に向かって開口する下流側開口部50aを有している。図示を省略するが、導入部50は吸気通路6の上流側でその横断方向外側に曲がって排気還流通路26に接続されていてもよい。また、吸気通路6がその上流側で曲がっている場合には、導入部50がまっすぐ延びて吸気通路6の曲がり部において排気還流通路26に接続されていてもよい。 FIG. 6 is an enlarged view of the introduction part 50 and its periphery according to the third reference example , and FIG. 7 is a schematic cross-sectional view taken along the line VII-VII of FIG. As shown in these drawings, the introduction portion 50 according to the third reference example is disposed in the central portion 6a of the intake passage 6 and extends in the longitudinal direction thereof, and also opens downstream toward the downstream side of the intake passage 6. An opening 50a is provided. Although not shown, the introduction portion 50 may be bent to the outside in the transverse direction on the upstream side of the intake passage 6 and connected to the exhaust gas recirculation passage 26. Further, when the intake passage 6 is bent at the upstream side thereof, the introduction portion 50 may extend straight and be connected to the exhaust gas recirculation passage 26 at the bent portion of the intake passage 6.

第3の参考例によれば、EGRガスが内側通路部41から吸気通路6内に導入されることにより、EGRガスはコンプレッサ13のインペラー15の回転中心部に導かれる。これにより、EGRガスに含まれる異物の衝突に伴うインペラー15の破損や摩耗を抑制することができる。 According to the third reference example , the EGR gas is introduced into the intake passage 6 from the inner passage portion 41, whereby the EGR gas is guided to the rotation center portion of the impeller 15 of the compressor 13. Thereby, breakage and wear of the impeller 15 due to the collision of the foreign matter contained in the EGR gas can be suppressed.

第4の参考例
次に、本発明の実施の形態に対する第4の参考例を図8及び図9を参照して説明する。この参考例は第3の参考例の変形例に相当する。そのため、第3の参考例との共通部分の説明は省略する。図8は第4の参考例に係る導入部50及びその周辺を拡大した拡大図であり、図9は図8のIX−IX線に沿った断面模式図である。これらの図に示すように、第4の参考例は導入部50を囲む囲み通路部51を備えている。囲み通路部51は吸気通路6内に配置されて、吸気通路6の上流側及び下流側に向かってそれぞれ開口している。その下流側の開口部51aは導入部50の開口部50aよりも下流側に位置している。図9に示すように、囲み通路部51は導入部50と略同軸上に配置され、かつ円筒状に構成されている。
( Fourth reference example )
Next, a fourth reference example for the embodiment of the present invention will be described with reference to FIGS. This reference example corresponds to a modification of the third reference example . Therefore, the description of the common part with the third reference example is omitted. FIG. 8 is an enlarged view of the introduction part 50 and its periphery according to the fourth reference example , and FIG. 9 is a schematic cross-sectional view taken along the line IX-IX in FIG. As shown in these drawings, the fourth reference example includes an enclosing passage portion 51 surrounding the introduction portion 50. The surrounding passage portion 51 is disposed in the intake passage 6 and opens toward the upstream side and the downstream side of the intake passage 6. The downstream opening 51 a is located on the downstream side of the opening 50 a of the introduction part 50. As shown in FIG. 9, the surrounding passage portion 51 is disposed substantially coaxially with the introduction portion 50 and is configured in a cylindrical shape.

第4の参考例によれば、第3の参考例と同等の効果を達成できるとともに、囲み通路部51によって導入部50から流出したEGRガスが吸気通路6の横断方向へ広がることが抑制されるので、EGRガスをインペラー15の回転中心部へ効果的に集中させることができる。 According to the fourth reference example , an effect equivalent to that of the third reference example can be achieved, and the EGR gas flowing out from the introduction portion 50 by the surrounding passage portion 51 is suppressed from spreading in the transverse direction of the intake passage 6. Therefore, the EGR gas can be effectively concentrated on the center of rotation of the impeller 15.

第1の形態
次に、本発明の第1の形態を図10〜図12を参照して説明する。なお、以下の説明において、上述した各参考例と共通する構成は図面に同一符号を付して説明を省略する。第1の形態は、コンプレッサの上流に上述したEGRガスの濃度分布を形成するため、吸気通路の外周側からEGRガスを含まない空気を導入することに特徴を有している。図10は第1の形態に係る排気還流装置が組み込まれた内燃機関を示している。図10の内燃機関1には、排気還流通路26と吸気通路6との合流部60よりも下流で、かつコンプレッサ13よりも上流の吸気通路6に空気を導入する空気通路61が設けられている。空気通路61はその一端がスロットル弁29の上流に接続されており、他の一端には空気導入部62が設けられている。
( First form )
Next, a first embodiment of the present invention will be described with reference to FIGS. In the following description, components common to the above-described reference examples are denoted by the same reference numerals in the drawings, and description thereof is omitted. The first mode is characterized in that air containing no EGR gas is introduced from the outer peripheral side of the intake passage in order to form the above-described EGR gas concentration distribution upstream of the compressor. FIG. 10 shows an internal combustion engine in which the exhaust gas recirculation apparatus according to the first embodiment is incorporated. The internal combustion engine 1 of FIG. 10 is provided with an air passage 61 for introducing air into the intake passage 6 downstream of the junction 60 between the exhaust recirculation passage 26 and the intake passage 6 and upstream of the compressor 13. . One end of the air passage 61 is connected upstream of the throttle valve 29, and an air introduction portion 62 is provided at the other end.

図11は空気導入部62及びその周辺を拡大した拡大図であり、図12は図11のXII−XII線に沿った断面模式図である。これらの図に示すように、空気導入部62は、吸気通路6の外周側から内周側に開口して空気を吸気通路6内に導くため、吸気通路6の外周側から内周側へ向かって貫通する4つの空気導入口63と、その導入口63を覆うようにして吸気通路6の外周面を取り囲み、かつ空気通路62に連通する空気導入室64とを有している。   FIG. 11 is an enlarged view of the air introduction part 62 and its periphery, and FIG. 12 is a schematic cross-sectional view taken along line XII-XII in FIG. As shown in these drawings, the air introduction portion 62 opens from the outer peripheral side of the intake passage 6 to the inner peripheral side and guides air into the intake passage 6. And four air introduction ports 63 that penetrate therethrough and an air introduction chamber 64 that surrounds the outer peripheral surface of the intake passage 6 so as to cover the introduction port 63 and communicates with the air passage 62.

図10に示すように、内燃機関1は、空気通路61にて導入される空気とは別に吸気通路6に流れ込む空気の流量を、スロットル弁29にて吸気通路6を絞ることにより制限できる。その空気の流量が制限されることにより、空気通路61にて導入される空気の流量が相対的に増加する。このため、スロットル弁29は本発明に係る流量制限手段として機能する。スロットル弁29の操作方法は適宜設定できるが、例えばEGRガスのガス量が多くなるほど開度が絞られるようにスロットル弁29を操作することができる。 As shown in FIG. 10, the internal combustion engine 1 can limit the flow rate of air flowing into the intake passage 6 separately from the air introduced through the air passage 61 by restricting the intake passage 6 with the throttle valve 29. By restricting the flow rate of the air, the flow rate of the air introduced in the air passage 61 is relatively increased. Thus, throttling valve 29 functions as a flow restricting means according to the present invention. The operating method of the throttle valve 29 can be set as appropriate. For example, the throttle valve 29 can be operated so that the opening degree is reduced as the gas amount of EGR gas increases.

第1の形態によれば、EGRガスを含まない空気が空気通路61によって吸気通路6に導入されることにより、吸気通路6内の径方向外側、即ち吸気通路6の横断方向の端部に空気を偏在させることができる。これにより、合流部50を経由して吸気通路6に導かれたEGRガスが吸気通路6の中央部6aに案内される。従って、吸気通路6の横断方向の中央部6aのEGRガスの濃度がその横断方向の端部のEGRガスの濃度よりも高いEGRガスの濃度分布をコンプレッサ13の上流に形成することができる。 According to the first embodiment , air that does not include EGR gas is introduced into the intake passage 6 by the air passage 61, so that the air is radially outside in the intake passage 6, that is, at the transverse end of the intake passage 6. Can be unevenly distributed. As a result, the EGR gas guided to the intake passage 6 via the junction 50 is guided to the central portion 6 a of the intake passage 6. Therefore, an EGR gas concentration distribution in which the concentration of EGR gas in the central portion 6 a in the transverse direction of the intake passage 6 is higher than the concentration of EGR gas in the end portion in the transverse direction can be formed upstream of the compressor 13.

第2の形態
次に、本発明の第2の形態を図13及び図14を参照して説明する。この形態は第1の形態の変形例に相当する。そのため、第1の形態との共通部分の説明は省略する。
( Second form )
Next, a second embodiment of the present invention will be described with reference to FIGS. This form corresponds to a modification of the first form . Therefore, the description of the common part with the first embodiment is omitted.

図13は第2の形態に係る空気導入部及びその周辺を拡大した拡大図であり、図14は図13のXIV−XIV線に沿った断面模式図である。これらの図に示すように、この形態の空気通路71は空気導入部72を有している。図示を省略したが、空気通路71の一端は第1の形態と同様にスロットル弁29の上流に接続されている。空気導入部72は、第1の形態と同様に、吸気通路6の外周側から内周側へ向かって貫通する4つの空気導入口73と、その導入口73を覆うようにして吸気通路6の外周面を取り囲み、かつ空気通路61に連通する空気導入室74とを有している。更に、空気導入部72は吸気通路6の周方向に旋回する旋回流Fを吸気通路6内に導く空気に対して付与するため、旋回流生成手段としてのフラップ75を更に有している。この形態においては、フラップ75は空気導入口73に対して一つずつ合計4つ設けられている。各フラップ75は吸気通路6の内周面の接線方向と略同方向に延びるように構成されている。これにより、空気導入室74から空気導入口73を経由して吸気通路6へ向かう空気の流れ方向がフラップ75にて接線方向に揃えられるので、吸気通路6の周方向に旋回する旋回流Fが吸気通路6内に形成される。 FIG. 13 is an enlarged view of the air introduction portion and its periphery according to the second embodiment , and FIG. 14 is a schematic cross-sectional view taken along line XIV-XIV in FIG. As shown in these drawings, the air passage 71 of this embodiment has an air introduction portion 72. Although not shown, one end of the air passage 71 is connected to the upstream side of the throttle valve 29 as in the first embodiment . As in the first embodiment , the air introduction portion 72 includes four air introduction ports 73 that penetrate from the outer peripheral side to the inner peripheral side of the intake passage 6 and the intake passage 6 so as to cover the introduction port 73. An air introduction chamber 74 that surrounds the outer peripheral surface and communicates with the air passage 61 is provided. Further, the air introduction portion 72 further includes a flap 75 as a swirl flow generating means for imparting a swirl flow F swirling in the circumferential direction of the intake passage 6 to the air guided into the intake passage 6. In this embodiment, a total of four flaps 75 are provided for each air inlet 73. Each flap 75 is configured to extend in the substantially same direction as the tangential direction of the inner peripheral surface of the intake passage 6. As a result, the flow direction of the air from the air introduction chamber 74 to the intake passage 6 via the air introduction port 73 is aligned with the tangential direction by the flap 75, so that the swirl flow F swirling in the circumferential direction of the intake passage 6 is generated. It is formed in the intake passage 6.

第2の形態によれば、第1の形態と同等の効果を発揮できることに加えて、吸気通路6内に導く空気に対して旋回流Fが付与されるため、旋回流が与えられた空気を吸気通路6の横断方向の端部へ偏在させることが容易になる。つまり、旋回流Fの遠心力によりその空気が吸気通路6の中央部6aに向かって拡散し難くなって端部に留まり易くなる。 According to the second embodiment , in addition to being able to exhibit the same effect as the first embodiment , the swirling flow F is given to the air guided into the intake passage 6, so that the air to which the swirling flow is given is It becomes easy to make it unevenly distributed to the end of the intake passage 6 in the transverse direction. In other words, the centrifugal force of the swirling flow F makes it difficult for the air to diffuse toward the central portion 6a of the intake passage 6 and to stay at the end.

以上の各形態において、第1及び第2の形態の空気通路は本発明に係る濃度分布形成手段として機能する。但し、本発明は上述した各形態に限定されず、種々の形態にて実施できる。第1及び第2の形態において、排気還流通路26には上述した各参考例の導入部30、40、50が設けられていてもよいが、図11及び図13に示したように排気還流通路26が単純に吸気通路6に接続されていてもよい。排気還流通路26に上述した各参考例の導入部30、40、50が設けられた場合には、これらの導入部にてEGRガスを吸気通路6の中央部6aに集中させた状態で、その端部へ空気を偏在させることができるため、吸気通路6内のEGRガスの濃度分布の濃淡を一層際立たせることが可能になる。この場合には、導入部30、40、50のいずれかと空気通路61、71のいずれかとの組み合わせが本発明に係る濃度分布形成手段を構成する。 In each embodiment described above, the air communication passage of the first and second embodiment to function as a density distribution formation means in accordance with the present invention. However, this invention is not limited to each form mentioned above, It can implement with a various form. In the first and second embodiments, the exhaust gas recirculation passage 26 may be provided with the introduction portions 30, 40, and 50 of each of the reference examples described above, but as shown in FIGS. 26 may be simply connected to the intake passage 6. When the introduction portions 30, 40, 50 of the reference examples described above are provided in the exhaust gas recirculation passage 26, the EGR gas is concentrated in the central portion 6 a of the intake passage 6 in these introduction portions. Since the air can be unevenly distributed to the end portion, it becomes possible to make the concentration distribution of the EGR gas in the intake passage 6 more prominent. In this case, the combination of any one of the introduction parts 30, 40, 50 and any one of the air passages 61, 71 constitutes the concentration distribution forming means according to the present invention.

第1及び第2の形態においては、空気通路の一端を吸気通路に接続して空気を取り出しているが、吸気通路とは別系統の空気供給源に空気通路の一端を接続することにより本発明を実施してもよい。この場合にはエアポンプ等の加圧手段を利用して吸気通路の外周へ空気を圧送することもできる。 In the first and second embodiments, one end of the air passage is connected to the intake passage to take out the air, but the present invention is achieved by connecting one end of the air passage to an air supply source that is different from the intake passage. May be implemented. In this case, air can be pumped to the outer periphery of the intake passage using pressurizing means such as an air pump.

1 内燃機関
6 吸気通路
6a 中央部
6b 内壁
7 排気通路
12 ターボチャージャー
13 コンプレッサ
14 タービン
15 インペラー
26 排気還流通路
29 スロットル弁(流量制限手段)
30 導入部(濃度分布形成手段)
31 管状部材(内側通路部)
31a 下流側開口部
31b 上流側開口部
32 接続通路部
40 導入部
41 内側通路部
41a 下流側開口部
41b 上流側開口部
42 接続通路部
43 仕切り壁部
50 導入部
50a 下流側開口部
51 囲み通路部
60 合流部
61 空気通路(濃度分布形成手段)
62 空気導入部
71 空気通路(濃度分布形成手段)
Ax1 軸線
F 旋回流
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 6 Intake passage 6a Center part 6b Inner wall 7 Exhaust passage 12 Turbocharger 13 Compressor 14 Turbine 15 Impeller 26 Exhaust recirculation passage 29 Throttle valve (flow restriction means)
30 Introduction part (concentration distribution forming means)
31 Tubular member (inner passage)
31a downstream opening 31b upstream opening 32 connection passage part 40 introduction part 41 inner passage part 41a downstream opening part 41b upstream opening part 42 connection passage part 43 partition wall part 50 introduction part 50a downstream opening part 51 enclosure passage Part 60 Junction part 61 Air passage (concentration distribution forming means)
62 Air introduction part 71 Air passage (concentration distribution forming means)
Ax1 axis F swirl flow

Claims (3)

吸気通路に設けられたコンプレッサと排気通路に設けられて前記コンプレッサを駆動するタービンとを有したターボチャージャーが搭載された内燃機関に適用され、前記排気通路から排気の一部をEGRガスとして取り出して前記コンプレッサよりも上流の前記吸気通路内に導く排気還流通路を備えた内燃機関の排気還流装置において、
前記吸気通路の前記中央部のEGRガスの濃度がその横断方向の端部のEGRガスの濃度よりも高いEGRガスの濃度分布を前記コンプレッサの上流に形成する濃度分布形成手段を備え
前記濃度分布形成手段として、前記排気還流通路と前記吸気通路とが合流する合流部よりも下流でかつ前記コンプレッサよりも上流の前記吸気通路にEGRガスを含まない空気を導くことができる空気通路が設けられており、
前記空気通路は、前記吸気通路の外周側から内周側に開口して空気を前記吸気通路内に導くことができる空気導入部を有していることを特徴とする内燃機関の排気還流装置。
The present invention is applied to an internal combustion engine equipped with a turbocharger having a compressor provided in an intake passage and a turbine provided in an exhaust passage and driving the compressor, and a part of exhaust gas is taken out from the exhaust passage as EGR gas. In an exhaust gas recirculation device for an internal combustion engine, comprising an exhaust gas recirculation passage leading into the intake passage upstream of the compressor,
Concentration distribution forming means for forming an EGR gas concentration distribution upstream of the compressor, wherein the concentration of EGR gas in the central portion of the intake passage is higher than the concentration of EGR gas at the end in the transverse direction ;
As the concentration distribution forming means, there is an air passage that can guide air that does not contain EGR gas to the intake passage that is downstream of the merging portion where the exhaust gas recirculation passage and the intake passage join and upstream of the compressor. Provided,
The exhaust gas recirculation apparatus for an internal combustion engine, wherein the air passage has an air introduction portion that opens from an outer peripheral side to an inner peripheral side of the intake passage and can guide air into the intake passage .
前記空気導入部は、前記吸気通路の周方向に旋回する旋回流を前記吸気通路内に導く空気に対して付与する旋回流生成手段を有していることを特徴とする請求項1に記載の内燃機関の排気還流装置。 The air introduction portion of claim 1, characterized in that it has a swirling flow generating means for giving to the air directing a swirling flow swirling in the circumferential direction of the intake passage in the intake passage An exhaust gas recirculation device for an internal combustion engine. 前記合流部よりも上流に設けられて、前記空気通路にて導入される空気とは別に前記吸気通路に流れ込む空気の流量を制限する流量制限手段を更に備えることを特徴とする請求項1又は2に記載の内燃機関の排気還流装置。 Provided upstream from the merging portion, claim 1 or 2, characterized in that the air introduced in the air passage, further comprising a separate flow restriction means for restricting the flow rate of air flowing into the intake passage 2. An exhaust gas recirculation device for an internal combustion engine according to 1.
JP2011279968A 2007-06-21 2011-12-21 Exhaust gas recirculation device for internal combustion engine Expired - Fee Related JP5327307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279968A JP5327307B2 (en) 2007-06-21 2011-12-21 Exhaust gas recirculation device for internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007164030 2007-06-21
JP2007164030 2007-06-21
JP2011279968A JP5327307B2 (en) 2007-06-21 2011-12-21 Exhaust gas recirculation device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007278524A Division JP5018400B2 (en) 2007-06-21 2007-10-26 Exhaust gas recirculation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012057634A JP2012057634A (en) 2012-03-22
JP5327307B2 true JP5327307B2 (en) 2013-10-30

Family

ID=40396699

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007278524A Expired - Fee Related JP5018400B2 (en) 2007-06-21 2007-10-26 Exhaust gas recirculation device for internal combustion engine
JP2011279968A Expired - Fee Related JP5327307B2 (en) 2007-06-21 2011-12-21 Exhaust gas recirculation device for internal combustion engine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007278524A Expired - Fee Related JP5018400B2 (en) 2007-06-21 2007-10-26 Exhaust gas recirculation device for internal combustion engine

Country Status (1)

Country Link
JP (2) JP5018400B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571046B1 (en) * 2009-03-03 2015-11-23 보르그워너 인코퍼레이티드 Turbocharger
US20110011084A1 (en) 2009-07-16 2011-01-20 Denso Corporation Exhaust gas recirculation system for internal combustion engine
JP5310367B2 (en) * 2009-08-05 2013-10-09 株式会社デンソー Exhaust gas recirculation device
KR101682477B1 (en) * 2010-02-17 2016-12-05 보르그워너 인코퍼레이티드 Turbocharger
DE102010028975A1 (en) * 2010-05-14 2012-03-29 Abb Turbo Systems Ag Additional compressor housing
JP5561554B2 (en) * 2011-01-27 2014-07-30 アイシン精機株式会社 Intake device for internal combustion engine
JP2012180807A (en) * 2011-03-02 2012-09-20 Toyota Boshoku Corp Exhaust gas recirculation device
JP2013060926A (en) * 2011-09-15 2013-04-04 Daihatsu Motor Co Ltd Internal combustion engine
WO2013073052A1 (en) * 2011-11-18 2013-05-23 トヨタ自動車株式会社 Supercharger-equipped internal combustion engine
CN105102787B (en) 2013-04-16 2017-07-11 丰田自动车株式会社 The compressor of exhaust turbine supercharger
CN105339624B (en) * 2013-06-26 2018-06-05 丰田自动车株式会社 The exhaust gas re-circulation apparatus of internal combustion engine
JP6177604B2 (en) * 2013-07-01 2017-08-09 日野自動車株式会社 EGR gas mixing device
JP6071813B2 (en) * 2013-09-06 2017-02-01 三菱重工業株式会社 Supercharger
JP6263997B2 (en) * 2013-12-02 2018-01-24 株式会社豊田中央研究所 Compressor for turbocharger
JP6056748B2 (en) 2013-12-20 2017-01-11 トヨタ自動車株式会社 Supercharged engine EGR system
JP2015124661A (en) 2013-12-26 2015-07-06 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine with supercharger
JP6133770B2 (en) * 2013-12-27 2017-05-24 大豊工業株式会社 Gas mixing equipment
DE102014016855A1 (en) * 2014-11-14 2016-05-19 Bernd Joos Gas mixer of an internal combustion engine of a CHP for operation with a wood gas
JP6806551B2 (en) * 2016-12-14 2021-01-06 株式会社豊田中央研究所 Centrifugal compressor, turbocharger
JP6762259B2 (en) * 2017-03-31 2020-09-30 三菱重工エンジン&ターボチャージャ株式会社 Gas reflux device
JP2019138165A (en) * 2018-02-06 2019-08-22 いすゞ自動車株式会社 Gas merging device and internal combustion engine having the gas merging device
JP7110786B2 (en) * 2018-07-20 2022-08-02 三菱自動車工業株式会社 Recirculation mechanism for exhaust gas recirculation
JP7169175B2 (en) * 2018-11-22 2022-11-10 三菱重工マリンマシナリ株式会社 Silencer device for turbocharger
JP2022191890A (en) * 2021-06-16 2022-12-28 三菱重工エンジン&ターボチャージャ株式会社 Pipe branch device and compressor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159950A (en) * 1981-03-27 1982-10-02 Aisin Seiki Co Ltd Egr system with turbocharger
JPH03290051A (en) * 1990-04-06 1991-12-19 Hino Motors Ltd Exhaust gas recirculation device
JPH08254160A (en) * 1995-03-16 1996-10-01 Kawasaki Heavy Ind Ltd Exhaust gas recirculation control device for diesel engine
JP2000018108A (en) * 1998-07-02 2000-01-18 Toyota Motor Corp Intake system of internal combustion engine
JP2005009313A (en) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd Exhaust recirculation device for diesel engine
JP4042649B2 (en) * 2003-08-29 2008-02-06 トヨタ自動車株式会社 Internal combustion engine
JP4609243B2 (en) * 2005-08-30 2011-01-12 株式会社デンソー Exhaust gas recirculation device
CN101371029A (en) * 2006-01-27 2009-02-18 博格华纳公司 Mixing unit for LP-EGR condensate into the compressor

Also Published As

Publication number Publication date
JP2012057634A (en) 2012-03-22
JP2009024692A (en) 2009-02-05
JP5018400B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5327307B2 (en) Exhaust gas recirculation device for internal combustion engine
US7127893B2 (en) Internal combustion engine comprising a compressor in the induction tract
JP5747483B2 (en) Low pressure loop EGR device
US20110067680A1 (en) Turbocharger and Air Induction System Incorporating the Same and Method of Making and Using the Same
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
US7448368B2 (en) Exhaust gas recirculation system for an internal combustion engine
WO2017169982A1 (en) Engine with turbo supercharger
JP2012062822A (en) Exhaust gas recirculation system of supercharged engine
RU2544640C2 (en) Turbine efficiency control procedure and device
JP2013238144A (en) Low-pressure loop egr device
JP2008309125A (en) Exhaust gas recirculation system for internal combustion engine
KR20110028227A (en) Exhaust gas turbo-charger assembly, power train equipped therewith and method for designing the power train
CN107448276B (en) Engine with turbocharger
CN107448278B (en) Engine with turbocharger
JP6579085B2 (en) Electric turbocharger
CN103201481B (en) Low pressure loop EGR device
CN113227538B (en) Rotary piston engine with optimized intake internal cooling
JP6399028B2 (en) Turbocharged engine
JP6146567B2 (en) Engine intake system structure
JP2011032880A (en) Exhaust gas recirculation device of internal combustion engine
JP2010216365A (en) Supercharging system for internal combustion engine
CN113661314A (en) Turbine and supercharger
JP6460028B2 (en) Turbocharged engine
CN111287836A (en) Supercharged internal combustion engine having a compressor and a guide device arranged upstream of the compressor
JP2012127270A (en) Supercharged multi-cylinder engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5327307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees