JP5326139B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP5326139B2
JP5326139B2 JP2009111793A JP2009111793A JP5326139B2 JP 5326139 B2 JP5326139 B2 JP 5326139B2 JP 2009111793 A JP2009111793 A JP 2009111793A JP 2009111793 A JP2009111793 A JP 2009111793A JP 5326139 B2 JP5326139 B2 JP 5326139B2
Authority
JP
Japan
Prior art keywords
wind
cam
blade
shaft
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009111793A
Other languages
Japanese (ja)
Other versions
JP2010261344A (en
Inventor
浩章 岡
斉彰 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOJO CO., LTD.
Sanki Dengyo Co Ltd
Original Assignee
GOJO CO., LTD.
Sanki Dengyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOJO CO., LTD., Sanki Dengyo Co Ltd filed Critical GOJO CO., LTD.
Priority to JP2009111793A priority Critical patent/JP5326139B2/en
Publication of JP2010261344A publication Critical patent/JP2010261344A/en
Application granted granted Critical
Publication of JP5326139B2 publication Critical patent/JP5326139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generator capable of constantly obtaining substantially constant stable generation output under a condition ranging from gentle wind to strong wind. <P>SOLUTION: A wind power generator consists of: a wind turbine rotary shaft 13; a cam support shaft 16 containing a cam 15 arranged in proximity to a surface of the wind turbine shaft; a rotary shaft 18 arranged in an upper end of the cam support shaft and in a vertical direction with respect to an elliptical long side of the cam 15; a blade 19 each having a base 19a connected to an upper end of the cam support shaft 16 so as to be rotatable around the rotary shaft; a first spring 22 containing a movable part 21 coming into contact with an outer periphery of the cam 15; and a second spring 28 containing a movable part 27 coming into contact with the blade 19 through an arm 26. The blade 19 rotates around the camshaft 16 at an angle corresponding to wind power. The rotary shaft 18 is made perpendicular to the wind turbine rotary shaft 13 by a certain wind power. The blade 19 rotates around the rotary shaft 18 by more than the certain wind power. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、風力発電機に係り、特に風力に対応して、羽根の角度を自動的に調整し、発電出力を略一定にすることができる風車を備えた風力発電機に関する。   The present invention relates to a wind power generator, and more particularly, to a wind power generator including a windmill that can automatically adjust the angle of blades and make the power generation output substantially constant in response to wind power.

従来から、風力発電機が広く実用に供されているが、典型的な例では、幅が狭く、且つ長い半径を有する羽根を備えた風車が用いられ、このため、風車を支持するポールの高さが高くなり、且つ広い設置面積を必要とする。これらの風力発電機においては、風力が弱いと発電出力が低く、風力が強いと発電出力は高くなるが、さらに風力が強くなると風車が破損する可能性があるという問題がある。   Conventionally, wind power generators have been widely used in practice, but in a typical example, a wind turbine having blades having a narrow width and a long radius is used, and therefore, the height of a pole supporting the wind turbine is high. And a large installation area is required. In these wind power generators, if the wind power is weak, the power generation output is low, and if the wind power is strong, the power generation output is high, but if the wind power is further strong, the windmill may be damaged.

本発明は、上述の事情に基づいてなされたもので、微風から強風に到るまで常に略一定の安定した発電出力が得られる風力発電機を提供することを目的とする。   The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a wind power generator that can obtain a substantially constant and stable power generation output from a breeze to a strong wind.

本発明の風力発電機は、風車回転軸と、該風車回転軸の外周表面に近接して配置されたカムを備え、回転自在に支持されたカム軸と、該カム軸の上端部に配置され、前記カムの楕円形長辺に対して垂直な方向に配置された回転軸と、前記カム軸の回りに該カム軸と共に回転可能であると共に、前記回転軸を中心として回転可能に、基部が前記カム軸の上端部に接続された羽根と、前記カムの外周と接触する可動部を備えた第1バネと、前記羽根とアームを介して接続する可動部を備えた第2バネと、を備える。 The wind power generator according to the present invention includes a windmill rotating shaft and a cam disposed in proximity to the outer peripheral surface of the windmill rotating shaft, and is rotatably supported at the upper end portion of the cam shaft. A rotating shaft disposed in a direction perpendicular to the elliptical long side of the cam; and a base that is rotatable about the cam shaft and rotatable about the rotating shaft. a blade connected to the upper end of the cam shaft, a first spring having a movable portion in contact with the outer periphery of the cam, a second spring having a movable portion connected through the blade and the arm, the Prepare.

ここで、羽根は、一定風力(例えば10m/s程度の風速)以下で、風力に対応した角度でカム軸回りに回転し、該一定風力で羽根を回転支持する回転軸が風車回転軸に対して略垂直となり、それ以上の風力で羽根が前記回転軸の回りに回転する。   Here, the blades rotate around the camshaft at an angle corresponding to the wind force at a constant wind force (for example, a wind speed of about 10 m / s), and the rotating shaft that supports the blades with the constant wind force rotates relative to the windmill rotating shaft. The blades are rotated substantially around the rotation axis by wind force beyond that.

カムと第1バネによる羽根のカム軸回りの角度調整機構と、アームと第2バネによる羽根の回転軸回りの角度調整機構との2段階の風速領域(例えば10m/s以下と以上)に対応した羽根の自動回転制御により、微風から台風級の強風に風力が変動しても、略一定の安定したトルクを取り出すことができ、その結果安定した発電出力を取り出すことができ、且つ台風級の強風下においてもその破損を防止できる。   Corresponding to the two-stage wind speed range (for example, 10 m / s or less) of the angle adjustment mechanism around the cam axis of the blade by the cam and the first spring and the angle adjustment mechanism around the rotation axis of the blade by the arm and the second spring With the automatic rotation control of the blades, even if the wind force fluctuates from a slight wind to a strong wind of the typhoon class, a substantially constant and stable torque can be taken out. As a result, a stable power generation output can be taken out and The damage can be prevented even under strong winds.

本発明の一実施形態の風力発電機の断面図である。It is sectional drawing of the wind power generator of one Embodiment of this invention. (a)はカムと第1バネとの関係を示す上面図であり、(b)はその側面図である。(A) is a top view which shows the relationship between a cam and a 1st spring, (b) is the side view. 羽根の構成例を示す風車の正面図である。It is a front view of the windmill which shows the structural example of a blade | wing.

以下、本発明の実施形態について、図1乃至図3を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.

図1において、ポール11に風車固定部12が搭載され、ここに風車回転軸13がスラストおよびラジアル軸受14により回転自在に支持されている。風車回転軸13の回転は軸31を介して歯車32a,32bに伝達され、軸33の回転が図示しない増速機構を介して発電装置に伝達され、風力による発電電力を生成する。   In FIG. 1, a windmill fixing portion 12 is mounted on a pole 11, and a windmill rotating shaft 13 is rotatably supported by a thrust and radial bearing 14. The rotation of the windmill rotating shaft 13 is transmitted to the gears 32a and 32b via the shaft 31, and the rotation of the shaft 33 is transmitted to the power generation device via a speed increasing mechanism (not shown), thereby generating power generated by wind power.

風車回転軸13の表面に近接してカム15が配置され、カム15において偏心して垂直に配置されたカム軸16が軸受17により回転自在に支持され、カム軸16は風車回転軸13の軸心から半径方向に延びている。カム軸16の上端部には、カム軸16に垂直に回転軸18が設けられ、羽根19の基部19aが回転軸18に回転可能に接続されている。従って、羽根19は、カム軸16の回りに該カム軸と共に回転可能であると共に、回転軸18の回りに回転可能である。   A cam 15 is disposed in the vicinity of the surface of the wind turbine rotating shaft 13, and a cam shaft 16 that is eccentric and vertically disposed in the cam 15 is rotatably supported by a bearing 17, and the cam shaft 16 is an axis of the wind turbine rotating shaft 13. Extending in the radial direction. A rotating shaft 18 is provided at the upper end of the cam shaft 16 perpendicular to the cam shaft 16, and a base 19 a of the blade 19 is connected to the rotating shaft 18 so as to be rotatable. Accordingly, the blade 19 can rotate about the cam shaft 16 and the cam shaft and can rotate about the rotation shaft 18.

回転軸18は、カム15の楕円形長辺Aに対して垂直な方向に、カム軸16の上端部にピンが配置されている(図2参照)。図1はカム15の楕円形長辺Aが風車回転軸13に平行な状態を示し、この状態で回転軸18は紙面に垂直となり、羽根19は回転軸18を中心として、図中2点鎖線で示すように風車回転軸13の表面に倒れる方向に回転可能である。   The rotation shaft 18 is provided with a pin at the upper end of the cam shaft 16 in a direction perpendicular to the elliptical long side A of the cam 15 (see FIG. 2). FIG. 1 shows a state in which the elliptical long side A of the cam 15 is parallel to the windmill rotating shaft 13. In this state, the rotating shaft 18 is perpendicular to the paper surface, and the blade 19 is centered on the rotating shaft 18. As shown in the figure, it is possible to rotate in a direction that falls on the surface of the windmill rotating shaft 13.

図2に示すように、カム15の外周は、固定部20に一端が固定され、滑り軸受に支持された可動部21に他端が固定された第1バネ22により押圧されている。すなわち、無風の状態で、破線で示すように、羽根19の受風面は風車回転軸13に略適当な垂直状態となり、風車の受風量は最大となる。この時、カム15の楕円形短辺Bが風車回転軸13に平行な状態で、第1バネ22は押されず、弾性力が最小となる。そして、風が強い状態となると、羽根19はカム軸16が軸受17により回転可能に支持されているので、羽根19が回転し、カム軸16が回転し、カム15が図中実線で示す位置に向けて回転し、第1バネ22を圧縮する。   As shown in FIG. 2, the outer periphery of the cam 15 is pressed by a first spring 22 having one end fixed to the fixed portion 20 and the other end fixed to the movable portion 21 supported by the slide bearing. In other words, in the absence of wind, as indicated by the broken line, the wind receiving surface of the blade 19 is in a substantially appropriate vertical state with respect to the wind turbine rotating shaft 13, and the wind receiving amount of the wind turbine is maximized. At this time, the first spring 22 is not pushed and the elastic force is minimized while the elliptical short side B of the cam 15 is parallel to the wind turbine rotating shaft 13. When the wind is strong, the vane 19 is supported by the bearing 17 so that the cam shaft 16 is rotatable. Therefore, the vane 19 is rotated, the cam shaft 16 is rotated, and the cam 15 is indicated by a solid line in the figure. The first spring 22 is compressed.

ある強風状態で、図中実線で示すように、羽根19の受風面が風車回転軸13に略平行な状態となり、風車の受風量は最小となる。この時、カム15の楕円形長辺が風車回転軸13に平行な状態となり、第1バネ22が最も圧縮され、弾性力が最大となる。そして、図1に示すように、回転軸18は紙面に垂直となり、さらに風力が増加すると羽根19は回転軸18を中心として、風車回転軸13の表面に倒れる方向に回転可能となる。   In a certain strong wind state, as indicated by a solid line in the figure, the wind receiving surface of the blade 19 is substantially parallel to the wind turbine rotating shaft 13 and the wind receiving amount of the wind turbine is minimized. At this time, the elliptical long side of the cam 15 is in a state parallel to the wind turbine rotating shaft 13, the first spring 22 is most compressed, and the elastic force is maximized. As shown in FIG. 1, the rotation shaft 18 becomes perpendicular to the paper surface, and when the wind force further increases, the blades 19 can rotate around the rotation shaft 18 in a direction that falls on the surface of the windmill rotation shaft 13.

羽根19のブレード部分と基部19aとの間には可動リング25が装着され、可動リング25には軸25aを備え、この軸25aにアーム26の一端が回転可能に接続され、アーム26の他端は第2バネ28のすべり軸受に支持された可動部27に備えた軸27aに回転可能に接続されている。可動リング25は、アーム26に接続されているので、羽根19がカム軸16の回転に伴い回転しても、同じ位置に保たれる。従って、回転軸18が風車回転軸13に垂直でない角度では、羽根19は回転軸18の回りに回転できない。   A movable ring 25 is mounted between the blade portion of the blade 19 and the base portion 19a. The movable ring 25 includes a shaft 25a, and one end of an arm 26 is rotatably connected to the shaft 25a. Is rotatably connected to a shaft 27a provided in the movable portion 27 supported by the slide bearing of the second spring 28. Since the movable ring 25 is connected to the arm 26, the movable ring 25 is maintained at the same position even if the blade 19 rotates as the cam shaft 16 rotates. Therefore, the blade 19 cannot rotate around the rotation shaft 18 at an angle where the rotation shaft 18 is not perpendicular to the windmill rotation shaft 13.

カム15の楕円形長辺が風車回転軸13に平行な状態で、カム軸16の上端部に設けた回転軸18が風車回転軸13に垂直となり、羽根19はアーム26を介して第1バネ28の弾性力に抗して回転可能となる。すなわち、羽根19が回転軸18回りに図中矢印の向きに回転すると、アーム26が可動部27を図中の右側に移動させ、このため、第2バネ28が圧縮し、バネの弾性力が羽根19の回転軸18回りの回転を妨げる方向に作用する。   In a state where the elliptical long side of the cam 15 is parallel to the windmill rotating shaft 13, the rotating shaft 18 provided at the upper end portion of the camshaft 16 is perpendicular to the windmill rotating shaft 13, and the blade 19 is connected to the first spring via the arm 26. It can rotate against the elastic force of 28. That is, when the blade 19 rotates around the rotation shaft 18 in the direction of the arrow in the figure, the arm 26 moves the movable portion 27 to the right side in the figure, and therefore, the second spring 28 is compressed and the elastic force of the spring is increased. This acts in a direction that prevents rotation of the blade 19 around the rotation axis 18.

図3は、図1に示す風力発電機をその正面から見た図である。本発明の風力発電機は、幅広で且つ短い羽根を備えることが好ましい。これにより、小型で設置面積を小さくしつつ、且つ広い受風面積が得られ、0.5m/s程度の微風から発電可能であり、弱風でも高い発電出力が得られる。そして、カム15と第1バネ22による羽根19のカム軸16回りの角度調整機構と、アーム26と第2バネ28による羽根19の回転軸18回りの角度調整機構との2段階の風力に対応した羽根の自動回転制御により、微風から台風級の強風に風力が変動しても、トルクが一定に近い状態で運転でき、略一定の安定した発電出力を取り出すことができ、且つ台風級の強風下においてもその破損を防止できる。   FIG. 3 is a front view of the wind power generator shown in FIG. The wind power generator of the present invention preferably has wide and short blades. As a result, it is small and has a small installation area and a wide wind receiving area. Electric power can be generated from a slight wind of about 0.5 m / s, and a high power generation output can be obtained even in low winds. And it corresponds to the two-stage wind force of the angle adjustment mechanism around the cam shaft 16 of the blade 19 by the cam 15 and the first spring 22 and the angle adjustment mechanism around the rotation axis 18 of the blade 19 by the arm 26 and the second spring 28. With the automatic rotation control of the blades, even if the wind force fluctuates from light wind to typhoon class strong wind, it is possible to operate in a state where the torque is almost constant, to obtain a substantially constant stable power output, and typhoon class strong wind The damage can be prevented even underneath.

そして、風向が変化した場合に、羽根19がそれぞれバネ力に抗してカム軸16回りと回転軸18回りに回転可能であり、ポール11の上端は回転軸受35に支持され、ポール11の回りに回転可能であるので、風車回転軸13は自動的に風向と平行になるように向きが調整される。これにより、風車が風向に対して常に正対し、風向に対して最大効率点で運転される。   When the wind direction changes, the blades 19 can rotate about the cam shaft 16 and the rotation shaft 18 against the spring force, and the upper end of the pole 11 is supported by the rotary bearing 35, Therefore, the direction of the wind turbine rotating shaft 13 is automatically adjusted to be parallel to the wind direction. As a result, the windmill always faces the wind direction and is operated at the maximum efficiency point with respect to the wind direction.

次に、この風力発電機の動作例について説明する。まず無風状態では、羽根19の受風風力が極めて小さいため、図2の破線で示すように第1バネ22は最も伸びた状態となり、カム15は楕円形短辺Bが風車回転軸13に平行な状態となり、羽根19の受風面は風車回転軸13に垂直となる。そして、風力が増加すると、羽根19はカム軸16が軸受17により回転可能に支持されているので、カム15による第1バネ22のバネ力に抗してカム軸16の回りに回転する。すると、羽根19の等価的な受風面積が減少し、受風風力と第1バネのバネ力がバランスする羽根19のカム軸16回りの回転角度に自動的に調整される。   Next, an operation example of this wind power generator will be described. First, since the wind force received by the blades 19 is extremely small in the windless state, the first spring 22 is in the most extended state, as shown by the broken line in FIG. 2, and the cam 15 has an elliptical short side B parallel to the windmill rotating shaft 13. Thus, the wind receiving surface of the blade 19 is perpendicular to the wind turbine rotating shaft 13. When the wind force increases, the blade 19 rotates around the cam shaft 16 against the spring force of the first spring 22 by the cam 15 because the cam shaft 16 is rotatably supported by the bearing 17. Then, the equivalent wind receiving area of the blade 19 is reduced, and the rotation angle around the cam shaft 16 of the blade 19 is automatically adjusted so that the wind force of the received wind and the spring force of the first spring are balanced.

第1バネ22のバネ力は、風速10m/s程度で、カム15の楕円形長辺Aが風車回転軸13と略平行となる位置、すなわち、羽根19の受風面が風向と略平行となる位置(適当な角度)に設定することが好ましい。これにより、風速0.5m/s程度の微風から、風速10m/s程度の強風迄、風力に対応してカム軸16回りの羽根19の回転角度が自動的に調整され、風車回転軸13が略一定トルクで回転し、略一定の発電出力が得られる。   The spring force of the first spring 22 is a wind speed of about 10 m / s, and the position where the elliptical long side A of the cam 15 is substantially parallel to the wind turbine rotating shaft 13, that is, the wind receiving surface of the blade 19 is substantially parallel to the wind direction. It is preferable to set the position (appropriate angle). As a result, the rotational angle of the blade 19 around the cam shaft 16 is automatically adjusted according to the wind force from a light wind of about 0.5 m / s to a strong wind of about 10 m / s. It rotates at a substantially constant torque, and a substantially constant power generation output is obtained.

カム15の楕円形長辺Aが風車回転軸13と平行となる位置に到達すると、回転軸18のピンが風車回転軸13と垂直となり、羽根19は回転軸18の回りに回転可能となり、アーム26、可動リング25の軸25aを介して第2バネ28のバネ力を羽根19の回転軸18回りの回転制御に作用させることが可能となる。   When the elliptical long side A of the cam 15 reaches a position parallel to the windmill rotating shaft 13, the pin of the rotating shaft 18 becomes perpendicular to the windmill rotating shaft 13, and the blade 19 can rotate around the rotating shaft 18. 26, the spring force of the second spring 28 can be applied to the rotation control of the blade 19 around the rotation axis 18 through the shaft 25a of the movable ring 25.

第2バネ28のバネ力は、風速10m/s程度で最も伸びた状態となり羽根19の受風風力とバランスし、風速50m/s程度で最も圧縮した状態となり、羽根19の受風風力とバランスするバネ力を有することが好ましい。これにより、風速10m/s程度では、羽根19は回転軸18の回りに回転可能であるが、第2バネ28のバネ力により、風車回転軸13に対して羽根19を垂直位置に保持できる。   The spring force of the second spring 28 is in the most extended state at a wind speed of about 10 m / s and is balanced with the wind force received by the blades 19 and is most compressed at the wind speed of about 50 m / s and is balanced with the wind force received by the blades 19. It is preferable to have a spring force. Thereby, at a wind speed of about 10 m / s, the blade 19 can rotate around the rotation shaft 18, but the blade 19 can be held in a vertical position with respect to the windmill rotation shaft 13 by the spring force of the second spring 28.

風速10m/s程度を超す強風であると、風力を受けて羽根19は回転軸18の回りを第2バネ28のバネ力に抗して回転する。羽根19が回転軸18の回りに回転すると、等価的な受風面積が減少し、受風風力と第2バネのバネ力がバランスする角度に自動的に調整される。従って、風速10m/s程度を超え、風速50m/s程度の領域では、その風力に対応して、羽根19が傘をすぼめるように風車回転軸13に対して傾き、風車回転軸13が略一定トルクのもとで回転し、略一定の発電出力が得られるとともに、羽根19の破損を防止できる。   When the wind speed is higher than about 10 m / s, the blade 19 receives the wind force and rotates around the rotation shaft 18 against the spring force of the second spring 28. When the blade 19 rotates around the rotation shaft 18, the equivalent wind receiving area is reduced, and the blade 19 is automatically adjusted to an angle at which the wind receiving wind force and the spring force of the second spring are balanced. Accordingly, in a region where the wind speed exceeds about 10 m / s and the wind speed is about 50 m / s, the blades 19 are inclined with respect to the windmill rotating shaft 13 so as to squeeze the umbrella corresponding to the wind force, and the windmill rotating shaft 13 is substantially the same. While rotating under a constant torque, a substantially constant power generation output can be obtained, and damage to the blades 19 can be prevented.

なお、上述の例は、幅が広く且つ短い羽根を備えた風車についてのものであるが、幅が狭く且つ長い半径を有する羽根を備えた風車についても、本発明の2段階の羽根の回転制御を同様に適用することができる。   The above example is for a windmill having a wide and short blade, but also for a windmill having a blade having a narrow width and a long radius, the two-stage blade rotation control of the present invention. Can be applied as well.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明は、微風から強風に到るまで常に略一定の安定した発電出力が得られる風力発電機を提供するもので、風力発電の分野で利用可能である。   The present invention provides a wind power generator that can always obtain a substantially constant and stable power output from light winds to strong winds, and can be used in the field of wind power generation.

Claims (4)

風車回転軸と、
該風車回転軸の外周表面に近接して配置されたカムを備え、回転自在に支持されたカム軸と、
カム軸の上端部に配置され、前記カムの楕円形長辺に対して垂直な方向に配置された回転軸と、
前記カム軸の回りに該カム軸と共に回転可能であると共に、前記回転軸を中心として回転可能に、基部が前記カム軸の上端部に接続された羽根と、
前記カムの外周と接触する可動部を備えた第1バネと、
前記羽根とアームを介して接続する可動部を備えた第2バネと、を備えた風力発電機。
A windmill rotating shaft,
A camshaft provided with a cam disposed close to the outer peripheral surface of the windmill rotating shaft , and rotatably supported ;
A rotating shaft disposed at an upper end portion of the cam shaft and disposed in a direction perpendicular to the elliptical long side of the cam;
A blade having a base portion connected to an upper end portion of the camshaft so as to be rotatable with the camshaft around the camshaft and rotatable about the rotating shaft;
A first spring having a movable part that contacts the outer periphery of the cam;
A wind power generator comprising: a second spring having a movable part connected to the blade through an arm.
前記羽根は前記カム軸の回りに回転可能であり、且つ前記カムの楕円形長辺が前記風車回転軸と平行な状態で前記羽根が前記回転軸の回りに回転可能である、請求項1記載の風力発電機。 The blade is rotatable around the cam shaft, and the blade is rotatable around the rotation shaft with an elliptical long side of the cam parallel to the wind turbine rotation shaft. Wind generator. 前記羽根は、風力に対応した角度で前記カム軸回りに回転し、一定風力で前記回転軸が前記風車回転軸に対して垂直となり、それ以上の風力で前記羽根が前記回転軸の回りに回転する、請求項1記載の風力発電機。   The blades rotate around the cam shaft at an angle corresponding to wind force, the rotation shaft is perpendicular to the windmill rotation shaft at a constant wind force, and the blades rotate around the rotation shaft with more wind force. The wind power generator according to claim 1. 前記羽根は、風速10m/s以下で前記カム軸回りに回転し、それ以上の風力で前記羽根が前記回転軸の回りに回転する、請求項3記載の風力発電機。   4. The wind power generator according to claim 3, wherein the blade rotates around the cam shaft at a wind speed of 10 m / s or less, and the blade rotates around the rotation shaft when the wind force exceeds the wind speed.
JP2009111793A 2009-05-01 2009-05-01 Wind power generator Expired - Fee Related JP5326139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111793A JP5326139B2 (en) 2009-05-01 2009-05-01 Wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111793A JP5326139B2 (en) 2009-05-01 2009-05-01 Wind power generator

Publications (2)

Publication Number Publication Date
JP2010261344A JP2010261344A (en) 2010-11-18
JP5326139B2 true JP5326139B2 (en) 2013-10-30

Family

ID=43359643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111793A Expired - Fee Related JP5326139B2 (en) 2009-05-01 2009-05-01 Wind power generator

Country Status (1)

Country Link
JP (1) JP5326139B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526122B1 (en) * 2014-09-11 2015-06-04 권현기 Small turbine with adjustable rotation speed using plastic properties and centrifugal
CN107687393A (en) * 2017-09-30 2018-02-13 谢国敏 A kind of vertical wind-wheel wind turbine of variable sail leaf
KR102221312B1 (en) * 2019-12-27 2021-03-02 박경희 Wind turbine blade pitch control apparatus
KR102337988B1 (en) * 2019-12-27 2021-12-10 박경희 Windmill with pitch control apparatus
KR102263680B1 (en) * 2020-01-29 2021-06-09 부산대학교 산학협력단 Wind power generation with variable blade

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142671U (en) * 1979-03-31 1980-10-13
KR20020016681A (en) * 2000-08-26 2002-03-06 근 석 장 Wind power energy generating device
JP2004308498A (en) * 2003-04-03 2004-11-04 Mie Tlo Co Ltd Wind power generation device

Also Published As

Publication number Publication date
JP2010261344A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5326139B2 (en) Wind power generator
TW200944654A (en) Wind deflector for wind turbine and wind turbine incorporating same
US8480363B2 (en) Self-starting turbine with dual position vanes
KR20020016681A (en) Wind power energy generating device
JP2013507573A (en) Energy conversion assembly
JP2006207374A (en) Wind power generation device
JP2009114975A (en) Rotary blade attack angle variable mechanism for vertical blade type wind mill
JP2004060646A (en) Starting wind speed reducing device for wind mill
WO2011058970A1 (en) Wind-driven electric power-generating device
JP2010024881A (en) Impeller
JP5685699B2 (en) Variable pitch device
JP2010261431A (en) Flat-plate airfoil cantilever support system (fan system) multi-blade propeller-shaped wind turbine with blade angle adjusting function (also serving as flat-plate airfoil characteristic testing machine)
GB2433554A (en) Transverse axis wind or water turbine
RU2012102010A (en) WIND TURBINE
JP2014218975A (en) Wind-force power generator
US20170107972A1 (en) Vertical wind turbine
US20130028737A1 (en) Adjustable wind turbine generating device
KR100848385B1 (en) Wind power generator that improved pinwheel structure for plays
WO2011158256A2 (en) Self governing pitch control mechanism in vertical axis wind turbine
KR20110113290A (en) Apparatus for adding wind power of vertical wind power generation
JP2011085080A (en) Wind turbine
JP4361063B2 (en) Wind power generator
JP2008255977A (en) Wind power generator
JP2003254228A (en) Wind force energy collecting device and wind power generating device
JP2015197093A (en) Lift type wind turbine for vertical shaft type wind power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130613

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5326139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees