JP5323218B2 - Method for removing heavy metal ions from a liquid containing heavy metal ions - Google Patents

Method for removing heavy metal ions from a liquid containing heavy metal ions Download PDF

Info

Publication number
JP5323218B2
JP5323218B2 JP2012030125A JP2012030125A JP5323218B2 JP 5323218 B2 JP5323218 B2 JP 5323218B2 JP 2012030125 A JP2012030125 A JP 2012030125A JP 2012030125 A JP2012030125 A JP 2012030125A JP 5323218 B2 JP5323218 B2 JP 5323218B2
Authority
JP
Japan
Prior art keywords
heavy metal
metal ions
photocatalyst
cerium oxide
liquid containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012030125A
Other languages
Japanese (ja)
Other versions
JP2012152735A (en
Inventor
泰宣 井上
信雄 斉藤
一則 佐藤
洋 西山
和弘 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2012030125A priority Critical patent/JP5323218B2/en
Publication of JP2012152735A publication Critical patent/JP2012152735A/en
Application granted granted Critical
Publication of JP5323218B2 publication Critical patent/JP5323218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

本発明は、液中に存在する重金属イオンを光を照射することによって酸化あるいは還元し、重金属あるいは酸化物として析出させることによって除去することのできる光触媒を使用して重金属イオンを含有する液体から重金属イオンを除去する方法に関する。   The present invention uses a photocatalyst that can be removed by oxidizing or reducing heavy metal ions present in a liquid by irradiating light and precipitating them as heavy metals or oxides. The present invention relates to a method for removing ions.

近年、工場排水や、鉱山跡から溶出した鉛、カドミウム、6価クロム、ヒ素、水銀等の有害重金属による干潟、運河、河川、泥地等の汚染が深刻化しており、健全な生態系の保持の観点から早急な対策が求められている。
めっき工業や金属加工業から排出される重金属の捕集については、これまでに化学的にキレートを形成させることによって不溶化する方法、イオン交換法によって重金属を吸着剤により固定する方法、焼却炉で高温処理し重金属成分を分離する方法等により回収されている。これらの方法はいずれもシステムが複雑化するために処理コストが高くなるとともに、既に環境中に放出された重金属、特に低濃度の重金属については回収が困難であるという問題がある。
In recent years, pollution of tidal flats, canals, rivers, swamps, etc. by toxic heavy metals such as industrial wastewater and lead, cadmium, hexavalent chromium, arsenic, and mercury eluted from mine traces has become serious, maintaining a healthy ecosystem From this point of view, immediate measures are required.
Regarding the collection of heavy metals discharged from the plating industry and metal processing industry, the method of insolubilization by forming a chelate chemically, the method of fixing heavy metals with an adsorbent by ion exchange method, the high temperature in the incinerator It is recovered by a method of treating and separating heavy metal components. All of these methods have a problem that the processing cost becomes high due to the complexity of the system and that it is difficult to recover heavy metals that have already been released into the environment, particularly low-concentration heavy metals.

一方、光触媒については、光照射によって生じる電子で反応物を還元、正孔で反応物を酸化する能力を持つことが既に知られており、この技術を応用した有害物質の分解除去、光化学反応、および水分解反応などの化学反応プロセスは、環境およびエネルギー問題の観点から近年、注目を集めている。(例えば、非特許文献1,2及び特許文献1,2参照)   On the other hand, photocatalysts are already known to have the ability to reduce reactants with electrons generated by light irradiation and to oxidize reactants with holes. Decomposition and removal of harmful substances using this technology, photochemical reactions, In addition, chemical reaction processes such as water splitting reactions have recently attracted attention in terms of environmental and energy issues. (For example, see Non-Patent Documents 1 and 2 and Patent Documents 1 and 2.)

特開平7−144136号公報JP-A-7-144136 特開平6−320011号公報JP-A-6-320011

Chemical Engineering Science,Vol.47, No.15/16, p3857-3862(1992)Chemical Engineering Science, Vol.47, No.15 / 16, p3857-3862 (1992) 化学技術研究報告書、第81巻、第12号、p719−722(1986)Chemical Technology Research Report, Vol. 81, No. 12, p719-722 (1986)

上記の非特許文献1には、酸化チタンに白金を光電着した光触媒による鉛イオンの光析出が開示されている。この文献には、当該触媒に光を照射することにより水中の鉛濃度が減少することが報告されているが、犠牲試薬としてメタノールを用いている。光励起により生成した電子はメタノールを還元して水素を発生させ、正孔は鉛を酸化析出させる。しかしながら、この方法では助触媒として高価な貴金属を用いることや、犠牲試薬としてメタノールを必要とするといった問題点がある。   Non-Patent Document 1 discloses the photodeposition of lead ions by a photocatalyst in which platinum is photoelectrically deposited on titanium oxide. In this document, it is reported that the lead concentration in water decreases by irradiating the catalyst with light, but methanol is used as a sacrificial reagent. Electrons generated by photoexcitation reduce methanol to generate hydrogen, and holes oxidize and precipitate lead. However, this method has a problem that an expensive noble metal is used as a promoter and methanol is required as a sacrificial reagent.

非特許文献2には、酸化チタンを光触媒とした、鉛、マンガン、タリウム、コバルトイオン等の重金属イオンの光化学的沈殿法が開示されている。当該触媒は、非特許文献1に記載の触媒と同様に助触媒として白金を担持することによって、光照射により高い効率で重金属を光電着することができるものであるが、白金が存在しない場合には著しく電着速度が遅いことが報告されている。そして、白金を担持した酸化チタン触媒を用いることによって、光照射60分後において鉛の濃度は91%減少することが報告されている。   Non-Patent Document 2 discloses a photochemical precipitation method of heavy metal ions such as lead, manganese, thallium and cobalt ions using titanium oxide as a photocatalyst. The catalyst is capable of photo-depositing heavy metals with high efficiency by light irradiation by supporting platinum as a co-catalyst in the same manner as the catalyst described in Non-Patent Document 1, but when platinum is not present. Has been reported to be remarkably slow in electrodeposition. It has been reported that the use of a titanium oxide catalyst supporting platinum reduces the lead concentration by 91% after 60 minutes of light irradiation.

また、特許文献1及び2には、ガラス繊維からなる織布に貴金属を担持させずに酸化チタンを被覆した光触媒を用いることにより、液中の水銀、鉛、カドミウム、ヒ素、銅、マンガン、6価クロム等の重金属イオンを除去することが開示されている。   Patent Documents 1 and 2 disclose that mercury, lead, cadmium, arsenic, copper, manganese, 6 in a liquid is used by using a photocatalyst coated with titanium oxide on a woven fabric made of glass fiber without supporting a noble metal. The removal of heavy metal ions such as valent chromium is disclosed.

これらの文献に記載された光触媒はいずれも紫外光により励起される酸化チタンを用いるものである。したがって、環境中に存在する低濃度の重金属イオンを除去するには、さらに高い光触媒機能を有するとともに、白金等の高価な貴金属を必要としない低コストの光触媒の開発が求められていた。   All of the photocatalysts described in these documents use titanium oxide excited by ultraviolet light. Therefore, in order to remove low-concentration heavy metal ions present in the environment, development of a low-cost photocatalyst that has a higher photocatalytic function and does not require expensive noble metals such as platinum has been demanded.

したがって、本発明は白金等の貴金属を必要とせずに低コストでかつ効率よく、液中に存在する重金属イオンを光照射により酸化あるいは還元し、金属あるいは酸化物として析出させることによって除去することのできる光触媒を使用して重金属イオンを含有する液体から重金属イオンを除去する方法を提供することを目的とする。   Therefore, the present invention eliminates the need for removing a heavy metal ion present in a liquid by oxidizing or reducing it by light irradiation and precipitating it as a metal or an oxide without requiring a noble metal such as platinum. It is an object of the present invention to provide a method for removing heavy metal ions from a liquid containing heavy metal ions using a photocatalyst that can be used.

本発明では、上記課題を解決するために、次の構成1〜4を採用する。
1.重金属イオンを含有する液体を、(1)酸化セリウムに、(2)カルシウム、ストロンチウム、イットリウム、ランタンからなる群から選択された少なくとも1種の異種元素を、酸化セリウムを基準として0.1〜100モル%添加混合した後に、得られた前駆体を空気中で500〜1400℃の温度に加熱してなる酸化セリウム光触媒、と接触させて光照射することを特徴とする、重金属イオンを含有する液体から重金属イオンを除去する方法。
2.前記酸化セリウム光触媒が基材表面に薄膜状に被覆したものであることを特徴とする、1に記載の重金属イオンを含有する液体から重金属イオンを除去する方法。
3.前記基材が板状体であることを特徴とする、に記載の重金属イオンを含有する液体から重金属イオンを除去する方法。
4.前記基材が多孔質材料又は繊維状材料であることを特徴とする、に記載の重金属イオンを含有する液体から重金属イオンを除去する方法。
本発明において重金属を含有する液体とは、水又は水と水溶性有機溶媒との混合物中に、重金属イオンを溶解又は分散させた液体を意味する。
In the present invention, the following configurations 1 to 4 are employed to solve the above-described problems.
1. The liquid containing heavy metal ions is (1) cerium oxide, (2) at least one different element selected from the group consisting of calcium, strontium, yttrium, and lanthanum is 0.1 to 100 based on cerium oxide. A liquid containing heavy metal ions, which is irradiated with light after contacting with a cerium oxide photocatalyst obtained by heating the obtained precursor in air to a temperature of 500 to 1400 ° C. after addition and mixing by mol%. To remove heavy metal ions from the surface.
2. 2. The method for removing heavy metal ions from a liquid containing heavy metal ions according to 1, wherein the cerium oxide photocatalyst is coated on a substrate surface in a thin film shape .
3. 2. The method for removing heavy metal ions from a liquid containing heavy metal ions according to 2 , wherein the substrate is a plate-like body .
4). The method for removing heavy metal ions from a liquid containing heavy metal ions according to 2 , wherein the substrate is a porous material or a fibrous material .
In the present invention, the liquid containing a heavy metal means a liquid in which heavy metal ions are dissolved or dispersed in water or a mixture of water and a water-soluble organic solvent.

本発明で使用する酸化セリウム光触媒は、液中に存在する水銀、鉛、カドミウム、ヒ素、銅、マンガン、6価クロム等の重金属イオンを光照射により酸化あるいは還元し、金属あるいは酸化物として析出させることによって効率よく除去することができる。また、白金等の貴金属を必要とせずに低コストで光触媒を製造することが可能であるとともに、低濃度の重金属イオンも容易に捕集することができることから、水質系の浄化等に極めて有用である。   The cerium oxide photocatalyst used in the present invention oxidizes or reduces heavy metal ions such as mercury, lead, cadmium, arsenic, copper, manganese, hexavalent chromium, etc. present in the liquid, and deposits them as metal or oxide. Can be removed efficiently. In addition, it is possible to produce a photocatalyst at a low cost without the need for noble metals such as platinum, and it is possible to easily collect low-concentration heavy metal ions. is there.

図1は実施例及び比較例で得られた、異種元素M10mol%添加酸化セリウムのX線回折パターン(M=なし、Mg2+,Ca2+,Sr2+,Ba2+,Zn2+,Pb2+)を示す図である。FIG. 1 shows X-ray diffraction patterns (M = none, Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Pb 2+ ) of cerium oxide added with different elements M10 mol% obtained in Examples and Comparative Examples. FIG. 図2は実施例及び比較例で得られた、異種元素M10mol%添加酸化セリウムの可視紫外拡散反射スペクトル(M=なし、Mg2+,Ca2+,Sr2+,Ba2+,Zn2+,Pb2+)を示す図である。FIG. 2 shows visible ultraviolet diffuse reflection spectra (M = none, Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Pb 2+ ) of cerium oxide added with different elements M10 mol% obtained in Examples and Comparative Examples. FIG. 図3は実施例1で得られた、10mol%ストロンチウム添加酸化セリウムの発光分光スペクトルを示す図である。3 is a graph showing an emission spectrum of 10 mol% strontium-added cerium oxide obtained in Example 1. FIG. 図4は実施例1及び2で得られた、ストロンチウム、ランタン各10mol%添加酸化セリウムの光触媒活性を示す図である。FIG. 4 is a diagram showing the photocatalytic activity of cerium oxide added with 10 mol% of strontium and lanthanum obtained in Examples 1 and 2. 図5は実施例3で得られた、ストロンチウムの添加量が異なる酸化セリウム光触媒の光触媒活性を示す図である。FIG. 5 is a graph showing the photocatalytic activity of the cerium oxide photocatalysts obtained in Example 3 with different strontium addition amounts. 図6は実施例1、2及び4で得られた、ストロンチウム、ランタン、イットリウム、カルシウム各10mol%添加酸化セリウムの光触媒活性を示す図である。FIG. 6 is a graph showing the photocatalytic activity of strontium, lanthanum, yttrium and calcium added at 10 mol% of cerium oxide obtained in Examples 1, 2 and 4. 図7は実施例5で測定した、ストロンチウム10mol%添加酸化セリウムの光触媒活性を示す図である。FIG. 7 is a graph showing the photocatalytic activity of cerium oxide added with 10 mol% of strontium, measured in Example 5. 図8は実施例6で測定した、ストロンチウム10mol%添加酸化セリウムの光触媒活性を示す図である。FIG. 8 is a graph showing the photocatalytic activity of cerium oxide added with 10 mol% of strontium, measured in Example 6.

本発明で使用する光触媒を製造する好ましい手順の例について、以下に説明する。
1)はじめに、粉末状の(1)酸化セリウムと(2)カルシウム、ストロンチウム、イットリウム、ランタンからなる群から選択された異種元素を含む化合物の1種又は2種以上を、(2)異種元素の添加量が(1)酸化セリウムを基準として0.1〜100モル%の範囲で混合して前駆体を得る。
2)次に、前駆体を空気中、500〜1400℃の温度に加熱する。
An example of a preferable procedure for producing the photocatalyst used in the present invention will be described below.
1) First, one or more kinds of compounds containing different elements selected from the group consisting of (1) cerium oxide and (2) calcium, strontium, yttrium, and lanthanum in the form of powder; (2) The precursor is obtained by mixing in an amount of (1) 0.1 to 100 mol% based on cerium oxide.
2) Next, the precursor is heated to a temperature of 500 to 1400 ° C. in air.

上記1)の別法として、1’)(1)硝酸セリウムあるいは塩化セリウムと、(2)ストロンチウム、カルシウム、イットリウム、ランタンからなる群から選択された異種元素を含む水溶性化合物を、(2)異種元素の添加量が(1)セリウム化合物を基準として0.1〜100モル%の範囲で水に溶解させ、pHを7以上に調製して得られた沈殿を前駆体とすることもできる。   As another method of 1), a water-soluble compound containing 1 ′), (1) cerium nitrate or cerium chloride, and (2) a heterogeneous element selected from the group consisting of strontium, calcium, yttrium, and lanthanum, (2) Precipitation obtained by dissolving the water in the range of 0.1 to 100 mol% based on the cerium compound and adding pH of 7 or more can be used as a precursor.

(2)異種元素の添加量は、(1)セリウム化合物を基準として0.1〜100モル%の範囲で選択することができるが、通常は1〜50モル%、特に5〜20モル%程度とすることが好ましい。
得られたセリウム光触媒は、粉末状で処理対象とする液中に分散させて使用することができる。また、板状体、多孔質材料、繊維状材料等の基材表面に、光触媒を薄膜状に被覆したものを、処理対象とする重金属イオンを含有する液体と接触させて使用しても良い。粉末状の光触媒を液中に分散させて使用する場合には、光照射の際に光触媒反応が液体の表面でのみ進行することがあり、また処理後に光触媒を分離する工程が必要となる。これに対して、基材表面に光触媒を被覆したものでは、このような問題点が解消されるので好ましい。
(2) The addition amount of the different element can be selected in the range of 0.1 to 100 mol% based on (1) the cerium compound, but usually 1 to 50 mol%, particularly about 5 to 20 mol%. It is preferable that
The obtained cerium photocatalyst can be used by being dispersed in a liquid to be treated in a powder form. Moreover, you may use what coat | covered the photocatalyst on the surface of base materials, such as a plate-shaped body, a porous material, and a fibrous material, with the liquid containing the heavy metal ion made into a process target. When a powdery photocatalyst is used dispersed in a liquid, the photocatalytic reaction may proceed only on the surface of the liquid during light irradiation, and a step of separating the photocatalyst after the treatment is required. On the other hand, it is preferable to coat the surface of the substrate with a photocatalyst because such problems are solved.

板状体の基材としては、例えば各種のセラミックス板、ガラス板、金属板、耐熱性プラスチック板等を使用することができる。
また、多孔質基材としては、各種のゼオライト類を使用することができる。好ましい、多孔質基材としては、例えばKaolin、ZSM-5、Mordenite、Faujasite等が挙げられる。
さらに、繊維状基材としては、ガラス繊維、セラミックス繊維、金属繊維、炭素繊維等の耐熱性繊維を単繊維、織布、不織布等の形態で使用することができる。
As the base material of the plate-like body, for example, various ceramic plates, glass plates, metal plates, heat resistant plastic plates and the like can be used.
Various types of zeolites can be used as the porous substrate. Preferred examples of the porous substrate include Kaolin, ZSM-5, Mordenite, and Faujasite.
Furthermore, as the fibrous substrate, heat-resistant fibers such as glass fibers, ceramic fibers, metal fibers, and carbon fibers can be used in the form of single fibers, woven fabrics, nonwoven fabrics, and the like.

次に本発明で使用する光触媒を製造する方法、及び得られた光触媒を使用して重金属イオンを含有する液体から重金属イオンを除去する方法、について実施例によりさらに詳細に説明するが、以下の具体例は本発明を限定するものではない。
以下の例では、光触媒の性能は光照射前後の水溶液中の重金属イオンの濃度を、ICP発光分析法によりつぎのようにして測定することにより評価した。
(ICP発光分析法)
ICP発光分光装置(島津社製ICPS−7510)を用い、重金属を含む水溶液をアルゴンプラズマ中に噴霧し、そこから放出される元素固有の光の波長の強度を計測した。既知濃度の重金属イオンを含む溶液を標準試料とし、その強度と比較することにより該水溶液の重金属イオン濃度を決定した。
Next, a method for producing a photocatalyst used in the present invention and a method for removing heavy metal ions from a liquid containing heavy metal ions using the obtained photocatalyst will be described in more detail with reference to the following examples. The examples are not intended to limit the invention.
In the following examples, the performance of the photocatalyst was evaluated by measuring the concentration of heavy metal ions in the aqueous solution before and after the light irradiation by ICP emission analysis as follows.
(ICP emission spectrometry)
Using an ICP emission spectrometer (ICPS-7510 manufactured by Shimadzu Corp.), an aqueous solution containing heavy metal was sprayed into argon plasma, and the intensity of the wavelength of light unique to the element emitted therefrom was measured. A solution containing a known concentration of heavy metal ions was used as a standard sample, and the concentration of the heavy metal ions in the aqueous solution was determined by comparison with the strength.

(実施例1)
粉末状の酸化セリウムと炭酸ストロンチウムを、セリウム元素に対してストロンチウム元素が10%のモル比となるように混合し、大気中で、1000℃の温度で10時間焼成して、ストロンチウム10モル%添加酸化セリウム光触媒を作製した。
得られた光触媒のX線回折パターンを図1に、紫外可視拡散反射スペクトルを図2に、そして発光スペクトルを図3に示す。
(Example 1)
Powdered cerium oxide and strontium carbonate are mixed so that the strontium element has a molar ratio of 10% with respect to the cerium element, calcined in air at a temperature of 1000 ° C. for 10 hours, and added with 10 mol% of strontium. A cerium oxide photocatalyst was prepared.
The X-ray diffraction pattern of the obtained photocatalyst is shown in FIG. 1, the ultraviolet-visible diffuse reflection spectrum is shown in FIG. 2, and the emission spectrum is shown in FIG.

図1のX線回折パターンによると、ストロンチウム添加酸化セリウムは酸化セリウムと同様な結晶構造を有し、ほぼ単一相であること、および高い結晶性を有することが判る。また、図2の可視紫外拡散反射スペクトルから、ストロンチウムを添加した酸化セリウムの光吸収特性は、酸化セリウムとほぼ一致し、吸収端は450nm付近であることが判る。そして、図3の発光スペクトルから、ストロンチウムを添加することにより、470nm付近に発光ピークが出現し、その励起スペクトルの最大波長は275nmであることが判る。   According to the X-ray diffraction pattern of FIG. 1, it can be seen that strontium-doped cerium oxide has a crystal structure similar to that of cerium oxide, is almost single phase, and has high crystallinity. Further, from the visible ultraviolet diffuse reflection spectrum of FIG. 2, it can be seen that the light absorption characteristics of cerium oxide to which strontium is added are almost the same as cerium oxide, and the absorption edge is around 450 nm. From the emission spectrum of FIG. 3, it can be seen that by adding strontium, an emission peak appears in the vicinity of 470 nm, and the maximum wavelength of the excitation spectrum is 275 nm.

(光触媒の活性試験)
硝酸鉛又は硫酸鉛を純水に溶解して100ppmの濃度の鉛イオンを含む水溶液を調製した。石英窓を取り付けた反応セルに、この鉛イオンを含む水溶液30mLと上記で得られた粉末状のストロンチウム添加酸化セリウム光触媒0.25gを収容し、マグネチックスターラーにより攪拌懸濁させた。この懸濁液に、250W水銀キセノンランプを用いて光を3時間照射した。懸濁液を遠心分離することにより粉末光触媒を分離し、光照射前後の鉛イオンの濃度をICP発光分析法に求めて、その結果を図4に示した。
図4にみられるように、光照射前の水溶液中の鉛イオンの濃度は仕込み量に近い103.21ppmであったが、光照射後は0.00ppmに低下した。また、光照射前の光触媒は白色を呈していたが、光照射後は褐色となり光触媒表面に鉛を含む化合物が光析出したことが確認された。通常の紫外線可視拡散反射スペクトル法及びX線光電子分光法によって、光触媒表面に酸化鉛が存在することが判明した。
(Photocatalytic activity test)
Lead nitrate or lead sulfate was dissolved in pure water to prepare an aqueous solution containing 100 ppm of lead ions. In a reaction cell equipped with a quartz window, 30 mL of the aqueous solution containing lead ions and 0.25 g of the powdered strontium-added cerium oxide photocatalyst obtained above were accommodated and suspended by stirring with a magnetic stirrer. This suspension was irradiated with light for 3 hours using a 250 W mercury xenon lamp. The powder photocatalyst was separated by centrifuging the suspension, and the concentration of lead ions before and after the light irradiation was determined by ICP emission analysis. The result is shown in FIG.
As seen in FIG. 4, the concentration of lead ions in the aqueous solution before light irradiation was 103.21 ppm, which was close to the charged amount, but decreased to 0.00 ppm after light irradiation. Moreover, although the photocatalyst before light irradiation was white, it became brown after light irradiation, and it was confirmed that the compound containing lead photodeposited on the photocatalyst surface. It was found that lead oxide was present on the surface of the photocatalyst by ordinary ultraviolet visible diffuse reflection spectroscopy and X-ray photoelectron spectroscopy.

光照射によって鉛イオンが酸化析出することを実証するために、対照として上記で得られた粉末状のストロンチウム添加酸化セリウム光触媒0.25gを鉛イオン100ppmを含む水溶液30mLに懸濁させて、光照射を行わずに3時間攪拌した後に鉛イオンの濃度を測定した結果を図4に示した。
図4にみられるように、水溶液中の鉛イオンは光触媒上に吸着し、その濃度は34.01ppmになった。また、光照射を行わない場合には、光触媒の色に変化はみられず白色のままであった。
In order to demonstrate that lead ions are oxidized and precipitated by light irradiation, 0.25 g of the powdered strontium-doped cerium oxide photocatalyst obtained above as a control is suspended in 30 mL of an aqueous solution containing 100 ppm of lead ions, and light irradiation is performed. The result of measuring the concentration of lead ions after stirring for 3 hours without performing was shown in FIG.
As seen in FIG. 4, the lead ions in the aqueous solution were adsorbed on the photocatalyst, and the concentration thereof was 34.01 ppm. Moreover, when light irradiation was not performed, the color of the photocatalyst did not change and remained white.

(実施例2)
実施例1において、炭酸ストロンチウムに代えて酸化ランタンを用いた以外は実施例1と同様にして、ランタン10モル%添加酸化セリウム光触媒を作製した。この光触媒を用いて実施例1と同様にして3時間光照射して活性試験を行ったところ、鉛イオンの濃度は0.22ppmに低下し、光触媒の色は褐色に変化した。これに対して、光照射を行わずに3時間攪拌したものでは鉛イオンの濃度は25.86ppmであり、光触媒の色は変化しなかった。(図4参照)
(Example 2)
In Example 1, a cerium oxide photocatalyst added with 10 mol% lanthanum was prepared in the same manner as in Example 1 except that lanthanum oxide was used instead of strontium carbonate. Using this photocatalyst, the activity test was carried out by irradiating with light for 3 hours in the same manner as in Example 1. As a result, the lead ion concentration decreased to 0.22 ppm, and the color of the photocatalyst changed to brown. In contrast, in the case of stirring for 3 hours without light irradiation, the concentration of lead ions was 25.86 ppm, and the color of the photocatalyst did not change. (See Figure 4)

(比較例1)
比較のために、光触媒として異種元素を添加していない酸化セリウム及び市販の酸化チタン(Degussa P-25)を用いて、実施例1と同様にして光触媒の活性試験を行った結果を図4に示した。
図4にみられるように、異種元素を添加していない酸化セリウムでは、光触媒表面への吸着により、光照射をせずに3時間攪拌したものでは鉛イオンの濃度は97.20ppm、光照射をしたものでは98.34ppmとなり、光照射による鉛イオンの濃度の低下はみられなかった。また、光照射後にも光触媒の色の変化は認められなかった。
また、酸化チタンでは、光触媒表面への吸着により、光照射をせずに3時間攪拌したものでは鉛イオンの濃度は76.35ppm、光照射をしたものでは76.70ppmとなり、光照射によって鉛イオンの濃度は殆ど変化しなかった。また、光照射後にも光触媒の色の変化は認められず、白色のままであった。
(Comparative Example 1)
For comparison, FIG. 4 shows the results of a photocatalytic activity test conducted in the same manner as in Example 1 using cerium oxide to which a different element was not added as a photocatalyst and commercially available titanium oxide (Degussa P-25). Indicated.
As shown in FIG. 4, in the case of cerium oxide not added with different elements, the lead ion concentration is 97.20 ppm and the light irradiation is carried out by stirring for 3 hours without light irradiation due to adsorption to the photocatalyst surface. As a result, the concentration was 98.34 ppm, and no decrease in the lead ion concentration due to light irradiation was observed. Further, no change in the color of the photocatalyst was observed after the light irradiation.
In addition, in titanium oxide, the concentration of lead ions is 76.35 ppm when the mixture is stirred for 3 hours without light irradiation due to adsorption to the surface of the photocatalyst, and 76.70 ppm when the light irradiation is performed. The concentration of was almost unchanged. In addition, no change in the color of the photocatalyst was observed even after light irradiation, and it remained white.

(実施例3)
実施例1において、酸化セリウムに対する炭酸ストロンチウムの混合量を変えた以外は実施例1と同様にして、ストロンチウムの添加量が20モル%及び50モル%のストロンチウム添加酸化セリウム光触媒を作製した。これらの光触媒を使用して活性試験を行った結果を、実施例1で得られたストロンチウムの添加量が10モル%の酸化セリウム光触媒による結果とともに図5に示した。
ストロンチウムを各10、20、50モル%添加した酸化セリウム光触媒では、光照射30分後に鉛イオンの濃度の濃度はそれぞれ20.08ppm、0.00ppm,14.78ppmに減少し、ストロンチウムの添加量が20モル%の光触媒で最も高い鉛イオンの濃度の低下(光析出効果)が認められた。また、いずれの光触媒においても、光照射120分後には鉛イオンの濃度は0.00ppmになった。
(Example 3)
In Example 1, a strontium-added cerium oxide photocatalyst having 20 mol% and 50 mol% of strontium added was prepared in the same manner as in Example 1 except that the amount of strontium carbonate mixed with cerium oxide was changed. The results of the activity test using these photocatalysts are shown in FIG. 5 together with the results obtained with the cerium oxide photocatalyst having an addition amount of strontium of 10 mol% obtained in Example 1.
In the cerium oxide photocatalyst added with 10, 20, and 50 mol% of strontium, the concentration of lead ions decreased to 20.08 ppm, 0.00 ppm, and 14.78 ppm after 30 minutes of light irradiation, respectively. The highest decrease in lead ion concentration (photodeposition effect) was observed with 20 mol% of the photocatalyst. Further, in any photocatalyst, the concentration of lead ions became 0.00 ppm after 120 minutes of light irradiation.

(実施例4)
実施例1において、炭酸ストロンチウムに代えてそれぞれ酸化イットリウム、及び炭酸カルシウムを用いた以外は実施例1と同様にして、イットリウム10モル%添加酸化セリウム光触媒及びカルシウム10モル%添加酸化セリウム光触媒を作製した。これらの光触媒、並びに実施例1で得られたストロンチウム10モル%添加酸化セリウム光触媒及び実施例2で得られたランタン10モル%添加酸化セリウム光触媒を用いて活性試験を行った結果を図6に示した。いずれの光触媒においても、光照射時間の経過とともに顕著な鉛イオン濃度の低下がみられ、光触媒の色は褐色に変化した。
Example 4
In Example 1, except that yttrium oxide and calcium carbonate were used in place of strontium carbonate, respectively, yttrium 10 mol% added cerium oxide photocatalyst and calcium 10 mol% added cerium oxide photocatalyst were prepared in the same manner as in Example 1. . FIG. 6 shows the results of an activity test using these photocatalysts, the strontium-added cerium oxide photocatalyst obtained in Example 1, and the lanthanum-added cerium oxide photocatalyst obtained in Example 2. It was. In any of the photocatalysts, the lead ion concentration significantly decreased with the lapse of the light irradiation time, and the color of the photocatalyst changed to brown.

(比較例2)
実施例1において、炭酸ストロンチウムに代えてそれぞれランタン以外のランタノイド元素14種、アクチノイド元素15種、インジウム、ニッケル、銅、及び亜鉛の各酸化物を用いた以外は実施例1と同様にして、これらの異種元素を10モル%添加した酸化セリウム光触媒を作製した。これらの光触媒を使用して同様に活性試験を行ったが、光照射による鉛イオンの捕集効果は認められなかった。
(Comparative Example 2)
In Example 1, in place of strontium carbonate, 14 kinds of lanthanoid elements other than lanthanum, 15 kinds of actinoid elements, oxides of indium, nickel, copper, and zinc were used in the same manner as in Example 1, A cerium oxide photocatalyst added with 10 mol% of these different elements was prepared. Although the activity test was similarly performed using these photocatalysts, the lead ion collection effect by light irradiation was not recognized.

(実施例5)
硝酸カドミウム又は硫酸カドミウムを純水に溶解することにより50ppmの濃度のカドミウムイオンを含む水溶液を調製した。この水溶液を試験液として、実施例1で得られたストロンチウム10モル%添加酸化セリウム光触媒を用いて、実施例1と同様にして活性試験を行った結果を図7に示した。
図7にみられるように、光照射を3時間行った場合には、カドミウムイオン濃度は9.45ppmに低下した。これに対して、光照射を行わずに攪拌のみを3時間行った場合には、カドミウムイオンの濃度は47.43ppmであった。
(Example 5)
An aqueous solution containing cadmium ions at a concentration of 50 ppm was prepared by dissolving cadmium nitrate or cadmium sulfate in pure water. Using this aqueous solution as a test solution, using the strontium 10 mol% added cerium oxide photocatalyst obtained in Example 1, the results of an activity test similar to Example 1 are shown in FIG.
As seen in FIG. 7, the cadmium ion concentration decreased to 9.45 ppm when light irradiation was performed for 3 hours. On the other hand, when only stirring was performed for 3 hours without light irradiation, the concentration of cadmium ions was 47.43 ppm.

(実施例6)
硝酸鉛又は硫酸鉛、並びに硝酸カドミウム又は硫酸カドミウムを純水に溶解することにより鉛イオン50ppm及びカドミウムイオン50ppmを含む水溶液を調製した。この混合水溶液を試験液として、実施例1で得られたストロンチウム10モル%添加酸化セリウム光触媒を用いて、実施例1と同様にして活性試験を行った結果を図8に示した。
図8にみられるように、光照射を3時間行うことにより、鉛イオン濃度は0.00ppm、カドミウムイオン濃度は2.32ppmに低下し、混合試験液に対しても光捕集効果が認められた。
(Example 6)
An aqueous solution containing 50 ppm of lead ions and 50 ppm of cadmium ions was prepared by dissolving lead nitrate or lead sulfate, and cadmium nitrate or cadmium sulfate in pure water. Using this mixed aqueous solution as a test solution, using the cerium oxide photocatalyst with 10 mol% strontium obtained in Example 1, the results of an activity test similar to Example 1 are shown in FIG.
As shown in FIG. 8, by performing light irradiation for 3 hours, the lead ion concentration is lowered to 0.00 ppm and the cadmium ion concentration is reduced to 2.32 ppm, and the light collection effect is recognized also for the mixed test solution. It was.

(実施例7)
6価クロムイオン50ppm、ヒ素イオン50ppm、及び水銀イオン50ppmを含む混合水溶液を試験液として、実施例1で得られたストロンチウム10モル%添加酸化セリウム光触媒を用いて、実施例1と同様にして活性試験を行ったところ、3時間の光照射により各重金属イオンの濃度は数ppm以下に低下した。
(Example 7)
Using a mixed aqueous solution containing 50 ppm of hexavalent chromium ions, 50 ppm of arsenic ions, and 50 ppm of mercury ions as a test solution, activity was carried out in the same manner as in Example 1 using the cerium oxide photocatalyst added with 10 mol% of strontium obtained in Example 1. When the test was conducted, the concentration of each heavy metal ion was lowered to several ppm or less by light irradiation for 3 hours.

(実施例8)
実施例1で得られたストロンチウム10モル%添加酸化セリウム光触媒を、水ガラス: 光触媒が1:100の重量比で混合し、縦30cm、横30cm、厚さ1mmのセラミックス板(シリカーアルミナ複合材料)の表面に塗布し、大気中、約1000℃で10時間焼成することによって、セラミックス板の表面に厚さ約10μmの光触媒膜を形成した。また、同様にして、縦30cm、横30cm、厚さ1mmのガラス板の表面に厚さ約10μmの光触媒膜を形成した。
これらの光触媒材料を鉛イオンを含有する水溶液に浸して、250Wの高圧水銀ランプを用いて光を照射したところ、水溶液中の鉛イオンの濃度は時間の経過とともに低下し、鉛イオンの光捕集効果が認められた。
(Example 8)
The strontium 10 mol% added cerium oxide photocatalyst obtained in Example 1 was mixed with water glass: photocatalyst at a weight ratio of 1: 100, and a ceramic plate (silica-alumina composite material having a length of 30 cm, a width of 30 cm, and a thickness of 1 mm). ) And baked in the atmosphere at about 1000 ° C. for 10 hours to form a photocatalytic film having a thickness of about 10 μm on the surface of the ceramic plate. Similarly, a photocatalyst film having a thickness of about 10 μm was formed on the surface of a glass plate having a length of 30 cm, a width of 30 cm, and a thickness of 1 mm.
When these photocatalyst materials are immersed in an aqueous solution containing lead ions and irradiated with light using a 250 W high-pressure mercury lamp, the concentration of lead ions in the aqueous solution decreases with time, and light collection of lead ions occurs. The effect was recognized.

(実施例9)
セリウム元素に対してストロンチウム元素が10モル%になるように、硝酸セリウム及び硝酸ストロンチウムを純水に対して10重量%になるように溶解し、得られた水溶液を多孔質材料であるゼオライト(Kaolin, SIGMA-ALDRICH)に対して5重量%の濃度で含浸させた後に、大気中、1000℃で10時間焼成した。
これらの光触媒材料を鉛イオンを含有する水溶液に浸して、250Wの高圧水銀ランプを用いて光を照射したところ、水溶液中の鉛イオンの濃度は時間の経過とともに低下し、鉛イオンの光捕集効果が認められた。
Example 9
Cerium nitrate and strontium nitrate are dissolved so as to be 10% by weight with respect to pure water so that the strontium element is 10 mol% with respect to the cerium element, and the resulting aqueous solution is used as a porous material zeolite (Kaolin , SIGMA-ALDRICH), and then baked at 1000 ° C. for 10 hours in the atmosphere.
When these photocatalyst materials are immersed in an aqueous solution containing lead ions and irradiated with light using a 250 W high-pressure mercury lamp, the concentration of lead ions in the aqueous solution decreases with time, and light collection of lead ions occurs. The effect was recognized.

本発明で得られる異種元素を添加した酸化セリウム光触媒は、重金属イオンを含有する液体から重金属イオンを低コストで極めて効率良く捕集することができるものであり、重金属で汚染された水質系の浄化等に有用な材料となる。


The cerium oxide photocatalyst added with different elements obtained in the present invention is capable of collecting heavy metal ions from a liquid containing heavy metal ions very efficiently at a low cost, and purifies a water quality system contaminated with heavy metals. It becomes a useful material for such as.


Claims (4)

重金属イオンを含有する液体を、(1)酸化セリウムに、(2)カルシウム、ストロンチウム、イットリウム、ランタンからなる群から選択された少なくとも1種の異種元素を、酸化セリウムを基準として0.1〜100モル%添加混合した後に、得られた前駆体を空気中で500〜1400℃の温度に加熱してなる酸化セリウム光触媒、と接触させて光照射することを特徴とする、重金属イオンを含有する液体から重金属イオンを除去する方法。 A liquid containing heavy metal ions is (1) cerium oxide, (2) at least one different element selected from the group consisting of calcium, strontium, yttrium, and lanthanum is 0.1 to 100 based on cerium oxide. A liquid containing heavy metal ions, which is irradiated with light after contacting with a cerium oxide photocatalyst obtained by heating the obtained precursor in air to a temperature of 500 to 1400 ° C. after addition and mixing by mol%. To remove heavy metal ions from the surface. 前記酸化セリウム光触媒が基材表面に薄膜状に被覆したものであることを特徴とする、請求項1に記載の重金属イオンを含有する液体から重金属イオンを除去する方法。 2. The method for removing heavy metal ions from a liquid containing heavy metal ions according to claim 1, wherein the cerium oxide photocatalyst is formed by coating a substrate surface in a thin film shape . 前記基材が板状体であることを特徴とする、請求項2に記載の重金属イオンを含有する液体から重金属イオンを除去する方法。 The method for removing heavy metal ions from a liquid containing heavy metal ions according to claim 2 , wherein the substrate is a plate-like body . 前記基材が多孔質材料又は繊維状材料であることを特徴とする、請求項2に記載の重金属イオンを含有する液体から重金属イオンを除去する方法。 3. The method for removing heavy metal ions from a liquid containing heavy metal ions according to claim 2 , wherein the substrate is a porous material or a fibrous material .
JP2012030125A 2012-02-15 2012-02-15 Method for removing heavy metal ions from a liquid containing heavy metal ions Expired - Fee Related JP5323218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030125A JP5323218B2 (en) 2012-02-15 2012-02-15 Method for removing heavy metal ions from a liquid containing heavy metal ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030125A JP5323218B2 (en) 2012-02-15 2012-02-15 Method for removing heavy metal ions from a liquid containing heavy metal ions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007267277A Division JP2009095695A (en) 2007-10-13 2007-10-13 Cerium oxide photocatalyst for removing heavy metal ion in liquid

Publications (2)

Publication Number Publication Date
JP2012152735A JP2012152735A (en) 2012-08-16
JP5323218B2 true JP5323218B2 (en) 2013-10-23

Family

ID=46835055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030125A Expired - Fee Related JP5323218B2 (en) 2012-02-15 2012-02-15 Method for removing heavy metal ions from a liquid containing heavy metal ions

Country Status (1)

Country Link
JP (1) JP5323218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420186B2 (en) 2019-03-25 2022-08-23 King Fahd University Of Petroleum And Minerals Ca-Y-carbonate nanosheets, their use, and synthesis

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359667B2 (en) * 1992-10-12 2002-12-24 日本無機株式会社 Photocatalyst for removing heavy metal ions in liquid and apparatus for removing heavy metal ions in liquid
JP4075482B2 (en) * 2001-08-08 2008-04-16 住友金属鉱山株式会社 Photocatalyst having catalytic activity even in the visible light region
JP2003171601A (en) * 2001-12-03 2003-06-20 Sumitomo Metal Mining Co Ltd Antibacterial photocatalytic coating material and antibacterial photocatalytic member
JP2006239507A (en) * 2005-03-01 2006-09-14 Kobe Steel Ltd Organic arsenic compound-containing water treatment method and apparatus
JP2007260667A (en) * 2006-03-01 2007-10-11 Nissan Motor Co Ltd Photocatalyst activation system and method for activating photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420186B2 (en) 2019-03-25 2022-08-23 King Fahd University Of Petroleum And Minerals Ca-Y-carbonate nanosheets, their use, and synthesis

Also Published As

Publication number Publication date
JP2012152735A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
Ahmadpour et al. A hierarchical Ca/TiO 2/NH 2-MIL-125 nanocomposite photocatalyst for solar visible light induced photodegradation of organic dye pollutants in water
Li et al. Mn2O3 as an electron shuttle between peroxymonosulfate and organic pollutants: the dominant role of surface reactive Mn (IV) species
Nasirian et al. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review
Wang et al. Accelerated Fenton-like kinetics by visible-light-driven catalysis over iron (iii) porphyrin functionalized zirconium MOF: effective promotion on the degradation of organic contaminants
Lim et al. How g-C3N4 works and is different from TiO2 as an environmental photocatalyst: mechanistic view
Shi et al. Few layered BiOBr with expanded interlayer spacing and oxygen vacancies for efficient decomposition of real oil field produced wastewater
Wang et al. Facile synthesis of a Ag (I)-doped coordination polymer with enhanced catalytic performance in the photodegradation of azo dyes in water
Alam et al. Synthesis of Co doped ZnWO4 for simultaneous oxidation of RhB and reduction of Cr (VI) under UV-light irradiation
CN105452169B (en) Photochemical catalyst, Its Preparation Method And Use based on BiOX
JP2010069449A (en) Photocatalyst for removing heavy metal ion in liquid
Behpour et al. Considering photocatalytic activity of N/F/S-doped TiO2 thin films in degradation of textile waste under visible and sunlight irradiation
Dou et al. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: Efficiency enhancement and mechanisms
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JP2016536129A (en) Photocatalytic system promoted by constrained transition metals for efficient hydrogen release
Lv et al. Visible-light-induced reduction of hexavalent chromium utilizing cobalt phosphate (Co-Pi) sensitized inverse opal TiO 2 as a photocatalyst
TW201136664A (en) Process for the surface-modification of flyash and industrial applications thereof
Žerjav et al. Sputtered vs. sol-gel TiO2-doped films: Characterization and assessment of aqueous bisphenol A oxidation under UV and visible light radiation
CN103721753B (en) A kind of visible light-responded and optionally solid photocatalysts and preparation method thereof and application
Liu et al. Enhanced activation of peroxymonosulfate by a floating Cu0-MoS2/C3N4 photocatalyst under visible-light assistance for tetracyclines degradation and Escherichia coli inactivation
Li et al. The synergistic photocatalytic effects of surface-modified gC 3 N 4 in simple and complex pollution systems based on a macro-thermodynamic model
Salgado et al. Photocatalysis and photodegradation of pollutants
Hailili et al. Tuning the microstructures of ZnO to enhance photocatalytic NO removal performances
Xiong et al. Nitrogen-doped TiO2/nitrogen-containing biochar composite catalyst as a photocatalytic material for the decontamination of aqueous organic pollutants
Jiang et al. Tuning Band Gap in Fe-Doped g-C3N4 by Zn for Enhanced Fenton-Like Catalytic Performance
Zhang et al. Constructing Hollow Multishelled Microreactors with a Nanoconfined Microenvironment for Ofloxacin Degradation through Peroxymonosulfate Activation: Evolution of High-Valence Cobalt-Oxo Species

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees