JP5326650B2 - Heating control device - Google Patents

Heating control device Download PDF

Info

Publication number
JP5326650B2
JP5326650B2 JP2009041581A JP2009041581A JP5326650B2 JP 5326650 B2 JP5326650 B2 JP 5326650B2 JP 2009041581 A JP2009041581 A JP 2009041581A JP 2009041581 A JP2009041581 A JP 2009041581A JP 5326650 B2 JP5326650 B2 JP 5326650B2
Authority
JP
Japan
Prior art keywords
flow rate
hot water
temperature
value
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009041581A
Other languages
Japanese (ja)
Other versions
JP2010196961A (en
Inventor
賢一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2009041581A priority Critical patent/JP5326650B2/en
Publication of JP2010196961A publication Critical patent/JP2010196961A/en
Application granted granted Critical
Publication of JP5326650B2 publication Critical patent/JP5326650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating control device promptly and accurately detecting a circulating flow rate without using a direct detection means such as a flow rate sensor. <P>SOLUTION: A circulating pump is turned on to confirm and stir remaining water in a bathtub and it is confirmed that a water jet SW is turned on (S1, S2). A combustion burner is turned on for heating to a predetermined temperature, and the combustion burner is extinguished while maintaining the circulation state (S3-S5). Change in going temperature detected by a going temperature sensor downstream of a heat exchange is monitored, and a timer means is turned on to measure a lowering time value until the going temperature is lowered only by a set temperature difference &Delta;T (S6, S7). Based on a relationship table determining beforehand a relationship between the lowering time value and a value of the circulating flow rate, a value of the corresponding circulating flow rate is determined. The amount of remaining hot water is calculated by using the obtained value of the circulating flow rate and the shortage amount of hot water is filled (S9, S10). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、循環する流体が熱交換器において加熱源により加熱されるものを対象とする加熱制御装置に関し、特に、流量センサ等の流量を直接に検出する検出手段を用いずに、循環流量を制御上の処理により検出し得る制御技術に係る。   The present invention relates to a heating control device for a circulating fluid heated by a heat source in a heat exchanger, and in particular, without using a detection means such as a flow sensor to directly detect the flow rate, The present invention relates to a control technique that can be detected by a control process.

従来、この種の加熱制御装置として、追い焚き循環回路を備えた給湯装置を対象にして、追い焚き循環流路に流量センサを設けることなく追い焚き循環流路内の流量を検出し得るようにしたものが提案されている(例えば特許文献1参照)。すなわち、給湯用熱交換器と追い焚き用熱交換器とを共通の燃焼バーナにより加熱するようにした1缶2水路式の給湯装置では、追い焚き加熱しようとすると、同時に給湯回路の水も加熱されてしまうことになる。このため、追い焚き運転が単独で行われる場合には、給湯用熱交換器側の温度が所定のオフ温度を超えると燃焼バーナの燃焼を停止し、オン温度まで低下すれば燃焼バーナを再び燃焼させるというような間欠燃焼作動させるようにする。このようなものにおいて、追い焚き循環回路での循環流量の検出を行うには、燃焼バーナの燃焼停止から次に燃焼開始するまでの停止時間と、循環流の温度とを検出し、これらの検出した停止時間及び温度の組み合わせと、予め作成した停止時間、循環流の温度及び循環流量の関係データとを照合し、この関係データから対応する循環流量を導き出す、というものである。   Conventionally, as a heating control device of this type, for a hot water supply device provided with a recirculation circuit, the flow rate in the recirculation circulation channel can be detected without providing a flow rate sensor in the recirculation circulation channel. Have been proposed (see, for example, Patent Document 1). That is, in a one-can two-water channel hot water supply device in which a hot water supply heat exchanger and a reheating heat exchanger are heated by a common combustion burner, when the reheating is attempted, the water in the hot water supply circuit is simultaneously heated. It will be done. For this reason, when the reheating operation is performed independently, combustion of the combustion burner is stopped when the temperature on the hot water supply heat exchanger side exceeds a predetermined off temperature, and the combustion burner is combusted again when the temperature is lowered to the on temperature. The intermittent combustion operation is performed. In such a case, in order to detect the circulation flow rate in the recirculation circuit, the stop time from the combustion stop of the combustion burner to the start of the next combustion and the temperature of the circulation flow are detected, and these are detected. The combination of the stop time and the temperature is compared with the relation data of the stop time, the temperature of the circulation flow and the circulation flow rate created in advance, and the corresponding circulation flow rate is derived from the relation data.

又、類似の加熱制御装置として、1缶2水路式の給湯装置であって追い焚き運転が単独で行われる場合には上記と同様に燃焼バーナを間欠燃焼作動させるようにするものにおいて、追い焚き循環回路での循環流量の検出を流量センサによらずして行うものが提案されている。すなわち、燃焼停止から燃焼再開までのバーナオフ時間と、循環流量との関係データを予め作成しておき、循環流のオフ温度からオン温度までの温度検出と燃焼バーナの燃焼のオン・オフ情報とを検出し、上記の関係データとの照合により対応する循環流量を導き出す、というものである。   In addition, as a similar heating control device, a one-can / two-water-type hot water supply device in which the combustion burner is operated intermittently in the same manner as described above when the reheating operation is performed alone. There has been proposed one that detects a circulating flow rate in a circulation circuit without using a flow rate sensor. In other words, relationship data between the burner off time from the stop of combustion to the restart of combustion and the circulation flow rate is created in advance, and the temperature detection from the off temperature to the on temperature of the circulation flow and the combustion on / off information of the combustion burner are obtained. It detects and circulates the corresponding circulation flow rate by collating with the above relational data.

特開平11−159862号公報JP 11-159862 A 特開平11−173664号公報JP 11-173664 A

ところが、上記の加熱制御装置における循環流量の検出法には、検出される循環流量が極めて不正確なものとなるという不都合がある。すなわち、燃焼停止の場合には燃料の供給を遮断したと同時に消火するため、燃焼停止のタイミングは燃焼停止の制御信号の出力タイミングとしてほぼ正確に把握し得る反面、燃焼開始のタイミングは種々の要因により燃焼開始の制御信号の出力タイミングと合致しないことが多く、現実には燃焼開始のタイミングの把握は困難となる。つまり、燃料の供給を開始して点火作動したとしても、例えば風の吹き込みや、燃焼排ガスの流路の詰まり等の種々の要因に起因して、即座には着火せずに数度の点火作動の繰り返しにより着火する場合もある。このため、燃料の供給作動のための制御信号や、点火作動のための制御信号等の出力タイミングのみによって、燃焼開始のタイミングを正確に把握することは現実に沿わず、このようなタイミングをもって燃焼開始のタイミングとする循環流量の検出法の場合、その検出された循環流量の値は正確とは言い難いものとなる。   However, the circulating flow rate detection method in the heating control device has a disadvantage that the detected circulating flow rate is extremely inaccurate. That is, in the case of combustion stop, the fuel supply is shut off and extinguishes at the same time, so the timing of combustion stop can be almost accurately grasped as the output timing of the control signal of combustion stop, but the timing of combustion start depends on various factors In many cases, therefore, it does not coincide with the output timing of the control signal for starting combustion, and in reality, it is difficult to grasp the timing for starting combustion. In other words, even if the fuel supply is started and the ignition operation is performed, the ignition operation is not performed immediately, but several ignition operations are performed due to various factors such as blowing of wind and clogging of the flow path of the combustion exhaust gas. It may be ignited by repeating. For this reason, it is not practical to accurately grasp the start timing of combustion only by the output timing of a control signal for fuel supply operation, a control signal for ignition operation, etc., and combustion is performed at such timing. In the case of the circulating flow rate detection method used as the start timing, the value of the detected circulating flow rate is hardly accurate.

ところで、追い焚き循環回路において、循環流量を上記の如き複雑な制御により把握しようとしているのは、追い焚き循環回路には通常の水車式の流量センサを設置することは現実にはできず、しかも、循環ポンプの定格の吐出流量が現実の循環流量を表す訳ではない、という事情があるからである。すなわち、追い焚き循環回路に循環される流体は浴槽湯水であり、その浴槽湯水には毛髪等の混入が予想されるため、このような毛髪等による詰まり発生のおそれにより、流量センサを設置して循環流量を直接に検出することは現実にはできない。又、追い焚き循環回路に設置されている循環ポンプの定格の吐出流量が既知であったとしても、開放水面をもつ浴槽と、熱交換器とを結ぶ追い焚き循環回路における循環流量は循環ポンプの吐出流量とは合致せず、循環ポンプの吐出流量によって循環流量を把握することもできない。   By the way, in the recirculation circuit, it is impossible to install a normal water turbine type flow sensor in the recirculation circuit because it is trying to grasp the circulation flow rate by the complicated control as described above. This is because the rated discharge flow rate of the circulation pump does not represent the actual circulation flow rate. That is, the fluid circulated in the recirculation circuit is bathtub hot water, and it is expected that hair will be mixed in the bathtub hot water. It is not possible to detect the circulating flow rate directly. Even if the rated discharge flow rate of the circulation pump installed in the recirculation circuit is known, the recirculation flow rate in the recirculation circuit connecting the bathtub with the open water surface and the heat exchanger is It does not match the discharge flow rate, and the circulation flow rate cannot be grasped by the discharge flow rate of the circulation pump.

一方、制御対象が1缶2水路式のものであると、特に浴槽内に残り湯がある場合にはその残り湯量の把握処理のために時間を要し、その結果、自動湯張り完了までの時間が長くなってしまうという問題があり、この問題解決のためにも、追い焚き循環回路の循環流量の迅速かつ正確な検出(把握)が特に重要な課題となっている。   On the other hand, if the object to be controlled is of a single can / two water channel type, especially when there is remaining hot water in the bathtub, it takes time to grasp the amount of remaining hot water. There is a problem that the time becomes long, and in order to solve this problem, the rapid and accurate detection (grasping) of the circulating flow rate of the recirculation circuit is a particularly important issue.

すなわち、残り湯量の把握処理(残り湯量の演算処理)として、追い焚き加熱による付与熱量と浴槽湯水の温度上昇幅との対比に基づく熱量演算、給湯側からの注湯による付与熱量と浴槽湯水の温度上昇幅との対比に基づく熱量演算、あるいは、給湯側からの注水による付与熱量(冷熱量)と浴槽湯水の温度下降幅との対比に基づく熱量演算、が考えられるが、1缶2水路式の場合であると、前二者は不適切なものとなるため、注水による熱量演算の適用を余儀なくされている。つまり、追い焚き加熱の場合であると、共通の燃焼バーナで追い焚き用と給湯用との双方の熱交換器を加熱することになるため、追い焚き運転のために燃焼バーナを燃焼作動させても、その燃焼バーナによる加熱熱量が全て追い焚き循環回路の循環流に付与される訳ではなくて給湯側にも付与されてしまうことになる。このため、追い焚き側に付与された燃焼熱量を特定し得ず、又、上記の従来のものの如く給湯側の過加熱防止のために燃焼作動自体や燃焼量が変化されてしまい、燃焼バーナからの付与熱量を正確に把握し得ないことになる。又、注湯による場合、給湯側からの注湯を追い焚き循環回路の戻り及び往きの両流路を用いた両搬送にて浴槽に落とし込むと、一方の流路では熱交換器を通過する際に意図しない加熱が付与されてしまう結果、浴槽に供給された全体熱量が把握し得ないことになる。   That is, as a process for determining the amount of remaining hot water (processing for calculating the amount of remaining hot water), calorie calculation based on the comparison between the amount of heat applied by reheating and the temperature rise of the bath water, Calorie calculation based on the contrast with the temperature rise width, or calorie calculation based on the contrast between the amount of heat (cold heat) applied by pouring water from the hot water supply side and the temperature drop width of the bath water, can be considered. In this case, since the former two are inappropriate, it is necessary to apply calorific value calculation by water injection. In other words, in the case of reheating, since the heat exchanger for both reheating and hot water supply is heated by a common combustion burner, the combustion burner is operated for combustion for reheating operation. However, not all of the amount of heat generated by the combustion burner is applied to the circulating flow in the recirculation circuit, but is also applied to the hot water supply side. For this reason, the amount of combustion heat given to the reheating side cannot be specified, and the combustion operation itself or the amount of combustion is changed to prevent overheating on the hot water supply side as in the above-mentioned conventional one, and the combustion burner Therefore, it is impossible to accurately grasp the amount of heat applied. In addition, in the case of pouring, when pouring the hot water from the hot water supply side and dropping it into the bathtub by both transport using both the return circuit and the forward flow path, when passing through the heat exchanger in one flow path As a result of unintentional heating being applied to the tub, the total amount of heat supplied to the bathtub cannot be grasped.

そして、注水による場合には、まず、循環ポンプを作動させて浴槽湯水を撹拌し、給湯側から浴槽へ所定量注水し、そして、循環ポンプを作動させて浴槽湯水を撹拌した上でその温度低下を検出し、次に、温度差と、既知の注水温度及び注水量とから残り湯量の演算を行うことになる。このような処理にかなりの時間(例えば10分程度)を要しているのである。   In the case of water injection, first, the circulating pump is operated to agitate the bathtub hot water, a predetermined amount of water is poured from the hot water supply side to the bathtub, and the temperature is lowered after the circulation pump is operated to agitate the bathtub hot water. Next, the remaining hot water amount is calculated from the temperature difference and the known water injection temperature and water injection amount. Such a process requires a considerable time (for example, about 10 minutes).

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、循環回路における循環流量の検出を、流量センサ等の直接的な検出手段を用いずに行うことができ、しかも、その循環流量の検出を迅速かつ正確に行うことができる加熱制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to detect the circulation flow rate in the circulation circuit without using a direct detection means such as a flow rate sensor. And it is providing the heating control apparatus which can perform the detection of the circulating flow rate rapidly and correctly.

上記目的を達成するために、本発明は、流体が循環される循環路と、この循環路に介装された熱交換器と、この熱交換器に流される流体を熱交換加熱する加熱源とを備えた加熱装置に適用される加熱制御装置を対象にして次の特定事項を備えることとした。すなわち、上記熱交換器よりも循環方向下流側位置の循環路内における往き側流体の温度を検出する往き温度検出手段と、上記循環路に循環される流体の循環流量を制御上の処理により検出する循環流量検出処理部とを備える。上記循環流量検出処理部として、経過時間の値を計測するタイマ手段と、所定の関係テーブルを記憶するテーブル記憶部とを備えるものとする。上記関係テーブルを、循環路内の流体の循環流量と、上記加熱源の加熱作動の停止時点から上記往き温度検出手段により検出される往き側流体の温度が設定温度差だけ温度降下するまでの降下時間値との関係について予め設定したものとする。そして、循環流量検出処理として、循環路内を流体循環状態に維持しつつ加熱源の加熱作動を停止させる一方、上記往き温度検出手段により検出される往き側流体の温度変化を監視して、この往き側流体の温度が上記加熱作動の停止時点から設定温度差だけ温度降下するのに要した降下時間値を上記タイマ手段により計測し、計測された降下時間値に基づいて上記関係テーブルから対応する循環流量の値を割り出して検出する構成とする。さらに、循環流量検出処理部として、テーブル記憶部に、上記加熱作動の停止時点における熱交換器の熱容量であって互いに異なる複数種類の熱容量に対し適用するものとして予め設定された複数種類の関係テーブルを記憶させ、上記熱容量を表す検出値又は設定値の出力を受けてその出力値の如何によって適用する関係テーブルを変更設定する構成とした(請求項1)。 In order to achieve the above object, the present invention provides a circulation path through which a fluid is circulated, a heat exchanger interposed in the circulation path, and a heating source that heats and heats the fluid flowing through the heat exchanger. The following specific matters are provided for a heating control device applied to a heating device including: That is, a forward temperature detecting means for detecting the temperature of the forward fluid in the circulation path downstream of the heat exchanger in the circulation direction, and a circulating flow rate of the fluid circulated through the circulation path is detected by control processing. A circulating flow rate detection processing unit. The circulating flow rate detection processing unit includes timer means for measuring an elapsed time value and a table storage unit for storing a predetermined relation table. The relationship table shows that the flow rate of the fluid in the circulation path and the drop from when the heating operation of the heating source stops until the temperature of the forward fluid detected by the forward temperature detection means drops by the set temperature difference. It is assumed that the relationship with the time value is set in advance. Then, as the circulation flow rate detection process, the heating operation of the heating source is stopped while maintaining the inside of the circulation path in a fluid circulation state, while the temperature change of the forward fluid detected by the forward temperature detection means is monitored. The timer means measures the descent time value required for the temperature of the forward fluid to drop by the set temperature difference from the time when the heating operation is stopped, and corresponds from the relation table based on the measured descent time value. it configured to detect indexing the value of the circulating flow. Furthermore, as the circulating flow rate detection processing unit, a plurality of types of relationship tables set in advance in the table storage unit as being applied to a plurality of types of heat capacities that are different from each other in heat capacity of the heat exchanger at the time when the heating operation is stopped Is stored, and the relation table to be applied is changed and set depending on the output of the detected value or the set value representing the heat capacity (claim 1).

この発明の場合、タイマ手段により計測される降下時間値として、加熱装置の現実の作動状況及び循環流体の現実の温度変化状況を正確に反映したものとすることが可能となり、このような降下時間値に基づき関係テーブルから対応する循環流量の値を割り出すようにしているため、直接検出ではなくて制御上の処理によって検出される循環流量の値として正確なものが得られることになる。すなわち、加熱源(例えば燃焼バーナ)の消火のタイミングは、制御タイミングと現実の消火とが互いに合致するため、着火(加熱開始)のそれと比べ正確に把握してタイマ手段による計測を開始し得る。加えて、往き温度検出手段により設定温度差が生じる時点も正確に検出し得るため、タイマ手段により計測される降下時間値も現実の状況を正確に反映したものが得られることになる。しかも、加熱源による加熱停止後に設定温度差だけ循環流体が温度降下するまでの降下時間値の計測が検出処理に必要な主な時間であるため、循環流量の値を迅速に得られるようになる。以上より、循環回路における循環流量の検出を、流量センサ等の直接的な検出手段を用いずに行え、しかも、その循環流量の検出を迅速かつ正確に行うことが可能となる。なお、関係テーブルとは、関係曲線又は数値表に加え、関係曲線を近似式等により表した関係式(数式)をも含むものである。又、上記の熱容量を表す検出値又は設定値としては、例えば、熱交換器に循環流が熱交換器に戻される際の循環流の戻り側温度の検出値、熱交換器で加熱された後に熱交換器から出される往き側温度の検出値、又、加熱作動を停止する際の加熱目標である流体の設定温度を用いればよい。あるいは、熱容量を表す検出値として燃焼量の検出値等でもよい。そして、このように熱交換器の熱容量の如何によって適用する関係テーブルを変更設定することにより、検出処理により得られる循環流量の値の精度をより一層高いものとし得ることになる。 In the case of this invention, it is possible to accurately reflect the actual operating status of the heating device and the actual temperature change status of the circulating fluid as the descent time value measured by the timer means. Since the corresponding circulation flow rate value is calculated from the relation table based on the value, an accurate value can be obtained as the circulation flow rate value detected not by direct detection but by control processing. That is, the timing of extinguishing the heating source (for example, the combustion burner) can be accurately grasped compared with that of ignition (heating start) and the measurement by the timer means can be started because the control timing and the actual extinguishing match each other. In addition, since the time point at which the set temperature difference is generated can be accurately detected by the forward temperature detecting means, the fall time value measured by the timer means can accurately reflect the actual situation. Moreover, the measurement of the descent time value until the temperature of the circulating fluid drops by the set temperature difference after stopping the heating by the heating source is the main time required for the detection process, so the value of the circulation flow rate can be obtained quickly. . As described above, the circulation flow rate in the circulation circuit can be detected without using a direct detection means such as a flow rate sensor, and the circulation flow rate can be detected quickly and accurately. Note that the relationship table, in addition to the relational curve or table of values, Ru der but also the relational expression indicating the approximate expression such as the relation curve (equation). The detection value or setting value representing the heat capacity is, for example, the detection value of the return side temperature of the circulating flow when the circulating flow is returned to the heat exchanger, after being heated by the heat exchanger The detected value of the forward side temperature emitted from the heat exchanger or the set temperature of the fluid that is the heating target when stopping the heating operation may be used. Alternatively, a detection value of the combustion amount may be used as a detection value representing the heat capacity. Then, by changing and setting the relation table to be applied depending on the heat capacity of the heat exchanger in this way, the accuracy of the circulating flow rate value obtained by the detection process can be further increased.

本発明における加熱装置を、循環路として熱交換器と浴槽との間で浴槽湯水が循環される追い焚き循環路を備えた風呂釜とすることができる(請求項2)。この場合、毛髪等の混入により流量センサ等の直接的な流量検出手段を設置し得ない追い焚き循環路において、その追い焚きのための循環流量を正確にかつ迅速に把握することが可能となる。   The heating device according to the present invention can be a bath with a recirculation circuit in which hot and cold water is circulated between a heat exchanger and a bathtub as a circulation path (Claim 2). In this case, it becomes possible to accurately and quickly grasp the circulation flow rate for the reheating in the reheating circulation path in which direct flow rate detection means such as a flow rate sensor cannot be installed due to contamination of hair or the like. .

さらに、上記加熱装置として、追い焚き循環回路に加えて給湯回路を備え、追い焚き用熱交換器と、給湯用熱交換器とが共通の加熱源により加熱されるように構成された1缶2水路式の給湯器付き風呂釜により構成することができる(請求項3)。この場合、特に、浴槽内に残り湯がある場合にその残り湯量の把握処理のために時間を要し、その結果、自動湯張り完了までの時間が長くなってしまうという、1缶2水路式の給湯器付き風呂釜に特有の問題を解決することが可能になる。そして、このような1缶2水路式の給湯器付き風呂釜に適用する場合には、循環流量検出処理部による循環流量値の検出処理を、浴槽に対する湯張り制御において浴槽内に残り湯が存在することを検知した状態で実行するように構成することができる(請求項4)。残り湯を利用して循環流量の値の検出処理が可能となるばかりでなく、この段階で循環流量の値が得られるため、以後の湯張り制御を単純化させることも可能になる。すなわち、浴槽に対する湯張り制御を実行するにあたり浴槽内の残り湯量を演算する湯張り制御部をさらに備えたものとし、湯張り制御部として、循環流量検出処理部により検出された循環流量の値を用いて残り湯量を演算する構成とすることができる(請求項5)。残り湯量の演算の前に、循環流量の値が循環流量検出処理部による検出処理によって把握されているため、その循環流量の値を用いて残り湯量の演算が容易になり、その結果、湯張り制御完了までの所要時間を従来の1缶2水路式の給湯器付き風呂釜における場合よりも大幅に短縮することが可能になる。   Further, the heating device includes a hot water supply circuit in addition to the reheating circulation circuit, and a can 2 configured to heat the reheating heat exchanger and the hot water heat exchanger by a common heating source. It can be constituted by a water bath type water bath with a water heater (Claim 3). In this case, especially when there is remaining hot water in the bathtub, it takes time to grasp the amount of remaining hot water, and as a result, the time until the completion of automatic hot water filling becomes longer. This makes it possible to solve the problems peculiar to the hot water bath with water heater. And when applying to such a 1 can 2 water channel type water heater with a hot water heater, there is a remaining hot water in the bathtub in the hot water filling control for the bathtub with the detection process of the circulating flow value by the circulating flow rate detection processing section. It can comprise so that it may perform in the state which detected doing (Claim 4). Not only is it possible to detect the value of the circulating flow rate using the remaining hot water, but the value of the circulating flow rate can be obtained at this stage, so that subsequent hot water filling control can be simplified. That is, when executing the hot water filling control for the bathtub, the hot water filling control unit for calculating the remaining hot water amount in the bathtub is further provided. As the hot water filling control unit, the value of the circulating flow rate detected by the circulating flow rate detection processing unit is obtained. It can be set as the structure which calculates the amount of remaining hot water using (Claim 5). Before the calculation of the remaining hot water amount, the value of the circulating flow rate is grasped by the detection processing by the circulating flow rate detection processing unit, so that the calculation of the remaining hot water amount becomes easy using the value of the circulating flow rate. The time required to complete the control can be significantly shortened compared to the case of a conventional can with a single can and two water channels.

一方、以上の加熱制御装置においては、外気温を検出する外気温検出手段をさらに備えることとし、循環流量検出処理部として、タイマ手段により計測された降下時間値又は関係テーブルから割り出された循環流量の値に対し、上記外気温検出手段により検出される外気温の高低の如何によって補正を加える構成とすることができる(請求項6)。このようにすることにより、外気温による影響をも加味して、より一層正確な循環流量の検出が可能となる。   On the other hand, in the above heating control device, it is further provided with an outside air temperature detecting means for detecting the outside air temperature, and the circulation flow rate detection processing section as the circulation time value measured by the timer means or the circulation calculated from the relation table. The flow rate value can be corrected depending on whether the outside air temperature detected by the outside air temperature detecting means is high or low (Claim 6). By doing in this way, the influence of outside temperature is also taken into consideration and it becomes possible to detect the circulation flow rate more accurately.

あるいは、外気温を検出する外気温検出手段を備え、循環流量検出処理部として、テーブル記憶部に、互いに異なる複数の外気温に対し適用するものとして予め設定された複数種類の関係テーブルを記憶させ、上記外気温検出手段により検出される外気温の高低の如何によって適用する関係テーブルを変更設定する構成とすることができる(請求項7)。このようにすることにより、上記の補正処理とは異なる手段によって、外気温による影響をも加味して、より一層正確な循環流量の検出が可能となる。   Alternatively, an outside air temperature detecting means for detecting the outside air temperature is provided, and a plurality of types of relation tables set in advance as those to be applied to a plurality of different outside air temperatures are stored in the table storage unit as the circulation flow rate detection processing unit. The relationship table to be applied can be changed and set depending on whether the outside air temperature detected by the outside air temperature detecting means is high or low (claim 7). By doing so, it becomes possible to detect the circulating flow rate more accurately by taking into account the influence of the outside air temperature by means different from the above correction processing.

以上、説明したように、請求項1〜請求項のいずれかの加熱制御装置によれば、加熱装置の現実の作動状況及び循環流体の現実の温度変化状況を正確に反映した降下時間値の計測と、この降下時間値を用いて関係テーブルからの割り出しとによって、循環回路における循環流量の検出を、流量センサ等の直接的な検出手段を用いずに行うことができ、しかも、その循環流量の検出を迅速かつ正確に行うことができるようになる。加えて、熱交換器の熱容量の如何をも加味しているため、検出処理により得られる循環流量の値の精度を、より一層高いものとすることができるようになる。 As described above, according to the heating control device of any one of claims 1 to 7 , the descent time value accurately reflects the actual operating status of the heating device and the actual temperature change status of the circulating fluid. By measuring and calculating from the relationship table using this descent time value, the circulation flow rate in the circulation circuit can be detected without using a direct detection means such as a flow sensor. ing to be able to perform the detection quickly and accurately. In addition, since any heat capacity of the heat exchanger is taken into account, the accuracy of the circulating flow rate value obtained by the detection process can be further increased.

特に、請求項2によれば、毛髪等の混入により流量センサ等の直接的な流量検出手段を設置し得ない追い焚き循環路において、その追い焚きのための循環流量を正確にかつ迅速に把握することができるようになる。   In particular, according to claim 2, in a recirculation circuit where direct flow rate detection means such as a flow sensor cannot be installed due to contamination of hair or the like, the recirculation flow rate for reheating is accurately and quickly grasped. Will be able to.

請求項3によれば、特に、浴槽内に残り湯がある場合にその残り湯量の把握処理のために時間を要し、その結果、自動湯張り完了までの時間が長くなってしまうという、1缶2水路式の給湯器付き風呂釜に特有の問題を解決することができるようになる。そして、請求項4によれば、1缶2水路式の給湯器付き風呂釜において、循環流量値の検出処理を、浴槽内に残り湯が存在することを検知した状態で実行するようにすることにより、残り湯を利用した循環流量の値の検出処理を行うことができるばかりでなく、この段階で循環流量の値が得られるため、以後の湯張り制御を単純化させることができるようになる。加えて、請求項5によれば、残り湯量の演算の前に、循環流量の値が循環流量検出処理部による検出処理によって把握されているため、その循環流量の値を用いて残り湯量の演算を容易かつ単純に行うことができ、その結果、湯張り制御完了までの所要時間を従来の1缶2水路式の給湯器付き風呂釜における場合よりも大幅に短縮することができるようになる。   According to claim 3, especially when there is remaining hot water in the bathtub, it takes time to grasp the amount of remaining hot water, and as a result, the time until completion of automatic hot water filling becomes longer. This makes it possible to solve problems peculiar to a can with a two-channel water heater. According to the fourth aspect of the present invention, in the one-bottle / two-channel hot water bath equipped with a hot water heater, the circulation flow rate value detection process is executed in a state where it is detected that there is remaining hot water in the bathtub. Thus, not only can the processing of detecting the value of the circulating flow rate using the remaining hot water be performed, but also the value of the circulating flow rate can be obtained at this stage, so that subsequent hot water filling control can be simplified. . In addition, according to claim 5, since the value of the circulating flow rate is grasped by the detection process by the circulating flow rate detection processing unit before the calculation of the remaining hot water amount, the remaining hot water amount is calculated using the value of the circulating flow rate. As a result, the time required to complete the hot water filling control can be greatly shortened as compared with the case of the conventional one-can / two-water-channel hot water heater.

又、請求項6又は請求項7によれば、外気温による影響をも加味して、より一層正確な循環流量の検出を行うことができるようになる。   Further, according to claim 6 or claim 7, it becomes possible to detect the circulation flow rate more accurately in consideration of the influence of the outside air temperature.

本発明の実施形態が適用される1缶2水路式給湯器付き風呂釜を示す模式図である。It is a mimetic diagram showing a bathtub with a 1 can 2 water channel type hot water heater to which an embodiment of the present invention is applied. 加熱制御装置の湯張り制御及び循環流量検出処理に係る制御構成のブロック図である。It is a block diagram of the control composition concerning hot water filling control and circulation flow rate detection processing of a heating control device. 主として循環流量検出処理の手順を示すフローチャートである。It is a flowchart which mainly shows the procedure of a circulating flow rate detection process. 循環流量が大の場合と小の場合とにおける、燃焼バーナの燃焼停止後の往き温度の変化特性を示す温度と時間との関係図である。FIG. 6 is a relationship diagram of temperature and time showing the change characteristic of the forward temperature after the combustion of the combustion burner is stopped when the circulating flow rate is large and when the circulation flow rate is small. 実施例1における種々の循環流量における燃焼バーナの燃焼停止直後の温度変化と時間との関係を計測した実験データを示す図である。It is a figure which shows the experimental data which measured the relationship between the temperature change immediately after the combustion stop of the combustion burner in various circulation flow in Example 1, and time. 図5の実験データを用いて燃焼停止時点からの温度差と時間との関係を表した図である。It is the figure showing the relationship between the temperature difference from combustion stop time, and time using the experimental data of FIG. 図6の実験データを用いて循環流量値と、所定の温度差が生じる降下時間値との関係を表した図である。It is the figure showing the relationship between a circulation flow rate value and the fall time value in which a predetermined temperature difference produces using the experimental data of FIG. 実施例2における循環流量値と、所定の温度差が生じる降下時間値との関係を表した図である。It is a figure showing the relationship between the circulating flow value in Example 2, and the descent time value in which a predetermined temperature difference arises.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の実施形態に係る加熱制御装置を適用する加熱装置として1缶2水路式の給湯器付き風呂釜を示す。この給湯器付き風呂釜は、給湯機能、風呂の追い焚き機能及び湯張り機能の各機能を併有する複合熱源機型に構成されたものである。なお、本発明を実施する上では、少なくとも風呂の追い焚き機能を有し追い焚き循環回路が設置されたものであれば適用することができ、その他の構成は必須ではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a can with two water channels and a water heater with a water heater as a heating device to which a heating control device according to an embodiment of the present invention is applied. This bath tub with a water heater is configured as a composite heat source machine type having both a hot water supply function, a bath reheating function, and a hot water filling function. In practicing the present invention, the present invention can be applied as long as it has at least a reheating function for a bath and a recirculation circuit is installed, and other configurations are not essential.

同図において、符号2は給湯機能を実現するための給湯回路、3は風呂の追い焚き機能を実現するための追い焚き循環回路、4は風呂の湯張り機能を実現するための注湯回路であり、又、符号5はこれらの各回路の作動制御等を行うコントローラである。そして、本実施形態の給湯器付き風呂釜は、給湯用熱交換器21と、追い焚き用熱交換器31とが同じ熱交換缶体内に配設されて共通の燃焼バーナ6の燃焼熱により熱交換加熱が行われるというように1缶2水路式に構成されている。   In the figure, reference numeral 2 is a hot water supply circuit for realizing a hot water supply function, 3 is a reheating circulation circuit for realizing a bath reheating function, and 4 is a pouring circuit for realizing a bath filling function. There is a controller 5 for controlling the operation of each circuit. The hot water heater with water heater of the present embodiment includes a hot water supply heat exchanger 21 and a reheating heat exchanger 31 disposed in the same heat exchange can body, and is heated by the combustion heat of the common combustion burner 6. It is configured in a single can / two-channel system so that exchange heating is performed.

上記給湯回路2は、水道管に接続された入水路22から給湯用熱交換器21に導入された水を上記の燃焼バーナ6の燃焼熱により熱交換加熱し、加熱後の湯水を出湯路23を通して台所や浴室等の給湯栓Kや上記注湯回路4などの所定の給湯箇所に給湯させるようになっている。上記入水路22と出湯路23との間には上記熱交換器21をバイパスするバイパス路24が設けられて、バイパス制御弁24aの位置制御による開度調整により上記出湯路23からの出湯に対する水の混合比が変更調整されて上記給湯栓K等に対する温度調整が可能となっている。   The hot water supply circuit 2 heat-exchanges and heats the water introduced into the hot water supply heat exchanger 21 from the water inlet 22 connected to the water pipe by the combustion heat of the combustion burner 6, and the heated hot water is discharged into the hot water outlet 23. The hot water is supplied to a predetermined hot water supply location such as a hot water tap K such as a kitchen or a bathroom or the pouring circuit 4. A bypass passage 24 that bypasses the heat exchanger 21 is provided between the water inlet passage 22 and the hot water outlet passage 23, and water for the hot water from the hot water outlet passage 23 is adjusted by opening adjustment by position control of the bypass control valve 24a. The mixing ratio is changed and adjusted so that the temperature of the hot water tap K can be adjusted.

上記入水路22には、入水流量センサ25と、入水温度センサ26とが配設されている一方、上記出湯路23には、上記熱交換器21の出口近傍位置で出湯された直後の出湯温度を検出する缶体温度センサ27と、給湯流量制御弁28と、上記給湯栓Kもしくは後述の注湯路41に供給される湯水の温度を検出する給湯温度センサ29とが配設されている。   A water flow rate sensor 25 and a water temperature sensor 26 are disposed in the water inlet 22, while the temperature of the hot water immediately after the hot water is discharged near the outlet of the heat exchanger 21 in the hot water path 23. A can body temperature sensor 27, a hot water supply flow rate control valve 28, and a hot water temperature sensor 29 for detecting the temperature of hot water supplied to the hot water tap K or a pouring passage 41 described later are disposed.

上記追い焚き循環回路3は、浴槽B内の浴槽湯水等が流される追い焚き用熱交換器31と、追い焚き循環路32と、循環ポンプ33とを備えている。上記追い焚き循環路32は上記循環ポンプ33の作動により浴槽B内の浴槽湯水を上記追い焚き用熱交換器31に戻す戻り路32aと、追い焚き用熱交換器31で上記の共通の燃焼バーナ6の燃焼熱により追い焚き加熱された湯水を上記浴槽Bに供給する往き路32bとから構成されている。上記戻り路32aには、循環方向上流側から順に、上記循環ポンプ33と、循環流の通過によりフラップが開いて循環判定のON指令が出力される水流スイッチ34と、循環湯水の戻り温度を検出することにより浴槽B内の湯水の温度(浴槽温度)を検出する戻り温度センサ35と、が配設されている。又、追い焚き用熱交換器31の循環方向下流側の往き路32bには追い焚き用熱交換器31で熱交換加熱(追い焚き加熱)されて浴槽Bに送られる循環湯水の往き温度を検出する往き温度センサ36が配設されている。   The reheating circulation circuit 3 includes a reheating heat exchanger 31 through which the hot water in the bathtub B flows, a recirculation circulation path 32, and a circulation pump 33. The recirculation circuit 32 includes the return path 32a for returning the hot water in the bathtub B to the reheating heat exchanger 31 by the operation of the recirculation pump 33, and the reheating heat exchanger 31 and the common combustion burner. And an outward passage 32b for supplying hot water heated and reheated by the combustion heat of 6 to the bathtub B. The return path 32a detects the return temperature of the circulating hot water, the circulating pump 33, the water flow switch 34 that outputs a circulation determination ON command when the circulating flow passes, and the circulation determination ON command in order from the upstream side in the circulation direction. Thus, a return temperature sensor 35 for detecting the temperature of the hot water in the bathtub B (tub temperature) is provided. Further, in the outgoing path 32b on the downstream side in the circulation direction of the reheating heat exchanger 31, the recirculation temperature of the circulating hot water sent to the bathtub B after being subjected to heat exchange heating (refreshing heating) by the reheating heat exchanger 31 is detected. A forward temperature sensor 36 is disposed.

なお、上記燃焼バーナ6は、元ガス弁61やガス比例弁62を介装した燃料供給系63からの燃料ガスの供給と、送風ファン64からの燃焼用空気の供給とを受けて燃焼作動するようになっており、図例のものは5つの能力切換弁65,65,…の開閉切換制御により、燃焼能力が複数段階に切換可能となっている。これらのもので燃焼系66が構成されている。   Note that the combustion burner 6 performs a combustion operation in response to the supply of fuel gas from the fuel supply system 63 provided with the original gas valve 61 and the gas proportional valve 62 and the supply of combustion air from the blower fan 64. In the illustrated example, the combustion capacity can be switched in a plurality of stages by opening / closing switching control of the five capacity switching valves 65, 65,. A combustion system 66 is constituted by these components.

注湯回路4は、給湯回路2の出湯路23から上流端が分岐して下流端が追い焚き循環路32に合流された注湯路41と、開閉切換により注湯の実行と遮断とを切換える電磁式の注湯弁42と、注湯流量を検出する注湯流量センサ43とを備えている。この注湯弁42がコントローラ5により開閉制御され、注湯の実行により出湯路23の湯が注湯路41,追い焚き循環路32(戻り路32a)を経て浴槽Bに注湯されて所定量の湯張りが行われるようになっている。   The pouring circuit 4 switches between the hot water supply path 41 where the upstream end branches from the hot water supply path 23 of the hot water supply circuit 2 and the downstream end is joined to the recirculation circuit 32 and the execution and shut-off of the pouring by opening / closing switching. An electromagnetic pouring valve 42 and a pouring flow rate sensor 43 for detecting the pouring flow rate are provided. The pouring valve 42 is controlled to be opened and closed by the controller 5, and the hot water in the tapping path 23 is poured into the bathtub B through the pouring path 41 and the recirculation circulation path 32 (return path 32 a) as a result of pouring. The hot water filling is performed.

上記の給湯器付き風呂釜は、MPU、メモリ等を備え各種の制御用プログラムが格納されたコントローラ5によって、給湯運転、注湯・注水による湯張り運転及び追い焚き運転等の各種の運転制御がリモコン51からの出力及び上記の各種センサからの出力等に基づいて行われる他、後述の如く追い焚き循環回路3の循環流量の検出を流量センサ等の直接的な検出手段を用いることなく制御上の処理によって行うようになっている。すなわち、上記コントローラ5は、給湯回路2により給湯栓Kに対する給湯運転を行う給湯制御部と、追い焚き循環回路3により浴槽B内の湯水を所定温度まで焚き上げる追い焚き運転を行う追い焚き制御部と、注湯路41を通して浴槽Bに注湯・注水して湯張り運転を行う制御手段としての湯張り制御部52(図2参照)と、循環流量検出処理部53とを備えている。   The above-mentioned hot water heater equipped with a water heater is equipped with an MPU, a memory, and the like, and a controller 5 in which various control programs are stored allows various operation controls such as a hot water supply operation, a hot water filling operation by pouring and pouring water, and a reheating operation. In addition to being performed based on the output from the remote controller 51 and the outputs from the various sensors described above, the circulation flow rate of the recirculation circuit 3 can be detected without using a direct detection means such as a flow rate sensor as will be described later. This is done by the process. That is, the controller 5 includes a hot water supply control unit that performs a hot water supply operation on the hot water tap K by the hot water supply circuit 2 and a reheating control unit that performs a reheating operation that raises the hot water in the bathtub B to a predetermined temperature by the recirculation circuit 3. And a hot water filling control unit 52 (see FIG. 2) as a control means for performing hot water filling operation by pouring / watering into the bathtub B through the hot water pouring channel 41, and a circulating flow rate detection processing unit 53.

上記給湯制御部による給湯制御を簡単に説明すると、次のようにして行われる。すなわち、給湯栓Kの開操作により入水路22に水道管から入水され、入水流量センサ25により最低作動流量(MOQ;例えば3リットル/分)以上の入水流量が検出されると、上記燃焼系6の燃焼作動制御(例えばFF制御)を開始する。次いで、入水温度センサ26からの入水温度及び給湯温度センサ29からの給湯温度の各検出値に基づいてリモコン51にユーザが設定した設定給湯温度になるように燃焼作動量が制御(例えばFB制御)される。そして、上記給湯栓Kがユーザにより閉操作されると、入水路22からの入水流量が最低作動流量未満、ひいてはゼロになるため、上記の燃焼作動を停止して給湯運転制御を終了する。   The hot water supply control by the hot water supply control unit will be briefly described as follows. That is, when the hot water tap K is opened, water enters the water inlet 22 from the water pipe, and when the incoming water flow rate sensor 25 detects an incoming water flow rate of a minimum operating flow rate (MOQ; for example, 3 liters / minute) or more, the combustion system 6 The combustion operation control (for example, FF control) is started. Next, the combustion operation amount is controlled (for example, FB control) so that the hot water temperature set by the user is set in the remote controller 51 based on the detected values of the incoming water temperature from the incoming water temperature sensor 26 and the hot water temperature from the hot water temperature sensor 29. Is done. When the hot water tap K is closed by the user, the incoming water flow rate from the incoming water channel 22 becomes less than the minimum operating flow rate, and eventually zero, so the combustion operation is stopped and the hot water supply operation control is terminated.

上記追い焚き制御部による追い焚き制御は次のようにして行われる。すなわち、リモコン51の追い焚きスイッチをユーザがON操作するか、あるいは、前段階に風呂自動スイッチをユーザがON操作して湯張り制御により浴槽B内に所定水位までの湯張りが終了すると追い焚き指令が出力され、この追い焚き指令を受けて循環ポンプ33を作動させる。この作動開始により水流スイッチ34がONすると、上記燃焼系66の燃焼作動制御が開始されて燃焼バーナ6が燃焼作動される。この燃焼作動は戻り温度センサ35により検出される戻り温度が設定風呂温度を維持するように行われる。つまり、戻り温度センサ35の検出戻り温度が風呂設定温度よりも低ければ燃焼作動され、風呂設定温度以上であれば燃焼作動が停止される。   The chasing control by the chasing control unit is performed as follows. That is, when the user turns on the reheating switch of the remote controller 51, or when the user turns on the automatic bath switch in the previous stage and the filling of the water up to the predetermined water level in the bathtub B is finished by the filling of the hot water, the reheating is finished. A command is output, and the circulation pump 33 is operated in response to the refill command. When the water flow switch 34 is turned on by the start of the operation, the combustion operation control of the combustion system 66 is started and the combustion burner 6 is operated. This combustion operation is performed so that the return temperature detected by the return temperature sensor 35 maintains the set bath temperature. That is, if the return temperature detected by the return temperature sensor 35 is lower than the bath set temperature, the combustion operation is performed, and if it is equal to or higher than the bath set temperature, the combustion operation is stopped.

上記湯張り制御部52は、まず、循環判定により浴槽B内の残り湯(残り水を含め「残り湯」と表記する)が有るか否かを判定し、残り湯無しと判定されれば例えば所定の段階に分けて注湯回路4により所定水位まで注湯し、残り湯有りと判定されれば、その残り湯を用いて循環流量検出処理を行った上で残り湯量を演算し、演算結果に基づき上記の所定水位まで湯張りするのに不足分を注湯回路4により注湯する。循環判定は、図3に示すように循環ポンプ33を作動させ(ステップS1)、水流スイッチ3がONするか否かを判定し(ステップS2)、水流スイッチ3がONしなければ残り湯無し(又は所定量未満)と判定する一方(ステップS2でNO)、水流スイッチ3がONすれば残り湯有りと判定する(ステップS2でYES)。注湯は、注湯弁42を開変換させて燃焼バーナ6の燃焼作動により所定温度の湯を注湯路41及び追い焚き循環路32を通して浴槽Bに落とし込む。   The hot water filling control unit 52 first determines whether or not there is remaining hot water in the bathtub B (represented as “remaining hot water” including the remaining water) by the circulation determination, and if it is determined that there is no remaining hot water, for example, In a predetermined stage, the pouring circuit 4 pours water up to a predetermined water level, and if it is determined that there is remaining hot water, the remaining hot water is used to perform a circulating flow rate detection process, and then the remaining hot water amount is calculated. On the basis of the above, the hot water is poured by the pouring circuit 4 to fill the hot water to the predetermined water level. In the circulation determination, as shown in FIG. 3, the circulation pump 33 is operated (step S1), and it is determined whether or not the water flow switch 3 is turned on (step S2). If the water flow switch 3 is not turned on, there is no remaining hot water ( Alternatively, it is determined that the remaining hot water is present (NO in step S2). The pouring is performed by opening the pouring valve 42 and dropping the hot water at a predetermined temperature into the bathtub B through the pouring channel 41 and the recirculation circuit 32 by the combustion operation of the combustion burner 6.

次に、残り湯有りと判定された場合(ステップS2でYES)に、その残り湯を利用して循環流量検出処理部53により追い焚き循環回路3の循環流量の検出を行う。なお、図2は湯張りと循環流量検出処理に係るもののみの制御構成を示し、図3は循環流量検出処理を中心にした湯張り制御に係るフローチャートである。又、上記のステップS1の循環ポンプ33の作動を一定時間継続して浴槽B内の残り湯を撹拌し、均一温度にしておくことが望ましい。循環流量の検出処理として、まず循環ポンプ33の作動をそのまま維持して燃焼バーナ6の燃焼を開始させて浴槽湯水の追い焚きを行う(ステップS3)。そして、戻り温度センサ35により検出される戻り温度と、往き温度センサ36により検出される往き温度とを記録する。ここで、追い焚き期間中に戻り温度及び往き温度の両者を検出して記録するのは後の残り湯量の演算(ステップ9)で利用するためである。   Next, when it is determined that there is remaining hot water (YES in step S2), the circulating flow rate detection processing unit 53 detects the circulating flow rate of the recirculation circuit 3 using the remaining hot water. FIG. 2 shows a control configuration for only hot water filling and circulating flow rate detection processing, and FIG. 3 is a flowchart for hot water control centering on circulating flow rate detection processing. In addition, it is desirable that the operation of the circulation pump 33 in step S1 described above is continued for a certain period of time to stir the remaining hot water in the bathtub B so as to maintain a uniform temperature. As the circulation flow rate detection process, first, the operation of the circulation pump 33 is maintained as it is, combustion of the combustion burner 6 is started, and bath water is replenished (step S3). Then, the return temperature detected by the return temperature sensor 35 and the forward temperature detected by the forward temperature sensor 36 are recorded. Here, the reason why both the return temperature and the return temperature are detected and recorded during the reheating period is to be used in the subsequent calculation of the remaining hot water amount (step 9).

検出戻り温度により得られる浴槽湯水温度が所定の目標温度まで上昇したら(ステップS4でYES)、燃焼バーナ6の燃焼を停止(消火)させる(ステップS5)。同時にこの消火時点の検出往き温度を記録すると共に、タイマ手段531をスタートさせる。そして、消火時点の検出往き温度(℃)から設定温度差ΔT(例えばΔT=1℃又は2℃)だけ温度降下すれば(ステップS6でYES)、その温度降下時点のタイマ手段531のタイマ値を出力する(ステップS7)。このタイマ値は、往き温度センサ36の設置位置における循環流の温度が燃焼バーナ6の消火時点から設定温度差ΔTだけ温度降下するのに要した降下時間値を表すものである。そして、このタイマ値に基づきテーブル記憶部532に予め記憶させた関係テーブルから対応する循環流量値を割り出し、追い焚き循環路32における循環流量値としてこの割り出された循環流量値を設定する(ステップS8)。   When the bath water temperature obtained from the detected return temperature rises to a predetermined target temperature (YES in step S4), the combustion of the combustion burner 6 is stopped (extinguishes) (step S5). At the same time, the detected temperature at the time of extinguishing is recorded and the timer means 531 is started. If the temperature drops by a set temperature difference ΔT (for example, ΔT = 1 ° C. or 2 ° C.) from the detected forward temperature (° C.) at the time of fire extinguishing (YES in step S6), the timer value of the timer means 531 at the time of the temperature drop is set. Output (step S7). This timer value represents a descent time value required for the temperature of the circulating flow at the installation position of the forward temperature sensor 36 to drop by a set temperature difference ΔT from the time when the combustion burner 6 is extinguished. Then, based on the timer value, the corresponding circulation flow value is calculated from the relation table stored in advance in the table storage unit 532, and the calculated circulation flow value is set as the circulation flow value in the recirculation circulation path 32 (step). S8).

以上で循環流量値の検出処理が終了し、流量センサ等の直接的に計測する検出手段を用いることなく、循環流量値を検出(取得)することができるようになる。しかも、後述の如く循環流量検出処理を開始してから僅か数秒間で循環流量値の検出処理を終了することができ、従来の注水による熱量演算によって循環流量値を把握する場合のほぼ10分間という所要時間と比較しても極めて迅速に循環流量値の検出を行うことができることになる。又、必要とするタイマ値の始期は燃焼バーナ6の消火時点であるため、その始期を正確に把握することができる一方、タイマ値の終期も検出往き温度が設定温度差ΔTだけ温度降下した時点であるため、その終期をも正確に把握することができ、この結果、関係テーブルと照合すべきタイマ値として極めて正確な値を計測することができ、かかる正確なタイマ値に基づいて対応する循環流量値を導いているため、正確な循環流量値を得ることができることになる。   Thus, the circulating flow value detection process is completed, and the circulating flow value can be detected (acquired) without using a directly measuring device such as a flow sensor. In addition, the circulating flow rate detection process can be completed in just a few seconds after starting the circulating flow rate detection process as will be described later, which is about 10 minutes when the circulating flow rate value is grasped by the conventional heat amount calculation by water injection. Even when compared with the required time, the circulating flow rate value can be detected very quickly. Further, since the start of the required timer value is the time when the combustion burner 6 is extinguished, it is possible to accurately grasp the start time, and at the end of the timer value, the detected forward temperature has dropped by the set temperature difference ΔT. Therefore, it is possible to accurately grasp the end of the period, and as a result, it is possible to measure a very accurate value as a timer value to be collated with the relational table, and the corresponding circulation based on the accurate timer value. Since the flow rate value is derived, an accurate circulating flow rate value can be obtained.

上記の設定温度差ΔTと、追い焚き用熱交換器31の下流側にある往き温度センサ36の設置位置における往き温度がΔTだけ温度降下するのに要した降下時間値との関係を図4を参照しつつ説明する。燃焼バーナ6の燃焼作動により戻り路32aを通して浴槽Bから戻された浴槽湯水が追い焚き用熱交換器31において熱交換加熱され、温度上昇した浴槽湯水が追い焚き用熱交換器31から往き路32bを通して下流側の往き温度センサ36位置へ流れることになる。このため、往き温度センサ36により検出される往き温度Thは徐々に温度上昇していくことになる。そして、循環ポンプ33の作動は継続しつつ時間τ0において燃焼バーナ6を消火すると、往き温度センサ36位置における往き温度は温度の微増傾向を微小時間だけ継続するものの、急激な度合で温度降下に転じることになる。この温度降下分として微小な温度差ΔTを設定した場合、循環流量が大であるほど温度降下度合は急になり、循環流量が小であるほど温度降下は緩やかになる。このため、消火時点τ0からの温度差ΔT分の温度降下に要する降下時間値は循環流量大の場合の降下時間値Δτ2よりも循環流量小の場合の降下時間値Δτ1の方が長くなる、という特性を示すことになる。以上より、温度差ΔTだけの温度降下に要する降下時間値と、循環流量との間には相関関係があり、後述の実施例において説明するように、上記の降下時間値と、循環流量値との間の関係テーブルを予め実験により定めておけば、上記の降下時間値を計測するだけで容易に、迅速に、しかも正確に、循環流量値を割り出すことができるようになる。迅速性に関して、上記の降下時間値Δτ1,Δτ2は、熱交換器31から往き温度センサ36までの範囲の往き路32bの流路容積分の浴槽湯水(循環湯水)が往き温度センサ36位置を通過し終わるのに要する降下時間値と対応するため、分単位ではなくて秒単位で上記の降下時間値の計測が終了し、循環流量値の割り出しを極めて迅速に行うことができるようになるのである。   FIG. 4 shows the relationship between the set temperature difference ΔT and the descent time value required for the forward temperature at the installation position of the forward temperature sensor 36 on the downstream side of the reheating heat exchanger 31 to drop by ΔT. This will be described with reference to FIG. The bathtub hot water returned from the bathtub B through the return path 32 a by the combustion operation of the combustion burner 6 is heat-exchanged and heated in the reheating heat exchanger 31, and the hot water having increased in temperature is sent from the reheating heat exchanger 31 to the outgoing path 32 b. The flow to the downstream temperature sensor 36 position. For this reason, the going temperature Th detected by the going temperature sensor 36 gradually increases. When the combustion burner 6 is extinguished at time τ0 while the operation of the circulation pump 33 continues, the going temperature at the position of the going temperature sensor 36 continues to slightly increase in temperature for only a minute time, but turns to a temperature drop at a rapid degree. It will be. When a small temperature difference ΔT is set as the temperature drop, the temperature drop degree becomes steeper as the circulating flow rate becomes larger, and the temperature drop becomes gentler as the circulating flow rate becomes smaller. For this reason, the descent time value required for the temperature drop of the temperature difference ΔT from the fire extinguishing time τ0 is longer than the descent time value Δτ2 when the circulating flow rate is large, and the descent time value Δτ1 when the circulating flow rate is small. It will show the characteristics. From the above, there is a correlation between the descent time value required for the temperature drop by the temperature difference ΔT and the circulation flow rate, and as described in the examples described later, the descent time value, the circulation flow value, and If the relationship table between the two is determined by experiments in advance, the circulation flow rate value can be determined easily, quickly and accurately simply by measuring the descent time value. Regarding the rapidity, the descent time values Δτ1 and Δτ2 indicate that the bath water (circulated hot water) corresponding to the flow volume of the outgoing path 32b in the range from the heat exchanger 31 to the outgoing temperature sensor 36 passes through the position of the outgoing temperature sensor 36. In order to correspond to the descent time value required to finish, the above descent time value measurement is completed in seconds instead of minutes, and the circulation flow value can be calculated very quickly. .

そして、ステップS8で循環流量値の検出が完了すれば、この循環流量値を用いて残り湯量の演算を湯張り制御部52により実行する(ステップ9)。この残り湯量の演算は、上記の追い焚き期間中(ステップS3)に記録した検出戻り温度、検出往き温度、及び、上記の循環流量値を用いて熱量演算により行う。すなわち、検出往き温度から検出戻り温度を差し引いた温度上昇幅に循環流量値を乗じ経過時間に従って積分することにより、燃焼バーナ6による追い焚き加熱により付与された積算熱量を得る。そして、この積算熱量と、同じ経過時間の間における戻り温度(浴槽湯水の温度)の温度上昇分とから残り湯量を演算すればよい。   When the detection of the circulating flow rate value is completed in step S8, the remaining hot water amount is calculated by the hot water filling control unit 52 using this circulating flow rate value (step 9). The remaining hot water amount is calculated by calculating the amount of heat using the detected return temperature, detected forward temperature, and the circulating flow rate value recorded during the reheating period (step S3). That is, the integrated heat quantity given by reheating by the combustion burner 6 is obtained by multiplying the temperature rise width obtained by subtracting the detected return temperature from the detected forward temperature and integrating the circulating flow value according to the elapsed time. And what is necessary is just to calculate the amount of remaining hot water from this integrated calorie | heat amount and the temperature rise of the return temperature (bath hot water temperature) in the same elapsed time.

ステップS9の演算で残り湯量が把握できれば、浴槽Bに対する湯張りの設定水位までに足すべき湯量(又は水量)を把握することができるため、この湯量に相当する量の注湯(又は注水)を湯張り制御部52により行って湯張りを終了させる(ステップS10)。   If the amount of remaining hot water can be ascertained in the calculation of step S9, the amount of hot water (or amount of water) to be added up to the set water level of the hot water filling for bathtub B can be ascertained. The hot water filling control unit 52 performs the hot water filling operation (step S10).

<他の実施形態>
なお、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。すなわち、上記実施形態では、加熱制御装置の適用対象として1缶2水路式の給湯器付き風呂釜を示したが、これに限らず、給湯器用熱交換器と追い焚き用熱交換器とがそれぞれ独立した燃焼バーナにより熱交換加熱を受けるように構成される2缶2水路式の給湯器付き風呂釜を適用対象としてもよい。又、循環流量値の検出処理に係る本発明の適用対象としては、少なくとも、加熱源により加熱される熱交換器が途中に介装された循環回路であればよく、この循環回路として追い焚き循環回路に限られず、他の循環回路にも本発明を適用することができる。さらに、加熱源として燃料ガスを燃焼させる燃焼バーナのみならず、例えば石油等の液体燃料を燃焼させる燃焼バーナや、あるいは、電気ヒータを加熱源として用いたものに適用してもよい。
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Various other embodiments are included. That is, in the said embodiment, although the can with a 1 can 2 channel type hot water heater was shown as an application object of a heating control apparatus, it is not restricted to this, Each of the heat exchanger for hot water heaters and the reheating heat exchanger is each A two-can, two-water channel type water heater equipped with a hot water heater configured to be subjected to heat exchange heating by an independent combustion burner may be applied. In addition, the application object of the present invention relating to the processing for detecting the circulation flow rate value may be at least a circulation circuit in which a heat exchanger heated by a heating source is provided in the middle. The present invention can be applied not only to a circuit but also to other circulation circuits. Furthermore, the present invention may be applied not only to a combustion burner that burns fuel gas as a heating source, but also to a combustion burner that burns liquid fuel such as petroleum, or a device that uses an electric heater as a heating source.

上記実施形態で計測されるタイマ値(消火時点から温度差ΔT分の温度降下に要する降下時間値)に対し、あるいは、そのタイマ値に基づき関係テーブルから割り出される循環流量値に対し、外気温の高低の如何に応じて補正を加えるようにしてもよい。例えば、外気温検出手段として外気温センサ71(例えばF点サーミスタ;図1又は図2参照)を設置し、この外気温センサ71により検出した外気温が基準温度範囲よりも低ければ温度降下の度合も大きく温度降下に要する時間も少なめになると考えられるため、タイマ手段531から出力されたタイマ値に対しプラス側の補正を加え、逆に外気温が基準温度範囲よりも高ければ上記タイマ値に対しマイナス側の補正を加えるようにする。補正幅としては、例えばプラス・マイナス0.05秒とすればよい。このような外気温に基づく補正を加えることで、検出処理により得られる循環流量値としてより一層精度(正確性)の高いものを得ることができるようになる。   For the timer value (fall time value required for temperature drop of temperature difference ΔT from the time of fire extinguishing) or the circulating flow value calculated from the relational table based on the timer value in the above embodiment, the outside air temperature Corrections may be made depending on how high or low. For example, an outside air temperature sensor 71 (for example, an F point thermistor; see FIG. 1 or FIG. 2) is installed as an outside air temperature detecting means, and if the outside air temperature detected by the outside air temperature sensor 71 is lower than the reference temperature range, the degree of temperature drop. Therefore, it is considered that the time required for the temperature drop is shortened, so that a positive correction is made to the timer value output from the timer means 531. On the contrary, if the outside air temperature is higher than the reference temperature range, Add negative correction. The correction width may be, for example, plus / minus 0.05 seconds. By adding such correction based on the outside air temperature, it becomes possible to obtain an even higher precision (accuracy) as the circulation flow rate value obtained by the detection process.

あるいは、テーブル記憶部532に、互いに異なる複数の外気温に対し適用するものとして予め設定した複数種類の関係テーブルを記憶させておき、上記外気温検出手段としての外気温センサ71により検出される外気温の高低の如何によって適用する関係テーブルを変更設定するようにしてもよい。   Alternatively, the table storage unit 532 stores a plurality of types of relationship tables that are set in advance to be applied to a plurality of different outside temperatures, and is detected by the outside temperature sensor 71 serving as the outside temperature detecting means. The relationship table to be applied may be changed and set depending on whether the temperature is high or low.

又、上記実施形態では、加えて、関係テーブルとして降下時間値と循環流量値との関係を予め定める際に、消火時点の循環流の温度の高低如何によって異なる複数種類の関係テーブルを設定するようにする。すなわち、循環流(循環路内に循環されている流体;浴槽湯水)の温度として互いに異なる複数の温度毎に、その温度の循環流に適用する関係テーブルを設定し、これら複数種類の関係テーブルをテーブル記憶部532に記憶させておくようにする。そして、循環流量の検出処理の際に、戻り温度センサ35により検出される戻り温度に基づいてこの戻り温度に対応する関係テーブルを呼び出し、この関係テーブルから循環流量の値を割り出すようにする。なお、循環流の温度として、戻り温度の代わりに、リモコン51に設定された設定温度を用いるようにしてもよい。要するに、実施例2で詳細を説明するように、熱交換器31が有するヒートマス(熱容量)による影響を加味してより高精度な循環流量値の検出処理を図るために、上記ヒートマスを消火時点の循環流の温度により簡易に把握し、この消火時点の循環流の温度に基づき補正するようにしたものである。このような補正を、上記の外気温に基づく補正に上乗せするようにしてもよい。
In the above embodiment, in addition, when the predetermined relationships between the fall time value and the circulating flow rate value as a relationship table, sets a plurality of types of relationship table differs depending height whether the temperature of the circulating flow of extinguishing time so as to. That is, for each of a plurality of different temperatures as the temperature of the circulating flow (fluid circulating in the circulation path; bathtub hot water), a relationship table to be applied to the circulating flow at that temperature is set, and these multiple types of relationship tables are set. It is stored in the table storage unit 532 to be your memorial service. Then, during the circulation flow rate detection process, a relation table corresponding to the return temperature is called based on the return temperature detected by the return temperature sensor 35, and the value of the circulation flow rate is calculated from the relation table. Note that the set temperature set in the remote controller 51 may be used as the circulating flow temperature instead of the return temperature. In short, as will be described in detail in the second embodiment, in order to detect the circulating flow rate value with higher accuracy in consideration of the effect of the heat mass (heat capacity) of the heat exchanger 31, the heat mass is used at the time of extinction. A simple understanding is made based on the temperature of the circulating flow, and the correction is made based on the temperature of the circulating flow at the time of extinction. Such correction may be added to the correction based on the outside temperature.

テーブル記憶部532に記憶された関係テーブルは、工場出荷前にテーブル記憶部532に対し記憶させたものであっても、あるいは、使用現場に加熱装置を設置した後にテーブル記憶部532に対し記憶させたものであっても、いずれでもよい。又、使用後に、その関係テーブルを新たなものに更新・記憶させるようにしてもよい。   The relational table stored in the table storage unit 532 may be stored in the table storage unit 532 before shipment from the factory, or may be stored in the table storage unit 532 after the heating device is installed at the use site. Or any of them. Further, after use, the relationship table may be updated and stored in a new one.

なお、関係テーブルとしては、後述の図7又は図8に破線、一点鎖線又は実線で示す関係曲線(関係曲線を直線近似にした線形の関係線をも含む)を設定してもよいし、そのような関係曲線を規定する数式を設定してもよいし、数値表を設定してもよいし、いずれでもよい。関係曲線としては後述の如く試験により取得した試験結果から例えば最小二乗法等を用いて近似式を定め、この近似式に基づいて降下時間値と循環流量値との座標系で特定するようにすればよく、あるいは、その近似式そのものを関係テーブルとして設定するようにしてもよい。又、数値表を関係テーブルとして設定した場合であって、ぴったり合致する循環流量の値がない場合には、隣接する循環流量の数値間で線形補間により、循環流量の値を割り出すようにすればよい。   As the relationship table, a relationship curve (including a linear relationship line obtained by approximating the relationship curve to a straight line) may be set as a broken line, an alternate long and short dash line or a solid line in FIG. A mathematical expression that defines such a relationship curve may be set, a numerical table may be set, or any of them may be set. As a relation curve, an approximate expression is determined from the test results obtained by the test as described later using, for example, the least square method, and the coordinate system of the descent time value and the circulation flow rate value is specified based on this approximate expression. Alternatively, the approximate expression itself may be set as a relation table. Also, when the numerical table is set as a relation table and there is no circulating flow value that exactly matches, the circulating flow value can be calculated by linear interpolation between adjacent circulating flow values. Good.

<実施例1>
往き温度センサ36により検出される往き温度が燃焼バーナ6の消火後にどのように変化するかについて、目標設定温度や循環流量の組み合わせを変化させて種々の条件設定にて試験し、往き温度の変化を計測した。そして、計測結果に基づき、循環流量の値と、所定の温度差ΔT分だけ温度降下するのに要した降下時間値(経過時間)との関係を調べた。
<Example 1>
The way in which the forward temperature detected by the forward temperature sensor 36 changes after the combustion burner 6 is extinguished is tested under various condition settings by changing the combination of the target set temperature and the circulating flow rate. Was measured. And based on the measurement result, the relationship between the value of the circulation flow rate and the descent time value (elapsed time) required to drop the temperature by a predetermined temperature difference ΔT was examined.

試験した条件設定は次の通りである。すなわち、図1に示す1缶2水路式の給湯器付き風呂釜を用い、浴槽B内に約20℃の100L(リットル)の残り湯を溜めた状態で、循環流量として4L/min,5L/min,6L/min,7L/min,8L/min,9L/minの各循環流を作り出し、設定温度として33℃,42℃,48℃をリモコンに設定して燃焼バーナ6による追い焚き加熱を行った。つまり、例えば設定温度33℃にして循環流量を上記の4L/min〜9L/minの6種類に変化させ、これを設定温度42℃及び48℃についても同様に組み合わせて条件設定した。そして、初期の追い焚き加熱を終了(燃料ガスの供給遮断により燃焼バーナ6を消火)した時点から往き温度センサ36により検出される往き温度の変化を計測した。計測タイミングは0.1秒周期で行った。この計測結果を図5に示す。図5は縦軸に消火時点の検出往き温度を、横軸に経過時間をそれぞれ示している。又、同図で例えば「33℃−9.0L/m」と図示されている変化曲線は、設定温度33℃で循環流量を9.0L/minにした場合の変化曲線であることを示し、設定温度33℃まで加熱するために燃焼バーナ6からの燃焼熱によりほぼ51℃まで加熱された後に浴槽Bに供給される場合を示している。図5によれば、燃焼バーナ6の消火後、往き温度は微小時間(例えば1.0〜1.5秒間)が経過するまでは消火前までと同傾向を示すものの、それ以後は急激に温度降下していっている。なお、実際の循環流量値についてはカルマン渦流量計を用いて確認した。   The condition settings tested are as follows. That is, in the state where 100 L (liter) of remaining hot water of about 20 ° C. is stored in the bathtub B using the 1 can / two water channel type hot water bath shown in FIG. 1, the circulation flow rate is 4 L / min, 5 L / Each circulation flow of min, 6L / min, 7L / min, 8L / min, and 9L / min is created, and 33 ° C, 42 ° C, and 48 ° C are set as the set temperature on the remote control, and reheating is performed by the combustion burner 6 It was. That is, for example, the set temperature was set to 33 ° C., and the circulation flow rate was changed to the above-mentioned 6 types of 4 L / min to 9 L / min, and the conditions were set by combining these similarly for the set temperatures of 42 ° C. and 48 ° C. Then, the change in the forward temperature detected by the forward temperature sensor 36 was measured from the time when the initial reheating heating was completed (the combustion burner 6 was extinguished by shutting off the fuel gas supply). The measurement timing was performed at a period of 0.1 second. The measurement results are shown in FIG. FIG. 5 shows the detected temperature at the time of fire extinguishing on the vertical axis and the elapsed time on the horizontal axis. In addition, for example, a change curve illustrated as “33 ° C.-9.0 L / m” in the same figure indicates a change curve when the circulating flow rate is set to 9.0 L / min at a set temperature of 33 ° C. The case where it is heated to approximately 51 ° C. by the combustion heat from the combustion burner 6 to be heated to the set temperature 33 ° C. and then supplied to the bathtub B is shown. According to FIG. 5, after the extinguishing of the combustion burner 6, the going-out temperature shows the same tendency as before the extinguishing until a minute time (for example, 1.0 to 1.5 seconds) elapses, but after that, the temperature rapidly increases. I'm descending. The actual circulation flow value was confirmed using a Karman vortex flowmeter.

この図5の計測結果を書き直したものが図6である。図6は、消火時点の往き温度からの温度差を縦軸にし、横軸に経過時間を表したものである。この図6によれば、ΔT=1.0℃の温度降下に要する降下時間値(経過時間)は1.8〜2.9秒の範囲であり、ΔT=2.0℃の温度降下に要する降下時間値(経過時間)は2.1〜3.4秒の範囲であった。循環流量の値が小であるほど降下時間値は大きくなる傾向を示し、この傾向は図4の特性と同じであった。   FIG. 6 is a rewrite of the measurement result of FIG. In FIG. 6, the temperature difference from the going-out temperature at the time of fire extinguishing is plotted on the vertical axis, and the elapsed time is plotted on the horizontal axis. According to FIG. 6, the fall time value (elapsed time) required for the temperature drop of ΔT = 1.0 ° C. is in the range of 1.8 to 2.9 seconds, and is required for the temperature drop of ΔT = 2.0 ° C. The fall time value (elapsed time) was in the range of 2.1 to 3.4 seconds. The smaller the value of the circulation flow rate, the larger the descent time value tends to increase, and this tendency is the same as the characteristic of FIG.

そして、図6において温度差ΔT=1.0℃における降下時間値と循環流量の値との組み合わせ、及び、温度差ΔT=2.0℃における降下時間値と循環流量の値との組み合わせの各計測結果を抽出し、降下時間値(図7には「経過時間」と表示)を縦軸に、循環流量を横軸にそれぞれ設定した座標に対し抽出した計測結果をプロットした。これを図7に示す。   In FIG. 6, the combination of the drop time value and the circulation flow value at the temperature difference ΔT = 1.0 ° C. and the combination of the drop time value and the circulation flow value at the temperature difference ΔT = 2.0 ° C. The measurement results were extracted, and the measurement results extracted for the coordinates where the descent time value (indicated as “elapsed time” in FIG. 7) was set on the vertical axis and the circulation flow rate was set on the horizontal axis were plotted. This is shown in FIG.

この図7は、種々の循環流量値と、その循環流量で循環させているときに温度差ΔTだけ温度降下するのに要した降下時間値(経過時間)との関係を示すものである。温度差ΔT=1℃の場合を破線で示し、温度差ΔT=2℃の場合を実線で示している。これによれば、設定温度33℃,42℃,48℃の違い、つまり燃焼バーナ6による加熱度合の違いがあっても、上記の循環流量−降下時間値の関係はほぼ一定の関係曲線により表すことが可能であり、ある温度差のΔTのときの循環流量−降下時間値の関係はほぼ一定の関係を示すことが分かる。このため、図7に示すような循環流量−降下時間値の関係テーブル(関係曲線又は数値表)を予め試験により求め、この関係テーブルを循環流量検出処理部53(図2参照)に記憶させておけば、上記の降下時間値に相当するタイマ値(図3のステップS7参照)を計測することにより、上記関係テーブルから循環流量の値を割り出して検出することができることになる。例えば、温度差ΔT=1.℃の場合のタイマ値として2.2秒が出力されれば、図7の関係テーブルから循環流量の値として6.4L/minを得ることができる。   FIG. 7 shows the relationship between various circulating flow rate values and the descent time value (elapsed time) required to drop the temperature by the temperature difference ΔT when circulating at that circulating flow rate. The case of the temperature difference ΔT = 1 ° C. is indicated by a broken line, and the case of the temperature difference ΔT = 2 ° C. is indicated by a solid line. According to this, even if there is a difference between the set temperatures 33 ° C., 42 ° C., and 48 ° C., that is, a difference in the degree of heating by the combustion burner 6, the relationship between the circulation flow rate and the descent time value is represented by a substantially constant relationship curve. It can be seen that the relationship between the circulation flow rate and the descent time value at a certain temperature difference ΔT shows a substantially constant relationship. Therefore, a circulation flow rate-fall time value relationship table (relation curve or numerical table) as shown in FIG. 7 is obtained in advance by testing, and this relationship table is stored in the circulation flow rate detection processing unit 53 (see FIG. 2). In this case, by measuring a timer value (see step S7 in FIG. 3) corresponding to the above descent time value, it is possible to determine and detect the value of the circulating flow rate from the relation table. For example, the temperature difference ΔT = 1. If 2.2 seconds are output as the timer value in the case of ° C., 6.4 L / min can be obtained as the value of the circulating flow rate from the relation table of FIG.

<実施例2>
実施例2は、計測の目的等は実施例1と同じであるものの、諸条件について実施例1の場合よりもさらに精密に計測した点で実施例1と異なるものである。すなわち、実施例1と同様に、往き温度センサ36により検出される往き温度が燃焼バーナ6の消火後にどのように変化するかについて、目標設定温度や循環流量の組み合わせを変化させて種々の条件設定にて試験し、往き温度の変化を計測した。そして、計測結果に基づき、循環流量の値と、所定の温度差ΔT分だけ温度降下するのに要した降下時間値(経過時間)との関係を調べた。
<Example 2>
The second embodiment is different from the first embodiment in that the measurement purpose and the like are the same as those in the first embodiment, but various conditions are measured more precisely than in the first embodiment. That is, as in the first embodiment, various conditions are set by changing the combination of the target set temperature and the circulating flow rate as to how the forward temperature detected by the forward temperature sensor 36 changes after the combustion burner 6 is extinguished. The change in the going-out temperature was measured. And based on the measurement result, the relationship between the value of the circulation flow rate and the descent time value (elapsed time) required to drop the temperature by a predetermined temperature difference ΔT was examined.

試験した条件設定は次の通りである。すなわち、図1に示す1缶2水路式の給湯器付き風呂釜を用い、浴槽B内に約20℃の100L(リットル)の残り湯を溜めた状態で、一定の循環流量の下で所定の設定温度を設定してこの設定温度まで燃焼バーナ6による追い焚き加熱を実施した。そして、追い焚き加熱されることにより循環湯水が徐々に温度上昇し、戻り温度センサ35の検出戻り温度が設定温度に到達することにより初期の追い焚き加熱が終了(燃料ガスの供給遮断により燃焼バーナ6を消火)された時点から、往き温度センサ36により検出される往き温度の変化と、時間経過とを監視した。そして、燃焼バーナ6の消火時点から検出往き温度が温度差ΔT=1℃だけ温度降下したときの経過時間(降下時間値)と、温度差ΔT=2℃だけ温度降下したときの経過時間(降下時間値)とを計測した。温度変化の計測は0.01秒周期で行い、経過時間の計測は0.01秒単位(10msec単位)で行った。温度差ΔTだけ温度降下した時点として、その温度差ΔTである1℃又は2℃だけの温度降下を3回検出した時点とした。又、実際の循環流量値の計測を、実施例1のカルマン渦流量計よりも高精度の計測が可能な電磁流量計により行い、この電磁流量計によって0.01L/min単位まで計測した。   The condition settings tested are as follows. That is, using a can with two water channels and a hot water heater shown in FIG. 1, in a state where 100 L (liter) of remaining hot water of about 20 ° C. is stored in the bathtub B, a predetermined flow rate is maintained under a constant circulation flow rate. The set temperature was set, and the reheating with the combustion burner 6 was performed up to this set temperature. Then, the temperature of the circulating hot water gradually rises due to reheating, and the initial reheating is completed when the return temperature detected by the return temperature sensor 35 reaches the set temperature (the combustion burner is cut off by the supply of fuel gas being cut off). From the time point 6 was extinguished), the change in the forward temperature detected by the forward temperature sensor 36 and the passage of time were monitored. Then, the elapsed time (fall time value) when the detected forward temperature drops by a temperature difference ΔT = 1 ° C. from the time of extinguishing the combustion burner 6 and the elapsed time (fall) when the temperature drop by a temperature difference ΔT = 2 ° C. Time value). The temperature change was measured at a cycle of 0.01 seconds, and the elapsed time was measured at a unit of 0.01 seconds (10 msec unit). The time point at which the temperature drop by the temperature difference ΔT was taken as the point at which the temperature drop by 1 ° C. or 2 ° C., which is the temperature difference ΔT, was detected three times. In addition, the actual circulating flow value was measured with an electromagnetic flow meter capable of measuring with higher accuracy than the Karman vortex flow meter of Example 1, and was measured up to 0.01 L / min with this electromagnetic flow meter.

このような計測試験を、所定種類数の循環流量及び3種類の設定温度(33℃、40℃、48℃)の組み合わせを設定し、それぞれについてΔT=1℃と2℃分の温度降下した経過時間(降下時間値)を計測した。すなわち、設定温度33℃について循環流量13種類(実測値は4.00,4.02,4.91,4.95,5.99,6.04,7.12,7.11,8.04,8.03,8.63,8.61,8.60L/min)、設定温度40℃について循環流量22種類(実測値は4.03,4.06,4.50,4.51,4.97,4.99,5.48,5.50,5.99,5.99,6.51,6.51,7.03,7.03,7.00,7.48,7.53,7.96,8.05,8.48,8.65,8.61L/min)、設定温度48℃について循環流量12種類(実測値は3.99,3.99,4.98,5.02,6.03,6.01,7.12,7.13,7.98,8.01,8.66,8.66L/min)の合計47セットの計測試験を行った。   In such a measurement test, a combination of a predetermined number of circulating flow rates and three set temperatures (33 ° C., 40 ° C., 48 ° C.) was set, and ΔT = 1 ° C. and a temperature drop of 2 ° C. for each. Time (fall time value) was measured. That is, 13 kinds of circulating flow rates at a set temperature of 33 ° C. (actual values are 4.00, 4.02, 4.91, 4.95, 5.99, 6.04, 7.12, 7.11, 8.04) , 8.03, 8.63, 8.61, 8.60 L / min), 22 kinds of circulating flow rates at a set temperature of 40 ° C. (actual values are 4.03, 4.06, 4.50, 4.51, 4 97, 4.99, 5.48, 5.50, 5.99, 5.99, 6.51, 6.51, 7.03, 7.03, 7.00, 7.48, 7.53 , 7.96, 8.05, 8.48, 8.65, 8.61 L / min), 12 kinds of circulating flow rates at a set temperature of 48 ° C. (actual values are 3.99, 3.99, 4.98, 5) .02, 6.03, 6.01, 7.12, 7.13, 7.98, 8.01, 8.66, 8.66 L / min) for a total of 47 sets Test was carried out.

図8は、横軸に経過時間(降下時間値)、縦軸に流量をそれぞれ設定した座標に対し、ΔT=1℃と2℃分の温度降下するまでの経過時間として計測した降下時間値を対応する実測循環流量値のポイントにプロットし、両者の関係を表す関係曲線を示したものである。図8に示した関係曲線は、循環流量Qと、降下時間値τとの間の関係をある基本関係式で仮定し、これを実測値に基づいて特定した近似式により特定したものである。   FIG. 8 is a graph showing a descent time value measured as an elapsed time until a temperature drop of ΔT = 1 ° C. and 2 ° C. with respect to the coordinates where the elapsed time (fall time value) is set on the horizontal axis and the flow rate is set on the vertical axis. Plots are made at the points of the corresponding measured circulation flow rate values, and a relationship curve representing the relationship between the two is shown. The relational curve shown in FIG. 8 is specified by an approximate expression that assumes a relationship between the circulation flow rate Q and the descent time value τ with a certain basic relational expression and is specified based on the actual measurement value.

すなわち、上記の基本関係式として、次式(1)の如く、循環流量Qを、降下時間値τと消火時点の循環流の温度Tとで表す。なお、aは所定の定数である。
Q=a/{τ−f(T)} … (1)
この基本関係式は、循環流量Qと降下時間値τとを逆数の関係(Q=a/τ)とし、かつ、降下時間値τに係る分母において温度Tの関数により表されるものを降下時間値τから減じたものと規定したものである。温度Tの関数としては一次関数(f(T)=b・T+c)を用いればよい。これを式(1)に代入すると、次の式(2)が得られる。
Q=a/{τ−(b・T+c)} … (2)
温度Tとしては、正確には消火時点での戻り温度センサ35により検出される戻り温度を適用すればよいが、便宜的に設定温度の値を適用してもよい。戻り温度が設定温度に到達して追い焚き加熱が終了されて消火されるという加熱制御が実行されている筈だからである。そして、残る定数a,b,cの各値としてΔT=1℃の場合と2℃の場合との2種類について、上記の計測された降下時間値と実測循環流量値とに基づいて、例えば最小二乗法を応用して演算により特定して近似式として用いればよい。
That is, as the above basic relational expression, the circulation flow rate Q is expressed by the descent time value τ and the temperature T of the circulating flow at the time of extinction as shown in the following expression (1). Note that a is a predetermined constant.
Q = a / {τ−f (T)} (1)
In this basic relational expression, the circulation flow rate Q and the descent time value τ are in a reciprocal relationship (Q = a / τ) and the denominator related to the descent time value τ is expressed by a function of the temperature T. It is defined as subtracted from the value τ. As a function of the temperature T, a linear function (f (T) = b · T + c) may be used. Substituting this into equation (1) yields the following equation (2).
Q = a / {τ− (b · T + c)} (2)
As the temperature T, the return temperature detected by the return temperature sensor 35 at the time of fire extinguishing may be applied, but the value of the set temperature may be applied for convenience. This is because the heating control is executed such that the return temperature reaches the set temperature, the reheating is finished, and the fire is extinguished. Then, for each of the remaining constants a, b, and c, for the two types of cases of ΔT = 1 ° C. and 2 ° C., for example, based on the measured descent time value and the measured circulation flow value, for example, the minimum What is necessary is just to specify by calculation using a square method and to use as an approximate expression.

上記の近似式の考え方は、次のような考え方に基づくものである。すなわち、図4を用いて燃焼バーナ6の消火後の温度変化特性について説明した通り、急激に温度降下し始めるタイミングは循環流量が小である場合の方が大の場合よりも遅れることになる。これは熱交換器31のヒートマス(熱容量)の大小の違いに基づく影響と考えられ、かかるヒートマスの大小は消火時点における循環流の温度の高低により簡易に定めることができる。図8を見ると、同じ循環流量であると、設定温度が高い場合の方が低い場合よりも図8の右側位置に対し僅かにシフトする傾向にあり、そのシフト量は温度差ΔTが大きいほど大きくなる傾向を示している。図7の例の如く消火時点での循環流の温度の高低如何による上記ヒートマスの影響を無視して循環流量値の検出処理を行うようにしてもよいが、さらに高精度な循環流量値の検出処理を行うには上記のヒートマスの影響を考慮して消火時点の循環流の温度Tの高低に基づき補正を加えるようにすればよい。例えば、上記の式(1)又は式(2)の如く温度Tに基づく補正項を加味し、温度Tに基づき補正を加えた関係曲線や関係式(近似式)を設定するようにすればよい。   The concept of the above approximate expression is based on the following concept. That is, as described with reference to FIG. 4 for the temperature change characteristics after the fire extinguishing of the combustion burner 6, the timing at which the temperature starts to drop suddenly is delayed when the circulating flow rate is small than when it is large. This is considered to be an effect based on the difference in size of the heat mass (heat capacity) of the heat exchanger 31, and the size of the heat mass can be easily determined by the temperature of the circulating flow at the time of fire extinguishing. Referring to FIG. 8, at the same circulating flow rate, there is a tendency to shift slightly with respect to the right side position in FIG. 8 when the set temperature is high compared to when the set temperature is low, and the shift amount increases as the temperature difference ΔT increases. It shows a tendency to increase. Although the influence of the heat mass due to the temperature of the circulating flow at the time of fire extinguishing may be ignored as in the example of FIG. 7, the circulating flow value detection processing may be performed. In order to perform the process, correction may be added based on the temperature T of the circulating flow at the time of extinguishing in consideration of the influence of the heat mass. For example, a correction term based on the temperature T as in the above formula (1) or formula (2) is taken into account, and a relational curve or a relational expression (approximate expression) corrected based on the temperature T may be set. .

2 給湯回路
3 追い焚き循環回路
5 コントローラ(加熱制御装置)
6 燃焼バーナ(加熱源)
21 給湯用熱交換器
31 追い焚き用熱交換器
32 追い焚き循環路
32b 往き路(循環方向下流側の循環路)
35 戻り温度センサ
36 往き温度センサ(往き温度検出手段)
52 湯張り制御部
53 循環流量検出処理部
71 外気温センサ(外気温検出手段)
531 タイマ手段
532 テーブル記憶部
B 浴槽
2 Hot water supply circuit 3 Recirculation circuit 5 Controller (heating control device)
6 Combustion burner (heating source)
21 Heat Exchanger for Hot Water Supply 31 Heat Exchanger for Reheating 32 Recirculation Circulation Path 32b Outbound Path (circulation path on the downstream side in the circulation direction)
35 Return temperature sensor 36 Outward temperature sensor (outward temperature detection means)
52 Hot water filling control unit 53 Circulating flow rate detection processing unit 71 Outside air temperature sensor (outside air temperature detecting means)
531 Timer means 532 Table storage section B bathtub

Claims (7)

流体が循環される循環路と、この循環路に介装された熱交換器と、この熱交換器に流される流体を熱交換加熱する加熱源とを備えた加熱装置に適用される加熱制御装置であって、
上記熱交換器よりも循環方向下流側位置の循環路内における往き側流体の温度を検出する往き温度検出手段と、上記循環路に循環される流体の循環流量を制御上の処理により検出する循環流量検出処理部とを備え、
上記循環流量検出処理部は、経過時間の値を計測するタイマ手段と、所定の関係テーブルを記憶するテーブル記憶部とを備え、上記関係テーブルは、循環路内の流体の循環流量と、上記加熱源の加熱作動の停止時点から上記往き温度検出手段により検出される往き側流体の温度が設定温度差だけ温度降下するまでの降下時間値との関係について予め設定したものであり、循環流量検出処理として、循環路内を流体循環状態に維持しつつ加熱源の加熱作動を停止させる一方、上記往き温度検出手段により検出される往き側流体の温度変化を監視して、この往き側流体の温度が上記加熱作動の停止時点から設定温度差だけ温度降下するのに要した降下時間値を上記タイマ手段により計測し、計測された降下時間値に基づいて上記関係テーブルから対応する循環流量の値を割り出して検出するように構成されており、さらに、
上記循環流量検出処理部は、テーブル記憶部に、上記加熱作動の停止時点における熱交換器の熱容量であって互いに異なる複数種類の熱容量に対し適用するものとして予め設定された複数種類の関係テーブルが記憶され、上記熱容量を表す検出値又は設定値の出力を受けてその出力値の如何によって適用する関係テーブルを変更設定するように構成されている、
ことを特徴とする加熱制御装置。
A heating control device applied to a heating device including a circulation path through which a fluid circulates, a heat exchanger interposed in the circulation path, and a heating source that heats and heats the fluid flowing through the heat exchanger Because
A forward temperature detecting means for detecting the temperature of the forward fluid in the circulation path at a position downstream in the circulation direction from the heat exchanger, and a circulation for detecting the circulation flow rate of the fluid circulated through the circulation path by control processing. A flow rate detection processing unit,
The circulating flow rate detection processing unit includes timer means for measuring an elapsed time value and a table storage unit for storing a predetermined relationship table, wherein the relationship table includes the circulating flow rate of the fluid in the circulation path, and the heating Circulating flow rate detection processing is set in advance with respect to the relationship with the descent time value from when the source heating operation stops until the temperature of the forward fluid detected by the forward temperature detection means drops by the set temperature difference. The heating operation of the heating source is stopped while maintaining the fluid circulation state in the circulation path, while the temperature change of the forward fluid detected by the forward temperature detection means is monitored, and the temperature of the forward fluid is Measured by the timer means the descent time value required to drop the temperature by a set temperature difference from the time when the heating operation was stopped, and based on the measured descent time value from the relation table By indexing the values of the circulation flow rate to respond it is configured to detect, furthermore,
The circulating flow rate detection processing unit has a plurality of types of relationship tables set in advance in the table storage unit to be applied to a plurality of types of heat capacities that are different from each other in heat capacity of the heat exchanger when the heating operation is stopped. stored, that is configured to receive the output of the detection value or the set value representing the heat capacity changes and sets the relationship table to be applied depending upon which the output value,
Pressurized thermal control device, characterized in that.
請求項1に記載の加熱制御装置であって、
上記加熱装置は、循環路として熱交換器と浴槽との間で浴槽湯水が循環される追い焚き循環路を備えた風呂釜である、加熱制御装置。
The heating control device according to claim 1,
The said heating apparatus is a heating control apparatus which is a bath pot provided with the reheating circulation path through which bathtub hot water is circulated between a heat exchanger and a bathtub as a circulation path.
請求項2に記載の加熱制御装置であって、
上記加熱装置は、追い焚き循環回路に加えて給湯回路を備え、追い焚き用熱交換器と、給湯用熱交換器とが共通の加熱源により加熱されるように構成された1缶2水路式の給湯器付き風呂釜である、加熱制御装置。
The heating control device according to claim 2,
The heating device includes a hot water supply circuit in addition to a reheating circulation circuit, and is configured to be heated by a common heating source for a reheating heat exchanger and a hot water heat exchanger. Heating control device that is a hot water heater with water heater.
請求項3に記載の加熱制御装置であって、
循環流量検出処理部は、循環流量値の検出処理を浴槽に対する湯張り制御において浴槽内に残り湯が存在することを検知した状態で実行するように構成されている、加熱制御装置。
The heating control device according to claim 3,
The circulation flow rate detection processing unit is configured to execute a detection process of a circulation flow rate value in a state in which the remaining hot water is present in the bathtub in the hot water filling control for the bathtub.
請求項3又は請求項4に記載の加熱制御装置であって、
浴槽に対する湯張り制御を実行するにあたり浴槽内の残り湯量を演算する湯張り制御部を備え、
湯張り制御部は、循環流量検出処理部により検出された循環流量の値を用いて残り湯量を演算するように構成されている、加熱制御装置。
The heating control device according to claim 3 or 4, wherein
In order to execute the hot water filling control for the bathtub, a hot water filling control unit that calculates the remaining hot water amount in the bathtub is provided.
The hot water filling control unit is configured to calculate a remaining hot water amount using a value of the circulating flow rate detected by the circulating flow rate detection processing unit.
請求項1〜請求項5のいずれかに記載の加熱制御装置であって、
外気温を検出する外気温検出手段を備え、
循環流量検出処理部は、タイマ手段により計測された降下時間値又は関係テーブルから割り出された循環流量の値に対し、上記外気温検出手段により検出される外気温の高低の如何によって補正を加えるように構成されている、加熱制御装置。
The heating control apparatus according to any one of claims 1 to 5,
An outside air temperature detecting means for detecting the outside air temperature,
The circulating flow rate detection processing unit corrects the descent time value measured by the timer means or the circulating flow rate value calculated from the relationship table depending on whether the outside air temperature detected by the outside air temperature detecting means is high or low. A heating control device configured as described above.
請求項1〜請求項5のいずれかに記載の加熱制御装置であって、
外気温を検出する外気温検出手段を備え、
循環流量検出処理部は、テーブル記憶部に、互いに異なる複数の外気温に対し適用するものとして予め設定された複数種類の関係テーブルが記憶され、上記外気温検出手段により検出される外気温の高低の如何によって適用する関係テーブルを変更設定するように構成されている、加熱制御装置。
The heating control apparatus according to any one of claims 1 to 5,
An outside air temperature detecting means for detecting the outside air temperature,
The circulating flow rate detection processing unit stores in the table storage unit a plurality of types of relationship tables that are preset as applied to a plurality of different outside air temperatures, and the level of the outside air temperature detected by the outside air temperature detecting means A heating control device configured to change and set a relation table to be applied.
JP2009041581A 2009-02-25 2009-02-25 Heating control device Expired - Fee Related JP5326650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041581A JP5326650B2 (en) 2009-02-25 2009-02-25 Heating control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041581A JP5326650B2 (en) 2009-02-25 2009-02-25 Heating control device

Publications (2)

Publication Number Publication Date
JP2010196961A JP2010196961A (en) 2010-09-09
JP5326650B2 true JP5326650B2 (en) 2013-10-30

Family

ID=42821866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041581A Expired - Fee Related JP5326650B2 (en) 2009-02-25 2009-02-25 Heating control device

Country Status (1)

Country Link
JP (1) JP5326650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780069B2 (en) 2009-06-18 2017-10-03 Rohm Co., Ltd. Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459546B2 (en) * 2010-02-19 2014-04-02 株式会社ノーリツ Bath equipment
WO2016067340A1 (en) * 2014-10-27 2016-05-06 三菱電機株式会社 Fluid circulation system
JP6428364B2 (en) * 2015-02-23 2018-11-28 株式会社ノーリツ Water heater
JP6540378B2 (en) * 2015-08-27 2019-07-10 株式会社ノーリツ Combined heat source machine
CN113654245A (en) * 2021-08-24 2021-11-16 深圳市德达医疗科技集团有限公司 Circulating heating pipeline, method and device for predicting temperature rise time, controller and medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091808B2 (en) * 1993-09-30 2000-09-25 パロマ工業株式会社 Bath kettle with water heater
JP3811561B2 (en) * 1997-11-28 2006-08-23 株式会社ガスター One can two water channel type water heater
JP3854398B2 (en) * 1997-12-09 2006-12-06 株式会社ガスター One can two water heater
JPH11270902A (en) * 1998-03-23 1999-10-05 Inax Corp Warm water supply for bath
JP2000055456A (en) * 1998-08-05 2000-02-25 Matsushita Electric Ind Co Ltd Controller for remaining hot water sensing in bathtub
JP3889367B2 (en) * 2003-02-05 2007-03-07 株式会社ガスター Bath temperature estimation device and bath water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780069B2 (en) 2009-06-18 2017-10-03 Rohm Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2010196961A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5326650B2 (en) Heating control device
JP5414606B2 (en) Hot water system
JPS63259348A (en) Method of controlling hot water filling for automatic bath boiler having water heater
CN209101575U (en) The abnormal circulation control device of electric boiler
JPS63259347A (en) Method of controlling hot water filling for automatic bath boiler having water heater
JP6540378B2 (en) Combined heat source machine
JP6428364B2 (en) Water heater
JP2001141308A (en) Method of controlling latent heat recovery type water heater
JP5917326B2 (en) Water heater
JP6593775B2 (en) Instant hot water system
JP5752944B2 (en) One can two water channel bath water heater
JP2013096582A (en) Bath device
JPH11173671A (en) Water heater
JP3850635B2 (en) How to detect the amount of water remaining in the bathtub
JP4279817B2 (en) Bath water heater
JP6550832B2 (en) Combustion device
JPH1114145A (en) Hot-water supply
JP3777037B2 (en) Remaining water amount calculation method
JP6524487B2 (en) Water heater
JP3952485B2 (en) Bath water heater
JP3748681B2 (en) One can two water bath hot water heater
JP5921502B2 (en) Bath water heater
JP2001108303A (en) Hot-water storage type hot-water supplier
JPH1026416A (en) Bath burner with hot water feeder
JP2002013804A (en) Hot water pouring method into bathtub

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees