JP5321791B2 - Method and apparatus for forming meandering annular coil - Google Patents

Method and apparatus for forming meandering annular coil Download PDF

Info

Publication number
JP5321791B2
JP5321791B2 JP2008149002A JP2008149002A JP5321791B2 JP 5321791 B2 JP5321791 B2 JP 5321791B2 JP 2008149002 A JP2008149002 A JP 2008149002A JP 2008149002 A JP2008149002 A JP 2008149002A JP 5321791 B2 JP5321791 B2 JP 5321791B2
Authority
JP
Japan
Prior art keywords
amount
coil
meandering
mold
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008149002A
Other languages
Japanese (ja)
Other versions
JP2009296814A (en
Inventor
直 森下
幸次 木下
剛士 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2008149002A priority Critical patent/JP5321791B2/en
Publication of JP2009296814A publication Critical patent/JP2009296814A/en
Application granted granted Critical
Publication of JP5321791B2 publication Critical patent/JP5321791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of molding a meandering annular coil and a molding apparatus thereof, capable of manufacturing a meandering coil having high out-of-roundness and satisfying the product dimension accuracy as a target with high yield. <P>SOLUTION: In step S1, the basic press-in quantity of each molding die corresponding to product dimension is set. In step S2, an excessive press-in quantity for correcting total deviation is added to the basic press-in quantity of each molding die to make a first individually corrected press-in quantity. In step S3, a meandering annular coil is molded from an annular winding coil at the first individually corrected press-in quantity. In step S4, the individual deviation between an actual finished dimension and a product dimension is measured, in step S5, it is checked whether the individual deviation is within a range of the product dimension accuracy, and in step S6, a second individual corrected press-in quantity in which the individual deviation as the excessive press-in quantity is added to the first individual corrected press-in quantity is obtained. The steps S3-S6 are repeated until the individual deviation is within the range of product dimension accuracy. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、蛇行環状コイルの成形方法及びその成形装置、特に、真円度の高い蛇行環状コイルを歩留まり良く製造することが出来る蛇行環状コイルの成形方法及びその成形装置に関する。   The present invention relates to a method for forming a meandering annular coil and a forming apparatus therefor, and more particularly to a method for forming a meandering annular coil capable of producing a meandering annular coil having a high roundness with a high yield and a forming apparatus therefor.

本願出願人は、ハイブリッド車両又は電気自動車用モータの励磁コイルに使用される、複数の蛇行部を有する蛇行環状コイル(例えば、特許文献1および2を参照。)を歩留まりよく製造するために、図6に示すような蛇行環状コイル成形機500及び蛇行環状コイルの成形方法を提案している(例えば、特許文献3の図6を参照。)。図6は、この蛇行環状コイル成形機500の特徴を示す要部断面説明図である。この要部断面は、例えば、第1の金型44を有する第1金型ユニット30の断面と第2の金型68を有する第2金型ユニット60の断面を組み合わせた、中心を通る成す角が162°の平面で切断した時の切り口である。この蛇行環状コイル成形機500は、円周方向に等間隔で配設された複数(例えば36°ピッチで周方向に10個)の第1の金型44を有する第1金型ユニット30と、円周方向に第1の金型44と同間隔で配設され、且つ各々が隣接する前記第1の金型44,44の間に配置される複数の第2の金型68を有する第2金型ユニット60とを備えて成り、各々の第1の金型44は、軸方向に移動しながら同時に径方向内側に対して移動することにより環状巻線コイル82に対し、いわゆる蛇行部を形成する一方、各々の第2の金型68は環状巻線コイル82を保持・固定しながら第1の金型44の軸方向の移動量に応じて環状巻線コイル82を径方向内側に移動させるよう構成されている。更に詳しくは、第1金型ユニット30を下降させる(軸方向下側に移動させる)と、第1の金型44のローラ52がローラガイド78に当接すると共に、環状巻線コイル82が金型ベース46、押さえ部48およびブラケット50から成る型に嵌合され、それと同時に第2の金型68のローラ76がローラガイド54に当接する。そして第1金型ユニット30をなおも下降させると、ローラ52がローラガイド78のローラ転動面80に沿って移動しながら環状巻線コイル82を径方向内側に移動させ、それと同時に、金型ベース46が環状巻線コイル82を下方に押して変形させ、それと同時に、ローラ76がローラガイド54のローラ転動面56に沿って移動しながら環状巻線コイル82を径方向内側に移動させる。その結果、環状巻線コイル82は縮径しながら等間隔に複数(例えば10個)の蛇行部を有する蛇行環状コイル510に成形されることになる(図7を参照。)。なお、蛇行部(V谷部)511は、蛇行環状コイル成形機500において、環状巻線コイル82を金型ベース46によって下方に押しながらローラ52とローラガイド78の協働により径方向内側に移動させることにより成形されたものである一方、非蛇行部(台形部)512は、環状巻線コイル82を金型ベース70及び押さえ部材72によって保持しながら、ローラ76とローラガイド54の協働により径方向内側に概ね金型ベース46と同じ速度で移動させることにより成形されたものである。   In order to manufacture a meandering annular coil having a plurality of meandering portions (see, for example, Patent Documents 1 and 2) used for an excitation coil of a motor for a hybrid vehicle or an electric vehicle, the applicant of the present application is shown in FIG. 6 has proposed a meandering annular coil forming machine 500 and a meandering annular coil forming method (see, for example, FIG. 6 of Patent Document 3). FIG. 6 is a cross-sectional explanatory view of the main part showing the features of the meandering annular coil forming machine 500. For example, the cross section of the main part is an angle passing through the center, which is a combination of the cross section of the first mold unit 30 having the first mold 44 and the cross section of the second mold unit 60 having the second mold 68. Is a cut surface when cut along a plane of 162 °. The meandering annular coil forming machine 500 includes a first mold unit 30 having a plurality of first molds 44 (for example, 10 pieces in the circumferential direction at a pitch of 36 °) disposed at equal intervals in the circumferential direction, A second having a plurality of second molds 68 disposed in the circumferential direction at the same interval as the first mold 44 and disposed between the adjacent first molds 44, 44. The first die 44 includes a die unit 60, and each first die 44 forms a so-called meandering portion with respect to the annular winding coil 82 by moving in the radial direction while moving in the axial direction. On the other hand, each of the second molds 68 moves the annular winding coil 82 radially inward according to the amount of movement of the first mold 44 in the axial direction while holding and fixing the annular winding coil 82. It is configured as follows. More specifically, when the first mold unit 30 is lowered (moved downward in the axial direction), the roller 52 of the first mold 44 comes into contact with the roller guide 78 and the annular winding coil 82 is moved to the mold. The roller 46 of the second mold 68 is brought into contact with the roller guide 54 at the same time as being fitted into a mold including the base 46, the pressing portion 48 and the bracket 50. When the first mold unit 30 is still lowered, the annular coil 82 is moved radially inward while the roller 52 moves along the roller rolling surface 80 of the roller guide 78, and at the same time, the mold The base 46 pushes and deforms the annular winding coil 82 downward. At the same time, the roller 76 moves along the roller rolling surface 56 of the roller guide 54 and moves the annular winding coil 82 radially inward. As a result, the annular winding coil 82 is formed into a meandering annular coil 510 having a plurality of (eg, ten) meandering portions at equal intervals while reducing the diameter (see FIG. 7). The meandering portion (V valley portion) 511 is moved radially inward by the cooperation of the roller 52 and the roller guide 78 while pushing the annular winding coil 82 downward by the die base 46 in the meandering annular coil forming machine 500. On the other hand, the non-meandering portion (trapezoidal portion) 512 is formed by causing the roller 76 and the roller guide 54 to cooperate while holding the annular winding coil 82 by the mold base 70 and the pressing member 72. It is formed by moving it at the same speed as the mold base 46 inward in the radial direction.

特開2006−280188号公報JP 2006-280188 A 特開2006−280189号公報JP 2006-280189 A 特開2008−54490号公報JP 2008-54490 A

ところで、図8は、蛇行環状コイル510の素となる環状巻線コイル82を示す説明図である。
この環状巻線コイル82は、例えば銅線を円形状(または多角形状)に5巻(ターン)かつ2層にわたり重ね巻きをすることにより得られる巻線コイルである。この環状巻線コイル82を構成する部位を大別すると、巻周が変化する「レーンチェンジ部83」、コイルの巻始めと巻終わりに係る部分(端子間)であってレーンチェンジ部83を除いた「引き出し線部84」、それ以外の「通常部85」の3部位に分けることが出来る。レーンチェンジ部83は細かい曲げを束としているので、通常部85に比較して強度・剛性が高く、逆に引き出し線部84は、束(銅線)の本数が1本少ない9ターン部84aを有する為、通常部85に比較して強度・剛性が低くなる。このように、各部位の強度・剛性が互いに異なり、更には巻線装置での調整限界も存在するため、巻線工程において環状巻線コイル82を半径が均一な形状に仕上げることは非常に困難である。その結果、巻線工程で製造(成形)される環状巻線コイル82の多くは、楕円形状等の半径が不均一な形状である。引き出し線間の9ターン部84aの強度・剛性は周囲に比べ低いために、図9に示すように9ターン部84aが長径となるような楕円形状の環状巻線コイル82となる。また、このような不均一な半径を持つ環状巻線コイル82を用いて蛇行環状コイル510を成形する場合、これから成形される蛇行環状巻線コイル510もまた同傾向の半径が不均一な形状となる。つまり、環状巻線コイル82の部位間の強度・剛性不均一化(その結果としての半径不均一化)は、次工程においてその環状巻線コイル82から成形される蛇行環状コイル510においても残存し、蛇行環状コイル510の半径不均一化の一要因となっている。
このように、半径が不均一な環状巻線コイル82からは、半径が不均一な蛇行環状コイル510が成形されるという問題があった。
これらの問題は、各金型の各押込み量(ストローク量)を一定にした従来の成形方法および成形機によっては、解決することが出来ない問題である。例えば、各金型のストローク量を同じにすると、巻線本数の少ない部位(9ターン部84a)では剛性やスプリングバック量が異なる他の部位とのバランスにより、他の部位に比べ蛇行環状コイル510の径が大きくなる傾向がある。また、材料強度が高くなると全体的にスプリングバック量が大きくなり蛇行環状コイルの径が全体的に大きくなる傾向がある。
また、蛇行環状コイル510は、上金型としての第1の金型44と下金型としての第2の金型68を用いて環状巻線コイル82をプレス成形すると同時に縮径成形することにより得られる。従って、蛇行環状コイル成形機500では、V谷部および台形部の個数に応じた第1の金型44とそれを受けるローラガイド78、または第2の金型68とそれを受けるローラガイド54の各ペアが存在する(例えば、V谷部および台形部が各10個の場合は、合計20個の第1の金型44または第2の金型68の各ペアが存在する。)。仮に、蛇行環状コイル成形機が各金型の各押込み量を個別に設定することが可能であっても、蛇行環状コイルが真円度の高い円形状に成形されるように各金型の各押込み量を個別に設定することは非常に面倒な作業である。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的は部位間の強度・剛性が不均一な環状巻線コイルであっても真円度の高い蛇行環状コイルを歩留まり良く製造することが出来る蛇行環状コイルの成形方法及びその成形装置を提供することにある。
FIG. 8 is an explanatory diagram showing an annular winding coil 82 that is a source of the meandering annular coil 510.
The annular winding coil 82 is a winding coil obtained by, for example, winding a copper wire in a circular shape (or polygonal shape) in five turns (turns) and lap winding over two layers. When the parts constituting the annular winding coil 82 are roughly classified, a “lane change portion 83” in which the winding circumference changes, a portion (between terminals) relating to the start and end of winding of the coil, excluding the lane change portion 83 It can be divided into three parts of “leading line part 84” and “normal part 85” other than that. Since the lane change portion 83 is a bundle of fine bends, the strength and rigidity are higher than the normal portion 85. Conversely, the lead wire portion 84 has a 9-turn portion 84a in which the number of bundles (copper wires) is one less. Therefore, the strength and rigidity are lower than those of the normal portion 85. In this way, the strength and rigidity of each part are different from each other, and further, there are adjustment limits in the winding device, so it is very difficult to finish the annular winding coil 82 in a uniform radius shape in the winding process. It is. As a result, many of the annular winding coils 82 manufactured (formed) in the winding process have a non-uniform radius such as an elliptical shape. Since the strength / rigidity of the 9-turn portion 84a between the lead wires is lower than that of the surroundings, an elliptical annular coil 82 having a long diameter of the 9-turn portion 84a is formed as shown in FIG. Further, when the meandering annular coil 510 is formed using the annular winding coil 82 having such a non-uniform radius, the meandering annular winding coil 510 to be molded from now on also has a shape with a nonuniform radius. Become. That is, nonuniform strength and rigidity between the portions of the annular winding coil 82 (resulting in nonuniform radius) remain in the meandering annular coil 510 formed from the annular winding coil 82 in the next step. This is a factor in making the radius of the meandering annular coil 510 non-uniform.
Thus, there is a problem that the meandering annular coil 510 having a non-uniform radius is formed from the annular winding coil 82 having a non-uniform radius.
These problems cannot be solved by conventional molding methods and molding machines in which the respective pressing amounts (stroke amounts) of the respective molds are made constant. For example, if the stroke amount of each mold is the same, the portion having a small number of windings (9 turn portion 84a) has a meandering annular coil 510 compared to other portions due to balance with other portions having different rigidity and springback amount. The diameter tends to increase. Further, when the material strength increases, the amount of springback generally increases and the diameter of the meandering annular coil tends to increase overall.
Further, the meandering annular coil 510 is formed by press-molding the annular winding coil 82 using the first mold 44 as the upper mold and the second mold 68 as the lower mold and simultaneously reducing the diameter. can get. Therefore, in the meandering annular coil forming machine 500, the first mold 44 and the roller guide 78 receiving it or the second mold 68 and the roller guide 54 receiving it according to the number of V valleys and trapezoids. Each pair exists (for example, when there are 10 V valleys and 10 trapezoids, there are a total of 20 pairs of first mold 44 or second mold 68). Even if the meandering annular coil forming machine can individually set the pushing amount of each die, each meandering coil is shaped into a circular shape with a high roundness. Setting the pushing amount individually is a very troublesome work.
Therefore, the present invention has been made in view of the problems of the prior art, and the object thereof is a meandering annular coil having a high roundness even if it is an annular winding coil having uneven strength and rigidity between parts. It is an object of the present invention to provide a method for forming a meandering annular coil and a device for forming the same.

前記目的を達成するために請求項1に記載の蛇行環状コイルの成形方法では、レーンチェンジ部を備えた環状巻線コイルから、蛇行部と非蛇行部が交互に形成された蛇行環状コイルを成形する蛇行環状コイルの成形方法であって、前記蛇行部の成形に係る第1金型と、前記非蛇行部の成形に係る第2金型の内の少なくとも一方の金型を軸方向に移動させるのと同時に、それと同期して前記第1金型および前記第2金型を径方向内側に移動させることにより前記環状巻線コイルから前記蛇行環状コイルを成形する蛇行環状コイルの成形方法において、前記第1金型または前記第2金型の径方向または軸方向の各押込み量を、 前記蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する全体ズレ量または、素となる前記環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の個別ズレ量に基づいて補正して、成形方向(径方向または軸方向)毎に各々個別に設定することを特徴とする。
蛇行環状コイルの目標寸法に対する径方向の歪み(ズレ)は、V谷部または台形部の各形状に対する一般的なスプリングバックに起因する「全体ズレ」と、素となる環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の「個別ズレ」とから成っている。従って、V谷部または台形部の成形に係る各金型の各押込み量としては、各成形方向の基本押込み量に、上記「全体ズレ」を補正する個別補正押込み量と、上記「個別ズレ」を補正する個別補正押込み量とを各金型の各押込み量に加える必要がある。
そこで、上記蛇行環状コイルの成形方法では、上記「全体ズレ」に対してはV谷部または台形部に応じた一定量の補正押込み量をオーバー押込み量として各金型の各押込み量に加え、更に、上記「個別ズレ」に対してはその部位特有の補正押込み量を「ズレ量」に応じてオーバー押込み量として各金型の各押込み量に個別に加えることにより、上記「全体ズレ」と「個別ズレ」の双方のズレを補正し、その結果、素となる環状巻線コイルの寸法精度に依らずに真円度の高い蛇行環状コイルを歩留まり良く製造することが可能となるようにした。
なお、基本押込み量とは、各部位の各成形方向のスプリングバック特性を考慮しない製品寸法に対応した押込み量(基本設計の設定値)である。
In order to achieve the above object, in the method of forming a meandering annular coil according to claim 1, a meandering annular coil in which meandering portions and non-meandering portions are alternately formed is formed from an annular winding coil having a lane change portion. A method for forming a meandering annular coil, wherein at least one of a first die for forming the meandering portion and a second die for forming the non-meandering portion is moved in the axial direction. At the same time, in the method for forming a meandering annular coil, the meandering annular coil is formed from the annular winding coil by moving the first die and the second die inward in the radial direction in synchronization therewith, The amount of indentation in the radial direction or the axial direction of the first mold or the second mold is determined based on the total amount of deviation caused by the shape characteristic of the meandering annular coil and the springback characteristic of the material, or the annular winding as a base. The correction is made based on the individual deviation amount peculiar to the part caused by the winding characteristics of the coil and the strength / rigidity of each part, and is set individually for each molding direction (radial direction or axial direction).
The radial distortion (displacement) with respect to the target dimension of the meandering annular coil is the "overall deviation" caused by the general springback for each shape of the V valley part or the trapezoidal part, and the winding characteristics of the original annular winding coil It consists of “individual misalignment” specific to the site due to the strength and rigidity of each site. Therefore, as the indentation amount of each mold related to the molding of the V valley portion or the trapezoidal portion, the individual indentation amount for correcting the “overall displacement” and the “individual displacement” to the basic indentation amount in each molding direction. It is necessary to add the individual correction pushing amount for correcting the amount to each pushing amount of each mold.
Therefore, in the method of forming the meandering annular coil, for the “whole displacement”, a certain amount of correction pushing amount corresponding to the V valley portion or the trapezoidal portion is added to each pushing amount of each die as an over pushing amount, Furthermore, with respect to the “individual displacement”, the correction push amount peculiar to the part is individually added to each push amount of each mold as an over push amount in accordance with the “deviation amount”. Both deviations of “individual deviation” were corrected, and as a result, it became possible to manufacture a meandering annular coil with high roundness with high yield without depending on the dimensional accuracy of the original annular winding coil. .
The basic indentation amount is an indentation amount (set value of basic design) corresponding to a product dimension that does not take into account the springback characteristics of each part in each molding direction.

請求項2に記載の蛇行環状コイルの成形方法では、先ず、製品寸法に対応した前記第1金型および前記第2金型の径方向または軸方向における基本押込み量に対し、前記全体ズレ量を各金型のオーバー押込み量として加えることにより得られる第1個別補正押込み量に基づいて一の環状巻線コイルから蛇行環状コイルを成形し、次いで、実出来上がり寸法と前記製品寸法との径方向または軸方向における各部位の個別ズレ量を測定し、次いで、前記第1個別補正押込み量に対し、前記個別ズレ量を各金型のオーバー押込み量として加えることにより得られる第2個別補正押込み量に基づいて、再び同様な成形工程により他の環状巻線コイルから蛇行環状コイルを成形するに際し、該第2個別補正押込み量のうち第2金型の径方向のストローク量については、環状巻線コイルのレーンチェンジ部に係るストローク量が、環状巻線コイルの通常部に係る平均ストローク量よりも大きいことを特徴として成形し、以後、実出来上がり寸法が前記製品寸法精度の範囲内に収まるまで、径方向または軸方向における各部位の個別ズレ量の測定、その個別ズレ量を各金型のオーバー押込み量として加える個別補正押込み量の更新、並びに新個別補正押込み量による新たな蛇行環状コイル成形の各工程を繰り返し、実出来上がり寸法が前記製品寸法精度の範囲内に収まる時の第n個別補正押込み量(n≧2)を前記第1金型および前記第2金型の径方向または軸方向の各個別押込み量とすることとした。
上記蛇行環状コイルの成形方法では、先ず、各金型の各押込み量を、上記「全体ズレ」が「オーバー押込み量」として加えられた第1個別補正押込み量に設定した上で、環状巻線コイルから蛇行環状コイルを成形する。そして、実際の出来上がり寸法と製品寸法との各個別ズレ量を測定し、その各個別ズレ量をオーバー押込み量として各金型の各押込み量に加える試行プロセスを、実際の出来上がり寸法が製品寸法精度の範囲内(公差内)に収まるまで繰り返す。そして、実際の出来上がり寸法が製品寸法精度の範囲内に収まる時の、「基本押込み量」+「全体ズレを補正するオーバー押し込み量」+「個別ズレを補正するオーバー押込み量の積分値」を各金型の個別押込み量とする。これにより、蛇行環状コイルの歪みの原因となる上記「全体ズレ」および「個別ズレ」を好適に補正し、特に、環状巻線コイルの「9ターン部」や「レーンチェンジ部」に該当する部位の目標寸法からのズレを好適に補正することが可能となり、その結果、1回の成形プロセスによって製品寸法精度を満足した真円度の高い蛇行環状コイルを歩留まり良く製造することが出来るようになる。このとき各金型の各オーバー押込み量の設定にあたっては、場合によっては、各(実測)個別ズレ量よりも適宜に大きくした値を設定してもよい。
In the method of forming the meandering annular coil according to claim 2, first, the overall deviation amount is set with respect to a basic pushing amount in a radial direction or an axial direction of the first die and the second die corresponding to a product size. A meandering annular coil is formed from one annular winding coil based on the first individual correction pushing amount obtained by adding each die as an over pushing amount, and then the radial direction between the actual finished size and the product size or Measure the individual displacement amount of each part in the axial direction, and then add the individual displacement amount to the second individual correction push amount obtained by adding the individual displacement amount as the over push amount of each mold to the first individual correction push amount. based on the stroke upon, the second mold in the radial direction of the second individual correction pressing amount for forming the serpentine annular coil from another annular winding coil by a similar molding process again The stroke volume of the lane change of the loop winding coil, shaped as being greater than the average stroke of the normal portion of the annular winding coil, thereafter, the actual finished dimensions of the product dimensional accuracy Measure the individual displacement amount of each part in the radial direction or axial direction until it falls within the range, update the individual correction push amount that adds the individual displacement amount as the over push amount of each mold, and newly by the new individual correction push amount Each of the meandering annular coil forming steps is repeated, and the n-th individual correction push-in amount (n ≧ 2) when the actual dimensions are within the range of the product dimensional accuracy is determined for the first mold and the second mold. Each individual push amount in the radial direction or axial direction was determined.
In the method of forming the meandering annular coil, first, each pushing amount of each mold is set to the first individual correction pushing amount in which the above-mentioned “overall displacement” is added as the “over pushing amount”, and then the annular winding. A meandering annular coil is formed from the coil. Then, we measured each individual deviation amount between the actual finished dimensions and the product dimensions, and added each individual deviation amount as an over push amount to each push amount of each mold. Repeat until it is within the range (within tolerance). Then, when the actual finished dimensions are within the range of product dimensional accuracy, "Basic push amount" + "Over push amount to correct the overall displacement" + "Integral value of over push amount to correct individual deviation" It is the individual push amount of the mold. As a result, the above-mentioned “overall deviation” and “individual deviation” that cause distortion of the meandering annular coil are preferably corrected, and in particular, a portion corresponding to “9 turn part” or “lane change part” of the annular winding coil As a result, it is possible to manufacture a meandering annular coil having a high roundness that satisfies the product dimensional accuracy with a high yield by a single molding process. . At this time, when setting each over-pressing amount of each die, a value appropriately set larger than each (actually measured) individual deviation amount may be set.

前記目的を達成するために請求項3に記載の蛇行環状コイルの成形装置では、レーンチェンジ部を備えた環状巻線コイルから、蛇行部と非蛇行部が交互に形成された蛇行環状コイルを成形する蛇行環状コイルの成形装置であって、環状に配設され前記蛇行部の成形に係る第1金型と、前記第1金型間に嵌合するように配設され前記非蛇行部の成形に係る第2金型と、前記各第1金型または前記第2金型の少なくとも一方を軸方向に移動させる第1移動手段と、該第1金型を径方向に移動させる第2移動手段と、該第2金型を径方向に移動させる第3移動手段とを備えた蛇行環状コイルの成形装置において、
前記第1金型または前記第2金型の軸方向または径方向の各押込み量は、前記蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する全体ズレ量または、素となる前記環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の個別ズレ量に基づいて補正されて、成形方向(径方向または軸方向)毎に各々個別に設定される調整手段を備えたことを特徴とする。
上記蛇行環状コイルの成形装置では、上記請求項1に記載の蛇行環状コイルの成形方法を好適に実施することが出来る。
In order to achieve the above object, a meandering annular coil forming apparatus according to claim 3, wherein a meandering annular coil in which meandering portions and non-meandering portions are alternately formed is formed from an annular winding coil having a lane change portion. An apparatus for forming a meandering annular coil, wherein a first mold related to molding of the meandering part disposed annularly and a non-meandering part formed so as to be fitted between the first molds A second moving means for moving at least one of the first mold or the second mold in the axial direction, and a second moving means for moving the first mold in the radial direction. And a meandering annular coil forming apparatus comprising third moving means for moving the second mold in the radial direction,
The pushing amount in the axial direction or the radial direction of the first die or the second die is the total deviation amount due to the shape characteristic of the meandering annular coil and the spring back characteristic of the material, or the annular winding as a base. There is an adjustment means that is corrected based on the winding characteristic of the wire coil and the individual deviation amount specific to the part due to the strength and rigidity of each part, and is individually set for each molding direction (radial direction or axial direction) . It is characterized by that.
In the meandering annular coil forming apparatus, the meandering annular coil forming method according to claim 1 can be suitably implemented.

請求項4に記載の蛇行環状コイルの成形装置では、
先ず、製品寸法に対応した前記第1金型および前記第2金型の径方向または軸方向における基本押込み量に対し、前記全体ズレ量を各金型のオーバー押込み量として加えることにより得られる第1個別補正押込み量に基づいて一の環状巻線コイルから蛇行環状コイルを成形する手段と
次いで、実出来上がり寸法と前記製品寸法との径方向または軸方向における各部位の個別ズレ量を測定する手段と
次いで、前記第1個別補正押込み量に対し、前記個別ズレ量を各金型のオーバー押込み量として加えることにより得られる第2個別補正押込み量に基づいて、再び同様な成形工程により他の環状巻線コイルから蛇行環状コイルを成形する手段とを備えたものであって、
前記第2個別補正押込み量に基づく成形においては、第2個別補正押込み量のうち第2金型の径方向のストローク量については、環状巻線コイルのレーンチェンジ部に係るストローク量が、環状巻線コイルの通常部に係る平均ストローク量よりも大きくなるものとし、
以後、実出来上がり寸法が前記製品寸法精度の範囲内に収まるまで、径方向または軸方向における各部位の個別ズレ量の測定、その個別ズレ量を各金型のオーバー押込み量として加える個別補正押込み量の更新、並びに新個別補正押込み量による新たな蛇行環状コイル成形の各工程を繰り返し、実出来上がり寸法が前記製品寸法精度の範囲内に収まる時の第n個別補正押込み量(n≧2)を前記第1金型および前記第2金型の軸方向または径方向の各個別押込み量として設定することとした。
上記蛇行環状コイルの成形装置では、上記請求項2に記載の蛇行環状コイルの成形方法を好適に実施することが出来る。
In the apparatus for forming a meandering annular coil according to claim 4,
First, the first shift amount obtained by adding the total shift amount as the over-pressing amount of each die to the basic pressing amount in the radial direction or the axial direction of the first die and the second die corresponding to the product dimensions. Means for forming a meandering annular coil from one annular winding coil based on one individual correction pushing amount;
Next, a means for measuring an individual deviation amount of each part in the radial direction or the axial direction between the actual finished dimension and the product dimension;
Next, another annular winding is again performed in the same molding process again based on the second individual correction push-in amount obtained by adding the individual shift amount as the over push-in amount of each mold to the first individual correction push-in amount. Means for forming a meandering annular coil from a wire coil ,
In the molding based on the second individual correction pushing amount, the stroke amount related to the lane change portion of the annular winding coil is set to be the annular winding amount of the second individual correction pushing amount in the radial direction of the second mold. It shall be larger than the average stroke amount for the normal part of the wire coil,
After that, until the actual finished dimensions are within the range of the product dimensional accuracy, measure the individual misalignment amount of each part in the radial direction or the axial direction, and add the individual misalignment amount as the over push amount of each mold. And the new meandering annular coil forming step with the new individual correction push-in amount are repeated, and the n-th individual correction push-in amount (n ≧ 2) when the actual finished size is within the range of the product dimensional accuracy is The individual pressing amounts in the axial direction or radial direction of the first mold and the second mold were set.
In the meandering annular coil forming apparatus, the meandering annular coil forming method according to claim 2 can be suitably carried out.

本発明の蛇行環状コイルの成形方法によれば、蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する一般的な「全体ズレ」、並びに素となる環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の「個別ズレ」との双方のズレを好適に補正する各金型の個別補正押込み量を予め求め、そしてその個別押込み量に基づいて環状巻線コイルから蛇行環状コイルを成形するため、製品寸法精度を満足した真円度の高い蛇行環状コイルを歩留まり良く製造することが出来る。
また、本発明の蛇行環状コイルの成形装置によれば、V谷部および台形部の各成形に係る各金型を上記個別補正押込み量で駆動し、上記蛇行環状コイルの成形方法を好適に実施することが出来る。
According to the method for forming a meandering annular coil of the present invention, the general “whole displacement” caused by the shape characteristics of the meandering annular coil and the springback characteristics of the material, as well as the winding characteristics of the original annular winding coil and each part The individual correction push amount of each mold that suitably corrects both of the deviations specific to the part due to the strength and rigidity of the mold is obtained in advance, and the meandering from the annular winding coil based on the individual push amount Since the annular coil is formed, it is possible to manufacture a meandering annular coil having high roundness and satisfactory product dimensional accuracy with high yield.
Further, according to the meandering annular coil forming apparatus of the present invention, each die for forming the V valley portion and the trapezoidal portion is driven with the individual correction pushing amount, and the method for forming the meandering annular coil is suitably carried out. I can do it.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明に係る蛇行環状コイル成形機100を示す要部断面説明図である。なお、この要部断面は、蛇行環状コイル成形機500と同様に、例えば、第1の金型44’を有する第1金型ユニット30’の断面と第2の金型68’を有する第2金型ユニット60’の断面を組み合わせた、中心を通る成す角が162°の平面で切断した時の切り口である。
この蛇行環状コイル成形機100は、V谷部の成形に係る「上型」としての第1の金型44’と、第1の金型44’を径方向(r)に駆動する「サーボ機構」としてのスライダー42’及びサーボモータ52’と、台形部の成形に係る「下型」としての第2の金型68’と、第2の金型68’を径方向(r)に駆動する「サーボ機構」としてのスライダー55’及びサーボモータ76’とを具備して構成されている。また、図示の都合上、V谷部の成形に係る第1の金型44’(上型)、または台形部の成形に係る第2の金型68’(下型)は各々1個づつ表されているが、実際は、V谷部または台形部の個数、本実施形態では各々10個存在する。
この蛇行環状コイル成形機100は、各金型の径方向(r)の駆動が個別のサーボ機構(スライダー及びサーボモータ)によって独立に制御される。従来の蛇行環状コイル成形機500では、上型ユニット30が軸方向に移動するとローラ52,76がローラ転動面80,56に沿って移動して軸方向(深さ方向)(h)の成形と径方向(r)の成形が同時になされ、各金型の径方向(r)の駆動は深さ方向(h)の駆動に完全に従属した関係であった。また、蛇行環状コイル成形機500では各金型44,68の径方向(r)のストローク量(押込み量)は、各ガイドレール40,66の長さによって一意的に決まり、各金型44,68のストローク量を個別に設定することは出来なかった。これに対し、この蛇行環状コイル成形機100では、各金型の径方向(r)の駆動と軸方向(h)の駆動は完全に独立して制御される。さらに、各金型の径方向(r)の駆動は各サーボ機構によって独立に制御されるため、各金型の径方向(r)の各ストローク量を個別に設定することが可能となる。従って、蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する一般的な「全体ズレ」、並びに/または素となる環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の「個別ズレ」との双方のズレを好適に補正する各金型の個別補正ストローク量を予め設定することが可能となる。なお、この各金型の個別補正ストローク量の求め方については、図2を参照しながら後述する。
FIG. 1 is a cross-sectional explanatory view of a main part showing a meandering annular coil forming machine 100 according to the present invention. The cross section of the main part is the same as that of the meandering annular coil forming machine 500, for example, the cross section of the first mold unit 30 ′ having the first mold 44 ′ and the second mold 68 ′ having the second mold 68 ′. This is a cut when a cross section of the mold unit 60 ′ is combined and cut along a plane having an angle of 162 ° passing through the center.
The serpentine annular coil forming machine 100 includes a first mold 44 ′ as an “upper mold” for forming the V valley portion, and a “servo mechanism for driving the first mold 44 ′ in the radial direction (r). And the second mold 68 ′ as the “lower mold” for forming the trapezoidal portion, and the second mold 68 ′ is driven in the radial direction (r). A slider 55 ′ as a “servo mechanism” and a servo motor 76 ′ are provided. Further, for the convenience of illustration, each of the first mold 44 '(upper mold) relating to the molding of the V valley part or the second mold 68' (lower mold) relating to the molding of the trapezoidal part is represented by one. In reality, however, the number of V valleys or trapezoidal parts, each 10 in this embodiment, exists.
In the meandering annular coil forming machine 100, the drive in the radial direction (r) of each mold is independently controlled by individual servo mechanisms (sliders and servomotors). In the conventional serpentine annular coil forming machine 500, when the upper die unit 30 moves in the axial direction, the rollers 52 and 76 move along the roller rolling surfaces 80 and 56 to form in the axial direction (depth direction) (h). And the radial direction (r) were formed at the same time, and the drive in the radial direction (r) of each mold was completely dependent on the drive in the depth direction (h). Further, in the meandering annular coil forming machine 500, the stroke amount (pushing amount) in the radial direction (r) of each die 44, 68 is uniquely determined by the length of each guide rail 40, 66. 68 stroke amounts could not be set individually. On the other hand, in the meandering annular coil forming machine 100, the drive in the radial direction (r) and the drive in the axial direction (h) of each mold are controlled completely independently. Furthermore, since the drive in the radial direction (r) of each mold is controlled independently by each servo mechanism, it is possible to individually set each stroke amount in the radial direction (r) of each mold. Therefore, the general "whole deviation" due to the shape characteristics of the meandering annular coil and the springback characteristics of the material, and / or the winding characteristics of the original annular winding coil and the parts specific to the strength and rigidity of each part It is possible to set in advance an individual correction stroke amount for each mold that suitably corrects both of the “individual deviation”. A method for obtaining the individual correction stroke amount of each mold will be described later with reference to FIG.

なお、本実施形態では、下型(金型ベース70’)は静止して、上型(金型ベース46’)が深さ方向(h)に(相対)移動するものとする。また、上型の深さ方向(h)の移動は、上型ユニット30’が移動することによって成される。なお、各上型の深さ方向(h)の各ストローク量の設定(調整)は、例えば各金型ベース46’の取り付け部にシムを挿入しそのシムの厚さを個別に変えることにより行われる。また、各金型ベース46’を深さ方向(h)に個別に駆動するサーボモータを備える場合の深さ方向(h)の調整は、各サーボモータのストローク量を変えることにより、或いは各シムの厚さと各サーボモータのストローク量を変えることにより行われる。   In the present embodiment, it is assumed that the lower mold (mold base 70 ') is stationary and the upper mold (mold base 46') moves (relatively) in the depth direction (h). Further, the movement of the upper mold in the depth direction (h) is performed by moving the upper mold unit 30 '. The setting (adjustment) of each stroke amount in the depth direction (h) of each upper mold is performed, for example, by inserting a shim into the mounting portion of each mold base 46 ′ and individually changing the thickness of the shim. Is called. Further, in the case of providing a servo motor that individually drives each mold base 46 ′ in the depth direction (h), the adjustment in the depth direction (h) can be performed by changing the stroke amount of each servo motor or by changing each shim. This is done by changing the thickness of each and the stroke amount of each servo motor.

他方、V谷部および台形部の各径方向(r)の個別ストローク量の設定(調整)は、各金型を駆動する各サーボモータ52’,76’のストローク量を変えることにより行われる。   On the other hand, the setting (adjustment) of the individual stroke amounts in the radial direction (r) of the V valley portion and the trapezoidal portion is performed by changing the stroke amounts of the servo motors 52 'and 76' that drive the molds.

上述した通り、上記蛇行環状コイル成形機100では、各金型の径方向(r)の駆動は完全に独立した関係になる。従って、V谷部の成形に係る第1の金型44’の駆動と台形部の成形に係る第2の金型68’の駆動、ならびに、同一種類の各金型間の各々の駆動についても完全に独立した関係になる。従って、各金型の径方向(r)または深さ方向(h)におけるストローク量を、蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する一般的な「全体ズレ」(全体ズレ量)と、素となる環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の「個別ズレ」(個別ズレ量)に応じて個別に設定すること、いわゆる「縮径量個別制御による径精度向上」が容易に出来るようになる。図2は、各金型の各成形方向(径方向、深さ方向)における各個別補正ストローク量を設定するフロー図である。   As described above, in the meandering annular coil forming machine 100, the drive in the radial direction (r) of each mold is completely independent. Accordingly, the driving of the first mold 44 'related to the molding of the V valley part, the driving of the second mold 68' related to the molding of the trapezoidal part, and the driving of each of the same type of molds are also performed. It becomes a completely independent relationship. Therefore, the stroke amount in the radial direction (r) or depth direction (h) of each mold is the general `` overall displacement '' (overall displacement amount) caused by the shape characteristics of the meandering annular coil and the springback characteristics of the material. In addition, it is set individually according to the part-specific `` individual deviation '' (individual deviation amount) caused by the winding characteristics of the original annular winding coil and the strength and rigidity of each part, so-called `` reducing diameter individual control "Improvement of diameter accuracy by" can be easily performed. FIG. 2 is a flowchart for setting each individual correction stroke amount in each molding direction (radial direction, depth direction) of each mold.

先ず、ステップS1では、製品寸法に対応した各金型の各成形方向(径方向、深さ方向)の基本ストローク量を求める。この基本ストローク量とは、成形のプロセス前後においてコイル周長が変化しないという条件の下、各部位におけるスプリングバック特性を考慮しない(オーバー押込み量を考慮しない)単に製品寸法に基づいたストローク量(基本設計の設定値)である。なお、本実施形態では、V谷部および台形部の個数は各々10個とし、V谷部の成形に係る各金型の個別ストローク量については、10個の金型ベース46’の径方向(r)または深さ方向(h)の個別ストローク量<S>u=(S1 u-r,・・・,S10 u-r,S1 u-h,・・・,S10 u-h)をV谷部の成形に係る各金型の代表値として表すことにする。同様に台形部の成形に係る各金型の個別ストローク量についても、10個の金型ベース70’の径方向(r)の個別ストローク量<S>L=(S1 L-r,・・・,S10 L-r)を台形部の成形に係る各金型の代表値として表すことにする。なお、上付の添え字は、金型の通し番号(シリアル番号)を示し、径方向(r)または深さ方向(h)に付された添え字は上型(u)または下型(L)の区別を示す。ここで、V谷部の径方向(r)または深さ方向(h)の各基本ストローク量をSVr,SVhと、台形部の径方向(r)の基本ストローク量をSDrとすると、各金型の個別基本ストローク量=(<S>u,<S>L)=(S1 u-r,・・・,S10 u-r,S1 u-h,・・・,S10 u-h,S1 L-r,・・・,S10 L-r)=(SVr,・・・,SVr,SVh,・・・,SVh,SDr,・・・,SDr)と表すことができる。また、本実施形態では、蛇行環状コイルの平坦部の形状は円形であるため、V谷部および台形部における径方向(r)の各基本ストローク量はともに等しく、SVr=SDrである。 First, in step S1, the basic stroke amount in each molding direction (radial direction, depth direction) of each mold corresponding to the product dimensions is obtained. This basic stroke amount is based on the condition that the coil circumference does not change before and after the molding process, and does not consider the springback characteristics at each part (does not consider over-pushing amount). Design setting value). In the present embodiment, the number of V valley portions and trapezoidal portions is 10 each, and the individual stroke amount of each mold related to the formation of the V valley portion is the radial direction of 10 mold bases 46 ′ ( r) or individual stroke amount in the depth direction (h) <S> u = (S 1 ur ,..., S 10 ur , S 1 uh ,..., S 10 uh ) for forming the V valley It will be expressed as a representative value of each mold. Similarly, for the individual stroke amount of each mold related to the molding of the trapezoidal part, the individual stroke amount in the radial direction (r) of the ten mold bases 70 ′ <S> L = (S 1 Lr ,... S 10 Lr ) is represented as a representative value of each mold related to the molding of the trapezoidal portion. The superscript indicates the serial number (serial number) of the mold, and the subscript added in the radial direction (r) or depth direction (h) is the upper die (u) or lower die (L). The distinction is shown. Here, S Vr and S Vh are the basic stroke amounts in the radial direction (r) or depth direction (h) of the V valley portion, and S Dr is the basic stroke amount in the radial direction (r) of the trapezoidal portion. Individual basic stroke amount of each mold = (<S> u , <S> L ) = (S 1 ur ,..., S 10 ur , S 1 uh ,..., S 10 uh , S 1 Lr , , S 10 Lr ) = (S Vr ,..., S Vr , S Vh ,..., S Vh , S Dr ,..., S Dr ). In the present embodiment, since the shape of the flat portion of the meandering annular coil is circular, the basic stroke amounts in the radial direction (r) in the V valley portion and the trapezoidal portion are both equal, and S Vr = S Dr.

次に、ステップS2では、ステップS1で求めた基本ストローク量に全体ズレ量をオーバーストローク量として加え、第1個別補正ストローク量とする。なお、全体ズレ量とは、最終製品である蛇行環状巻線コイルの形状特性や材料のスプリングバック特性に起因する、成形プロセスの経験から得られるV谷部および台形部における製品寸法精度からの一般的なズレ量である。従って、V谷部についての径方向(r)または深さ方向(h)の各全体ズレ量をΔSVr,ΔSVhと、台形部についての径方向(r)の全体ズレ量をΔSDrとすると、全体ズレ量を考慮した各金型の第1個別補正ストローク量<S>(1)は、<S>(1)=(S1 u-r,・・・,S10 u-r,S1 u-h,・・・,S10 u-h,S1 L-r,・・・,S10 L-r)=(SVr+ΔSVr,・・・,SVr+ΔSVr,SVh+ΔSVh,・・・,SVh+ΔSVh,SDr+ΔSDr,・・・,SDr+ΔSDr)
となる。図3は、各金型の径方向(r)の第1個別補正ストローク量を示す説明図である。なお、全体ズレ量ΔSVr,ΔSVh,ΔSDrが不明なときは、それに変わる適切な値を設定しても良い。例えば、ΔSVr=ΔSVh=ΔSDr=0と設定することも可能である。
Next, in step S2, the total deviation amount is added as an overstroke amount to the basic stroke amount obtained in step S1, thereby obtaining a first individual correction stroke amount. Note that the total misalignment is a general deviation from the product dimensional accuracy in the V valley and trapezoidal parts obtained from the experience of the molding process due to the shape characteristics of the meandering annular winding coil as the final product and the springback characteristics of the material. This is the amount of misalignment. Therefore, if the overall deviation in the radial direction (r) or the depth direction (h) for the V valley is ΔS Vr , ΔS Vh and the overall deviation in the radial direction (r) for the trapezoidal part is ΔS Dr. , The first individual correction stroke amount <S> (1) of each mold in consideration of the total deviation amount is <S> (1) = (S 1 ur ,..., S 10 ur , S 1 uh,. .., S 10 uh , S 1 Lr ,..., S 10 Lr ) = (S Vr + ΔS Vr ,..., S Vr + ΔS Vr , S Vh + ΔS Vh ,..., S Vh + ΔS Vh , S Dr + ΔS Dr , ..., S Dr + ΔS Dr )
It becomes. FIG. 3 is an explanatory diagram showing a first individual correction stroke amount in the radial direction (r) of each mold. When the total deviation amounts ΔS Vr , ΔS Vh , ΔS Dr are unknown, appropriate values may be set to change to them. For example, ΔS Vr = ΔS Vh = ΔS Dr = 0 can be set.

ステップS3では、各金型の各ストローク量を、ステップS2で求めた第1個別補正ストローク量<S>(1)に設定して各サーボモータを駆動して環状巻線コイルから蛇行環状コイルを成形する。 In step S3, each stroke amount of each mold is set to the first individual correction stroke amount <S> (1) obtained in step S2, and each servo motor is driven to change the meandering annular coil from the annular winding coil. Mold.

ステップS4では、ステップS3で成形された蛇行環状コイルの実出来上がり寸法と、製品寸法との個別ズレ量Δ<S>(1)=(ΔS(1) 1 u-r,・・・,ΔS(1) 10 u-r,ΔS(1) 1 u-h,・・・,ΔS(1) 10 u-h,ΔS(1) 1 L-r,・・・,ΔS(1) 10 L-r)を測定する。なお、括弧内()の数字は、測定回数(または環状巻線コイルから蛇行環状コイルへ成形した回数)を表し、上付の数字は各金型の通し番号を示し、径方向(r)または深さ方向(h)に付された添え字は上型(u)または下型(L)の区別を示す。 In step S4, individual deviation amount Δ <S> (1) = (ΔS (1) 1 ur ,..., ΔS (1) between the actual finished dimension of the meandering annular coil formed in step S3 and the product dimension. 10 ur , ΔS (1) 1 uh ,..., ΔS (1) 10 uh , ΔS (1) 1 Lr ,..., ΔS (1) 10 Lr ) are measured. The numbers in parentheses () indicate the number of measurements (or the number of times the annular winding coil was formed into a meandering annular coil), the superscript numbers indicate the serial number of each mold, and the radial direction (r) or depth The subscript attached in the direction (h) indicates the distinction between the upper mold (u) and the lower mold (L).

ステップS5では、各個別ズレ量が製品寸法精度の範囲内にあるか否かを判定する。もし、全てのV谷部および台形部での各個別ズレ量が製品寸法精度の範囲内にある場合は、ステップS7に進み、各金型の径方向(r)または深さ方向(h)における個別ストローク量とする。他方、全てのV谷部および台形部での個別ズレ量が製品寸法精度の範囲内にない場合は、ステップS6へ進む。   In step S5, it is determined whether each individual deviation amount is within the range of product dimensional accuracy. If the individual deviations in all V valleys and trapezoids are within the range of product dimensional accuracy, the process proceeds to step S7, and the radial direction (r) or depth direction (h) of each mold is reached. Use individual stroke amount. On the other hand, if the individual deviation amounts in all the V valley portions and the trapezoidal portions are not within the range of the product dimension accuracy, the process proceeds to step S6.

ステップS6では、上記第1個別補正ストローク量<S>(1)に各個別ズレ量Δ<S>(1)をオーバーストローク量として加え、第2個別補正ストローク量<S>(2)とする。すなわち、第2個別補正ストローク量<S>(2)=<S>(1)+Δ<S>(1)=(SVr+ΔSVr+ΔS(1) 1 u-r,・・・,SVr+ΔSVr+ΔS(1) 10 u-r,SVh+ΔSVh+ΔS(1) 1 u-h,・・・,SVh+ΔSVh+ΔS(1) 10 u-h,SDr+ΔSDr+ΔS(1) 1 L-r,・・・,SDr+ΔSDr+ΔS(1) 10 L-r)
をV谷部および台形部の成形に係る各金型の径方向(r)または深さ方向(h)における個別補正ストローク量とする。
In step S6, each individual deviation amount Δ <S> (1) is added as an overstroke amount to the first individual correction stroke amount <S> (1) to obtain a second individual correction stroke amount <S> (2) . . That is, the second individual correction stroke amount <S> (2) = <S> (1) + Δ <S> (1) = (S Vr + ΔS Vr + ΔS (1) 1 ur ,..., S Vr + ΔS Vr + ΔS (1) 10 ur , S Vh + ΔS Vh + ΔS (1) 1 uh ,..., S Vh + ΔS Vh + ΔS (1) 10 uh , S Dr + ΔS Dr + ΔS (1) 1 Lr , ..., S Dr + ΔS Dr + ΔS (1) 10 Lr )
Is the individual corrected stroke amount in the radial direction (r) or depth direction (h) of each mold relating to the molding of the V valley portion and the trapezoidal portion.

図4は、第2個別補正ストローク量<S>(2)のうちV谷部の径方向(r)の成形に係る各第1の金型(金型ベース46’)の各ストローク量を示す説明図である。なお、点線は、基本ストローク量SにV谷部の径方向(r)の全体ズレ量ΔSVrが加算された第1個別補正ストローク量<S>(1)を示す。環状巻線コイルの引き出し線部である9ターン部に相当する部位に対する金型(S3 u-r)のオーバーストローク量が特に大きいことがわかる。この場合、第1金型の径方向(r)のストローク量については、環状巻線コイルの引き出し線部に係るストローク量が、環状巻線コイルの通常部に係る平均ストローク量よりも大きいことが特徴である。 FIG. 4 shows each stroke amount of each first mold (die base 46 ′) related to the molding in the radial direction (r) of the V valley portion of the second individual correction stroke amount <S> (2). It is explanatory drawing. The dotted line indicates the first individual correction stroke amount <S> (1) obtained by adding the total displacement amount ΔS Vr in the radial direction (r) of the V valley portion to the basic stroke amount S. It can be seen that the overstroke amount of the mold (S 3 ur ) with respect to the portion corresponding to the 9-turn portion that is the lead wire portion of the annular winding coil is particularly large. In this case, with respect to the stroke amount in the radial direction (r) of the first mold, the stroke amount relating to the lead wire portion of the annular winding coil may be larger than the average stroke amount relating to the normal portion of the annular winding coil. It is a feature.

また、図5は、第2個別補正ストローク量<S>(2)のうち台形部の径方向(r)の成形に係る各第2の金型(金型ベース70’)の各ストローク量を示す説明図である。なお、点線は、基本ストローク量Sに台形部の径方向(r)の全体ズレ量ΔSDrが加算された第1個別補正ストローク量<S>(1)を示す。環状巻線コイルのレーンチェンジ部に相当する部位に対する金型(S3 L-r)のオーバーストローク量が特に大きいことがわかる。この場合、第2金型の径方向(r)のストローク量については、環状巻線コイルのレーンチェンジ部に係るストローク量が、環状巻線コイルの通常部に係る平均ストローク量よりも大きいことが特徴である。 Further, FIG. 5 shows the stroke amount of each second mold (die base 70 ′) related to the molding in the radial direction (r) of the trapezoidal portion of the second individual corrected stroke amount <S> (2). It is explanatory drawing shown. The dotted line indicates the first individual corrected stroke amount <S> (1) obtained by adding the total displacement amount ΔS Dr in the radial direction (r) of the trapezoidal portion to the basic stroke amount S. It can be seen that the overstroke amount of the mold (S 3 Lr ) with respect to the portion corresponding to the lane change portion of the annular winding coil is particularly large. In this case, regarding the stroke amount in the radial direction (r) of the second mold, the stroke amount related to the lane change portion of the annular winding coil may be larger than the average stroke amount related to the normal portion of the annular winding coil. It is a feature.

そして、再びステップS3に戻り、各金型の各ストローク量をこの第2個別補正ストローク量<S>(2)に設定し、各サーボモータを駆動制御して新たな環状巻線コイルから蛇行環状コイルを成形する。以後、成形された蛇行環状コイルの実出来上がり寸法と、製品寸法との個別ズレ量Δ<S>(2)を測定する。そして、全てのV谷部および台形部での各個別ズレ量が製品寸法精度の範囲内に入るまで、上記ステップS3からステップS6を繰り返し、各金型の個別補正ストローク量の更新を繰り返す。そして、個別ズレ量が製品寸法精度の範囲内に入る時の第n個別補正ストローク量<S>(n)=<S>(n-1)+Δ<S>(n-1)=<S>(n-2)+Δ<S>(n-2)+Δ<S>(n-1)=<S>(n-3)+Δ<S>(n-3)+Δ<S>(n-2)+Δ<S>(n-1)=・・・・・・=<S>(1)+Δ<S>(1)+Δ<S>(2)+・・・+Δ<S>(n-3)+Δ<S>(n-2)+Δ<S>(n-1)=<S>(1)+Σk=1 n-1Δ<S>(k)=(SVr+ΔSVr+Σk=1 n-1ΔS(k) 1 u-r,・・・,SVr+ΔSVr+Σk=1 n-1ΔS(k) 10 u-r,SVh+ΔSVh+Σk=1 n-1ΔS(k) 1 u-h,・・・,SVh+ΔSVh+Σk=1 n-1ΔS(k) 10 u-h,SDr+ΔSDr+Σk=1 n-1ΔS(k) 1 L-r,・・・,SDr+ΔSDr+Σk=1 n-1ΔS(k) 10 L-r)=(S1 u-r,・・・,S10 u-r,S1 u-h,・・・,S10 u-h,S1 L-r,・・・,S10 L-r)
を各金型の径方向(r)または深さ方向(h)における個別ストローク量とする。なお、実出来上がり寸法が製品寸法に対し行き過ぎる場合は、各オーバーストローク量ΔS(k) m u-r,ΔS(k) m u-h,ΔS(k) m L-rの符号をマイナス(−)とする。
Then, the process returns to step S3 again, and the stroke amount of each die is set to the second individual correction stroke amount <S> (2) , and each servomotor is driven and controlled to meander from the new annular winding coil. Mold the coil. Thereafter, the individual deviation amount Δ <S> (2) between the actual finished dimension of the formed meandering annular coil and the product dimension is measured. The above steps S3 to S6 are repeated until the individual deviation amounts in all the V valley portions and the trapezoidal portions are within the range of the product dimensional accuracy, and the individual correction stroke amounts of the respective molds are repeatedly updated. Then, the n-th individual correction stroke amount <S> (n) = <S> (n-1) + Δ <S> (n-1) = <S> when the individual deviation amount falls within the range of the product dimensional accuracy. (n-2) + Δ <S> (n-2) + Δ <S> (n-1) = <S> (n-3) + Δ <S> (n-3) + Δ <S> (n-2) + Δ <S> (n-1) = ......... <S> (1) + Δ <S> (1) + Δ <S> (2) + ... + Δ <S> (n-3) + Δ <S> (n−2) + Δ <S> (n−1) = <S> (1) + Σ k = 1 n−1 Δ <S> (k) = (S Vr + ΔS Vr + Σ k = 1 n −1 ΔS (k) 1 ur ,..., S Vr + ΔS Vr + Σ k = 1 n−1 ΔS (k) 10 ur , S Vh + ΔS Vh + Σ k = 1 n−1 ΔS (k) 1 uh,. .., S Vh + ΔS Vh + Σk = 1 n−1 ΔS (k) 10 uh , S Dr + ΔS Dr + Σk = 1 n−1 ΔS (k) 1 Lr ,..., S Dr + ΔS Dr + Σ k = 1 n-1 ΔS (k) 10 Lr ) = (S 1 ur ,..., S 10 ur , S 1 uh ,..., S 10 uh , S 1 Lr ,..., S 10 Lr )
Is the individual stroke amount in the radial direction (r) or depth direction (h) of each mold. If the actual finished dimensions are too large relative to the product dimensions, the signs of the overstroke amounts ΔS (k) m ur , ΔS (k) m uh , ΔS (k) m Lr are negative (−).

なお、上記各金型の各成形方向(径方向、深さ方向)の各オーバーストローク量の設定にあたっては、場合によっては、各(実測)個別ズレ量(ΔS(k) m u-r,ΔS(k) m u-h,ΔS(k)mL-r|1≦k≦n-1、1≦m≦10)よりも適宜に大きくした値を設定してもよい。 In setting the respective overstroke amounts in the respective molding directions (radial direction, depth direction) of the respective molds, depending on the case, each (measured) individual deviation amount (ΔS (k) m ur , ΔS (k ) m uh , ΔS (k) mL-r | 1 ≦ k ≦ n−1, 1 ≦ m ≦ 10) may be set appropriately.

このように、上記設定フローによれば、蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する一般的な「全体ズレ量」、ならびに素となる環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の「個別ズレ量」との双方のズレを好適に補正する各金型の個別補正ストローク量を求めることが出来る。そして上記蛇行環状コイル成形機100は、V谷部および台形部の各成形に係る各金型を上記個別補正ストローク量で駆動し、製品寸法精度を満足した真円度の高い蛇行環状コイルを歩留まり良く製造することが出来る。   As described above, according to the above setting flow, the general “total displacement amount” due to the shape characteristic of the meandering annular coil and the springback characteristic of the material, and the winding characteristic of the elementary annular winding coil and each part It is possible to obtain the individual correction stroke amount of each mold that suitably corrects both of the deviations with the “individual deviation amount” peculiar to the part caused by strength and rigidity. Then, the meandering annular coil forming machine 100 drives each die related to the molding of the V valley portion and the trapezoidal portion with the individual correction stroke amount, and yields a meandering annular coil having a high roundness that satisfies the product dimensional accuracy. Can be manufactured well.

また、本実施形態においては、環状巻線コイルの形状としては円形であったが、これに限らず、多角形であっても良い。   In the present embodiment, the annular winding coil has a circular shape, but is not limited thereto, and may be a polygonal shape.

また、本実施形態においては、各金型を径方向に駆動する手段としてサーボモータが使用されているが、油圧シリンダ又はエアシリンダ等の圧力エネルギーを機械的エネルギーに変換するアクチュエータを使用しても良い。   In this embodiment, a servo motor is used as means for driving each mold in the radial direction. However, an actuator that converts pressure energy into mechanical energy such as a hydraulic cylinder or an air cylinder may be used. good.

本発明の蛇行環状コイルの成形方法及びその成形装置は、ハイブリッド車両又は電気自動車用モータの励磁コイルに使用される、複数の蛇行部を有する蛇行環状コイルの製造に好適に適用することが可能である。   The method and apparatus for forming a meandering annular coil of the present invention can be suitably applied to the manufacture of a meandering annular coil having a plurality of meandering parts used for an excitation coil of a motor for a hybrid vehicle or an electric vehicle. is there.

本発明に係る蛇行環状コイル成形機を示す要部断面説明図である。It is principal part cross-sectional explanatory drawing which shows the meandering cyclic | annular coil forming machine which concerns on this invention. 本発明に係る各金型の各個別補正ストローク量を設定するフロー図である。It is a flowchart which sets each individual correction stroke amount of each metal mold | die which concerns on this invention. 全体ズレ量を考慮した各金型の第1個別補正ストローク量を示す説明図である。It is explanatory drawing which shows the 1st separate correction stroke amount of each metal mold | die considering the whole shift | offset | difference amount. 個別ズレ量を考慮したV谷部の径方向(r)の成形に係る各金型の第2個別補正ストローク量を示す説明図である。It is explanatory drawing which shows the 2nd separate correction | amendment stroke amount of each metal mold | die which concerns on the shaping | molding of the radial direction (r) of the V trough part which considered individual shift | offset | difference amount. 個別ズレ量を考慮した台形部の径方向(r)の成形に係る各金型の第2個別補正ストローク量を示す説明図である。It is explanatory drawing which shows the 2nd separate correction | amendment stroke amount of each metal mold | die which concerns on shaping | molding of the radial direction (r) of the trapezoid part which considered the amount of separate shift | offset | difference. 従来の蛇行環状コイル成形機を示す要部断面説明図である。It is principal part cross-sectional explanatory drawing which shows the conventional meandering annular coil forming machine. 蛇行環状コイルを示す説明図である。It is explanatory drawing which shows a meandering cyclic | annular coil. 環状巻線コイルを示す説明図である。It is explanatory drawing which shows an annular winding coil. 歪んだ環状巻線コイルを示す説明図である。It is explanatory drawing which shows the distorted cyclic | annular winding coil.

符号の説明Explanation of symbols

10,82 環状巻線コイル
100,500 蛇行環状コイル成形機
510 蛇行環状コイル
10,82 annular winding coil 100,500 serpentine annular coil forming machine 510 serpentine annular coil

Claims (4)

レーンチェンジ部を備えた環状巻線コイルから、蛇行部と非蛇行部が交互に形成された蛇行環状コイルを成形する蛇行環状コイルの成形方法であって、前記蛇行部の成形に係る第1金型と、前記非蛇行部の成形に係る第2金型の内の少なくとも一方の金型を軸方向に移動させるのと同時に、それと同期して前記第1金型および前記第2金型を径方向内側に移動させることにより前記環状巻線コイルから前記蛇行環状コイルを成形する蛇行環状コイルの成形方法において、
前記第1金型または前記第2金型の径方向または軸方向の各押込み量を、前記蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する全体ズレ量または、素となる前記環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の個別ズレ量に基づいて補正して、成形方向(径方向または軸方向)毎に各々個別に設定することを特徴とする蛇行環状コイルの成形方法。
A method for forming a meandering annular coil in which a meandering portion and a non-meandering portion are alternately formed from an annular winding coil having a lane change portion , wherein the first gold for forming the meandering portion Simultaneously moving the mold and at least one of the second molds related to the molding of the non-meandering portion in the axial direction, the first mold and the second mold are adjusted in diameter. In the method of forming a meandering annular coil, the meandering annular coil is shaped from the annular winding coil by moving inward in the direction,
The amount of pushing in the radial direction or the axial direction of the first mold or the second mold is determined based on the total deviation amount due to the shape characteristic of the meandering annular coil and the springback characteristic of the material, or the annular winding as a base. The meandering is characterized in that it is set individually for each molding direction (radial direction or axial direction), corrected based on the winding characteristics of the wire coil and the individual deviations specific to each part due to the strength and rigidity of each part. An annular coil forming method.
先ず、製品寸法に対応した前記第1金型および前記第2金型の径方向または軸方向における基本押込み量に対し、前記全体ズレ量を各金型のオーバー押込み量として加えることにより得られる第1個別補正押込み量に基づいて一の環状巻線コイルから蛇行環状コイルを成形し、
次いで、実出来上がり寸法と前記製品寸法との径方向または軸方向における各部位の個別ズレ量を測定し、
次いで、前記第1個別補正押込み量に対し、前記個別ズレ量を各金型のオーバー押込み量として加えることにより得られる第2個別補正押込み量に基づいて、再び同様な成形工程により他の環状巻線コイルから蛇行環状コイルを成形するに際し、該第2個別補正押込み量のうち第2金型の径方向のストローク量については、環状巻線コイルのレーンチェンジ部に係るストローク量が、環状巻線コイルの通常部に係る平均ストローク量よりも大きいことを特徴として成形し、
以後、実出来上がり寸法が前記製品寸法精度の範囲内に収まるまで、径方向または軸方向における各部位の個別ズレ量の測定、その個別ズレ量を各金型のオーバー押込み量として加える個別補正押込み量の更新、並びに新個別補正押込み量による新たな蛇行環状コイル成形の各工程を繰り返し、実出来上がり寸法が前記製品寸法精度の範囲内に収まる時の第n個別補正押込み量(n≧2)を前記第1金型および前記第2金型の径方向または軸方向の各個別押込み量とする請求項1に記載の蛇行環状コイルの成形方法。
First, the first shift amount obtained by adding the total shift amount as the over-pressing amount of each die to the basic pressing amount in the radial direction or the axial direction of the first die and the second die corresponding to the product dimensions. 1) A meandering annular coil is formed from one annular winding coil based on the individual correction pushing amount;
Next, the individual deviation amount of each part in the radial direction or the axial direction between the actual finished dimension and the product dimension is measured,
Next, another annular winding is again performed in the same molding process again based on the second individual correction push-in amount obtained by adding the individual shift amount as the over push-in amount of each mold to the first individual correction push-in amount. When forming the meandering annular coil from the wire coil, the stroke amount in the lane change portion of the annular winding coil is determined by the annular winding coil in the radial stroke amount of the second mold among the second individual correction push-in amounts. Molding is characterized by being larger than the average stroke amount related to the normal part of the coil,
After that, until the actual finished dimensions are within the range of the product dimensional accuracy, measure the individual misalignment amount of each part in the radial direction or the axial direction, and add the individual misalignment amount as the over push amount of each mold. And the new meandering annular coil forming step with the new individual correction push-in amount are repeated, and the n-th individual correction push-in amount (n ≧ 2) when the actual finished size is within the range of the product dimensional accuracy is The method for forming a meandering annular coil according to claim 1, wherein the first die and the second die are individually pushed in the radial direction or the axial direction.
レーンチェンジ部を備えた環状巻線コイルから、蛇行部と非蛇行部が交互に形成された蛇行環状コイルを成形する蛇行環状コイルの成形装置であって、環状に配設され前記蛇行部の成形に係る第1金型と、前記第1金型間に嵌合するように配設され前記非蛇行部の成形に係る第2金型と、前記各第1金型または前記第2金型の少なくとも一方を軸方向に移動させる第1移動手段と、該第1金型を径方向に移動させる第2移動手段と、該第2金型を径方向に移動させる第3移動手段とを備えた蛇行環状コイルの成形装置において、
前記第1金型または前記第2金型の軸方向または径方向の各押込み量は、前記蛇行環状コイルの形状特性および材料のスプリングバック特性に起因する全体ズレ量または、素となる前記環状巻線コイルの巻き特性および各部位の強度・剛性に起因する部位特有の個別ズレ量に基づいて補正されて、成形方向(径方向または軸方向)毎に各々個別に設定される調整手段を備えたことを特徴とする蛇行環状コイルの成形装置。
A meandering coil forming apparatus for forming a meandering annular coil in which meandering parts and non-meandering parts are alternately formed from an annular winding coil having a lane change part, wherein the meandering part is formed in an annular shape. A first mold according to the above, a second mold arranged to fit between the first molds and forming the non-meandering portion, and each of the first mold and the second mold First moving means for moving at least one in the axial direction, second moving means for moving the first mold in the radial direction, and third moving means for moving the second mold in the radial direction are provided. In the meandering annular coil forming device,
The pushing amount in the axial direction or the radial direction of the first die or the second die is the total deviation amount due to the shape characteristic of the meandering annular coil and the spring back characteristic of the material, or the annular winding as a base. There is an adjustment means that is corrected based on the winding characteristic of the wire coil and the individual deviation amount specific to the part due to the strength and rigidity of each part, and is individually set for each molding direction (radial direction or axial direction) . An apparatus for forming a meandering annular coil.
先ず、製品寸法に対応した前記第1金型および前記第2金型の径方向または軸方向における基本押込み量に対し、前記全体ズレ量を各金型のオーバー押込み量として加えることにより得られる第1個別補正押込み量に基づいて一の環状巻線コイルから蛇行環状コイルを成形する手段と
次いで、実出来上がり寸法と前記製品寸法との径方向または軸方向における各部位の個別ズレ量を測定する手段と
次いで、前記第1個別補正押込み量に対し、前記個別ズレ量を各金型のオーバー押込み量として加えることにより得られる第2個別補正押込み量に基づいて、再び同様な成形工程により他の環状巻線コイルから蛇行環状コイルを成形する手段とを備えたものであって、
前記第2個別補正押込み量に基づく成形においては、第2個別補正押込み量のうち第2金型の径方向のストローク量については、環状巻線コイルのレーンチェンジ部に係るストローク量が、環状巻線コイルの通常部に係る平均ストローク量よりも大きくなるものとし、
以後、実出来上がり寸法が前記製品寸法精度の範囲内に収まるまで、径方向または軸方向における各部位の個別ズレ量の測定、その個別ズレ量を各金型のオーバー押込み量として加える個別補正押込み量の更新、並びに新個別補正押込み量による新たな蛇行環状コイル成形の各工程を繰り返し、実出来上がり寸法が前記製品寸法精度の範囲内に収まる時の第n個別補正押込み量(n≧2)を前記第1金型および前記第2金型の軸方向または径方向の各個別押込み量として設定する請求項3に記載の蛇行環状コイルの成形装置。
First, the first shift amount obtained by adding the total shift amount as the over-pressing amount of each die to the basic pressing amount in the radial direction or the axial direction of the first die and the second die corresponding to the product dimensions. Means for forming a meandering annular coil from one annular winding coil based on one individual correction pushing amount;
Next, a means for measuring an individual deviation amount of each part in the radial direction or the axial direction between the actual finished dimension and the product dimension;
Next, another annular winding is again performed in the same molding process again based on the second individual correction push-in amount obtained by adding the individual shift amount as the over push-in amount of each mold to the first individual correction push-in amount. Means for forming a meandering annular coil from a wire coil ,
In the molding based on the second individual correction pushing amount, the stroke amount related to the lane change portion of the annular winding coil is set to be the annular winding amount of the second individual correction pushing amount in the radial direction of the second mold. It shall be larger than the average stroke amount for the normal part of the wire coil,
After that, until the actual finished dimensions are within the range of the product dimensional accuracy, measure the individual misalignment amount of each part in the radial direction or the axial direction, and add the individual misalignment amount as the over push amount of each mold. And the new meandering annular coil forming step with the new individual correction push-in amount are repeated, and the n-th individual correction push-in amount (n ≧ 2) when the actual finished size is within the range of the product dimensional accuracy is 4. A meandering annular coil forming apparatus according to claim 3, wherein each of the first die and the second die is set as an individual pushing amount in the axial direction or radial direction.
JP2008149002A 2008-06-06 2008-06-06 Method and apparatus for forming meandering annular coil Expired - Fee Related JP5321791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149002A JP5321791B2 (en) 2008-06-06 2008-06-06 Method and apparatus for forming meandering annular coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149002A JP5321791B2 (en) 2008-06-06 2008-06-06 Method and apparatus for forming meandering annular coil

Publications (2)

Publication Number Publication Date
JP2009296814A JP2009296814A (en) 2009-12-17
JP5321791B2 true JP5321791B2 (en) 2013-10-23

Family

ID=41544399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149002A Expired - Fee Related JP5321791B2 (en) 2008-06-06 2008-06-06 Method and apparatus for forming meandering annular coil

Country Status (1)

Country Link
JP (1) JP5321791B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251614A (en) * 1991-01-25 1992-09-08 Komatsu Ltd Press brake
JP4040452B2 (en) * 2002-12-25 2008-01-30 株式会社アマダ Work bending machine
JP2004330201A (en) * 2003-04-30 2004-11-25 Shin Kurushima Dockyard Co Ltd Plate bending press
JP4961254B2 (en) * 2006-07-27 2012-06-27 本田技研工業株式会社 Serpentine annular coil forming machine and serpentine annular coil forming method

Also Published As

Publication number Publication date
JP2009296814A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US10971979B2 (en) Coil segment forming apparatus, coil segment forming method and manufacturing apparatus of electrical rotating machine
CN105846565A (en) Motor armature and manufacturing method thereof
CN102111042B (en) Method for manufacturing laminated core
JP6352286B2 (en) Method and apparatus for manufacturing an electrical machine core
JP5885176B2 (en) Manufacturing method of armature winding for electric machine
CN104487184B (en) Method for manufacturing shaped steel the cross-sectional shape of which changes in the longitudinal direction, and roll forming device
CN101965260B (en) Forming apparatus, template thereof and forming method
JP2005094951A (en) Core, its manufacturing process and apparatus
JP2008054490A (en) Machine and method for forming meandering annular winding coil
JPH1119745A (en) Manufacture of ring and ring manufacturing device
CN109804532A (en) The manufacturing method of laminated iron core
JP2016187269A (en) Stator coil molding device
JP5321791B2 (en) Method and apparatus for forming meandering annular coil
JP5606965B2 (en) Manufacturing method of cylindrical object
JP2018011417A (en) Stator core manufacturing apparatus and method of manufacturing stator core
JP2005052853A (en) Method for manufacturing metallic rolled pipe product
JP5282341B2 (en) Method for forming meandering annular coil
JP6094146B2 (en) Method for manufacturing stator core of rotating electric machine
JP5438441B2 (en) Manufacturing method of laminated iron core and laminated iron core produced using the same
US9672982B2 (en) Production method for a figure-of-eight-shaped laminated coil
JP2005287119A (en) Method of manufacturing stator core of motor and stator core of motor
JP2008312352A (en) Method for forming meandering annular coil and meandering annular coil
CN111033983B (en) Coil manufacturing method, coil manufacturing device, coil, and motor
JP5908542B2 (en) Tapered steel pipe manufacturing method and manufacturing apparatus
JP7432290B2 (en) Manufacturing method of segment coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5321791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees