JP5322335B1 - Purification method for radioactively contaminated water - Google Patents

Purification method for radioactively contaminated water Download PDF

Info

Publication number
JP5322335B1
JP5322335B1 JP2013123380A JP2013123380A JP5322335B1 JP 5322335 B1 JP5322335 B1 JP 5322335B1 JP 2013123380 A JP2013123380 A JP 2013123380A JP 2013123380 A JP2013123380 A JP 2013123380A JP 5322335 B1 JP5322335 B1 JP 5322335B1
Authority
JP
Japan
Prior art keywords
treatment
water
cesium
contaminated water
radioactively contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013123380A
Other languages
Japanese (ja)
Other versions
JP2014240791A (en
Inventor
七生 堀石
芳郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICRO ENERGY CO , LTD.
Original Assignee
MICRO ENERGY CO , LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICRO ENERGY CO , LTD. filed Critical MICRO ENERGY CO , LTD.
Priority to JP2013123380A priority Critical patent/JP5322335B1/en
Application granted granted Critical
Publication of JP5322335B1 publication Critical patent/JP5322335B1/en
Publication of JP2014240791A publication Critical patent/JP2014240791A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】 放射能汚染水を高放射能汚染物と浄化水とに分離回収し、回収した浄化水を除染用水にリサイクルし、高放射能汚染物を固形化して減容化する射能汚染水浄化処理方法を提供する。
【解決手段】 撹拌機と加熱装置および空気吹き込み装置を備えた反応槽を用いて、反応槽に放射能汚染水を採取し、撹拌しながら鉄塩結晶を添加して溶解することにより、放射能汚染水に鉄イオンを混合する放射能汚染水の鉄イオン添加処理と、鉄イオンを添加処理した放射能汚染水にアルカリを添加し、撹拌混合して加熱酸化することによりセシウム含有磁性酸化鉄沈殿を生成するセシウム共沈反応処理と、セシウム共沈反応処理液を浄化水とセシウム含有磁性酸化鉄沈殿とに分離して回収する固液分離処理とから成る放射能汚染水を浄化する処理方法である。
【選択図】 図1
PROBLEM TO BE SOLVED: To separate and collect radioactively contaminated water into highly radioactive contaminants and purified water, recycle the collected purified water into decontamination water, and solidify and reduce the volume of highly radioactive contaminants. A water purification treatment method is provided.
By using a reaction vessel equipped with a stirrer, a heating device, and an air blowing device, radioactively contaminated water is collected in the reaction vessel, and iron salt crystals are added and dissolved while stirring to obtain radioactivity. Cesium-containing magnetic iron oxide precipitation by adding iron ions to radioactively contaminated water mixed with iron ions in contaminated water, adding alkali to the radioactively contaminated water treated with iron ions, mixing with heating and oxidizing This is a treatment method for purifying radioactively contaminated water, which consists of a cesium coprecipitation reaction treatment and a solid-liquid separation treatment that separates and recovers the cesium coprecipitation reaction treatment solution into purified water and cesium-containing magnetic iron oxide precipitates. is there.
[Selection] Figure 1

Description

本発明は、放射能汚染水を高放射能汚染物と浄化水とに分離する放射能汚染水の浄化処理方法に関する。   The present invention relates to a purification method for radioactively contaminated water that separates radioactively contaminated water into highly radioactive contaminants and purified water.

2011年3月11日に発生した東京電力福島第一原子力発電所の原子炉事故は広大な地域を放射能で汚染した。被害地域の復興にはその除染処理が喫緊の課題となった。公的機関による除染技術の一般公募が行われ、その採択技術の実証試験事業が行われた(例えば、非特許文献1参照)。   The nuclear accident at TEPCO's Fukushima Daiichi NPS on March 11, 2011 contaminated a vast area with radioactivity. Decontamination treatment has become an urgent issue for the reconstruction of the affected areas. A general public call for decontamination technology was conducted by a public institution, and a demonstration test project for the adopted technology was conducted (for example, see Non-Patent Document 1).

非特許文献1には、環境省が公募して採択した除染技術22件が記載されている。それによると、路面、土壌、ため池の底土、有機物、バーグ、焼却灰および瓦礫などを対象物にした除染技術に関するものである。除染対象物が多様なだけ除染技術もまた多様であるが、多くの場合に水洗処理工程を含んでおり、除染後に発生する放射能汚染水の除染処理が必要となっている。   Non-Patent Document 1 describes 22 decontamination techniques that were publicly recruited and adopted by the Ministry of the Environment. According to this document, the present invention relates to decontamination technology that targets road surfaces, soil, bottom soil of ponds, organic matter, burgers, incineration ash and rubble. Although the decontamination techniques are various as many as the objects to be decontaminated, in many cases, a water washing process is included, and decontamination processing of radioactively contaminated water generated after decontamination is necessary.

セシウムは水溶解性が大きい物質であるから、放射能汚染水中のセシウムは水に溶解してセシウムイオンとして存在している場合が考え易いので、セシウムイオンを吸着する物質として知られていたゼオライトおよびフェロシアン化鉄(プルシアンブルー)を用いて放射性汚染水のセシウムを吸着除去する除染技術や材料開発(非特許文献2)も進んでいる。   Since cesium is a substance with high water solubility, it is easy to think that cesium in radioactively contaminated water is dissolved in water and exists as cesium ions, so zeolites known as substances that adsorb cesium ions and A decontamination technique and material development (Non-patent Document 2) that adsorbs and removes cesium of radioactive polluted water by using ferrocyanide (Prussian blue) is also progressing.

一方、非特許文献3は、除染実証業務に関する報告書である。報告書には除染技術実証試験の成果が除染対象物毎に背景、実施内容、試験結果および評価の項目で詳細に記述されている。報告書の24頁「(5)水」の章の「背景」には、「原子力機構がまとめた学校プールの除染の手引き(原子力機構、2011)では、ゼオライトを中心とした吸着・凝集剤により水中のセシウムを凝集沈殿させ処理すると、また、放射能が検出される水の測定データにおいては、粘土のような細かい粒子であるSS(Suspended Solid)成分濃度と相関がみられることから、放射性物質は水中のSS成分に多く含まれていると考えられている。」との記述がある。   On the other hand, Non-Patent Document 3 is a report on decontamination verification work. The report describes the results of the decontamination technology verification test in detail for each decontamination object in terms of background, implementation details, test results and evaluation. “Background” in the chapter “(5) Water” on page 24 of the report includes the “deletion of school pool decontamination handbook compiled by JAEA (JAEA, 2011). When cesium in water is agglomerated and treated with water, the measurement data of water in which radioactivity is detected correlates with the concentration of SS (Suspended Solid) component, which is fine particles like clay. The substance is thought to be abundant in SS components in water. "

上記の背景技術に関する情報はセシウム汚染の実態を示すものであるが、新聞などの日常情報によれば、実施している除染技術の多くのものは、除染処理して発生した放射能汚染物をそのまま仮置場に保管してしおり、水を使用して除染処理する技術の場合には汚染排水を容器に回収して仮置場に保管しているので仮置場の確保が、ますます困難となっている状況が報道されている。   The above background information shows the actual state of cesium contamination. However, according to daily information such as newspapers, many of the decontamination technologies that have been implemented are radioactive contamination generated by decontamination treatment. In the case of technology that uses decontamination treatment using water as it is stored in temporary storage, it is more difficult to secure temporary storage because contaminated wastewater is collected in containers and stored in temporary storage. The situation has been reported.

この状況を解決するためには、除染処理で発生する放射能汚染排水を放射能汚染物と浄化水とに分離回収する必要があると考えた。しかし、このような除染技術に関する記述は見当たらない。   In order to solve this situation, we thought that it was necessary to separate and collect radioactive polluted wastewater generated by decontamination treatment into radioactive pollutants and purified water. However, there is no description about such decontamination technology.

「平成23年度除染技術実証事業」、[online]、平成24年8月発行、環境省、[平成25年6月7日検索]、インターネット(URL:http://www.env.go.jp/jishin/rmp/attach/tech_gaiyo-201208.pdf)“2011 Decontamination Technology Demonstration Project”, [online], issued in August 2012, Ministry of the Environment, [Search June 7, 2013], Internet (URL: http: //www.env.go. jp / jishin / rmp / attach / tech_gaiyo-201208.pdf) 「ナノ粒子化したプルシアンブルーでセシウム吸着能が向上」、[online]、2012年2月8日発表、独立行政法人・産業技術総合研究所、[平成25年6月7日検索]、インターネット(URL:http://www.aist.go.jp/aist_j/press_release/pr2012/pr20120208/pr20120208.html)“Cesium adsorption ability is improved by Prussian blue with nano particles”, [online], announced on February 8, 2012, Independent Administrative Agency, National Institute of Advanced Industrial Science and Technology, [Search June 7, 2013], Internet ( URL: http://www.aist.go.jp/aist_j/press_release/pr2012/pr20120208/pr20120208.html) 福島第一原子力発電所事故に係る避難区域等における除染実証業務報告書、[online]、平成24年6月発行、独立行政法人・日本原子力研究開発機構、[平成25年6月7日検索]、インターネット(URL:http://www.jaea.go.jp/fukushima/kankyoanzen/d-model_report/report_3.pdf#search='%E7%A6%8F%E5%B3%B6%E7%AC%AC%E4%B8%80%E5%8E%9F%E5%AD%90%E5%8A%9B%E7%99%BA%E9%9B%BB%E6%89%80%E4%BA%8B%E6%95%85%E3%81%AB%E4%BF%82%E3%82%8B%E9%81%BF%E9%9B%A3%E5%8C%BA%E5%9F%9F%E7%AD%89%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E9%99%A4%E6%9F%93%E5%AE%9F%E8%A8%BC%E6%A5%AD%E5%8B%99%E5%A0%B1%E5%91%8A%E6%9B%B8%E3%80%82%E5%B9%B3%E6%88%90%EF%BC%92%EF%BC%94%E5%B9%B4%EF%BC%96%E6%9C%88%E3%80%82%E7%8B%AC%E7%AB%8B%E8%A1%8C%E6%94%BF%E6%B3%95%E4%BA%BA%E3%83%BB%E6%97%A5%E6%9C%AC%E5%8E%9F%E5%AD%90%E5%8A%9B%E7%A0%94%E7%A9%B6%E9%96%8B%E7%99%BA%E6%A9%9F%E6%A7%8B')Report on Decontamination Demonstration Work in Evacuation Zones Related to Fukushima Daiichi Nuclear Power Station Accident, [online], Issued June 2012, Independent Administrative Agency, Japan Atomic Energy Agency, [Search June 7, 2013] ], Internet (URL: http://www.jaea.go.jp/fukushima/kankyoanzen/d-model_report/report_3.pdf#search='%E7%A6%8F%E5%B3%B6%E7%AC% AC% E4% B8% 80% E5% 8E% 9F% E5% AD% 90% E5% 8A% 9B% E7% 99% BA% E9% 9B% BB% E6% 89% 80% E4% BA% 8B% E6% 95% 85% E3% 81% AB% E4% BF% 82% E3% 82% 8B% E9% 81% BF% E9% 9B% A3% E5% 8C% BA% E5% 9F% 9F% E7% AD% 89% E3% 81% AB% E3% 81% 8A% E3% 81% 91% E3% 82% 8B% E9% 99% A4% E6% 9F% 93% E5% AE% 9F% E8% A8% BC% E6% A5% AD% E5% 8B% 99% E5% A0% B1% E5% 91% 8A% E6% 9B% B8% E3% 80% 82% E5% B9% B3% E6% 88% 90% EF% BC% 92% EF% BC% 94% E5% B9% B4% EF% BC% 96% E6% 9C% 88% E3% 80% 82% E7% 8B% AC% E7% AB% 8B% E8% A1% 8C% E6% 94% BF% E6% B3% 95% E4% BA% BA% E3% 83% BB% E6% 97% A5% E6% 9C% AC% E5% 8E% 9F% E5% AD% 90% E5% 8A% 9B% E7% A0% 94% E7% A9% B6% E9% 96% 8B% E7% 99% BA% E6% A9% 9F% E6% A7% 8B ')

そこで本発明は、放射能汚染水を高放射能汚染物と浄化水とに分離回収して、回収した浄化水を除染用水等にリサイクルし、高放射能汚染物を減容化する射能汚染水の浄化処理方法を提供することを課題とする。   Therefore, the present invention separates and collects radioactive polluted water into highly radioactive pollutants and purified water, recycles the collected purified water into decontamination water, etc., and reduces the volume of highly radioactive pollutants. It is an object to provide a method for purifying contaminated water.

本発明の放射能汚染水の浄化処理方法は、前記放射能汚染水に鉄イオンを添加混合する鉄イオン添加処理と、前記鉄イオン添加処理した放射能汚染水にアルカリを添加して、加熱酸化することにより、セシウム含有酸化鉄沈殿を生成するセシウム共沈反応処理と、前記セシウム共沈反応処理で生成した水溶液を浄化水とセシウム含有酸化鉄沈殿物とに分離する固液分離処理と、を有することを特徴とする。   The method for purifying radioactively contaminated water of the present invention includes an iron ion addition treatment in which iron ions are added to and mixed with the radioactively contaminated water, and an alkali is added to the radioactively contaminated water subjected to the iron ion addition treatment, followed by heat oxidation. A cesium coprecipitation reaction treatment for producing a cesium-containing iron oxide precipitate, and a solid-liquid separation treatment for separating the aqueous solution produced by the cesium coprecipitation reaction treatment into purified water and a cesium-containing iron oxide precipitate. It is characterized by having.

この場合、前記鉄イオン添加処理において、添加する鉄塩が硫酸第一鉄で、添加処理量が鉄イオン濃度で0.001〜1.000mol/l(リットル)である方が好ましい。   In this case, in the iron ion addition treatment, it is preferable that the iron salt to be added is ferrous sulfate and the addition treatment amount is 0.001 to 1.000 mol / l (liter) in terms of iron ion concentration.

また、前記セシウム共沈反応処理において、添加するアルカリが、水酸化ナトリウム、水酸化カルシウム又は水酸化マグネシウムの少なくともいずれか一種で、添加量が鉄イオン量に対して0.9当量以上、1.0当量未満である方が好ましい。   In the cesium coprecipitation treatment, the alkali to be added is at least one of sodium hydroxide, calcium hydroxide, and magnesium hydroxide, and the addition amount is 0.9 equivalent or more with respect to the iron ion amount, and 1. It is preferable that the amount is less than 0 equivalent.

また、前記セシウム共沈反応処理において、加熱酸化は、加熱温度が50℃〜80℃である方が好ましい。   In the cesium coprecipitation reaction treatment, the heating oxidation is preferably performed at a heating temperature of 50 ° C to 80 ° C.

また、前記固液分離処理において、固液分離に磁気分離装置を用いる方が好ましい。   In the solid-liquid separation process, it is preferable to use a magnetic separation device for solid-liquid separation.

また、本発明の放射能汚染水の浄化処理方法は、分離回収したセシウム含有酸化鉄沈殿物を固化剤で成形固化する固形化処理を有する方が好ましい。この場合、前記固形化処理において、固化剤として焼石膏および/またはセメントを用いることができる。   In addition, the method for purifying radioactively contaminated water of the present invention preferably has a solidification treatment in which the separated and recovered cesium-containing iron oxide precipitate is formed and solidified with a solidifying agent. In this case, calcined gypsum and / or cement can be used as a solidifying agent in the solidification treatment.

また、本発明の放射能汚染水の浄化処理方法は、分離した前記浄化水を除染処理用水として再生する、または、排水として放流する水再生処理を更に有する方が好ましい。   In addition, it is preferable that the method for purifying radioactively contaminated water of the present invention further includes a water regeneration process in which the separated purified water is regenerated as decontamination water or discharged as waste water.

本発明の放射能汚染水の浄化処理方法によれば、除染処理で発生した放射能汚染水を浄化水と高放射能汚染物とに分離回収することができる。   According to the method for purifying radioactively contaminated water of the present invention, the radioactively contaminated water generated by the decontamination process can be separated and recovered into purified water and highly radioactive contaminants.

また、分離回収した浄化水を除染処理用水等に再生すれば、放射能汚染水の発生量が減少し、仮置場問題を解消して除染処理を促進することができる。一方、分離回収した高放射能汚染物も、固形化して減容化すれば、最終処理場の有効活用に寄与する等の効果をもたらす。   Moreover, if the separated and purified water is regenerated into decontamination water or the like, the amount of radioactively contaminated water is reduced, and the temporary storage problem can be solved and the decontamination process can be promoted. On the other hand, if the highly radioactive contaminants separated and recovered are solidified and reduced in volume, they will bring about effects such as contributing to effective utilization of the final treatment plant.

また、セシウム共沈反応処理に使用する材料は安価な鉄塩とアルカリで使用量も微量であり、放射能汚染物の固形化に使用する固化剤も安価な石膏やセメント材である。また、分離回収した浄化水を除染処理用水に再生する等に大きなコストメリットがある。   In addition, the materials used for the cesium coprecipitation reaction treatment are inexpensive iron salts and alkalis, and are used in a very small amount, and the solidifying agents used for solidifying radioactive contaminants are inexpensive gypsum and cement materials. In addition, there is a great cost merit in, for example, regenerating the separated and purified water into decontamination water.

本発明による一連の処理工程のフローを示す図である。It is a figure which shows the flow of a series of processing processes by this invention. 本発明の実施例の構成を示す図である。It is a figure which shows the structure of the Example of this invention. 実験例の処理手順を示す図である。It is a figure which shows the process sequence of an experiment example.

以下に本発明の概要を説明する。本発明者は、放射能汚染被災地の復興のためには、徹底した除染処理および除染処理で発生した高放射能汚染物の減容化と厳重な保管が必要であると考え、除染処理について調査した。放射能汚染物の除染処理が順調に進んでいないことを憂慮していたが、その原因は、除染処理で大量に発生する放射能汚染水の仮置場が不足していることが原因であると指摘されていた。   The outline of the present invention will be described below. The present inventor considers that in order to recover the disaster-affected areas, it is necessary to thoroughly decontaminate and to reduce the volume of highly radioactive contaminants generated by the decontamination process and to strictly store them. The dyeing process was investigated. I was worried that the decontamination of radioactive contaminants was not progressing smoothly, but the cause was that there was a shortage of temporary storage for radioactive contaminated water generated in large quantities during the decontamination process. It was pointed out that there was.

しかし、除染処理を促進するためには仮置場の不足を解消するだけでなく、除染処理で発生する放射能汚染水の浄化処理方法を検討する必要があると考え、種々検討した。   However, in order to promote the decontamination process, not only did the shortage of temporary storage spaces be resolved, but it was considered that it was necessary to study a purification method for radioactively contaminated water generated in the decontamination process.

そして、放射能汚染水を放射能汚染物と浄化水に固液を分離して回収し、回収した浄化水は除染用水としてリサイクルし、高放射能汚染物は固形化して減容化することができれば放射能汚染水の貯蔵量を大幅に削減し仮置場問題を解消して、停滞している除染処理作業を促進できると考え、誠意研究を重ねた結果、本発明を完成した。   Separate and recover the radioactive contaminated water into radioactive contaminants and purified water, recover the collected purified water as decontamination water, and solidify and reduce the volume of highly radioactive contaminants. As a result of repeated sincerity studies, the present invention was completed as a result of thinking that it would be possible to significantly reduce the storage amount of radioactively contaminated water, eliminate the problem of temporary storage, and promote the decontamination treatment that has been stagnant.

即ち、本発明は、放射能汚染水を放射性汚染物と浄化水とに分離回収すること、および分離回収した浄化水は除染処理用水にリサイクルまたは放流し、分離回収した高放射能汚染物は固形化して減容化する等を特徴とする放射能汚染水の浄化処理方法である。   That is, the present invention separates and collects radioactive polluted water into radioactive pollutants and purified water, and the separated and collected purified water is recycled or discharged into decontamination water. This is a method for purifying radioactively contaminated water characterized by solidification and volume reduction.

図1において、本発明による放射能汚染水の浄化処理方法は、放射能汚染水の(1)鉄イオン添加処理と、(2)セシウム共沈反応処理と、(3)固液分離処理とを順に行うことにより実施できる。また、その後更に、(4)水再生処理および(5)固形化処理を行うことができる。   In FIG. 1, the method for purifying radioactive contaminated water according to the present invention comprises (1) iron ion addition treatment, (2) cesium coprecipitation reaction treatment, and (3) solid-liquid separation treatment. This can be done in order. Moreover, (4) water regeneration treatment and (5) solidification treatment can be further performed thereafter.

鉄イオン添加処理(1)は、放射能汚染水に鉄イオンを添加混合するものである。例えば、攪拌機と加熱装置を備えた反応槽を用いて、反応槽に放射能汚染水を採取した後、鉄塩の硫酸第一鉄結晶を添加し撹拌して溶解することにより、第一鉄イオンと放射能汚染水の混合水溶液を生成する。   In the iron ion addition process (1), iron ions are added to and mixed with radioactively contaminated water. For example, using a reaction vessel equipped with a stirrer and a heating device, after collecting radioactively contaminated water in the reaction vessel, adding ferrous sulfate crystals of iron salt, stirring and dissolving, ferrous ions And produce a mixed aqueous solution of radioactive contaminated water.

この時、混合した第一鉄イオンは6配位の水分子とから成るヒドロキソ第一鉄錯イオンを形成しており、この鉄錯イオンの水酸基(負電荷)がセシウムイオン(正電荷)とイオン結合する。これにより、汚染水中のきわめて希薄な濃度のセシウムイオンを捉えて、第一鉄イオンとセシウムイオンが緊密に混合している水溶液が調製される。   At this time, the mixed ferrous ion forms a hydroxo ferrous complex ion composed of hexacoordinate water molecules, and the hydroxyl group (negative charge) of this iron complex ion is cesium ion (positive charge) and ion. Join. Thereby, an extremely dilute concentration of cesium ions in the contaminated water is captured, and an aqueous solution in which ferrous ions and cesium ions are intimately mixed is prepared.

セシウム共沈反応処理(2)は、鉄イオン添加処理した放射能汚染水にアルカリを添加して、加熱酸化することにより、セシウム含有酸化鉄沈殿を生成するもので、(2-1)水酸化鉄コロイド生成と、(2-2)GIIコロイド生成と、(2-3)セシウム含有酸化鉄沈殿生成から成る処理である。   The cesium coprecipitation reaction treatment (2) is a method of generating a cesium-containing iron oxide precipitate by adding an alkali to the radioactively contaminated water treated with the addition of iron ions and oxidizing it by heating. This is a treatment consisting of iron colloid production, (2-2) GII colloid production, and (2-3) cesium-containing iron oxide precipitation production.

(2-1)水酸化鉄コロイド生成は、前記処理(1)で生成した第一鉄イオンを添加した放射能汚染水に、鉄イオンに対して1当量未満のアルカリを添加して撹拌混合することにより、pH値が7.0〜7.5の水溶液に水酸化第一鉄コロイドを生成する処理である。この時、ヨウ化カドミウム型分子構造の水酸化第一鉄コロイドが生成すると同時に、単独では沈殿しないセシウムイオンが、水酸化第一鉄の水酸基イオンと結合して沈殿する所謂、誘発沈殿現象が生起する。   (2-1) Iron hydroxide colloid generation is performed by adding less than one equivalent of alkali to iron ion to the radioactively contaminated water to which ferrous ions generated in the above treatment (1) are added and stirring and mixing. This is a treatment for producing ferrous hydroxide colloid in an aqueous solution having a pH value of 7.0 to 7.5. At this time, a so-called induced precipitation phenomenon occurs, in which a cadmium iodide type molecular structure of ferrous hydroxide colloid is formed, and at the same time, cesium ions that do not precipitate alone bind to the hydroxyl ions of ferrous hydroxide and precipitate. To do.

(2-2)GIIコロイド生成は、(2-1)で生成したセシウムを含有した水酸化第一鉄コロイドの水溶液を常温で撹拌混合することにより、溶存酸素の緩慢な酸化反応で水酸化第一鉄コロイドが酸化して、pH値が6.0〜6.5の水溶液中に中間酸化物であるグリーンラストII(以後、GIIと記す)コロイドを生成する。この時、GIIコロイドは二価鉄と三価鉄が等モルの相と、水酸基の相とが周密に重なった層状構造をしているので、GIIコロイドの水酸基イオンが、水酸化鉄コロイドの含有セシウムを取り込んでセシウム含有GIIコロイドを生成する。   (2-2) GII colloid is produced by stirring and mixing an aqueous solution of ferrous hydroxide colloid containing cesium produced in (2-1) at room temperature, so that hydroxylation can be achieved by slow oxidation of dissolved oxygen. The ferrous colloid is oxidized to produce a green last II (hereinafter referred to as GII) colloid as an intermediate oxide in an aqueous solution having a pH value of 6.0 to 6.5. At this time, since the GII colloid has a layered structure in which an equimolar phase of divalent iron and trivalent iron and a phase of hydroxyl group overlap closely, the hydroxyl ion of the GII colloid contains iron hydroxide colloid. Cesium is taken in to produce a cesium-containing GII colloid.

(2-3)セシウム含有酸化鉄沈殿生成は、(2-2)で生成したセシウム含有GIIコロイドの水溶液を温度50℃以上に加熱し、空気を吹き込んで酸化反応を促進することによりpH値が4.5〜5.5の水溶液中に黒褐色の磁性酸化鉄沈殿を生成する。この時、超微粒子から成る磁性酸化鉄沈殿がセシウムを取り込んでセシウム含有磁性酸化鉄粒子として沈殿する。   (2-3) Cesium-containing iron oxide precipitates are produced by heating the aqueous solution of the cesium-containing GII colloid produced in (2-2) to a temperature of 50 ° C. or higher, and blowing in air to promote the oxidation reaction. A black-brown magnetic iron oxide precipitate is formed in an aqueous solution of 4.5-5.5. At this time, magnetic iron oxide precipitates composed of ultrafine particles take in cesium and precipitate as cesium-containing magnetic iron oxide particles.

固液分離処理(3)は、前記処理(2)の(2-3)で生成した反応水溶液を固液分離することにより、セシウム含有磁性酸化鉄沈殿物と、セシウムを除去した浄化水とに分離して回収する処理である。   In the solid-liquid separation process (3), the aqueous reaction solution produced in (2-3) of the above-mentioned process (2) is subjected to solid-liquid separation, thereby converting the cesium-containing magnetic iron oxide precipitate into purified water from which cesium has been removed. It is a process of separating and collecting.

固形化処理(4)は、前記処理(3)で分離回収した高放射能汚染物であるセシウム含有磁性酸化鉄沈殿物を固化剤で成形固化するものである。これにより減容化して、放射能汚染物の置き場を有効活用することができる。   In the solidification treatment (4), the cesium-containing magnetic iron oxide precipitate, which is a highly radioactive contaminant separated and recovered in the treatment (3), is formed and solidified with a solidifying agent. As a result, the volume can be reduced, and the place for radioactive contaminants can be used effectively.

水再生処理(5)は、前記処理(3)で回収した浄化水を水質検査することにより、除染処理用の用水に再生する処理であり、または、排水として放流する処理である。   The water regeneration process (5) is a process for reclaiming the purified water collected in the process (3) to a decontamination process water by inspecting the water quality or discharging it as waste water.

放射能汚染水の鉄イオン添加処理で添加する鉄塩としては硫酸鉄および塩化鉄の第一鉄塩および第二鉄塩が用いられるが、GIIコロイドの生成には硫酸第一鉄が最も好ましい。鉄塩の添加量は鉄イオン濃度で0.001〜1.000mol/lである。0.001mol/l以下では生成するセシウム含有磁性酸化鉄沈殿量が僅少となり固液分離処理が困難であり、また、1.000mol/l以上では生成する放射能汚染物の排出量が過多となるので好ましくない。放射能汚染水中のセシウムイオンは極めて微量であることを考慮すれば、好ましい量は0.005〜0.500mol/lである 。   Ferrous sulfate and ferrous chloride ferrous salts and ferric salts are used as the iron salt added in the treatment with iron ion addition of radioactively contaminated water, but ferrous sulfate is most preferable for the formation of GII colloid. The amount of iron salt added is 0.001 to 1.000 mol / l in terms of iron ion concentration. When the amount is 0.001 mol / l or less, the amount of cesium-containing magnetic iron oxide produced is small and solid-liquid separation is difficult. When the amount is 1,000,000 mol / l or more, the amount of radioactive contaminants produced is excessive. Therefore, it is not preferable. Considering that the amount of cesium ions in the radioactively contaminated water is extremely small, the preferable amount is 0.005 to 0.500 mol / l.

セシウム共沈反応処理で添加するアルカリの添加量は、水溶液中の鉄イオンに対して0.9当量以上、1.0当量未満である。0.9当量以下では残留する鉄イオンが多くなり。また、1.0当量以上では、浄化水が強アルカリ性となり好ましくない。好ましくは、0.95〜0.99当量である。   The amount of alkali added in the cesium coprecipitation reaction treatment is 0.9 equivalent or more and less than 1.0 equivalent with respect to iron ions in the aqueous solution. If it is less than 0.9 equivalent, the remaining iron ions will increase. On the other hand, if it is 1.0 equivalent or more, the purified water becomes strongly alkaline and is not preferable. Preferably, it is 0.95-0.99 equivalent.

前記セシウム共沈反応処理において、水溶液の加熱酸化温度は50℃〜80℃である。50℃以下の温度ではアモルファス状の非磁性酸化鉄沈殿物が生成して固液分離が困難であり、80℃以上の温度は消費エネルギーが大きくなり好ましくない。好ましい温度は、50℃〜70℃である。   In the cesium coprecipitation reaction treatment, the heating oxidation temperature of the aqueous solution is 50 ° C to 80 ° C. At a temperature of 50 ° C. or lower, an amorphous non-magnetic iron oxide precipitate is formed and solid-liquid separation is difficult, and a temperature of 80 ° C. or higher is not preferable because energy consumption increases. A preferred temperature is 50 ° C to 70 ° C.

本発明の実施例を図2に示す構成を参照して説明する。図2において、S1、S2、およびS3は、計量器と投入弁を備えた計量装置である。   An embodiment of the present invention will be described with reference to the configuration shown in FIG. In FIG. 2, S1, S2, and S3 are measuring devices each provided with a measuring instrument and a closing valve.

先ず、攪拌機と加熱装置および空気酸化装置を備えた反応槽から成る反応処理装置Aを用いて、セシウム共沈反応処理を実施する。   First, a cesium coprecipitation reaction treatment is performed using a reaction treatment apparatus A including a reaction vessel equipped with a stirrer, a heating device, and an air oxidation device.

貯蔵タンクT1の放射能汚染水をS1により所定量を計量して反応処理装置Aの反応槽に投入し、撹拌機で撹拌しながら、貯蔵タンクT2の硫酸第一鉄結晶粉をS2により計量して所定量を反応槽に投入し、常温で溶解することにより、鉄イオン混合放射能汚染水を調製する。
つづいて、貯蔵タンクT3の水酸化ナトリウム結晶をS3により計量して所定量を反応槽に投入して、常温で撹拌混合することにより、水溶液のpH値が7.0〜7.5において青白色を呈した高粘度の水酸化第一鉄コロイドを生成する。
A predetermined amount of radioactively contaminated water in storage tank T1 is weighed into S1 and charged into the reaction tank of reaction processing apparatus A. While stirring with a stirrer, ferrous sulfate crystal powder in storage tank T2 is weighed in S2. A predetermined amount is put into a reaction vessel and dissolved at room temperature to prepare iron ion mixed radioactively contaminated water.
Subsequently, the sodium hydroxide crystals in the storage tank T3 are weighed by S3, and a predetermined amount is put into the reaction vessel, and stirred and mixed at room temperature, so that the aqueous solution has a pH value of 7.0 to 7.5. To produce a high-viscosity ferrous hydroxide colloid.

生成した水酸化第一鉄コロイド水溶液を、さらに、常温で撹拌混合することにより、水溶液のpH値が6.0〜6.5において、水酸化第一鉄の中間酸化物であるグリーンラスト(GII)コロイドを生成する。   The resulting ferrous hydroxide colloid aqueous solution is further stirred and mixed at room temperature, so that when the aqueous solution has a pH value of 6.0 to 6.5, green last (GII), which is an intermediate oxide of ferrous hydroxide. ) Produce a colloid.

生成したGIIコロイド水溶液の温度を、反応槽に装備している加熱装置を用いて、50℃に加熱しながら、空気酸化装置を用いて空気を吹き込むことにより、GIIコロイドが酸化して、水溶液のpH値が5.0〜5.5において黒褐色の磁性酸化鉄沈殿を生成する。この時点でセシウム共沈反応処理が完了する。この反応処理水溶液を取り出しポンプP4で反応処理液取り出しタンクT4に移送する。   While the temperature of the aqueous GII colloid solution produced was heated to 50 ° C. using a heating device equipped in the reaction vessel, air was blown in using an air oxidizer to oxidize the GII colloid and A dark brown magnetic iron oxide precipitate is formed at a pH value of 5.0 to 5.5. At this point, the cesium coprecipitation reaction process is completed. The aqueous reaction treatment solution is taken out and transferred to the reaction treatment liquid take-out tank T4 by a pump P4.

次に、磁気分離機から成る固液分離装置Bを用いて、固液分離処理を実施する。   Next, solid-liquid separation processing is performed using a solid-liquid separation apparatus B composed of a magnetic separator.

反応液取り出しタンクT4のセシウム含有磁性酸化鉄沈殿水溶液を移送ポンプP5で固液分離装置Bの磁気分離機に移送し、セシウム含有磁性酸化鉄沈殿の反応水溶液から、セシウム含有磁性酸化鉄沈殿(高放射能汚染物)を磁気分離して、セシウム含有磁性酸化鉄沈殿を移送ポンプP6で放射能汚染物回収タンクT5に移送し、同時に分離した浄化水を移送ポンプP7で浄化水回収タンクT6に移送する。   The cesium-containing magnetic iron oxide precipitation aqueous solution in the reaction liquid take-out tank T4 is transferred to the magnetic separator of the solid-liquid separator B by the transfer pump P5, and the cesium-containing magnetic iron oxide precipitation (high Radioactive contaminants) are magnetically separated, and the cesium-containing magnetic iron oxide precipitate is transferred to the radioactive contaminant recovery tank T5 by the transfer pump P6. At the same time, the separated purified water is transferred to the purified water recovery tank T6 by the transfer pump P7. To do.

回収タンクT5の放射能汚染物を移送ポンプP8で混練機15に移送し、つづいて、固形材貯蔵タンクT7の焼石膏粉を混練機15に投入して混合混練した後、この混練物を型枠(図示せず)に注入して固化することにより、放射能汚染物を減容化する。   The radioactive contamination in the recovery tank T5 is transferred to the kneading machine 15 by the transfer pump P8, and then the calcined gypsum powder in the solid material storage tank T7 is put into the kneading machine 15 and mixed and kneaded. Volume of radioactive contaminants is reduced by pouring into a frame (not shown) and solidifying.

一方、回収タンクT6の浄化水は移送ポンプP10で除染処理用水タンクT8に移送して除染処理用の浄化水に再生する。または、移送ポンプP11で放流タンクT9に移送し、排水の放流基準に従って水質検査を行い、基準値内であることを確かめた後に放流する。   On the other hand, the purified water in the recovery tank T6 is transferred to the decontamination water tank T8 by the transfer pump P10 and regenerated into purified water for the decontamination process. Or it transfers to the discharge tank T9 with the transfer pump P11, performs a water quality inspection according to the discharge standard of waste water, and discharges it after confirming that it is within the reference value.

(実験例)
次に、図3を参照して実験例を説明する。
図3において、反応槽1として容積1000mlのガラスビーカーを用い、加熱ヒーター3としてウォターバスを用いた。また、磁気分離装置9として永久磁石を用い、混練成形装置15として300mlのガラスビーカーとガラス棒を用い、型枠として50mlのプラスチック容器を用い、これに混練物を流し込んで成形固化した。
(Experimental example)
Next, an experimental example will be described with reference to FIG.
In FIG. 3, a glass beaker having a volume of 1000 ml was used as the reaction tank 1, and a water bath was used as the heater 3. Further, a permanent magnet was used as the magnetic separation device 9, a 300 ml glass beaker and a glass rod were used as the kneading and molding device 15, and a 50 ml plastic container was used as the mold, and the kneaded material was poured into this and solidified.

また、放射能汚染水には非放射性セシウム133の炭酸塩をイオン交換水に溶解した水   Radioactive contaminated water is water in which non-radioactive cesium 133 carbonate is dissolved in ion-exchanged water.

溶液を模擬放射能汚染水とした。 セシウム濃度が780mg/l(リットル)の模擬汚染水Aを1000ml調製して準備した。 The solution was simulated radio-polluted water. 1000 ml of simulated contaminated water A having a cesium concentration of 780 mg / l (liter) was prepared and prepared.

実験に使用した原材料は、炭酸セシウム、硫酸第一鉄7水和物および水酸化ナトリウムで試薬一級品を用い、水はイオン交換水を用いた。固化剤は市販の焼石膏を用いた。   The raw materials used in the experiment were cesium carbonate, ferrous sulfate heptahydrate and sodium hydroxide, and reagent grade products were used, and water was ion-exchanged water. Commercially available calcined gypsum was used as the solidifying agent.

沈殿物はX線回折装置を用い、セシウムは原子吸光分析装置(VARIAN製、AA240FS)を用いて分析した。   The precipitate was analyzed using an X-ray diffractometer, and cesium was analyzed using an atomic absorption analyzer (manufactured by VARIAN, AA240FS).

(実験例1)
セシウム共沈反応処理におけるセシウムイオンの沈殿除去効果を確認する。
(Experimental example 1)
The effect of cesium ion precipitation removal in cesium coprecipitation treatment is confirmed.

実験条件;
予め準備した1000mlの模擬放射能汚染水A(以後、汚染水Aとする)を汚染水計量槽6により600ml計量し、汚染水投入コック21を開けて反応槽1に投入した。次に、攪拌機2を用いて汚染水Aを撹拌しながら、硫酸第一鉄7水和結晶粉25gを鉄塩計量容器7により計量し、鉄塩投入コック22を開けて反応槽1に投入し、常温で溶解して汚染水Aと第一鉄イオンの混合水を調製した。
Experimental conditions;
1000 ml of the simulated radioactive contaminated water A (hereinafter referred to as contaminated water A) prepared in advance was weighed 600 ml in the contaminated water measuring tank 6, and the contaminated water charging cock 21 was opened and charged into the reaction tank 1. Next, while stirring the contaminated water A using the stirrer 2, 25 g of ferrous sulfate heptahydrate crystal powder is measured with the iron salt measuring container 7, and the iron salt charging cock 22 is opened and charged into the reaction tank 1. Then, it was dissolved at room temperature to prepare a mixed water of contaminated water A and ferrous ions.

撹拌を30分間行った後、粒状の水酸化ナトリウム6.5gをアルカリ計量容器8により計量し、アルカリ投入コック23を開けて反応槽1に投入し、常温で撹拌混合すると水溶液中に青白色コロイドが生成した。この時の水溶液は、温度が20℃でpHメーター4によるpH値が7.4であった。この青白色コロイド水溶液20mlを20mlメスシリンダーに分析用として採取し、サンプル番号を(SA−1)とした。   After stirring for 30 minutes, 6.5 g of granular sodium hydroxide is weighed with an alkali metering vessel 8, the alkali charging cock 23 is opened and charged into the reaction vessel 1, and stirred and mixed at room temperature, a bluish white colloid in the aqueous solution Generated. The aqueous solution at this time had a temperature of 20 ° C. and a pH value of 7.4 by the pH meter 4. 20 ml of this bluish white colloid aqueous solution was collected for analysis in a 20 ml graduated cylinder, and the sample number was (SA-1).

pH値7.4の青白色コロイド水溶液を常温で、さらに撹拌をつづけると60分後にコロイドの色が暗緑色に変化した。この時の暗緑色コロイドの水溶液は、温度が20℃でpHメーター4によるpH値は6.5であった。この暗緑色コロイド水溶液20mlを20mlメスシリンダーに分析用として採取し、サンプル番号を(SA−2)とした。   When the blue-white colloid aqueous solution having a pH value of 7.4 was further stirred at room temperature, the color of the colloid changed to dark green after 60 minutes. The dark green colloid aqueous solution at this time had a temperature of 20 ° C. and a pH value of 6.5 by the pH meter 4. 20 ml of this dark green colloid aqueous solution was collected for analysis in a 20 ml graduated cylinder, and the sample number was (SA-2).

pH値6.5の暗緑色コロイド水溶液を撹拌しながら、加熱ヒーター3により水溶液温度を50℃に加熱して、空気吹き込み装置5により、50ml/minの速度で空気を吹き込んだ。空気吹き込みを始めてから60分後に、水溶液は、pHメーター4によるpH値が6.5から4.5に低下し、GIIコロイドは黒色沈殿に変化して、GIIコロイドの酸化反応が終了した。生成した反応処理液は560mlであった。この黒色沈殿分散水溶液20mlを20mlシリンダーに分析用として採取し、サンプル番号を(SA−3)とした。   While stirring the dark green colloid aqueous solution having a pH value of 6.5, the aqueous solution temperature was heated to 50 ° C. by the heater 3, and air was blown by the air blowing device 5 at a speed of 50 ml / min. After 60 minutes from the start of air blowing, the pH value of the aqueous solution decreased from 6.5 to 4.5 by the pH meter 4, the GII colloid changed to a black precipitate, and the oxidation reaction of the GII colloid was completed. The produced reaction treatment liquid was 560 ml. 20 ml of this black precipitate-dispersed aqueous solution was collected in a 20 ml cylinder for analysis, and the sample number was (SA-3).

実験結果;
(SA-1),(SA-2)および(SA-3)の各サンプルの24時間後の沈降体積による沈降特性、分析用ろ紙を用いたろ過特性の試験および、採取した上澄み液のセシウム含有量をそれぞれ測定した。測定結果を表1に示す。
Experimental result;
Sedimentation characteristics according to sedimentation volume after 24 hours of each sample of (SA-1), (SA-2) and (SA-3), test of filtration characteristics using analytical filter paper, and cesium content of the collected supernatant Each amount was measured. The measurement results are shown in Table 1.

Figure 0005322335

*汚染水Aのセシウム濃度;780(mg/l)
Figure 0005322335

* Cesium concentration in contaminated water A: 780 (mg / l)

また、各サンプルの沈殿物をX線分析した結果SA-1は水酸化第一鉄、SA-2はグリーンラストG-II、SA-3は磁性酸化鉄のマグネタイトであった。沈降体積はSA-3が優れており、他の2サンプルは不良であった。ろ過性は3サンプル共に不良であり、固液分離が困難であると思えた。しかし、磁性を有する(SA−3)のみは後述の磁気分離装置により固液分離することができた。これらの結果から、3サンプル共にセシウム共沈反応処理効果があることが確認できた。これにより、セシウム共沈反応処理は(SA−3)の反応を行うことにより完成することが確認できた。   As a result of X-ray analysis of the precipitate of each sample, SA-1 was ferrous hydroxide, SA-2 was green last G-II, and SA-3 was magnetic iron oxide magnetite. The sedimentation volume was excellent for SA-3, and the other two samples were poor. Filterability was poor in all three samples, and solid-liquid separation seemed difficult. However, only the magnetic (SA-3) could be solid-liquid separated by a magnetic separation apparatus described later. From these results, it was confirmed that all three samples had a cesium coprecipitation reaction treatment effect. Thereby, it was confirmed that the cesium coprecipitation treatment was completed by performing the reaction (SA-3).

実験結果の考察;
表1の結果から3サンプル共にセシウム共沈反応効果があるのは、何れの生成物にも陰イオン性水酸基を有しているので、陽イオン性のセシウムイオンを引き寄せて吸着する機能があり、超微細な水酸化鉄コロイド粒子や磁性酸化鉄沈殿であることが、セシウムイオンとの接触機会を多くしていることなどによるものと考えられる。さらに、化学分析用ろ紙を漏れ出るほどに微細な粒子でも固液分離することができるのは、セシウム共沈反応処理で生成した超微細な粒子が磁性酸化鉄沈殿であることにより磁気分離を可能にしたことによる。
Discussion of experimental results;
From the results in Table 1, all three samples have a cesium coprecipitation reaction effect, because any product has an anionic hydroxyl group, and has a function of attracting and adsorbing cationic cesium ions. The ultrafine iron hydroxide colloidal particles and magnetic iron oxide precipitation are thought to be due to the increased contact opportunities with cesium ions. Furthermore, solid particles can be separated even with fine particles that leak through the filter paper for chemical analysis. Magnetic separation is possible because the ultrafine particles generated by the cesium coprecipitation reaction process are magnetic iron oxide precipitates. It depends on what you did.

(実験例2)
固液分離処理における磁気分離の効果を確認する。
(Experimental example 2)
Confirm the effect of magnetic separation in solid-liquid separation process.

実験条件;
実験例1の反応処理液540mlを反応槽1から、攪拌機2で撹拌しながら、反応処理液移送ポンプ20により、磁気分離装置9として、ビーカー底部に永久磁石を貼り付けた1000mlのガラスビーカーに取り出して磁気分離処理を行った。
Experimental conditions;
While stirring 540 ml of the reaction treatment liquid of Experimental Example 1 from the reaction vessel 1 with the stirrer 2, the reaction treatment liquid transfer pump 20 takes out the reaction treatment liquid as a magnetic separator 9 into a 1000 ml glass beaker with a permanent magnet attached to the bottom of the beaker. Magnetic separation treatment was performed.

実験結果;
永久磁石を底部に貼り付けたガラスビーカーに取り出した黒色沈殿分散水溶液は、取り出した後静置した。静置してから5分経過した時点で、ビーカーの底部に黒色沈殿が磁気凝集していた。そこで、傾斜法により固液分離した。磁気凝集により分離して得られた黒色沈殿の泥状物を回収泥状汚染物移送ポンプ27で、放射能汚染物回収タンク13として300mlのガラスビーカーに移送し、浄化水は移送ポンプ24で浄化水貯蔵タンク10として1000mlのガラスビーカーに移送した。それぞれに、泥状の黒色磁性酸化鉄沈殿は30ml、浄化水は510mlを得た。
Experimental result;
The black precipitation-dispersed aqueous solution taken out into a glass beaker with a permanent magnet attached to the bottom was left after being taken out. When 5 minutes had passed after standing, black precipitates were magnetically aggregated at the bottom of the beaker. Therefore, solid-liquid separation was performed by the gradient method. The black sedimentary mud obtained by separation by magnetic agglomeration is transferred to a 300 ml glass beaker as a radioactive pollutant recovery tank 13 by a recovery mud contaminant transfer pump 27, and purified water is purified by a transfer pump 24. The water storage tank 10 was transferred to a 1000 ml glass beaker. In each case, 30 ml of muddy black magnetic iron oxide precipitate and 510 ml of purified water were obtained.

この結果、永久磁石による磁気分離処理が、分散している超微粒子を磁力で捉えて、5分間という短時間の内に磁気凝集させ固液分離処理する効果があることを確認した。   As a result, it was confirmed that the magnetic separation treatment by the permanent magnet has an effect of performing the solid-liquid separation treatment by capturing the dispersed ultrafine particles with a magnetic force and magnetically aggregating them within a short time of 5 minutes.

実験結果の考察;
短時間で磁気凝集が生起するのは、磁化された微粒子自身が磁気勾配を形成しつつ、磁化粒子を増加させて磁気凝集構造を形成するものと考える。
Discussion of experimental results;
The reason why magnetic aggregation occurs in a short time is considered that the magnetized fine particles themselves form a magnetic gradient while increasing the number of magnetized particles to form a magnetic aggregation structure.

(実験例3)
水再生処理における再生水の浄化度を確認する。
(Experimental example 3)
Check the degree of purification of reclaimed water in the water reclamation process.

実験条件;
実験例2の貯蔵タンク10に収容した510mlの浄化水を浄化水移送ポンプ26で再生水貯蔵タンク11に移送して除染処理用水に再生した。
Experimental conditions;
510 ml of purified water stored in the storage tank 10 of Experimental Example 2 was transferred to the reclaimed water storage tank 11 by the purified water transfer pump 26 and regenerated into decontamination water.

実験結果;
この再生水を分析した結果、セシウム濃度が5mg/lで、pH値が4.8であった。
Experimental result;
As a result of analyzing this regenerated water, the cesium concentration was 5 mg / l and the pH value was 4.8.

この再生水のセシウム濃度は、汚染水A中のセシウムイオンを99%除去して得られた浄化水であることを確認した。   It was confirmed that the cesium concentration in the reclaimed water was purified water obtained by removing 99% of cesium ions in the contaminated water A.

実験結果の考察;
このことは、セシウムを吸着した超微粒子の磁性酸化鉄粒子を磁気凝集させて固液分離することにより、汚染水中のセシウムを除去できることを示すものであった。
Discussion of experimental results;
This indicates that cesium in the contaminated water can be removed by magnetically aggregating the ultrafine magnetic iron oxide particles adsorbed with cesium and separating them into solid and liquid.

(実験例4)
固形化処理における放射能汚染物減容化の効果を確認する。
(Experimental example 4)
Confirm the effect of reducing the volume of radioactive contaminants in the solidification process.

実験条件;
実験例2の放射能汚染物回収タンク13に収容した30mlの泥状の黒色沈殿物の成分を分析した結果、セシウム含有酸化鉄沈殿21gと水分量27gから成る泥状物であった。この黒色泥状物を移送ポンプ28で、混練成形装置15として、300mlのガラスビーカーに移送し、一方、固化剤計量器14により固形化剤の焼石膏粉145gを計量して、固化剤投入コック29を開いて混練成形装置15としての300mlのガラスビーカーに投入して、混練機としてガラス棒を用いて黒色泥状物と焼石膏粉を混練し、混練物を50ml(20H×50W×50L)のプラスチックケース(図示せず)に流し込んで静置した。
Experimental conditions;
As a result of analyzing the components of 30 ml of a muddy black precipitate contained in the radioactive contaminant collection tank 13 of Experimental Example 2, it was a muddy substance consisting of 21 g of cesium-containing iron oxide precipitate and 27 g of water content. This black mud is transferred to a 300 ml glass beaker as a kneading and forming device 15 by means of a transfer pump 28, while 145 g of calcined gypsum powder as a solidifying agent is measured by a solidifying agent measuring device 14, 29 is opened and put into a 300 ml glass beaker as the kneading and forming apparatus 15, and the black mud and calcined gypsum powder are kneaded using a glass rod as a kneading machine, and the kneaded product is 50 ml (20H × 50W × 50L) And poured into a plastic case (not shown).

実験結果;
混練物をプラスチックケースに流し込んでから3時間経過後、混練物は固化していた。そして、重量190g、容積40mlの成形体を得た。この結果は540mlの汚染水Aが40mlの固形物に93%減容化したことを示すものであった。これにより固形化処理は減容効果が大きいことを確認した。
実験結果の考察;
このことは、セシウム共沈反応処理でセシウム含有磁性酸化鉄沈殿を生成し、この反応生成物を磁気分離装置により固液分離処理し、泥状の放射能汚染物と浄化水を回収し、回収した泥状物を固形化処理して成形固体としたことにより得られた減容化の効果である。また、この効果は、放射能汚染物の置き場問題の解消に寄与する。
Experimental result;
Three hours after the kneaded material was poured into the plastic case, the kneaded material was solidified. Then, a molded body having a weight of 190 g and a volume of 40 ml was obtained. This result indicated that 540 ml of contaminated water A had a 93% volume reduction to 40 ml solids. This confirmed that the solidification treatment had a large volume reduction effect.
Discussion of experimental results;
This means that a cesium-containing magnetic iron oxide precipitate is produced by a cesium coprecipitation reaction treatment, and this reaction product is subjected to solid-liquid separation treatment by a magnetic separation device, and muddy radioactive contaminants and purified water are collected and recovered. This is the effect of volume reduction obtained by solidifying the muddy material to form a solid. This effect also contributes to the solution of the radioactive contamination storage problem.

本発明は、除染処理で発生する汚染水を浄化水とセシウム含有汚染物とに分離回収し、浄化水は除染処理の用水としてリサイクルし、セシウム含有汚染物は固形化処理して放射能汚染物を減容化する放射能汚染水の浄化処理方法である。これにより、放射能汚染地域において、現在最も重要な除染処理を阻害している問題、即ち、除染処理の結果発生する放射能汚染排水の置き場が不足している問題を解消して、除染処理を促進させることができる。
実施に際しては、特別な装置を必要とせず、また処理に使用する材料も安価に入手可能であり、省エネ型でエコロジーな実施対応が可能である。
The present invention separates and recovers contaminated water generated by decontamination treatment into purified water and cesium-containing contaminants, recycles the purified water as decontamination treatment water, solidifies the cesium-containing contaminants, and performs radioactivity. This is a method for purifying radioactively contaminated water to reduce the volume of pollutants. This eliminates the problem that currently impedes the most important decontamination process in radioactively contaminated areas, that is, the problem of insufficient storage space for radioactively polluted wastewater generated as a result of the decontamination process. The dyeing process can be promoted.
In implementation, no special equipment is required, and materials used for processing are also available at a low cost, enabling energy-saving and ecological implementation.

1 反応槽
2 攪拌機
3 加熱ヒーター
4 pHメーターと電極
5 空気吹き込み装置
6 汚染水計量槽
7 鉄塩計量容器
8 アルカリ計量容器
9 磁気分離装装置
10 浄化水貯蔵タンク
11 再生水貯蔵タンク
12 放流排水タンク
13 放射能汚染物回収タンク
14 固化剤計量容器
15 混練成形装置
16 放射能汚染物の保管所
20 反応処理液移送ポンプ
21 汚染水投入コック
22 鉄塩投入コック
23 アルカリ投入コック
24 回収浄化水移送ポンプ
25 排水放流ポンプ
26 浄化水移送ポンプ
27 回収泥状汚染物の移送ポンプ
28 回収泥状汚染物の投入コック
29 固化剤の投入コック
1 Reaction tank 2 Stirrer
3 Heating heater 4 pH meter and electrode 5 Air blowing device 6 Contaminated water measuring tank 7 Iron salt measuring container 8 Alkali measuring container 9 Magnetic separation device 10 Purified water storage tank 11 Reclaimed water storage tank 12 Discharge drainage tank 13 Radioactive contaminant recovery Tank 14 Solidifying agent measuring container
15 Kneading and Forming Device 16 Storage Station for Radioactive Contaminants 20 Reaction Treatment Liquid Transfer Pump 21 Contaminated Water Input Cock 22 Iron Salt Input Cock 23 Alkali Input Cock 24 Recovery Purified Water Transfer Pump 25 Drainage Discharge Pump 26 Purified Water Transfer Pump 27 Collected Mud Contaminant Transfer Pump 28 Collected Mud Contaminant Input Cock 29 Solidifying Agent Input Cock

Claims (8)

放射能汚染水の浄化処理方法であって、
前記放射能汚染水に鉄イオンを添加混合する鉄イオン添加処理と、
前記鉄イオン添加処理した放射能汚染水にアルカリを添加して、加熱酸化することにより、セシウム含有酸化鉄沈殿物を生成するセシウム共沈反応処理と、
前記セシウム共沈反応処理で生成した水溶液を浄化水とセシウム含有酸化鉄沈殿物とに分離する固液分離処理と、
を有することを特徴とする放射能汚染水の浄化処理方法。
A method for purifying radioactively contaminated water,
Iron ion addition treatment for adding and mixing iron ions into the radioactively contaminated water,
Addition of alkali to the radioactively contaminated water subjected to the iron ion addition treatment, and heat oxidation to produce a cesium-containing iron oxide precipitate, cesium coprecipitation reaction treatment,
A solid-liquid separation treatment for separating the aqueous solution produced by the cesium coprecipitation reaction treatment into purified water and a cesium-containing iron oxide precipitate;
A method for purifying radioactively contaminated water, comprising:
前記鉄イオン添加処理において、添加する鉄塩が硫酸第一鉄で、添加処理量が鉄イオン濃度で0.001〜1.000mol/l(リットル)であることを特徴とする請求項1に記載の放射能汚染水の浄化処理方法。   The iron salt to be added in the iron ion addition treatment is ferrous sulfate, and the addition treatment amount is 0.001 to 1.000 mol / l (liter) in terms of iron ion concentration. Purification method for radioactively contaminated water. 前記セシウム共沈反応処理において、添加するアルカリが、水酸化ナトリウム、水酸化カルシウム又は水酸化マグネシウムの少なくともいずれか一種で、添加量が鉄イオン量に対して0.9当量以上、1.0当量未満であることを特徴とする請求項1又は2に記載の放射能汚染水の浄化処理方法。   In the cesium coprecipitation treatment, the alkali to be added is at least one of sodium hydroxide, calcium hydroxide, and magnesium hydroxide, and the addition amount is 0.9 equivalents or more and 1.0 equivalents with respect to the iron ion amount. The method for purifying radioactively contaminated water according to claim 1 or 2, characterized in that the amount is less. 前記セシウム共沈反応処理において、加熱酸化は、加熱温度が50℃〜80℃であることを特徴とする請求項1ないし3のいずれかに記載の放射能汚染水の浄化処理方法。   In the said cesium coprecipitation reaction process, heating oxidation is the heating temperature of 50 to 80 degreeC, The purification processing method of the radioactive contamination water in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記固液分離処理において、固液分離に磁気分離装置を用いることを特徴とする請求項1ないし4のいずれかに記載の放射能汚染水の浄化処理方法。   The method for purifying radioactively contaminated water according to any one of claims 1 to 4, wherein in the solid-liquid separation treatment, a magnetic separation device is used for solid-liquid separation. 分離回収したセシウム含有酸化鉄沈殿物を固化剤で成形固化する固形化処理を有することを特徴とする請求項1ないし5のいずれかに記載の浄化処理方法。   6. The purification treatment method according to claim 1, further comprising a solidification treatment in which the separated and recovered cesium-containing iron oxide precipitate is formed and solidified with a solidifying agent. 前記固形化処理において、固化剤として焼石膏および/またはセメントを用いることを特徴とする請求項6記載の放射能汚染水の浄化処理方法。   The method for purifying radioactively contaminated water according to claim 6, wherein calcined gypsum and / or cement is used as a solidifying agent in the solidification treatment. 分離した前記浄化水を除染処理用水として再生する、または、排水として放流する水再生処理を有することを特徴とする請求項1ないし7のいずれかに記載の浄化処理方法。   The purification treatment method according to any one of claims 1 to 7, further comprising a water regeneration treatment for regenerating the separated purified water as decontamination treatment water or discharging it as waste water.
JP2013123380A 2013-06-12 2013-06-12 Purification method for radioactively contaminated water Expired - Fee Related JP5322335B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123380A JP5322335B1 (en) 2013-06-12 2013-06-12 Purification method for radioactively contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123380A JP5322335B1 (en) 2013-06-12 2013-06-12 Purification method for radioactively contaminated water

Publications (2)

Publication Number Publication Date
JP5322335B1 true JP5322335B1 (en) 2013-10-23
JP2014240791A JP2014240791A (en) 2014-12-25

Family

ID=49595863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123380A Expired - Fee Related JP5322335B1 (en) 2013-06-12 2013-06-12 Purification method for radioactively contaminated water

Country Status (1)

Country Link
JP (1) JP5322335B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355250B (en) * 2015-10-16 2018-07-10 华东理工大学 Method based on in-situ preparation birnessite processing nuclear power plant radioactive liquid waste

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182596A (en) * 1982-04-19 1983-10-25 日本原子力事業株式会社 Method of processing radioactive liquid waste
JPS6340900A (en) * 1986-08-06 1988-02-22 三菱重工業株式会社 Method of processing radioactive ion exchange resin
JPH01193700A (en) * 1988-01-28 1989-08-03 Hitachi Plant Eng & Constr Co Ltd Decontamination of radioactive metallic waste
JPH06130188A (en) * 1992-10-14 1994-05-13 Power Reactor & Nuclear Fuel Dev Corp Processing method for radioactive waste liquid
JP2001232375A (en) * 2000-12-28 2001-08-28 Hitachi Ltd Method for separating transition metal in solution
JP2007003270A (en) * 2005-06-22 2007-01-11 Toshiba Corp Radioactive waste liquid treatment apparatus and method
WO2013012081A1 (en) * 2011-07-21 2013-01-24 Jnc株式会社 Method for removing cesium ions from water and device for removing cesium ions from water
JP2013075252A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method removing cesium and heavy metal from wastewater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182596A (en) * 1982-04-19 1983-10-25 日本原子力事業株式会社 Method of processing radioactive liquid waste
JPS6340900A (en) * 1986-08-06 1988-02-22 三菱重工業株式会社 Method of processing radioactive ion exchange resin
JPH01193700A (en) * 1988-01-28 1989-08-03 Hitachi Plant Eng & Constr Co Ltd Decontamination of radioactive metallic waste
JPH06130188A (en) * 1992-10-14 1994-05-13 Power Reactor & Nuclear Fuel Dev Corp Processing method for radioactive waste liquid
JP2001232375A (en) * 2000-12-28 2001-08-28 Hitachi Ltd Method for separating transition metal in solution
JP2007003270A (en) * 2005-06-22 2007-01-11 Toshiba Corp Radioactive waste liquid treatment apparatus and method
WO2013012081A1 (en) * 2011-07-21 2013-01-24 Jnc株式会社 Method for removing cesium ions from water and device for removing cesium ions from water
JP2013075252A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method removing cesium and heavy metal from wastewater

Also Published As

Publication number Publication date
JP2014240791A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
Wan et al. Removal of fluoride from industrial wastewater by using different adsorbents: A review
Fang et al. Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites
Qi et al. Layered A 2Sn3S7· 1.25 H2O (A= Organic Cation) as efficient ion-exchanger for rare earth element recovery
Ebner et al. Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite− silica composite
Ambashta et al. Water purification using magnetic assistance: a review
Ding et al. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Yan et al. Application of iron-loaded activated carbon electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system
Huang et al. Highly-efficient and easy separation of hexahedral sodium dodecyl sulfonate/δ-FeOOH colloidal particles for enhanced removal of aqueous thallium and uranium ions: Synergistic effect and mechanism study
Li et al. Uranium elimination and recovery from wastewater with ligand chelation-enhanced electrocoagulation
Salinas et al. Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater
RU2547496C2 (en) Magnetic composite sorbent
JP6210698B2 (en) Purification method for waste water contaminated with adsorbents and toxic substances, and purification method for soil contaminated with toxic substances
Zhang et al. A novel nanomaterial and its new application for efficient radioactive strontium removal from tap water: KZTS-NS metal sulfide adsorbent versus CTA-F-MF process
Li et al. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater
Zhang et al. Super-efficient extraction of U (VI) by the dual-functional sodium vanadate (Na2V6O16· 2H2O) nanobelts
Zhang et al. Adsorption of uranium (VI) by natural vermiculite: Isotherms, kinetic, thermodynamic and mechanism studies
Sheng et al. Efficient removal of uranium from acidic mining wastewater using magnetic phosphate composites
Zhang et al. Significantly enhanced alkaline stability and cyanide suppression of Prussian blue analogues using montmorillonite for high-performance cesium removal
Bai et al. Magnetized vermiculite loaded with waste polishing powder to recover phosphorus in waste water
JP5322335B1 (en) Purification method for radioactively contaminated water
CN113694876A (en) Preparation and application of nano magnetic layered double hydroxide adsorbent
Hu et al. Resource recovery of copper‐contaminated sludge with jarosite process and selective precipitation
Li et al. Highly effective removal of nickel ions from wastewater by calcium-iron layered double hydroxide
Wang et al. Magnetic copper hexacyanoferrate core–shell nanoparticles for effective cesium removal from aqueous solutions

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees