JP5327016B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP5327016B2
JP5327016B2 JP2009265915A JP2009265915A JP5327016B2 JP 5327016 B2 JP5327016 B2 JP 5327016B2 JP 2009265915 A JP2009265915 A JP 2009265915A JP 2009265915 A JP2009265915 A JP 2009265915A JP 5327016 B2 JP5327016 B2 JP 5327016B2
Authority
JP
Japan
Prior art keywords
battery
cover layer
resin cover
battery module
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009265915A
Other languages
Japanese (ja)
Other versions
JP2011113641A (en
Inventor
幸助 草場
安則 内田
宜暁 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2009265915A priority Critical patent/JP5327016B2/en
Publication of JP2011113641A publication Critical patent/JP2011113641A/en
Application granted granted Critical
Publication of JP5327016B2 publication Critical patent/JP5327016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve cooling efficiency unevenness of a plurality of battery cells in a battery pack using the battery cells which have terminals on both ends in a longitudinal direction. <P>SOLUTION: A battery module includes the battery cells with terminals on both ends of the same in a longitudinal direction, and a resin cover layer covering an outer circumference surface of the battery cells and provided with electric insulation and thermal conductivity functions. The resin cover layer has contact faces which make plane contact with resin cover layers of other adjoining battery modules, and recessed grooves as continuous extensions of the contact faces, and when the battery pack arrangement is made, tunnel-like cooling passages are formed by a plurality of recessed grooves. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ハイブリッド自動車あるいは電気自動車などに用いられる組電池の一単位を構成する電池モジュールに関するものである。   The present invention relates to a battery module constituting one unit of an assembled battery used in a hybrid vehicle or an electric vehicle.

電気自動車の駆動電源として用いられるニッケル・水素二次電池、リチウムイオン二次電池などは、高いエネルギー密度が必要とされ、かつ搭載スペースは極力小さくすることが求められている。そのため単電池セルを複数個集合させた組電池とするのが一般的である。例えば直方体形状をなす数V〜十数Vの単電池セルを数十個直列に接続し、これを1つのパッケージに納めて組電池とされている。この組電池は、たとえば後席下部、トランクルームなどに搭載されている。   Nickel / hydrogen secondary batteries, lithium ion secondary batteries, and the like used as drive power sources for electric vehicles are required to have a high energy density and are required to have a small mounting space. Therefore, it is common to use a battery pack in which a plurality of single battery cells are assembled. For example, several tens to several tens of V single battery cells having a rectangular parallelepiped shape are connected in series, and these are put in one package to form an assembled battery. This assembled battery is mounted, for example, in the lower part of the rear seat, the trunk room, or the like.

ところで組電池の性能や寿命は温度環境に大きく依存し、高温になると劣化が著しい。そこで、単電池セルの表面に大気と連通する冷却通路を形成し、冷却通路に車室内空気を導入したり、エアコンの風を強制的に導入することが行われている。   By the way, the performance and life of the assembled battery greatly depend on the temperature environment, and the deterioration is remarkable at a high temperature. Therefore, a cooling passage communicating with the atmosphere is formed on the surface of the single battery cell, and air in the passenger compartment is introduced into the cooling passage, or the air from the air conditioner is forcibly introduced.

一方、ニッケル・水素二次電池などにおいては、充電時などに直方体形状をなす単電池セルが膨張し、最も広い側面が円弧状に外側へ膨らむという現象が避けられない。このようになると、直方体形状をなす単電池セルを複数個集合させた組電池では、対向する壁面どうしが小さな接触面積で接触して接触部分に大きな応力が集中する可能性がある。   On the other hand, in a nickel-hydrogen secondary battery or the like, it is inevitable that the unit cell having a rectangular parallelepiped shape expands during charging and the widest side surface expands outward in an arc shape. If it becomes like this, in the assembled battery which assembled | stacked the single battery cell which makes a rectangular parallelepiped shape, the wall surfaces which oppose may contact in a small contact area, and a big stress may concentrate on a contact part.

そこで、各単電池セルの内圧を均一にして各単電池セルの充放電特性を均一にする目的で、単電池セルに所定の荷重を負荷して加圧拘束した状態で配列することが行われている。例えば特開2009−176464号公報に紹介されている組電池装置では、単電池セルと板状の熱伝導部材とを交互に配列し、厚さ方向の両端にそれぞれ一つずつの拘束板を重ねた上で、2つの拘束板を拘束ロッドにて互いに接近する方向に締め付けている。2つの拘束板を互いに接近する方向に締め付けることで、複数の単電池セルを熱伝導部材を介して互いに近接させ、各単電池セルに荷重を負荷することで膨張を規制することができる。   Therefore, for the purpose of uniforming the internal pressure of each single battery cell and making the charge / discharge characteristics of each single battery cell uniform, the single battery cells are arranged in a state in which a predetermined load is applied and restrained under pressure. ing. For example, in an assembled battery device introduced in Japanese Patent Application Laid-Open No. 2009-176464, single battery cells and plate-like heat conducting members are alternately arranged, and one constraining plate is placed on each end in the thickness direction. In addition, the two restraining plates are tightened in the direction approaching each other by the restraining rod. By tightening the two constraining plates in a direction approaching each other, the plurality of single battery cells can be brought close to each other via the heat conducting member, and expansion can be regulated by applying a load to each single battery cell.

またこの組電池装置によれば、軟質の熱伝導部材が両側の単電池セルによって圧縮され、熱伝導部材の密着表面が単電池セルの最も広い側面に密着する。そして熱伝導部材の密着表面から伝導された単電池セルの熱は、熱伝導性と電気絶縁性を有する軟質材からなるマトリックスから繊維部材に伝わり、繊維の長さ方向に伝熱されて放熱表面に伝導され、放熱表面から放熱空間へ放熱される。なお特開2000−306560号公報には、単電池セルがシリコーンゴムを介して密接した組電池が記載されている。   Further, according to this assembled battery device, the soft heat conductive member is compressed by the single battery cells on both sides, and the contact surface of the heat conductive member is in close contact with the widest side surface of the single battery cell. The heat of the single battery cell conducted from the close contact surface of the heat conducting member is transferred from the matrix made of a soft material having thermal conductivity and electrical insulation to the fiber member, and is transferred in the length direction of the fiber to be the heat radiating surface. And is radiated from the heat radiation surface to the heat radiation space. JP-A-2000-306560 describes a battery pack in which single battery cells are in close contact with each other through silicone rubber.

上記したように角型の単電池セルの場合には、板状の熱伝導部材あるいはシリコーンゴムを介して密接させることができ、放熱によって膨張を防止することができる。ところが円筒状の丸型の単電池セルの場合には、放熱させるのに別の工夫が必要となる。   As described above, in the case of a rectangular unit battery cell, it can be brought into close contact via a plate-like heat conductive member or silicone rubber, and expansion can be prevented by heat radiation. However, in the case of a cylindrical round single battery cell, another device is required to dissipate heat.

例えば特開2007−066773号公報には、丸型の単電池セルを熱伝導筒に収納した状態で複数個平行な姿勢で隣接させ、隣接する熱伝導筒どうしを熱暴走防止壁で連結するとともに熱伝導筒の表面を一部切欠いて放熱領域とした組電池が記載されている。この組電池によれば、熱暴走防止壁で熱輻射を規制するとともに放熱領域で放熱させることができるので、単電池セルの熱が隣接する単電池セルに移動するのが規制でき、熱暴走を抑制することができる。   For example, in Japanese Patent Application Laid-Open No. 2007-066773, a plurality of round unit cells are adjoined in a parallel posture in a state of being accommodated in a heat conduction cylinder, and adjacent heat conduction cylinders are connected by a thermal runaway prevention wall. An assembled battery is described in which a part of the surface of the heat conducting cylinder is cut away to form a heat dissipation region. According to this assembled battery, heat radiation can be regulated by the thermal runaway prevention wall and heat can be radiated in the heat radiation area, so that the heat of the single battery cell can be regulated to move to the adjacent single battery cell, and thermal runaway can be prevented. Can be suppressed.

特開2009−176464号公報JP 2009-176464 A 特開2000−306560号公報JP 2000-306560 A 特開2007−066773号公報Japanese Patent Laid-Open No. 2007-066773

ところが特許文献3に記載された組電池においては、複数の単電池セルが放熱領域に並んで配置されているため、冷却風を供給すると最上流の単電池セルは効率よく冷却されるものの、それによって冷却風の温度が上昇するため、下流側の単電池セルほど冷却効率が低くなるという不具合があった。すなわち単電池セル間の冷却ばらつきが大きくなり、そうなると冷却されにくい単電池セルが抵抗体となるため、組電池全体の性能が最も冷却されにくい単電池セルの特性に合わせて悪化してしまう。   However, in the assembled battery described in Patent Document 3, since the plurality of single battery cells are arranged in the heat dissipation area, the most upstream single battery cell is efficiently cooled when the cooling air is supplied. As a result, the temperature of the cooling air rises, so that there is a problem that the cooling efficiency is lower in the downstream unit battery cell. That is, the variation in cooling between the single battery cells becomes large, and since the single battery cell that is difficult to be cooled becomes a resistor, the performance of the entire assembled battery is deteriorated in accordance with the characteristics of the single battery cell that is most difficult to be cooled.

本発明はこのような事情に鑑みてなされたものであり、長手方向の両端に端子を有する電池セルを用いた組電池において、複数の電池セルの冷却効率のばらつきを解消して均一に冷却できるようにすることを解決すべき課題とする。   The present invention has been made in view of such circumstances, and in an assembled battery using battery cells having terminals at both ends in the longitudinal direction, it is possible to uniformly cool by eliminating variations in cooling efficiency of a plurality of battery cells. Doing so is an issue to be solved.

上記課題を解決する本発明の電池モジュールの特徴は、長手方向の両端に端子を有する電池セルと、電池セルの外周表面に被覆され電気絶縁性と熱伝導性を備えた樹脂カバー層とからなり、中心軸方向が互いに平行となるように複数個積層されることで組電池とされる電池モジュールであって、樹脂カバー層は、隣接する他の電池モジュールの樹脂カバー層と面接触して当接する当接面と、当接面に連続して延びる凹溝と、を有し、樹脂カバー層は電気絶縁性を有するマトリックスとマトリックス中に含まれマトリックスより熱伝導率が高い充填材とからなり、充填材は短繊維形状をなし電池セルの表面から当接面に向かう方向に配向し、複数個の電池モジュールが積層されて組電池とされたときに当接面どうしが当接するとともに隣接する複数の凹溝からトンネル状の冷却通路が形成されることにある。 A feature of the battery module of the present invention that solves the above-mentioned problems is comprised of a battery cell having terminals at both ends in the longitudinal direction, and a resin cover layer that is coated on the outer peripheral surface of the battery cell and has electrical insulation and thermal conductivity. The battery module is a battery module formed by stacking a plurality of layers so that the central axis directions are parallel to each other, and the resin cover layer contacts the resin cover layer of another adjacent battery module. The resin cover layer is composed of a matrix having electrical insulation and a filler having a higher thermal conductivity than the matrix. , filler oriented in the direction from the surface of the battery cell without a short fiber form the contact surface, contact surface each other when the plurality of battery modules is the battery assembly is stacked adjacent with contacts From the number of grooves in the cooling passage of the tunnel-shaped is formed.

本発明の電池モジュールによれば、組電池とされたときに、樹脂カバー層の当接面どうしが当接している。この樹脂カバー層は電気絶縁性と熱伝導性を備えているため、電気絶縁性が満足されるとともに、熱伝導によって各電池セル間の温度差が小さくなる。またトンネル状の冷却通路に大気などの冷媒を流通することで各樹脂カバー層を介して電池セルを冷却することができる。したがって冷却効率のばらつきが解消され、組電池における各電池セルを均一に冷却することができるので、充放電特性の寿命を長くすることができる。   According to the battery module of the present invention, the contact surfaces of the resin cover layer are in contact with each other when the battery module is assembled. Since this resin cover layer has electrical insulation and thermal conductivity, the electrical insulation is satisfied, and the temperature difference between the battery cells is reduced by thermal conduction. In addition, the battery cell can be cooled via each resin cover layer by circulating a refrigerant such as the atmosphere through the tunnel-like cooling passage. Therefore, the variation in cooling efficiency is eliminated, and each battery cell in the assembled battery can be cooled uniformly, so that the life of the charge / discharge characteristics can be extended.

本発明の一実施例に係る電池モジュールの斜視図である。It is a perspective view of the battery module which concerns on one Example of this invention. 本発明の一実施例に係る電池モジュールの断面図である。It is sectional drawing of the battery module which concerns on one Example of this invention. 本発明の一実施例に係る電池モジュールを製造する金型の断面図である。It is sectional drawing of the metal mold | die which manufactures the battery module which concerns on one Example of this invention. 本発明の一実施例に係る電池モジュールからなる組電池の斜視図である。It is a perspective view of the assembled battery which consists of a battery module which concerns on one Example of this invention. 本発明の第2の実施例に係る電池モジュールの斜視図である。It is a perspective view of the battery module which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る電池モジュールからなる組電池の斜視図である。It is a perspective view of the assembled battery which consists of a battery module which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る電池モジュールの斜視図である。It is a perspective view of the battery module which concerns on the 3rd Example of this invention. 本発明の第3の実施例に係る電池モジュールからなる組電池の斜視図である。It is a perspective view of the assembled battery which consists of a battery module which concerns on the 3rd Example of this invention. 本発明の第3の実施例に係る電池モジュールからなる組電池の正面図である。It is a front view of the assembled battery which consists of a battery module which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る電池モジュールからなる組電池の正面図である。It is a front view of the assembled battery which consists of a battery module which concerns on the 4th Example of this invention.

本発明の電池モジュールは、電池セルと樹脂カバー層とからなる。電池セルは例えば断面丸形あるいは角形など、長手方向の両端に端子を有するものであり、ニッケル水素電池、リチウムイオン電池など各種の二次電池を用いることができる。   The battery module of the present invention includes a battery cell and a resin cover layer. The battery cell has terminals at both ends in the longitudinal direction, for example, round or square in cross section, and various secondary batteries such as nickel metal hydride battery and lithium ion battery can be used.

樹脂カバー層は電池セルの外周表面に被覆され、電気絶縁性と熱伝導性を備えている。この樹脂カバー層は、電気絶縁性を有するマトリックスと、マトリックス中に含まれマトリックスより熱伝導率が高い充填材とからなるものを用いることができる。電気絶縁性を有するマトリックスとしては、ポリプロピレン、ポリエチレン、ABS、ポリスチレン、ポリカーボネート、アクリル樹脂などの熱可塑性樹脂、あるいはエポキシ樹脂、フェノール樹脂、メラミン樹脂などの熱硬化性樹脂を用いることができる。また充填材によって形状剛性が確保できれば、EPDM、天然ゴム、熱可塑性エラストマーなどが用いられる場合もある。   The resin cover layer is coated on the outer peripheral surface of the battery cell and has electrical insulation and thermal conductivity. As this resin cover layer, a layer composed of a matrix having electrical insulation and a filler contained in the matrix and having a higher thermal conductivity than the matrix can be used. As the matrix having electrical insulation, thermoplastic resins such as polypropylene, polyethylene, ABS, polystyrene, polycarbonate, and acrylic resin, or thermosetting resins such as epoxy resin, phenol resin, and melamine resin can be used. In addition, EPDM, natural rubber, thermoplastic elastomer, or the like may be used if the shape rigidity can be secured by the filler.

充填材は、電気絶縁性を有しかつマトリックスより熱伝導性が高いものが用いられる。このような充填材としては、カーボンブラック、炭素繊維、石油コークス、グラファイト、カーボンナノチューブなどの炭素系フィラー、あるいはアルミナ、ジルコニア、マグネシア、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭化ケイ素、炭化ホウ素などのセラミックスを用いることができる。マトリックスの熱伝導率は一般に1W/m・K未満であるのに対し、炭素系フィラー及びセラミックスの熱伝導率は大部分が1W/m・Kを超え、100W/m・Kを超えるものも多いことから、いずれも好適に用いることができる。   As the filler, one having electrical insulation and higher thermal conductivity than the matrix is used. Such fillers include carbon fillers such as carbon black, carbon fiber, petroleum coke, graphite, and carbon nanotubes, or alumina, zirconia, magnesia, aluminum nitride, boron nitride, silicon nitride, silicon carbide, boron carbide, etc. Ceramics can be used. While the thermal conductivity of the matrix is generally less than 1 W / m · K, the thermal conductivity of carbon-based fillers and ceramics mostly exceeds 1 W / m · K, and many of them exceed 100 W / m · K. Therefore, both can be suitably used.

充填材の量は、多いほど熱伝導性が向上するが、反面、樹脂カバー層の弾性が低下する。したがってマトリックス及び充填材の種類によっても異なるが、炭素系フィラーは5〜40体積%の範囲が好ましく、セラミックスフィラーは5〜60体積%の範囲が好ましい。後述の磁場印加成形方法で配向させやすい炭素繊維と、反磁性体であるセラミック粉末との混合フィラーとするのが特に好ましい。炭素繊維としては、PAN系炭素繊維よりも熱伝導率が大きなピッチ系炭素繊維が好ましい。   As the amount of the filler increases, the thermal conductivity improves, but on the other hand, the elasticity of the resin cover layer decreases. Accordingly, the carbon filler is preferably in the range of 5 to 40% by volume, and the ceramic filler is preferably in the range of 5 to 60% by volume, although it varies depending on the type of matrix and filler. It is particularly preferable to use a mixed filler of carbon fibers that are easily oriented by a magnetic field application molding method described later and ceramic powder that is a diamagnetic material. As the carbon fiber, a pitch-based carbon fiber having a higher thermal conductivity than the PAN-based carbon fiber is preferable.

樹脂カバー層は、隣接する他の電池モジュールの樹脂カバー層と面接触して当接する当接面と、当接面に連続して延びる凹溝と、を有している。そして複数個の電池モジュールが積層されて組電池とされたときに、当接面どうしが当接するとともに、隣接する複数の凹溝からトンネル状の冷却通路が形成される。   The resin cover layer has a contact surface that comes into surface contact with the resin cover layer of another adjacent battery module, and a concave groove that extends continuously from the contact surface. When a plurality of battery modules are stacked to form an assembled battery, the contact surfaces come into contact with each other, and a tunnel-like cooling passage is formed from a plurality of adjacent concave grooves.

樹脂カバー層は断面が正三角形、正方形、正六角形などの角柱形状とされる。例えば断面正方形の角柱形状の樹脂カバー層とした場合、その軸中心に電池セルが配置されて本発明の電池モジュールが構成される。そして電池セルの軸方向に平行に延びる4つの平面がそれぞれ当接面となり、組電池とされた場合には隣接する電池モジュールと当接面どうしで当接する。   The resin cover layer has a prismatic shape such as a regular triangle, square, or regular hexagon in cross section. For example, when the resin cover layer has a square pillar shape with a square cross section, a battery cell is arranged at the center of the axis to constitute the battery module of the present invention. The four flat surfaces extending in parallel to the axial direction of the battery cells serve as contact surfaces. When assembled, the battery cells contact adjacent battery modules at the contact surfaces.

例えば断面正方形の角柱形状の樹脂カバー層とした場合、4つの当接面のうち少なくとも互いに平行な二つの当接面に、軸方向に対して直交する凹溝を少なくとも一つ形成してもよい。このようにすれば、組電池とした場合に隣接する電池モジュールの凹溝どうしが連通して軸方向に対して直交するトンネル状の通路が形成される。この場合は、一つの電池モジュールの樹脂カバー層の互いに平行な二つの当接面に複数の凹溝をそれぞれ形成することが好ましい。   For example, in the case of a prismatic resin cover layer having a square cross section, at least one concave groove orthogonal to the axial direction may be formed on at least two of the four contact surfaces parallel to each other. . If it does in this way, when it is set as an assembled battery, the recessed groove | channel of adjacent battery modules will connect, and the tunnel-shaped channel | path orthogonal to an axial direction will be formed. In this case, it is preferable to form a plurality of concave grooves in two parallel contact surfaces of the resin cover layer of one battery module.

また4つの当接面どうしが交差する4つの角部に電池セルの軸方向に平行に延びる凹溝を形成すれば、組電池とされたときに隣接する4つの電池モジュールの中央に凹溝どうしが互いに連通して軸方向に平行に延びるトンネル状の通路が形成される。このトンネル状の通路に大気などの冷媒を流通させることで、隣接する4つの電池モジュールを均一に効率よく冷却することができる。このようにすれば、電池セルの軸方向に沿って冷媒を流すことができるので、軸方向に対して直交する凹溝を形成する場合に比べて冷却効率が向上する。   Moreover, if a groove extending parallel to the axial direction of the battery cell is formed at the four corners where the four contact surfaces intersect, the grooves between the adjacent four battery modules when assembled into a battery pack are formed. Are connected to each other to form a tunnel-shaped passage extending parallel to the axial direction. By circulating a refrigerant such as the atmosphere through the tunnel-shaped passage, the four adjacent battery modules can be uniformly and efficiently cooled. In this way, since the refrigerant can flow along the axial direction of the battery cell, the cooling efficiency is improved as compared with the case where the concave groove orthogonal to the axial direction is formed.

電池セルに樹脂カバー層を被覆するには、別に形成された樹脂カバー層内に電池セルを収納する方法を採用することもできるが、断熱層となる空気層を排除するために電池セルと樹脂カバー層とは密着していることが望ましい。したがって、樹脂カバー層を形成するための成形型内に電池セルを配置して樹脂カバー層を一体成形する方法を用いることが望ましい。   To cover the battery cell with the resin cover layer, a method of storing the battery cell in a separately formed resin cover layer can be adopted, but the battery cell and the resin are removed in order to eliminate the air layer serving as a heat insulating layer. It is desirable to be in close contact with the cover layer. Therefore, it is desirable to use a method in which the battery cells are arranged in a mold for forming the resin cover layer and the resin cover layer is integrally formed.

またマトリックスと充填材を含む成形材料から樹脂カバー層を成形する場合には、磁場を印加しながら成形することが望ましい。このようにすれば、充填材は磁力線に沿って配向するため、樹脂カバー層内に充填材粉末が磁力線に沿って並んだクラスターが形成される。したがってクラスターを介して熱が移動しやすくなり、熱伝導性が向上し放熱性も向上する。磁界の強度は、成形材料の粘度、充填材粉末のアスペクト比などによって最適値が変化するので、前述した含有量の範囲で、試行錯誤的に最適値を決定する必要がある。1テスラ以上の強磁場が好ましい。   When molding a resin cover layer from a molding material containing a matrix and a filler, it is desirable to mold while applying a magnetic field. In this way, since the filler is oriented along the magnetic field lines, a cluster in which the filler powder is arranged along the magnetic field lines is formed in the resin cover layer. Therefore, heat becomes easy to move through the cluster, thermal conductivity is improved, and heat dissipation is also improved. Since the optimum value of the magnetic field strength varies depending on the viscosity of the molding material, the aspect ratio of the filler powder, etc., it is necessary to determine the optimum value by trial and error within the above-described content range. A strong magnetic field of 1 Tesla or higher is preferable.

さらに、充填材粉末として短繊維形状のものを用いることも好ましい。磁場の印加によって粒子状の粉末より短繊維状の粉末の方が長手方向に配向しやすく、また長手方向の熱伝導率が短手方向より高いからである。このような短繊維形状の充填材としては、長手方向の熱伝導率が約60W/mKの超高分子量ポリエチレン繊維、同熱伝導率が約 240W/mKのアルミニウム繊維、同熱伝導率が約1015W/mKのアルミナ繊維、同熱伝導率が約 300〜 400W/mKの窒化アルミニウム繊維、同熱伝導率が約22W/mKのチタン繊維、同熱伝導率が約 250W/mKの窒化ホウ素繊維などが例示できる。中でも、同熱伝導率が約60W/mKの超高分子量ポリエチレン繊維は電気絶縁性も併せ持つので、特に好ましい材料である。   Further, it is also preferable to use a short fiber shape as the filler powder. This is because the short fiber powder is more easily oriented in the longitudinal direction than the particulate powder by applying a magnetic field, and the thermal conductivity in the longitudinal direction is higher than that in the short direction. Such short fiber shaped fillers include ultra-high molecular weight polyethylene fibers with a thermal conductivity of about 60 W / mK in the longitudinal direction, aluminum fibers with a thermal conductivity of about 240 W / mK, and a thermal conductivity of about 1015 W. / mK alumina fiber, aluminum nitride fiber with the same thermal conductivity of about 300 to 400 W / mK, titanium fiber with the same thermal conductivity of about 22 W / mK, boron nitride fiber with the same thermal conductivity of about 250 W / mK, etc. It can be illustrated. Among them, ultrahigh molecular weight polyethylene fibers having the same thermal conductivity of about 60 W / mK are particularly preferable materials because they have electrical insulation properties.

樹脂カバー層における充填材の配向方向は、少なくとも電池モジュールの軸方向に対して直交する方向に配向していることが好ましく、電池セルを中心として放射状に配向していることが望ましい。例えば電池セルをN極とし、金型をS極として樹脂カバー層を一体成形すれば、充填材を容易に放射状に配向させることができる。   The orientation direction of the filler in the resin cover layer is preferably oriented at least in a direction orthogonal to the axial direction of the battery module, and is preferably oriented radially around the battery cell. For example, if the resin cover layer is integrally formed with the battery cell as the N pole and the mold as the S pole, the filler can be easily oriented radially.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

図1に本発明の一実施例に係る電池モジュールを示す。この電池モジュールは、円筒形状をなす電池セル1と、電池セル1の外周表面に被覆された樹脂カバー層2とからなる。電池セル1はリチウムイオン電池であり、一端に正極が表出し他端に負極が表出している。   FIG. 1 shows a battery module according to an embodiment of the present invention. This battery module includes a battery cell 1 having a cylindrical shape and a resin cover layer 2 coated on the outer peripheral surface of the battery cell 1. The battery cell 1 is a lithium ion battery, with a positive electrode exposed at one end and a negative electrode exposed at the other end.

樹脂カバー層2は、断面正方形の角柱の4つの角部が断面円弧状に削り取られた形状をなし、正方形の4辺に対応して電池セル1の軸方向に平行に延びる4つの長尺平面20と、隣接する長尺平面20の間に形成された断面円弧状の4つの凹溝21とを有している。また樹脂カバー層2は、図2に断面を示すように、エポキシ樹脂からなるマトリックス22とマトリックス22中に含まれた熱伝導率が約60W/mKの超高分子量ポリエチレン繊維(「ダイニーマ」東洋紡製)の短繊維23とからなる。短繊維23は、電池セル1を中心とする放射状に配向している。   The resin cover layer 2 has a shape in which four corners of a prism having a square cross section are scraped into a circular arc shape, and four long planes extending in parallel to the axial direction of the battery cell 1 corresponding to the four sides of the square. 20 and four concave grooves 21 having a circular arc cross section formed between adjacent long planes 20. As shown in the cross section of FIG. 2, the resin cover layer 2 is made of an epoxy resin matrix 22 and an ultrahigh molecular weight polyethylene fiber (“Dyneema” manufactured by Toyobo Co., Ltd.) having a thermal conductivity of about 60 W / mK. ) Short fibers 23. The short fibers 23 are oriented radially around the battery cell 1.

この電池モジュールは、以下のようにして製造された。先ず超高分子量ポリエチレン繊維(「ダイニーマ」東洋紡製)の短繊維23とエポキシ樹脂とからなり、短繊維23を50体積%含有する成形材料を調製しておく。図3に示すように、上型30と下型31とからなる金型3に電池セル1の外筒10を配置し、成形材料を溶融状態としてキャビティ32に射出成形して外筒10を一体に有する樹脂カバー層2を形成する。   This battery module was manufactured as follows. First, a molding material comprising 50% by volume of the short fiber 23 is prepared, which is composed of the short fiber 23 of ultra high molecular weight polyethylene fiber (“Dyneema” manufactured by Toyobo) and an epoxy resin. As shown in FIG. 3, the outer cylinder 10 of the battery cell 1 is placed in a mold 3 composed of an upper mold 30 and a lower mold 31, and the molding material is melted and injection molded into a cavity 32 so that the outer cylinder 10 is integrated. The resin cover layer 2 is formed.

この成形時には、外筒10の内部がN極、キャビティ32の外周がS極となるように磁石を配置しておき、キャビティ32に2テスラの磁場を印加しながら成形を行う。成形材料に含まれる短繊維23は長手方向が磁場の方向に配向し、電池セル1を中心とする放射状に配向する。成形後に外筒10に電極材料と電解質材料を封入し、両端に正極と負極を形成して電池モジュールとする。   At the time of molding, magnets are arranged so that the inside of the outer cylinder 10 has an N pole and the outer periphery of the cavity 32 has an S pole, and molding is performed while applying a 2 Tesla magnetic field to the cavity 32. The short fibers 23 contained in the molding material are oriented in the longitudinal direction in the direction of the magnetic field, and are oriented radially around the battery cell 1. After molding, an electrode material and an electrolyte material are sealed in the outer cylinder 10, and a positive electrode and a negative electrode are formed at both ends to form a battery module.

得られた電池モジュールは、図4に示すように、隣接する電池モジュールの長尺平面20どうしが当接するように複数個積層されて直方体形状とされ、図示しないバンドで締結されて組電池とされる。組電池では、長尺平面20どうしが当接して密着され、4つの凹溝21が組合わされてなり両端に開口するトンネル状の冷却通路24が複数形成されている。この組電池は、図4に波線で示すように各電池セル1が直列に接続され、電極端子及び冷却通路24の開口をもつ両端面が表出するように開放されたケーシング4に収納されて使用される。   As shown in FIG. 4, the obtained battery modules are stacked in a rectangular parallelepiped shape so that the long flat surfaces 20 of adjacent battery modules come into contact with each other, and fastened with a band (not shown) to form an assembled battery. The In the assembled battery, the long flat surfaces 20 are brought into contact with each other and are in close contact with each other, and a plurality of tunnel-like cooling passages 24 are formed by combining four concave grooves 21 and opening at both ends. The battery pack is housed in a casing 4 that is open so that both battery cells 1 are connected in series as shown by the wavy line in FIG. 4 and both end faces having openings of the electrode terminals and the cooling passage 24 are exposed. used.

すなわち本実施例の電池モジュールを用いた組電池によれば、各電池モジュールどうしが緊密に当接し、かつ樹脂カバー層2は放射状に配向した短繊維23によって熱伝導性が高い。さらに、それぞれの電池モジュールは電池セル1の軸方向に平行に延びる4つの冷却通路24に囲まれている。したがって冷却通路24に冷却風を供給すれば、各電池モジュールに配置された複数の電池セルの冷却効率のばらつきが解消され、均一に冷却することができるので、充放電特性の寿命を長くすることができる。また組電池は角形の外形であるので、組付け性が向上する。   That is, according to the assembled battery using the battery module of this embodiment, the battery modules are in close contact with each other, and the resin cover layer 2 has high thermal conductivity due to the radially oriented short fibers 23. Further, each battery module is surrounded by four cooling passages 24 extending parallel to the axial direction of the battery cell 1. Therefore, if cooling air is supplied to the cooling passage 24, the variation in the cooling efficiency of the plurality of battery cells arranged in each battery module can be eliminated and the cooling can be performed uniformly, thereby extending the life of the charge / discharge characteristics. Can do. Further, since the assembled battery has a rectangular outer shape, the assembling property is improved.

図5に本実施例の電池モジュールを、図6にその電池モジュールが積層されてなる組電池を示す。本実施例の電池モジュールは、実施例1と同様の電池セル1と、電池セル1の外周表面に被覆された樹脂カバー層5とからなる。   FIG. 5 shows a battery module of this embodiment, and FIG. 6 shows an assembled battery formed by stacking the battery modules. The battery module of the present embodiment includes a battery cell 1 similar to that of the first embodiment, and a resin cover layer 5 covered on the outer peripheral surface of the battery cell 1.

樹脂カバー層5は断面略正方形の角柱からなり、互いに対向する一対の側面には長尺平面50が形成され、長尺平面50と交差する一対の側面には電池セル1の軸方向に対して交差する複数の凹溝51がそれぞれ形成されている。凹溝51は、両側で長尺平面50に開口している。この樹脂カバー層5は実施例1と同様のマトリックスと短繊維とから形成され、短繊維は、電池セル1を中心とする放射状に配向している。   The resin cover layer 5 is formed of a prism having a substantially square cross section, and a long flat surface 50 is formed on a pair of side surfaces facing each other, and a pair of side surfaces intersecting the long flat surface 50 is on the axial direction of the battery cell 1. A plurality of intersecting grooves 51 are formed respectively. The concave groove 51 is open to the long flat surface 50 on both sides. The resin cover layer 5 is formed of the same matrix and short fibers as in Example 1, and the short fibers are radially oriented with the battery cell 1 as the center.

この電池モジュールは、隣接する電池モジュールの凹溝51どうしが互いに対向し、かつ凹溝51以外の表面が密着するように縦方向に積層され、長尺平面50どうしが密着し凹溝51の開口どうしが互いに連通するように横方向に積層されて、図6に示す組電池とされている。この組電池には、凹溝51どうしが横方向に連通してなるトンネル状の冷却通路52が複数形成されている。この組電池は、実施例1と同様に各電池セル1が直列に接続され、電極端子及び冷却通路52の開口をもつ両端面が表出するように開放されたケーシングに収納されて使用される。   This battery module is laminated in the vertical direction so that the concave grooves 51 of adjacent battery modules face each other and the surfaces other than the concave grooves 51 are in close contact with each other, and the long flat surfaces 50 are in close contact with each other to open the concave grooves 51. The assembled battery shown in FIG. 6 is formed by laminating in the lateral direction so that the two communicate with each other. In this assembled battery, a plurality of tunnel-like cooling passages 52 are formed in which the concave grooves 51 communicate with each other in the lateral direction. This assembled battery is used by being housed in a casing that is open so that both battery cells 1 are connected in series as in Example 1 and both end faces having openings of electrode terminals and cooling passages 52 are exposed. .

すなわち本実施例の電池モジュールを用いた組電池によれば、各電池モジュールどうしが緊密に当接し、かつ樹脂カバー層5は放射状に配向した短繊維によって熱伝導性が高い。さらに、それぞれの電池モジュールは複数の冷却通路52に囲まれている。したがって各電池モジュールに配置された複数の電池セル1の冷却効率のばらつきが解消され、均一に冷却することができるので、充放電特性の寿命を長くすることができる。また組電池は角形の外形であるので、組付け性が向上する。   That is, according to the assembled battery using the battery module of this embodiment, the battery modules are in close contact with each other, and the resin cover layer 5 has high thermal conductivity due to the radially oriented short fibers. Further, each battery module is surrounded by a plurality of cooling passages 52. Therefore, the variation in the cooling efficiency of the plurality of battery cells 1 arranged in each battery module is eliminated, and the battery cells 1 can be uniformly cooled, so that the life of the charge / discharge characteristics can be extended. Further, since the assembled battery has a rectangular outer shape, the assembling property is improved.

図7に本実施例の電池モジュールを、図8にその電池モジュールが積層されてなる組電池を示す。本実施例の電池モジュールは、実施例1と同様の電池セル1と、電池セル1の外周表面に被覆された樹脂カバー層6とからなる。   FIG. 7 shows a battery module of this example, and FIG. 8 shows an assembled battery in which the battery modules are stacked. The battery module of the present embodiment includes a battery cell 1 similar to that of the first embodiment, and a resin cover layer 6 coated on the outer peripheral surface of the battery cell 1.

樹脂カバー層6は断面正六角形の角柱からなり、互いに対向する三対の側面にそれぞれ長尺平面60が形成され、長尺平面60どうしが交差する部位に一端面から他端面まで延びる断面円弧状の凹溝61がそれぞれ形成されている。この樹脂カバー層5は実施例1と同様のマトリックスと短繊維とから形成され、短繊維は、電池セル1を中心とする放射状に配向している。   The resin cover layer 6 is a prism having a regular hexagonal cross section. A long flat surface 60 is formed on each of three pairs of side surfaces facing each other, and a circular arc shape extending from one end surface to the other end surface at a portion where the long flat surfaces 60 intersect each other. Each of the concave grooves 61 is formed. The resin cover layer 5 is formed of the same matrix and short fibers as in Example 1, and the short fibers are radially oriented with the battery cell 1 as the center.

この電池モジュールは、図8に示すように、隣接する電池モジュールの長尺平面60どうしが当接するように複数個積層されて組電池とされる。この組電池では、長尺平面60どうしが当接して密着され、図9に示すように三つの凹溝61が組合わされてなり両端に開口するトンネル状の冷却通路62が複数形成されている。この組電池は、図8に波線で示すように各電池セル1が直列に接続されて用いられる。   As shown in FIG. 8, a plurality of the battery modules are stacked to form an assembled battery so that the long flat surfaces 60 of adjacent battery modules come into contact with each other. In this assembled battery, the long flat surfaces 60 are in contact with each other and are in close contact with each other. As shown in FIG. 9, a plurality of tunnel-shaped cooling passages 62 are formed by combining three concave grooves 61 and opening at both ends. This battery pack is used with the battery cells 1 connected in series as shown by the wavy line in FIG.

すなわち本実施例の電池モジュールを用いた組電池によれば、各電池モジュールどうしが緊密に当接し、かつ樹脂カバー層6は放射状に配向した短繊維によって熱伝導性が高い。さらに、それぞれの電池モジュールは電池セル1の軸方向に平行に延びる複数の冷却通路62に囲まれている。したがって各電池モジュールに配置された複数の電池セル1の冷却効率のばらつきが解消され、均一に冷却することができるので、充放電特性の寿命を長くすることができる。   That is, according to the assembled battery using the battery module of the present embodiment, the battery modules are in close contact with each other, and the resin cover layer 6 has high thermal conductivity due to radially oriented short fibers. Further, each battery module is surrounded by a plurality of cooling passages 62 extending parallel to the axial direction of the battery cell 1. Therefore, the variation in the cooling efficiency of the plurality of battery cells 1 arranged in each battery module is eliminated, and the battery cells 1 can be uniformly cooled, so that the life of the charge / discharge characteristics can be extended.

図10に本実施例の電池モジュールが積層されてなる組電池の正面図を示す。本実施例の電池モジュールは、実施例1と同様の電池セル1と、電池セル1の外周表面に被覆された樹脂カバー層7とからなる。   FIG. 10 shows a front view of an assembled battery in which the battery modules of this example are stacked. The battery module of the present embodiment includes a battery cell 1 similar to that of the first embodiment and a resin cover layer 7 coated on the outer peripheral surface of the battery cell 1.

樹脂カバー層7は断面正三角形の角柱からなり、三つの側面に長尺平面70が形成され、長尺平面70どうしが交差する部位に一端面から他端面まで延びる断面円弧状の凹溝71がそれぞれ形成されている。この樹脂カバー層7は実施例1と同様のマトリックスと短繊維とから形成され、短繊維は、電池セル1を中心とする放射状に配向している。   The resin cover layer 7 is a prism having a regular triangular cross section. A long flat surface 70 is formed on three side surfaces, and a concave groove 71 having a circular arc cross section extending from one end surface to the other end surface is formed at a portion where the long flat surfaces 70 intersect. Each is formed. The resin cover layer 7 is formed of the same matrix and short fibers as in Example 1, and the short fibers are radially oriented with the battery cell 1 as the center.

この電池モジュールは、図10に示すように、隣接する電池モジュールの長尺平面70どうしが当接するように複数個積層されて組電池とされる。この組電池では、長尺平面70どうしが当接して密着され、六つの凹溝71が組合わされてなり両端に開口するトンネル状の冷却通路72が複数形成されている。この組電池は、図10に波線で示すように各電池セル1が直列に接続されて用いられる。   As shown in FIG. 10, a plurality of battery modules are stacked to form an assembled battery so that the long planes 70 of adjacent battery modules come into contact with each other. In this assembled battery, the long flat surfaces 70 come into contact with each other and are in close contact with each other, and a plurality of tunnel-shaped cooling passages 72 are formed by combining six concave grooves 71 and opening at both ends. This battery pack is used with the battery cells 1 connected in series as shown by the wavy line in FIG.

すなわち本実施例の電池モジュールを用いた組電池によれば、各電池モジュールどうしが緊密に当接し、かつ樹脂カバー層7は放射状に配向した短繊維によって熱伝導性が高い。さらに、それぞれの電池モジュールは、電池セル1の軸方向に平行に延びる三つの冷却通路72に囲まれている。したがって各電池モジュールに配置された複数の電池セル1の冷却効率のばらつきが解消され、均一に冷却することができる。   That is, according to the assembled battery using the battery module of this embodiment, the battery modules are in close contact with each other, and the resin cover layer 7 has high thermal conductivity due to the radially oriented short fibers. Further, each battery module is surrounded by three cooling passages 72 extending in parallel to the axial direction of the battery cell 1. Therefore, the variation in the cooling efficiency of the plurality of battery cells 1 arranged in each battery module is eliminated, and cooling can be performed uniformly.

さらに本実施例の電池モジュールを用いた組電池によれば、冷却通路72の断面積を他の実施例より大きくすることができるので、通風抵抗が低減され冷却効率が向上する。   Further, according to the assembled battery using the battery module of the present embodiment, the cross-sectional area of the cooling passage 72 can be made larger than that of the other embodiments, so that the ventilation resistance is reduced and the cooling efficiency is improved.

本発明の電池モジュールは、複数個積層して組電池とすることで、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車などの他、家電製品、パソコンなどに利用することができる。   By stacking a plurality of battery modules of the present invention into an assembled battery, it can be used for home appliances, personal computers, etc., in addition to hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and the like.

1:電池セル
2:樹脂カバー層
20,50,60,70:長尺平面(当接面)
21,51,61,71:凹溝
22:マトリックス
23:短繊維
24,52,62,72:冷却通路
1: Battery cell 2: Resin cover layer
20, 50, 60, 70: Long flat surface (contact surface)
21,51,61,71: Groove
22: Matrix
23: Short fiber
24,52,62,72: Cooling passage

Claims (5)

長手方向の両端に端子を有する電池セルと、該電池セルの外周表面に被覆され電気絶縁性と熱伝導性を備えた樹脂カバー層とからなり、中心軸方向が互いに平行となるように複数個積層されることで組電池とされる電池モジュールであって、
該樹脂カバー層は、隣接する他の電池モジュールの該樹脂カバー層と面接触して当接する当接面と、該当接面に連続して延びる凹溝と、を有し、
該樹脂カバー層は電気絶縁性を有するマトリックスとマトリックス中に含まれ該マトリックスより熱伝導率が高い充填材とからなり、該充填材は短繊維形状をなし該電池セルの表面から該当接面に向かう方向に配向し、
複数個の電池モジュールが積層されて組電池とされたときに該当接面どうしが当接するとともに隣接する複数の該凹溝からトンネル状の冷却通路が形成されることを特徴とする電池モジュール。
A battery cell having terminals at both ends in the longitudinal direction and a resin cover layer coated on the outer peripheral surface of the battery cell and having electrical insulation and thermal conductivity, and a plurality of such that the central axis directions are parallel to each other A battery module that is assembled into a battery pack by being laminated,
The resin cover layer has a contact surface that comes into surface contact with the resin cover layer of another adjacent battery module, and a concave groove that extends continuously to the contact surface.
The resin cover layer includes an electrically insulating matrix and a filler that is contained in the matrix and has a higher thermal conductivity than the matrix, and the filler has a short fiber shape and extends from the surface of the battery cell to the corresponding contact surface. Oriented in the direction to go,
A battery module characterized in that when a plurality of battery modules are stacked to form an assembled battery, corresponding contact surfaces come into contact with each other, and a tunnel-like cooling passage is formed from a plurality of adjacent concave grooves.
前記凹溝は前記電池セルの中心軸方向と平行に延びている請求項1に記載の電池モジュール。   The battery module according to claim 1, wherein the concave groove extends in parallel with a central axis direction of the battery cell. 前記電池セルの中心軸方向に直交する平面で切った前記樹脂カバー層の断面は多角形状をなし、その多角形断面の角部に断面円弧状の前記凹溝が形成されている請求項1又は請求項2に記載の電池モジュール。   The cross section of the resin cover layer cut by a plane orthogonal to the central axis direction of the battery cell has a polygonal shape, and the concave groove having a circular arc cross section is formed at a corner of the polygonal cross section. The battery module according to claim 2. 前記樹脂カバー層の前記多角形断面は正方形である請求項3に記載の電池モジュール。 The battery module according to claim 3, wherein the polygonal cross section of the resin cover layer is a square. 前記樹脂カバー層の前記多角形断面は正六角形である請求項3に記載の電池モジュール。 The battery module according to claim 3, wherein the polygonal cross section of the resin cover layer is a regular hexagon.
JP2009265915A 2009-11-24 2009-11-24 Battery module Expired - Fee Related JP5327016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265915A JP5327016B2 (en) 2009-11-24 2009-11-24 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265915A JP5327016B2 (en) 2009-11-24 2009-11-24 Battery module

Publications (2)

Publication Number Publication Date
JP2011113641A JP2011113641A (en) 2011-06-09
JP5327016B2 true JP5327016B2 (en) 2013-10-30

Family

ID=44235859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265915A Expired - Fee Related JP5327016B2 (en) 2009-11-24 2009-11-24 Battery module

Country Status (1)

Country Link
JP (1) JP5327016B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162318A (en) * 2014-02-27 2015-09-07 日立オートモティブシステムズ株式会社 battery pack
DE102017213470A1 (en) 2017-08-03 2019-02-07 Bayerische Motoren Werke Aktiengesellschaft Battery module and battery module stack for a motor vehicle
EP4233122A1 (en) * 2020-10-21 2023-08-30 Black & Decker Inc. Battery pack
CN113659231A (en) * 2021-07-31 2021-11-16 北京嘉星众诚医疗科技有限公司 Constant-temperature power supply battery pack system
WO2024171838A1 (en) * 2023-02-15 2024-08-22 株式会社村田製作所 Secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669048B2 (en) * 1995-04-18 2005-07-06 日本電池株式会社 Assembled battery
JP2005285455A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus
KR100649561B1 (en) * 2004-09-21 2006-11-24 삼성에스디아이 주식회사 Can, secondary battery and secondary battery module
JP2009211908A (en) * 2008-03-04 2009-09-17 Panasonic Corp Battery and battery pack using the same

Also Published As

Publication number Publication date
JP2011113641A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP7171615B2 (en) Separator for power supply and power supply
JP5136078B2 (en) Battery assembly
CN105409031B (en) Battery module
US10446891B2 (en) Submodule and battery module having the same
CN106935927B (en) Battery module and vehicle including same
WO2016067517A1 (en) Battery pack and heat dissipating holder
KR101272524B1 (en) Radiant heat plate for battery cell and battery module having the same
KR101233318B1 (en) Battery module
KR100998845B1 (en) Battery Module of Heat Dissipation Property, Heat Exchange Member, and Large or Middle-sized Battery Pack Employed with the Same
CN204128420U (en) Battery heat exchanger
US8647762B2 (en) Battery cell module
US8518574B1 (en) Heat control pouch for battery cell module and battery cell module having the same
US8835036B2 (en) Battery pack
JP2009301877A (en) Battery pack device
KR101615928B1 (en) Middle or Large-sized Battery Pack Having Efficient Cooling Structure
US20160072164A1 (en) Vehicle battery pack with improved cooling efficiency
JP5327016B2 (en) Battery module
JP2012014938A (en) Battery module
EP3852185A1 (en) Power supply device
KR101543477B1 (en) Battery module and lithium secondary battery pack comprising the same
JP2010009962A (en) Battery pack device, and holding member for battery pack device
KR20190024709A (en) Pouch-Type Secondary Battery Having Heat Transfer Member
KR20120133655A (en) Battery cassette and battery module including the same
WO2018180254A1 (en) Battery pack
JP7543911B2 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees