JP5321543B2 - Resin composition for solar cell encapsulant - Google Patents

Resin composition for solar cell encapsulant Download PDF

Info

Publication number
JP5321543B2
JP5321543B2 JP2010150853A JP2010150853A JP5321543B2 JP 5321543 B2 JP5321543 B2 JP 5321543B2 JP 2010150853 A JP2010150853 A JP 2010150853A JP 2010150853 A JP2010150853 A JP 2010150853A JP 5321543 B2 JP5321543 B2 JP 5321543B2
Authority
JP
Japan
Prior art keywords
solar cell
composite metal
layered composite
metal compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010150853A
Other languages
Japanese (ja)
Other versions
JP2012015346A (en
JP2012015346A5 (en
Inventor
啓介 増子
雄介 小野田
康弘 福留
喜紀 丹羽
誠司 沢田
聡 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2010150853A priority Critical patent/JP5321543B2/en
Publication of JP2012015346A publication Critical patent/JP2012015346A/en
Publication of JP2012015346A5 publication Critical patent/JP2012015346A5/ja
Application granted granted Critical
Publication of JP5321543B2 publication Critical patent/JP5321543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池封止材に用いる太陽電池封止材用樹脂組成物に関する。   The present invention relates to a resin composition for a solar cell encapsulant used for a solar cell encapsulant.

近年、脱原子力発電政策、原油高騰への対応、化石燃料の枯渇や地球環境保全への対応等の観点から、無尽蔵かつクリーンな太陽光発電システムの実用化と導入拡大が社会的に要請されている。現在導入されている主な太陽光発電システムは、結晶シリコンやアモルファスシリコン等のシリコン系太陽電池モジュールやCdTe、CIGS等の化合物半導体系と周辺装置から構成されているが、太陽光発電システムの大量導入には、コストの低減が最大の課題である。ここ数年、コストは従来に比べて大幅に低減しているものの、現時点の発電コストは他のエネルギーと比較し依然割高であり、太陽電池の高効率化、長寿命化などの技術開発が求められている。   In recent years, there has been a social demand for the practical use and expansion of inexhaustible and clean solar power generation systems from the perspective of denuclear power generation policy, response to soaring crude oil, depletion of fossil fuels and global environmental conservation. Yes. The main solar power generation systems currently introduced are composed of silicon solar cell modules such as crystalline silicon and amorphous silicon, compound semiconductor systems such as CdTe and CIGS, and peripheral devices. Cost reduction is the biggest issue for introduction. Although the cost has been significantly reduced over the past few years, the current power generation cost is still relatively high compared to other energy sources, and there is a need for technological developments such as higher efficiency and longer life of solar cells. It has been.

一方、太陽電池モジュールの高効率化、長寿命化には、受光性、透明性、耐候性、耐水性、密着性、耐腐食性、耐熱性等の各種性能の向上が必要とされ、発電素子を環境から守る封止材にもこれらの性能が求められている(特許文献1、2、3、4参照)。
しかし、多くの封止材が、高い透明性を備えるエチレン酢酸ビニル共重合体を用いているため、大幅な透明性の向上は難しい。また、発電素子の特性上、太陽光の紫外線領域は、発電寄与率が低いため、太陽光を有効に活用できていない。さらに、エチレン酢酸ビニル共重合体は、水、熱等による樹脂劣化に伴う酸発生や、発生した酸による電極配線の腐食、保護部材との密着性低下を誘発し、変換効率の低下を招くという問題がある。
On the other hand, in order to increase the efficiency and life of solar cell modules, it is necessary to improve various performances such as light receiving property, transparency, weather resistance, water resistance, adhesion, corrosion resistance, heat resistance, etc. These performances are also required for sealing materials that protect the environment from the environment (see Patent Documents 1, 2, 3, and 4).
However, since many sealing materials use an ethylene vinyl acetate copolymer having high transparency, it is difficult to significantly improve transparency. In addition, due to the characteristics of the power generation element, the ultraviolet ray region of sunlight has a low power generation contribution rate, so that sunlight cannot be effectively used. Furthermore, the ethylene vinyl acetate copolymer induces acid generation due to resin deterioration due to water, heat, etc., corrosion of electrode wiring due to the generated acid, and reduced adhesion to the protective member, leading to a decrease in conversion efficiency. There's a problem.

そこで、特許文献5、6では、紫外光を吸収して、可視領域で発光する有機金属錯体を配合して、変換効率が向上するとした、封止材、太陽電池が開示されている。また、特許文献7、8では、エチレン酢酸ビニル共重合体に平均粒径5μm以下の受酸剤粒子を分散し、酸の発生を抑制することができるとした透明フィルムが開示されている。   Therefore, Patent Documents 5 and 6 disclose a sealing material and a solar cell in which an organic metal complex that absorbs ultraviolet light and emits light in the visible region is blended to improve conversion efficiency. Patent Documents 7 and 8 disclose transparent films in which acid acceptor particles having an average particle size of 5 μm or less are dispersed in an ethylene vinyl acetate copolymer to suppress generation of acid.

しかしながら、特許文献5、6では、有機金属錯体の耐久性が乏しいため、促進試験とともに急速な変換効率の低下が起こり、実用化までには至っていない。さらに、配位子となる有機化合物は、280〜400nmの紫外線領域における吸収スペクトル強度が十分でないものが多く、紫外光の一部しか可視光に変換することができない。そのため、封止材を構成する樹脂の劣化を防止する紫外線吸収剤を配合する必要があり、発光過程の阻害因子となり、効率的な発光ができない可能性がある。また、特許文献7、8では、樹脂と受酸剤の屈折率差が大きいため、樹脂と受酸剤の界面で光散乱が起こり、透明性、発電素子への受光性が不十分となり、高効率化、長寿命化には至っていない。   However, in Patent Documents 5 and 6, since the durability of the organometallic complex is poor, a rapid decrease in conversion efficiency occurs along with the accelerated test, and it has not yet been put to practical use. Furthermore, many organic compounds serving as ligands have insufficient absorption spectrum intensity in the ultraviolet region of 280 to 400 nm, and only a part of the ultraviolet light can be converted into visible light. For this reason, it is necessary to add an ultraviolet absorber that prevents deterioration of the resin constituting the encapsulant, which may be an inhibiting factor of the light emission process, and efficient light emission may not be possible. Further, in Patent Documents 7 and 8, since the difference in refractive index between the resin and the acid acceptor is large, light scattering occurs at the interface between the resin and the acid acceptor, resulting in insufficient transparency and light receiving property to the power generation element. Efficiency and longevity have not been achieved.

特開H08−148708号公報JP H08-148708 特開2000−183382号公報JP 2000-183382 A 特開2005−126708号公報JP 2005-126708 A 特開2008−53379号公報JP 2008-53379 A 特開2001−308365号公報JP 2001-308365 A 特開2007−230955号公報JP 2007-230955 A 特開2005−29588号公報JP 2005-29588 A 特開2008−115344号公報JP 2008-115344 A

本発明は、太陽電池封止材として用いたときに、太陽電池の変換効率が大きく向上し、樹脂劣化に伴う酸発生や太陽電池モジュール内へ浸入した水を捕捉することによる経時の密着性低下を抑制し、さらに変換効率の低下抑制をも可能にする太陽電池封止材用樹脂組成物、及び太陽電池封止材を提供することを目的とする。   When used as a solar cell encapsulant, the present invention greatly improves the conversion efficiency of solar cells, reduces the adhesion over time due to the generation of acid accompanying resin degradation and the capture of water that has entered the solar cell module An object of the present invention is to provide a resin composition for a solar cell encapsulant and a solar cell encapsulant that can suppress the decrease in conversion efficiency and further suppress the decrease in conversion efficiency.

本発明において、第一の発明は、エチレン共重合体(A)と、層状複合金属化合物(B)および/またはその焼成物(C)と、ベンゾフェノン系化合物(D)を含むことを特徴とする太陽電池封止材用樹脂組成物に関する。   In the present invention, the first invention includes an ethylene copolymer (A), a layered composite metal compound (B) and / or a fired product (C) thereof, and a benzophenone compound (D). It is related with the resin composition for solar cell sealing materials.

第二の発明は、層状複合金属化合物(B)が、下記一般式(2)で表されることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。
Mg1-a・Ala(OH)2・Ann- a/n・cH2O 一般式(1)
(0.2≦a≦0.35、0≦c≦1、An:n価の陰イオン)
2nd invention is related with the resin composition for solar cell sealing materials of the said invention, wherein a layered composite metal compound (B) is represented by following General formula (2).
Mg 1-a · Al a (OH) 2 · An n- a / n · cH 2 O General formula (1)
(0.2 ≦ a ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)

第三の発明は、層状複合金属化合物(B)が、下記一般式(2)で表されることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。
(MaMg1-a1-b・Alb(OH)2・Ann- b/n・cH2O 一般式(2)
(MはNi、Zn、Cu、およびCaより選ばれる金属を示し、a、bおよびcはそれぞれ式0≦a≦1、0.2≦b≦0.35、0≦c≦1、An:n価の陰イオン)
3rd invention is related with the resin composition for solar cell sealing materials of the said invention, wherein a layered composite metal compound (B) is represented by following General formula (2).
(M a Mg 1-a ) 1-b · Al b (OH) 2 · An n- b / n · cH 2 O General formula (2)
(M represents a metal selected from Ni, Zn, Cu and Ca, and a, b and c are the formulas 0 ≦ a ≦ 1, 0.2 ≦ b ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)

第四の発明は、ベンゾフェノン系化合物(D)が融点25〜120℃であることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。   4th invention is related with the resin composition for solar cell sealing materials of the said invention, wherein benzophenone type compound (D) is melting | fusing point 25-120 degreeC.

第五の発明は、焼成物(C)が、層状複合金属化合物(B)を200〜800℃で熱処理されてなる焼成物であることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。   The fifth invention is a resin composition for a solar cell encapsulant of the above invention, wherein the fired product (C) is a fired product obtained by heat-treating the layered composite metal compound (B) at 200 to 800 ° C. Related to things.

第六の発明は、層状複合金属化合物(B)がBET比表面積1〜200m2/gであることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。 6th invention is related with the resin composition for solar cell sealing materials of the said invention, wherein a layered composite metal compound (B) is a BET specific surface area of 1-200 m < 2 > / g.

第七の発明は、エチレン共重合体(A)が、エチレン酢酸ビニル共重合体、エチレンアクリル酸メチル共重合体、エチレンアクリル酸エチル共重合体、およびエチレンメタクリル酸メチル共重合体、エチレンメタクリル酸エチル共重合体からなる群より選択される1種以上の共重合体であることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。   In the seventh invention, the ethylene copolymer (A) comprises an ethylene vinyl acetate copolymer, an ethylene methyl acrylate copolymer, an ethylene ethyl acrylate copolymer, an ethylene methyl methacrylate copolymer, and an ethylene methacrylic acid. It is related with the resin composition for solar cell sealing materials of the said invention characterized by being 1 or more types of copolymers selected from the group which consists of an ethyl copolymer.

第八の発明は、エチレン共重合体(A)100重量部に対して、層状複合金属化合物(B)および/またはその焼成物(C)を0.01〜15重量部、ベンゾフェノン系化合物(D)を0.01〜15重量部用いることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。   In an eighth invention, 0.01 to 15 parts by weight of a layered composite metal compound (B) and / or a fired product (C) thereof is added to 100 parts by weight of an ethylene copolymer (A), and a benzophenone compound (D ) Is used in an amount of 0.01 to 15 parts by weight.

第九の発明は、ベンゾフェノン系化合物(D)が340nmにおけるモル吸光係数1000〜15000(l・mol-1・cm-1)であることを特徴とする上記発明の太陽電池封止材用樹脂組成物に関する。 The ninth invention is a resin composition for a solar cell encapsulant according to the above invention, wherein the benzophenone compound (D) has a molar extinction coefficient of 1000 to 15000 (l · mol −1 · cm −1 ) at 340 nm. Related to things.

第十の発明は、エチレン共重合体(A)と、層状複合金属化合物(B)および/またはその焼成物(C)と、ベンゾフェノン系化合物(D)とを用いて形成してなる太陽電池封止材であって、
前記層状複合金属化合物(B)が、下記一般式(1)または下記一般式(2)で表される化合物であり、前記焼成物(C)が、前記層状複合金属化合物(B)を200〜800℃で熱処理されてなる焼成物であることを特徴とする太陽電池封止材に関する。
Mg1-a・Ala(OH)2・Ann- a/n・cH2O 一般式(1)
(0.2≦a≦0.35、0≦c≦1、An:n価の陰イオン)
(MaMg1-a1-b・Alb(OH)2・Ann- b/n・cH2O 一般式(2)
(MはNi、Zn、Cu、およびCaより選ばれる金属を示し、a、bおよびcはそれぞれ式0≦a≦1、0.2≦b≦0.35、0≦c≦1、An:n価の陰イオン)
A tenth invention is a solar cell encapsulant formed by using an ethylene copolymer (A), a layered composite metal compound (B) and / or a fired product thereof (C), and a benzophenone compound (D). Stopping material,
The layered composite metal compound (B) is a compound represented by the following general formula (1) or the following general formula (2), and the fired product (C) converts the layered composite metal compound (B) from 200 to 200. It is related with the solar cell sealing material characterized by being a baked material heat-processed at 800 degreeC.
Mg 1-a · Al a (OH) 2 · An n- a / n · cH 2 O General formula (1)
(0.2 ≦ a ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)
(M a Mg 1-a ) 1-b · Al b (OH) 2 · An n- b / n · cH 2 O General formula (2)
(M represents a metal selected from Ni, Zn, Cu and Ca, and a, b and c are the formulas 0 ≦ a ≦ 1, 0.2 ≦ b ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)

第十一の発明は、エチレン酢酸ビニル共重合体と、上記発明の太陽電池封止材用樹脂組成物とを用いて形成してなる太陽電池封止材に関する。   The eleventh invention relates to a solar cell encapsulant formed by using an ethylene vinyl acetate copolymer and the solar cell encapsulant resin composition of the above invention.

第十二の発明は、層状複合金属化合物(B)および/またはその焼成物(C)100重量部に対してベンゾフェノン系化合物(D)を0.5〜2000重量部用いることを特徴とする上記発明の太陽電池封止材に関する。   The twelfth invention is characterized in that 0.5 to 2000 parts by weight of the benzophenone compound (D) is used with respect to 100 parts by weight of the layered composite metal compound (B) and / or the fired product (C) thereof. The present invention relates to a solar cell encapsulant of the invention.

第十三の発明は、上記発明の太陽電池封止材用樹脂組成物を用いて形成してなる太陽電池モジュールに関する。   A thirteenth invention relates to a solar cell module formed by using the resin composition for solar cell sealing material of the above invention.

第十四の発明は、上記発明の太陽電池封止材を用いて形成してなる太陽電池モジュールに関する。   The fourteenth invention relates to a solar cell module formed by using the solar cell sealing material of the invention described above.

本発明による、波長変換効果により、樹脂の紫外線劣化抑制と初期変換効率向上を同時に可能し、透明性が良好で、酸や水の捕捉により、経時における保護部材との密着性低下抑制や変換効率の低下を抑制する太陽電池封止材を形成できる太陽電池封止材用樹脂組成物、及び太陽電池封止材を提供することができた。   By the wavelength conversion effect according to the present invention, it is possible to simultaneously suppress the UV deterioration of the resin and improve the initial conversion efficiency, the transparency is good, the acid and water trapping prevents the deterioration of the adhesion with the protective member over time and the conversion efficiency. The resin composition for solar cell sealing materials which can form the solar cell sealing material which suppresses the fall of this, and the solar cell sealing material were able to be provided.

太陽電池モジュールサンプルを示すための説明図である。It is explanatory drawing for showing a solar cell module sample. 耐久試験用サンプルを示すための説明図である。It is explanatory drawing for showing the sample for an endurance test. 耐久試験用サンプルを示すための説明図である。It is explanatory drawing for showing the sample for an endurance test. 耐久試験用サンプルを示すための説明図である。It is explanatory drawing for showing the sample for an endurance test.

本発明を詳細に説明する。
本発明の太陽電池封止材用樹脂組成物は、エチレン共重合体(A)と、層状複合金属化合物(B)および/またはその焼成物(C)と、ベンゾフェノン系化合物(D)とを含むことが重要である。
The present invention will be described in detail.
The resin composition for a solar cell encapsulant of the present invention contains an ethylene copolymer (A), a layered composite metal compound (B) and / or a fired product (C) thereof, and a benzophenone compound (D). This is very important.

本発明では、層状複合金属化合物(B)および/またはその焼成物(C)とベンゾフェノン系化合物(D)とを組み合わせることによって発光し、その発光を受光した太陽電池の変換効率が大幅に向上するという驚くべき効果を見出した。
この変換効率向上について考察すると、ベンフェノン系化合物(D)は、自らが紫外域の光を吸収し、励起状態となり、基底状態に戻る際に、熱失活による安定化過程をとおるため、発光現象は確認されないが、本発明では、ベンゾフェノン系化合物(D)と層状複合金属化合物(B)および/またはその焼成物(C)を共存させることにより、双方の間に化学的結合が形成され、新たなエネルギーバンドが形成されたと推察される。そして、ベンゾフェノン系化合物の励起状態から新たなエネルギーバンドへの電荷移動が起こり、そこから400〜600nmの可視域での発光による安定化過程をとおるため、太陽電池が受光する光量が増加することによって、初期変換効率が向上したものと推察される。
In the present invention, the layered composite metal compound (B) and / or the fired product (C) thereof and the benzophenone compound (D) are combined to emit light, and the conversion efficiency of the solar cell receiving the light emission is greatly improved. I found a surprising effect.
Considering this improvement in conversion efficiency, the benphenone compound (D) absorbs light in the ultraviolet region, enters the excited state, and goes through a stabilization process due to thermal deactivation when returning to the ground state. However, in the present invention, a chemical bond is formed between the benzophenone compound (D) and the layered composite metal compound (B) and / or a fired product (C) thereof. It is inferred that a large energy band was formed. Then, charge transfer from the excited state of the benzophenone-based compound to a new energy band occurs, and the stabilization process is performed by light emission in the visible region of 400 to 600 nm, thereby increasing the amount of light received by the solar cell. The initial conversion efficiency is estimated to be improved.

本発明において、ベンゾフェノン系化合物(D)は、融点が25〜120℃であることが好ましく、25〜105℃より好ましい。120℃を超える場合、前記ベンゾフェノン系化合物が樹脂組成物成形時において溶解せず、ラミネート工程における架橋時において溶解するため、樹脂への分散不均一性を招き、層状複合金属化合物との共存確率が低下し、波長変換効果を低下させる恐れがある。また、25℃未満の場合、太陽電池封止材からのブリードアウトが顕著となり、太陽電池を製造した際に、ガラスや裏面保護部材との密着性を低下させる恐れがある。なおベンゾフェノン系化合物の融点は、融点測定装置により3回測定した数値の平均値で示したものである。   In the present invention, the benzophenone compound (D) preferably has a melting point of 25 to 120 ° C, more preferably 25 to 105 ° C. When the temperature exceeds 120 ° C., the benzophenone-based compound does not dissolve at the time of molding the resin composition but dissolves at the time of cross-linking in the laminating process, resulting in non-uniform dispersion in the resin and the coexistence probability with the layered composite metal compound. The wavelength conversion effect may be reduced. Moreover, when it is less than 25 degreeC, the bleed-out from a solar cell sealing material becomes remarkable, and when manufacturing a solar cell, there exists a possibility of reducing adhesiveness with glass or a back surface protection member. The melting point of the benzophenone compound is the average value of the values measured three times with a melting point measuring device.

本発明において、ベンゾフェノン系化合物(D)の340nmにおけるモル吸光係数は、1000〜15000(l・mol-1・cm-1)であることが好ましい。1000未満の場合、ベンゾフェノン系化合物の重量当たりの吸収効率が悪く、発光効率も悪くなる恐れがある。また、樹脂劣化を抑制するために多量の添加を必要とし、ブリードアウトの恐れもある。15000を超える場合、ベンゾフェノン系化合物同士でエネルギー移動が起こり、発光効率が低下する恐れがある。なおモル吸光係数は、濃度5×10-5mol/lのエタノール溶液を調整し、1cm石英セルにて島津製作所製分光光度計UV−3600を用いてUVスペクトルを測定し、得られたスペクトルチャートから算出した。 In the present invention, the molar extinction coefficient at 340 nm of the benzophenone compound (D) is preferably 1000 to 15000 (l · mol −1 · cm −1 ). If it is less than 1000, the absorption efficiency per weight of the benzophenone compound may be poor, and the light emission efficiency may also be deteriorated. In addition, a large amount of addition is required to suppress resin deterioration, and there is a risk of bleeding out. When it exceeds 15000, energy transfer occurs between benzophenone-based compounds, and the light emission efficiency may decrease. The molar extinction coefficient is a spectrum chart obtained by adjusting an ethanol solution having a concentration of 5 × 10 −5 mol / l and measuring a UV spectrum using a spectrophotometer UV-3600 manufactured by Shimadzu Corporation in a 1 cm quartz cell. Calculated from

本発明において、ベンゾフェノン系化合物(D)は、エチレン共重合体(A)100重量部に対して、0.01〜15重量部用いることが好ましい。そして例えば、マスターバッチのような高濃度配合品の太陽電池封止材用樹脂組成物を製造する場合は、5〜15重量部用いることが好ましい。マスターバッチを用いて太陽電池封止材を製造することは、経済性、ハンドリングの面から好ましい。一方、例えばマスターバッチ以外の太陽電池封止材用樹脂組成物の場合は、波長変換効率の観点から、ベンゾフェノン系化合物の場合、0.01〜2.5重量部が好ましい。使用量の上限値を超えるとブリードアウトによる外観不良や、ガラスや裏面保護部材との密着性低下の恐れがある。   In the present invention, the benzophenone compound (D) is preferably used in an amount of 0.01 to 15 parts by weight with respect to 100 parts by weight of the ethylene copolymer (A). And for example, when manufacturing the resin composition for solar cell sealing materials of a high concentration compounded product like a masterbatch, it is preferable to use 5-15 weight part. Manufacturing a solar cell encapsulant using a masterbatch is preferable from the viewpoints of economy and handling. On the other hand, for example, in the case of a resin composition for a solar cell encapsulant other than a masterbatch, 0.01 to 2.5 parts by weight is preferable in the case of a benzophenone-based compound from the viewpoint of wavelength conversion efficiency. If the upper limit of the amount used is exceeded, there is a risk of poor appearance due to bleed-out or a decrease in adhesion to glass or a back surface protective member.

本発明で、ベンゾフェノン系化合物(D)は、具体的には、例えば2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−n−オクタデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−5−クロロベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン等が挙げられる。その中でも、変換効率の点から2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノンが好ましい。   In the present invention, the benzophenone compound (D) specifically includes, for example, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone. 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2- Hydroxy-5-chlorobenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4' -Tetrahydroxybenzofe Emissions and the like. Among them, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone in terms of conversion efficiency Is preferred.

本発明において、層状複合金属化合物(B)とその焼成物(C)とは、層間イオン交換性と、酸との中和反応性を有する層状の形態をした化合物である。そして太陽電池モジュールに用いられたときに、太陽電池封止材中に浸入した水や、劣化等によりエチレン酢酸ビニル共重合体が加水分解して発生した酸を層間へ取り込み、また、中和によって太陽電池封止材や発電素子の劣化を防止する効果を奏する(以下、酸・水捕捉効果ともいう)。
そして酸・水捕捉効果は、層間に入り込むイオンの電荷密度の大小により決まり、価数が高く、イオン半径の小さい陰イオンの方が層間に取り込まれやすい。
前記酸・水捕捉効果を有する化合物として層状複合金属化合物以外にも、金属酸化物、金属水酸化物、金属炭酸化物等が知られているが、これらの化合物は屈折率が高いものが多い。そのため、エチレン共重合体に添加した場合、エチレン共重合体との屈折率差が大きくなり、光散乱、反射を起こして不透明となり、変換効率が低下する。本発明における層状複合金属化合物の効果は、透明性向上と酸・水捕捉効果の効率化を図り、経時における保護部材との密着性低下抑制と変換効率低下を抑制することができた。
In the present invention, the layered composite metal compound (B) and the fired product (C) are compounds in a layered form having interlayer ion exchange properties and neutralization reactivity with acids. And when used in a solar cell module, water that has penetrated into the solar cell encapsulant, and acid generated by hydrolysis of the ethylene vinyl acetate copolymer due to deterioration, etc. are taken in between the layers, and by neutralization An effect of preventing deterioration of the solar cell sealing material and the power generation element is obtained (hereinafter also referred to as an acid / water capturing effect).
The acid / water trapping effect is determined by the charge density of ions entering the interlayer, and anions having a higher valence and a smaller ionic radius are more likely to be trapped between the layers.
In addition to the layered composite metal compound, metal oxides, metal hydroxides, metal carbonates, and the like are known as the compound having an acid / water scavenging effect, and many of these compounds have a high refractive index. For this reason, when added to the ethylene copolymer, the difference in refractive index from the ethylene copolymer becomes large, causing light scattering and reflection to become opaque, resulting in a decrease in conversion efficiency. The effect of the layered composite metal compound in the present invention was to improve transparency and improve the efficiency of the acid / water scavenging effect, and to suppress the decrease in adhesion and the conversion efficiency with the protective member over time.

本発明において層状複合金属化合物(B)は、一般の天然のハイドロタルサイトや、合成されたハイドロタルサイトを用いることが好ましい。   In the present invention, the layered composite metal compound (B) is preferably a general natural hydrotalcite or a synthesized hydrotalcite.

本発明において焼成物(C)は、層状複合金属化合物(B)を焼成することで製造できる。この焼成物(C)は、層状複合金属化合物(B)より高い酸・水捕捉効果を発揮する。また、焼成物(C)は酸や水を捕捉することで、化学組成が変化し、屈折率が下がり、エチレン共重合体(A)との屈折率差が小さくなるため、経時で透明性が向上する傾向にある。   In the present invention, the fired product (C) can be produced by firing the layered composite metal compound (B). This fired product (C) exhibits a higher acid / water scavenging effect than the layered composite metal compound (B). In addition, the fired product (C) captures acid and water, thereby changing the chemical composition, lowering the refractive index, and reducing the refractive index difference from the ethylene copolymer (A). It tends to improve.

本発明において、層状複合金属化合物(B)は下記一般式(1)の化合物を用いることも好ましい。
Mg1-a・Ala(OH)2・Ann- a/n・cH2O 一般式(1)
(0.2≦a≦0.35、0≦c≦1、An:n価の陰イオン)
In the present invention, it is also preferable to use a compound of the following general formula (1) as the layered composite metal compound (B).
Mg 1-a · Al a (OH) 2 · An n- a / n · cH 2 O General formula (1)
(0.2 ≦ a ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)

一般式(1)において、Al含有量割合aは0.2〜0.35が好ましい。0.2未満の場合、層状複合金属化合物を製造するのが難しく、0.35を超える場合、エチレン共重合体(A)との屈折率差が大きくなり、透明性が不十分となる恐れがある。水分含有量cは0≦c≦1が好ましい。また、アニオンAnn-の種類は、特に限定されるものではないが、例えば水酸イオン、炭酸イオン、ケイ酸イオン、有機カルボン酸イオン、有機スルフォン酸イオン、有機リン酸イオンなどが挙げられる。なお一般式(1)における指数aは、層状複合金属化合物を酸で溶解し、「プラズマ発光分光分析装置 SPS4000(セイコー電子工業(株))」で分析して求めた。 In the general formula (1), the Al content ratio a is preferably 0.2 to 0.35. If it is less than 0.2, it is difficult to produce a layered composite metal compound, and if it exceeds 0.35, the difference in refractive index from the ethylene copolymer (A) may increase and transparency may be insufficient. is there. The water content c is preferably 0 ≦ c ≦ 1. The type of the anion An n− is not particularly limited, and examples thereof include hydroxide ions, carbonate ions, silicate ions, organic carboxylate ions, organic sulfonate ions, and organic phosphate ions. The index a in the general formula (1) was obtained by dissolving the layered composite metal compound with an acid and analyzing with a “plasma emission spectroscopic analyzer SPS4000 (Seiko Electronics Co., Ltd.)”.

本発明において、層状複合金属化合物(B)は下記一般式(2)の化合物を用いることも好ましい。
(MaMg1-a1-b・Alb(OH)2・Ann- b/n・cH2O 一般式(2)
(MはNi、Zn、Cu、およびCaより選ばれる金属を示し、a、bおよびcはそれぞれ式0≦a≦1、0.2≦b≦0.35、0≦c≦1、An:n価の陰イオン)
In the present invention, it is also preferable to use a compound of the following general formula (2) as the layered composite metal compound (B).
(M a Mg 1-a ) 1-b · Al b (OH) 2 · An n- b / n · cH 2 O General formula (2)
(M represents a metal selected from Ni, Zn, Cu and Ca, and a, b and c are the formulas 0 ≦ a ≦ 1, 0.2 ≦ b ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)

一般式(2)において、Al含有量割合aは0.2〜0.35が重要である。0.2未満の場合、層状複合金属化合物を製造するのが難しく、0.35を超える場合、エチレン共重合体(A)との屈折率差が大きくなり、透明性が悪化する。水分含有量cは0≦c≦1が好ましい。また、アニオンAnn-の種類は、特に限定されるものではないが、例えば水酸イオン、炭酸イオン、ケイ酸イオン、有機カルボン酸イオン、有機スルフォン酸イオン、有機リン酸イオンなどが挙げられる。 In the general formula (2), it is important that the Al content ratio a is 0.2 to 0.35. If it is less than 0.2, it is difficult to produce a layered composite metal compound, and if it exceeds 0.35, the difference in refractive index from the ethylene copolymer (A) becomes large and the transparency deteriorates. The water content c is preferably 0 ≦ c ≦ 1. The type of the anion An n− is not particularly limited, and examples thereof include hydroxide ions, carbonate ions, silicate ions, organic carboxylate ions, organic sulfonate ions, and organic phosphate ions.

本発明において、層状複合金属化合物(B)とその焼成物(C)は、BET比表面積が1〜200m2/gであることが好ましく、1〜160m2/gがより好ましい。1m2/g未満の場合、ベンゾフェノン系化合物との化学的結合が起こりにくく、発光強度が弱い恐れがあり、200m2/gを超える場合、層状複合金属化合物の塩基性が強すぎて樹脂への劣化を促進する恐れがある。 In the present invention, layered composite metal compound (B) and its calcined product (C) is preferably a BET specific surface area of 1~200m 2 / g, 1~160m 2 / g is more preferable. If it is less than 1 m 2 / g, chemical bonding with the benzophenone compound is unlikely to occur and the light emission intensity may be weak. If it exceeds 200 m 2 / g, the basicity of the layered composite metal compound is too strong and the resin is not strong enough. There is a risk of promoting deterioration.

本発明の太陽電池封止材樹脂組成物は、エチレン共重合体(A)100重量部に対して、層状複合金属化合物(B)や焼成物(C)を0.01〜15重量部用いることが好ましい。そして例えば、マスターバッチのような高濃度配合品の太陽電池封止材用樹脂組成物を製造する場合は、5〜15重量部用いることが好ましい。マスターバッチを用いて太陽電池封止材を製造することは、層状複合金属化合物やその焼成物の分散やハンドリングの面から好ましい。一方、例えばマスターバッチ以外の太陽電池封止材用樹脂組成物の場合は、透明性の観点から、層状複合金属化合物の場合、0.01〜7重量部が好ましい。また焼成物の場合、0.01〜5.0重量部が好ましい。使用量の上限値を超えると透明性が不十分となり、初期変換効率が低下する恐れがある。   The solar cell encapsulant resin composition of the present invention uses 0.01 to 15 parts by weight of the layered composite metal compound (B) or the fired product (C) with respect to 100 parts by weight of the ethylene copolymer (A). Is preferred. And for example, when manufacturing the resin composition for solar cell sealing materials of a high concentration compounded product like a masterbatch, it is preferable to use 5-15 weight part. Manufacturing a solar cell encapsulant using a masterbatch is preferable from the viewpoints of dispersion and handling of the layered composite metal compound and the fired product. On the other hand, for example, in the case of a resin composition for a solar cell encapsulant other than a masterbatch, 0.01 to 7 parts by weight is preferable in the case of a layered composite metal compound from the viewpoint of transparency. Moreover, in the case of a baked product, 0.01-5.0 weight part is preferable. If the upper limit of the amount used is exceeded, the transparency becomes insufficient and the initial conversion efficiency may be reduced.

層状複合金属化合物(B)の製造法について説明する。   A method for producing the layered composite metal compound (B) will be described.

マグネシウム塩水溶液、亜鉛塩水溶液、ニッケル塩水溶液、カルシウム塩水溶液の少なくとも1種とアニオンを含有したアルカリ性水溶液とおよびアルミニウム塩水溶液とを混合し、pHが8〜14の範囲の混合溶液とした後、該混合溶液を80〜100℃の温度範囲で熟成して得ることができる。   After mixing at least one of an aqueous magnesium salt solution, an aqueous zinc salt solution, an aqueous nickel salt solution, an aqueous calcium salt solution and an alkaline aqueous solution containing an anion and an aqueous aluminum salt solution to obtain a mixed solution having a pH in the range of 8 to 14, The mixed solution can be obtained by aging in the temperature range of 80 to 100 ° C.

熟成反応中のpHは10〜14が好ましく、11〜14がより好ましい。pHが10未満の場合、板面径が大きく、適度な厚みを有した層状複合金属化合物が得られない恐れがある。   The pH during the ripening reaction is preferably 10 to 14, and more preferably 11 to 14. If the pH is less than 10, a layered composite metal compound having a large plate surface diameter and an appropriate thickness may not be obtained.

熟成温度が80℃未満及び100℃以上では適度な板面径を有する層状複合金属化合物を得ることが困難となる。より好ましい熟成温度は85〜100℃である。   When the aging temperature is less than 80 ° C. and 100 ° C. or more, it becomes difficult to obtain a layered composite metal compound having an appropriate plate surface diameter. A more preferable aging temperature is 85 to 100 ° C.

層状複合金属化合物の熟成反応のエージング時間は特に限定されないが、例えば2〜24時間程度である。2時間未満の場合には、板面径が大きく、適度な厚みを有した層状複合金属化合物が得られ難い。24時間を超える熟成は経済的ではない。   The aging time for the aging reaction of the layered composite metal compound is not particularly limited, but is, for example, about 2 to 24 hours. In the case of less than 2 hours, it is difficult to obtain a layered composite metal compound having a large plate surface diameter and an appropriate thickness. Aging over 24 hours is not economical.

前記アニオンを含むアルカリ性水溶液としては、アニオンを含む水溶液と水酸化アルカリ水溶液との混合アルカリ水溶液が好ましい。   The alkaline aqueous solution containing the anion is preferably a mixed alkaline aqueous solution of an aqueous solution containing an anion and an aqueous alkali hydroxide solution.

アニオンを含む水溶液としては、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、有機カルボン酸塩、有機スルフォン酸塩、有機リン酸塩などの水溶液が好ましい。   As an aqueous solution containing an anion, aqueous solutions such as sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, organic carboxylate, organic sulfonate, and organic phosphate are preferable.

水酸化アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、尿素水溶液などが好ましい。   As the alkali hydroxide aqueous solution, sodium hydroxide, potassium hydroxide, ammonia, urea aqueous solution and the like are preferable.

本発明における金属塩水溶液としては、硫酸金属水溶液、塩化金属水溶液及び硝酸金属水溶液などを使用することができ、好ましくは塩化マグネシウム水溶液である。また、酸化金属粉末や水酸化金属粉末のスラリーを代用しても良い。   As the metal salt aqueous solution in the present invention, a metal sulfate aqueous solution, a metal chloride aqueous solution, a metal nitrate aqueous solution and the like can be used, and a magnesium chloride aqueous solution is preferable. Further, a slurry of metal oxide powder or metal hydroxide powder may be substituted.

本発明におけるアルミニウム塩水溶液としては、硫酸アルミニウム水溶液、塩化アルミニウム水溶液及び硝酸アルミニウム水溶液などを使用することができ、好ましくは硫酸アルミニウム水溶液、塩化アルミニウム水溶液である。また、酸化アルミニウム粉末や水酸化アルミニウム粉末のスラリーを代用しても良い。   As the aluminum salt aqueous solution in the present invention, an aluminum sulfate aqueous solution, an aluminum chloride aqueous solution, an aluminum nitrate aqueous solution and the like can be used, and an aluminum sulfate aqueous solution and an aluminum chloride aqueous solution are preferable. A slurry of aluminum oxide powder or aluminum hydroxide powder may be substituted.

アニオンを含有するアルカリ水溶液、マグネシウム、亜鉛、ニッケル、カルシウムの少なくとも1種及びアルミニウムの混合順序は、特に限定されるものではなく、また、各水溶液あるいはスラリーを同時に混合してもよい。好ましくは、アニオンを含有するアルカリ水溶液に、あらかじめマグネシウム、亜鉛、ニッケル、カルシウム及びアルミニウムを混合した水溶液若しくはスラリーを添加する。   The order of mixing an aqueous alkali solution containing an anion, at least one of magnesium, zinc, nickel and calcium and aluminum is not particularly limited, and each aqueous solution or slurry may be mixed simultaneously. Preferably, an aqueous solution or slurry in which magnesium, zinc, nickel, calcium and aluminum are mixed in advance is added to an aqueous alkali solution containing anions.

また、各水溶液を添加する場合には、該水溶液を一度に添加する場合、又は連続的に滴下する場合のいずれで行ってもよい。   Moreover, when adding each aqueous solution, you may carry out either when adding this aqueous solution at once, or when dripping continuously.

一般式(1)、(2)で示される層状複合金属化合物のpHは8.0〜10.0が好ましい。pHが8.0未満の場合、酸との中和効率が弱くなる恐れがある。pHが10.0を越える場合には、金属の溶出により、エチレン酢酸ビニル共重合体が劣化する恐れがある。なお層状複合金属化合物のpHは、試料5gを300mlの三角フラスコに秤り取り、煮沸した純水100mlを加え、加熱して煮沸状態を約5分間保持した後、栓をして常温まで放冷し、減量に相当する水を加えて再び栓をして1分間振り混ぜ、5分間静置した後、得られた上澄み液のpHをJIS Z8802−7に従って測定し、得られた値を層状複合金属化合物のpHとした。   The pH of the layered composite metal compound represented by the general formulas (1) and (2) is preferably 8.0 to 10.0. When pH is less than 8.0, there exists a possibility that the neutralization efficiency with an acid may become weak. When pH exceeds 10.0, there exists a possibility that an ethylene vinyl acetate copolymer may deteriorate by elution of a metal. The pH of the layered composite metal compound was measured by weighing 5 g of a sample into a 300 ml Erlenmeyer flask, adding 100 ml of boiled pure water, heating and holding the boiled state for about 5 minutes, then plugging it and allowing it to cool to room temperature. Add water corresponding to the weight loss, plug again, shake for 1 minute, let stand for 5 minutes, then measure the pH of the resulting supernatant according to JIS Z8802-7, and obtain the obtained value as a layered composite The pH of the metal compound was used.

焼成物(C)の製造は、層状複合金属化合物(B)を200〜800℃で焼成することが好ましく、250℃から700℃で焼成することがより好ましい。焼成時間は焼成温度に応じて調整すればよいが、1〜24時間が好ましく、1〜10時間がより好ましい。また、焼成時の雰囲気は酸化雰囲気、非酸化雰囲気いずれでも構わないが、水素のような強い還元作用を持つガスは使用しないほうが良い。   In the production of the fired product (C), the layered composite metal compound (B) is preferably fired at 200 to 800 ° C, more preferably 250 ° C to 700 ° C. The firing time may be adjusted according to the firing temperature, but is preferably 1 to 24 hours, and more preferably 1 to 10 hours. The atmosphere during firing may be an oxidizing atmosphere or a non-oxidizing atmosphere, but it is better not to use a gas having a strong reducing action such as hydrogen.

本発明で用いられるエチレン共重合体(A)は、二種類以上の単量体を混合して行う重合体であり、そのうち少なくとも一種類がエチレン単量体であれば特に限定されることはなく、具体的には、エチレン酢酸ビニル共重合体、エチレンアクリル酸メチル共重合体、エチレンアクリル酸エチル共重合体、エチレンメタクリル酸メチル共重合体、エチレンメタクリル酸エチル共重合体、エチレン酢酸ビニル系多元共重合体、エチレンアクリル酸メチル系多元共重合体、エチレンアクリル酸エチル系多元共重合体、エチレンメタクリル酸メチル系多元共重合体、エチレンメタクリル酸エチル系多元共重合体などが挙げられるが、ラミネート工程におけるセルの損傷低減や、透明性、生産性向上の観点から、酢酸ビニル含有量15〜40%のエチレン酢酸ビニル共重合体が好ましく、さらに好ましくは、酢酸ビニル含有量23〜35%のエチレン酢酸ビニル共重合体である。   The ethylene copolymer (A) used in the present invention is a polymer obtained by mixing two or more monomers, and is not particularly limited as long as at least one of them is an ethylene monomer. Specifically, ethylene vinyl acetate copolymer, ethylene methyl acrylate copolymer, ethylene ethyl acrylate copolymer, ethylene methyl methacrylate copolymer, ethylene ethyl methacrylate copolymer, ethylene vinyl acetate based plural Examples include copolymers, ethylene methyl acrylate multi-component copolymers, ethylene ethyl acrylate multi-component copolymers, ethylene methyl methacrylate multi-component copolymers, ethylene ethyl methacrylate multi-component copolymers, etc. Ethylene with a vinyl acetate content of 15 to 40% from the viewpoint of reducing cell damage, improving transparency, and improving productivity. Vinyl acetate copolymer is preferred, more preferably vinyl vinyl acetate content of 23 to 35% of an ethylene acetate copolymer.

本発明の太陽電池封止材用樹脂組成物の製造は、エチレン共重合体(A)と、層状複合金属化合物(B)および/またはその焼成物(C)と、ベンゾフェノン系化合物(D)を、一般的な高速せん断型混合機であるヘンシェルミキサー、スーパーミキサー等を用いて混合した後、例えば二本ロール、三本ロール、加圧ニーダー、バンバリーミキサー、単軸混練押出し機または二軸混練押出し機等を用いて溶融混練後、ペレット状に押出し成形することによって製造できる。また、層状複合金属化合物(B)や焼成物(C)とベンゾフェノン系化合物(D)を、予めミキサー等により混合したり、ビーズミル、ボールミル等によるメカノケミカル処理を施すことで、さらに、層状複合金属化合物(B)とベンゾフェノン系化合物の化学的結合を増加させ、効果的な波長変換効果が得られる。   The production of the resin composition for a solar cell encapsulant of the present invention comprises an ethylene copolymer (A), a layered composite metal compound (B) and / or a fired product (C) thereof, and a benzophenone compound (D). After mixing using a general high-speed shear mixer such as a Henschel mixer, a super mixer, etc., for example, a two-roll, three-roll, pressure kneader, Banbury mixer, single-screw kneading extruder or twin-screw kneading extrusion It can be manufactured by extrusion molding into a pellet after melt-kneading using a machine. Further, the layered composite metal compound (B) or the fired product (C) and the benzophenone-based compound (D) are mixed with a mixer or the like in advance, or subjected to a mechanochemical treatment with a bead mill, a ball mill, or the like. The chemical bond between the compound (B) and the benzophenone compound is increased, and an effective wavelength conversion effect is obtained.

このようにして得られた本発明の太陽電池封止材用樹脂組成物は、必要に応じて架橋剤、架橋助剤、シランカップリング剤、光安定剤、酸化防止剤、分散剤、光拡散剤、着色剤、難燃剤等の添加剤を配合することも可能であり、各種添加剤をエチレン共重合体、層状複合金属化合物と一緒に配合して製造することも、最終成形物を製造する際に、別に添加することも可能である。   The resin composition for a solar cell encapsulant of the present invention thus obtained includes a crosslinking agent, a crosslinking aid, a silane coupling agent, a light stabilizer, an antioxidant, a dispersant, a light diffusion as necessary. Additives such as colorants, colorants, and flame retardants can also be blended, and various additives can be blended with ethylene copolymers and layered composite metal compounds to produce final molded products. In addition, it is also possible to add separately.

架橋剤は、エチレン酢酸ビニル共重合体を使用する場合は、高温使用下における熱変形を防止するために用いられ、エチレン酢酸ビニル共重合体の場合、有機過酸化物が一般的に使用される。添加量は特に限定されないが、エチレン共重合体と層状複合金属化合物の合計100重量部に対して、0.05〜3重量部用いるのが好ましい。具体例としては、tert−ブチルパーオキシイソプロピルカーボネート、tert−ブチルパーオキシ−2−エチルヘキシルイソプロピルカーボネート、tert−ブチルパーオキシアセテート、tert−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、ジ−tert−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、1,1−ジ(tert−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(tert−ブチルパーオキシ)シクロヘキサン、1,1−ジ(tert−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(tert−アミルパーオキシ)シクロヘキサン、2,2−ジ(tert−ブチルパーオキシ)ブタン、メチルエチルケトンパーオキサイド、2,5−ジメチルヘキシル−2,5−ジパーオキシベンゾエート、tert−ブチルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ジベンゾイルパーオキサイド、p−クロルベンゾイルパーオキサイド、tert−ブチルパーオキシイソブチレート、n−ブチル−4,4−ジ(tert−ブチルパーオキシ)バレレート、エチル−3,3−ジ(tert−ブチルパーオキシ)ブチレート、ヒドロキシヘプチルパーオキサイド、ジクロヘキサノンパーオキサイド、1,1−ジ(tert−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、n−ブチル−4,4−ジ(tert−ブチルパーオキシ)バレレート、2,2−ジ(tert−ブチルパーオキシ)ブタン等が挙げられる。   When using ethylene vinyl acetate copolymer, the crosslinking agent is used to prevent thermal deformation under high temperature use, and in the case of ethylene vinyl acetate copolymer, organic peroxide is generally used. . Although the addition amount is not particularly limited, it is preferably used in an amount of 0.05 to 3 parts by weight with respect to a total of 100 parts by weight of the ethylene copolymer and the layered composite metal compound. Specific examples include tert-butyl peroxyisopropyl carbonate, tert-butyl peroxy-2-ethylhexyl isopropyl carbonate, tert-butyl peroxyacetate, tert-butylcumyl peroxide, 2,5-dimethyl-2,5-di (Tert-butylperoxy) hexane, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 2,5-dimethyl-2,5-di (Tert-butylperoxy) hexane, 1,1-di (tert-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (tert-butylperoxy) cyclohexane, 1,1-di (Tert-hexylperoxy) cyclohexane, 1,1-di tert-amylperoxy) cyclohexane, 2,2-di (tert-butylperoxy) butane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-diperoxybenzoate, tert-butyl hydroperoxide, p -Mentane hydroperoxide, dibenzoyl peroxide, p-chlorobenzoyl peroxide, tert-butylperoxyisobutyrate, n-butyl-4,4-di (tert-butylperoxy) valerate, ethyl-3,3 -Di (tert-butylperoxy) butyrate, hydroxyheptyl peroxide, dichlorohexanone peroxide, 1,1-di (tert-butylperoxy) 3,3,5-trimethylcyclohexane, n-butyl-4,4- Te t- butyl peroxy) valerate, 2,2-di (tert- butylperoxy) include butane and the like.

架橋助剤は、上記架橋反応を効率良く行うために用いられ、ポリアリル化合物やポリアクリロキシ化合物のような多不飽和化合物が挙げられる。添加量は特に限定されないが、エチレン共重合体と層状複合金属化合物の合計100重量部に対して、0.05〜3重量部用いるのが好ましい。具体例としては、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートなどが挙げられる。   The crosslinking aid is used to efficiently perform the crosslinking reaction, and examples thereof include polyunsaturated compounds such as polyallyl compounds and polyacryloxy compounds. Although the addition amount is not particularly limited, it is preferably used in an amount of 0.05 to 3 parts by weight with respect to a total of 100 parts by weight of the ethylene copolymer and the layered composite metal compound. Specific examples include triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, and the like.

シランカップリング剤は、保護材や太陽電池素子等に対する接着性を向上させるために用いられ、ビニル基、アクリロキシ基、メタクリロキシ基等の不飽和基や、アルコキシ基のような加水分解可能な基を有する化合物が挙げられる。添加量は特に限定されないが、エチレン共重合体と層状複合金属化合物の合計100重量部に対して、0.05〜3重量部用いるのが好ましい。具体例としては、ビニルトリクロルシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシランなどが挙げられる。   Silane coupling agents are used to improve adhesion to protective materials and solar cell elements, and include unsaturated groups such as vinyl groups, acryloxy groups, and methacryloxy groups, and hydrolyzable groups such as alkoxy groups. The compound which has is mentioned. Although the addition amount is not particularly limited, it is preferably used in an amount of 0.05 to 3 parts by weight with respect to a total of 100 parts by weight of the ethylene copolymer and the layered composite metal compound. Specific examples include vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. , Γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, Examples thereof include N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-chloropropyltrimethoxysilane.

光安定剤は、紫外線吸収剤と併用し、耐候性を付与するために用いられ、ヒンダードアミン光安定剤が挙げられ、添加量は特に限定されないが、エチレン共重合体と層状複合金属化合物の合計100重量部に対して、0.01〜3重量部用いるのが好ましい。具体例としては、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{{2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、N,N’−ビス(3−アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セパレート、2−(3,5−ジ−tert−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)などが挙げられる。   The light stabilizer is used in combination with an ultraviolet absorber and used for imparting weather resistance, and includes a hindered amine light stabilizer, and the addition amount is not particularly limited, but the total of the ethylene copolymer and the layered composite metal compound is 100. It is preferable to use 0.01 to 3 parts by weight with respect to parts by weight. Specific examples include dimethyl succinate-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3,3 -Tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {{2,2,6 6-tetramethyl-4-piperidyl) imino}], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2,6,6- Pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) separate, 2- (3,5-di -Tert-4-hydroxybenzyl)- Such -n- butyl malonic acid bis (1,2,2,6,6-pentamethyl-4-piperidyl) can be mentioned.

酸化防止剤は、高温下での安定性を付与するために用いられ、モノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、燐酸系などが挙げられる。添加量は特に限定されないが、エチレン共重合体と層状複合金属化合物の合計100重量部に対して、0.05〜3重量部用いるのが好ましい。具体例としては、2,6−ジ−tert−ブチル−p−クレゾール、ブチル化ヒドロキシアニゾール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,2’−メチレン−ビス−(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−tert−ブチルフェノール)、4,4’−チオビス−(3−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデン−ビス−(3−メチル−6−tert−ブチルフェノール)、3,9−ビス〔{1,1−ジメチル−2−{β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}エチル}2,4,8,10−テトラオキサスピロ〕5,5−ウンデカン、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−{メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3’−ビス−4’−ヒドロキシ−3’−tert−ブチルフェニル)ブチリックアシッド}グルコールエステル、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネート、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’−ブチリデン−ビス−(3−メチル−6−tert−ブチルフェニル−ジ−トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリスジフェニルホスファイト、ジイソデシノレペンタエリスリトールジホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナスレン−10−オキサイド、10−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、10−デシロキシ−9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4−ジ−tert−ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6−ジ−tert−メチルフェニル)ホスファイト、2,2−メチレンビス(4,6−tert−ブチルフェニル)オクチルホスファイトなどが挙げられる。   Antioxidants are used to impart stability at high temperatures, and include monophenolic, bisphenolic, polymeric phenolic, sulfur-based, phosphoric acid-based and the like. Although the addition amount is not particularly limited, it is preferably used in an amount of 0.05 to 3 parts by weight with respect to a total of 100 parts by weight of the ethylene copolymer and the layered composite metal compound. Specific examples include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylene-bis- ( 4-methyl-6-tert-butylphenol), 2,2'-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4'-thiobis- (3-methyl-6-tert-butylphenol) 4,4′-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [{1,1-dimethyl-2- {β- (3-tert-butyl-4-hydroxy -5-methylphenyl) propionyloxy} ethyl} 2,4,8,10-tetraoxaspiro] 5,5-undecane, 1,1,3-tris- (2-methyl-4-hi Loxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis- {methylene-3 -(3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate} methane, bis {(3,3'-bis-4'-hydroxy-3'-tert-butylphenyl) butyric Acid} glycol ester, dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiopropionate, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene- Bis- (3-methyl-6-tert-butylphenyl-di-tridecyl) phos Phyto, cyclic neopentanetetrayl bis (octadecyl phosphite), trisdiphenyl phosphite, diisodecenorepentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10- Dihydro-9-oxa-10-phosphaphenanthrene, cyclic neopentanetetraylbis (2,4-di-tert-butylphenyl) phosphite, cyclic neopentanetetraylbis (2,6-di-) tert-methylphenyl) phosphite, 2,2-methylenebis ( , And a 6-tert-butylphenyl) octyl phosphite.

分散剤は、顔料や、フィラーをエチレン共重合体中に均一に分散するために用いられ、ポリエチレンワックス、エチレン酢酸ビニル共重合体ワックス、エチレンアクリル酸共重合体ワックスなどが挙げられる。添加量は特に限定されないが、層状複合金属化合物の合計100重量部に対して、5〜1000重量部用いるのが好ましい。また、分散剤は、エチレン共重合体、層状複合金属化合物、ベンゾフェノン系化合物と一緒に配合して製造することも、予め、層状複合金属酸化物とベンゾフェノン系化合物の処理物を作製する時に、一緒に配合することも可能である。   The dispersant is used to uniformly disperse the pigment and filler in the ethylene copolymer, and examples thereof include polyethylene wax, ethylene vinyl acetate copolymer wax, and ethylene acrylic acid copolymer wax. Although the addition amount is not particularly limited, it is preferably used in an amount of 5 to 1000 parts by weight with respect to 100 parts by weight in total of the layered composite metal compound. In addition, the dispersant can be produced by blending together with an ethylene copolymer, a layered composite metal compound, and a benzophenone compound, or can be used together when preparing a processed product of a layered composite metal oxide and a benzophenone compound in advance. It is also possible to blend in.

本発明の太陽電池封止材は、一般的に、T−ダイ押出機、カレンダー成形機などによる成形法により製造されることが好ましい。そして太陽電池封止材樹脂組成物をT−ダイ押出機により、架橋剤が実質的に分解しない成形温度でシート状に押出成形することで得ることができる。封止材の厚みは、0.1〜1mm程度が好ましい。   In general, the solar cell encapsulant of the present invention is preferably produced by a molding method using a T-die extruder, a calendar molding machine or the like. And it can obtain by extruding a solar cell sealing material resin composition by a T-die extruder at the molding temperature which a crosslinking agent does not decompose | disassemble substantially. The thickness of the sealing material is preferably about 0.1 to 1 mm.

本発明の太陽電池封止材は、エチレン共重合体(A)と、層状複合金属化合物(B)および/またはその焼成物(C)と、ベンゾフェノン系化合物(D)とを用いて形成してなることが好ましい。そしてエチレン共重合体(A)100重量部に対して、層状複合金属化合物(B)やその焼成物(C)は、それぞれ0.01〜7重量部、0.01〜5重量部用いることが好ましい。また、層状複合金属化合物(B)やその焼成物(C)100重量部に対して、ベンゾフェノン系化合物(D)を0.5〜2000重量部用いることが好ましく、0.5〜1000重量部がより好ましい。0.5重量部未満の場合、ベンゾフェノン系化合物の絶対量が不足し、変換効率に寄与できない恐れがあり、2000重量部を超える場合、相対的に層状複合金属化合物量が不足し、変換効率に寄与できない恐れがある。   The solar cell encapsulant of the present invention is formed using an ethylene copolymer (A), a layered composite metal compound (B) and / or a fired product thereof (C), and a benzophenone compound (D). It is preferable to become. And with respect to 100 parts by weight of the ethylene copolymer (A), the layered composite metal compound (B) and the fired product (C) thereof are used in an amount of 0.01 to 7 parts by weight and 0.01 to 5 parts by weight, respectively. preferable. Moreover, it is preferable to use 0.5 to 2000 parts by weight of the benzophenone-based compound (D) with respect to 100 parts by weight of the layered composite metal compound (B) or the fired product (C), and 0.5 to 1000 parts by weight is preferable. More preferred. If the amount is less than 0.5 parts by weight, the absolute amount of the benzophenone compound may be insufficient and may not contribute to the conversion efficiency. If the amount exceeds 2000 parts by weight, the amount of the layered composite metal compound is relatively insufficient, resulting in an increase in conversion efficiency. There is a risk of not being able to contribute.

太陽電池モジュールは、太陽電池素子の上下に太陽電池封止材を固定することにより作製することができるが、一般的には、真空ラミネーターにより加熱圧着により製造される。このような太陽電池モジュールとしては、例えば、透明基板/太陽電池封止材/太陽電池素子/太陽電池封止材/保護部材のように太陽電池素子の両側から太陽電池封止材で挟むスーパーストレート構造のものや、透明基板/太陽電池素子/太陽電池封止材/保護部材のように、基板の表面に形成させた太陽電池素子を太陽電池封止材と保護部材で積層されたものが挙げられる。透明基板には、熱強化白板ガラスや透明フィルムなどが利用され、封止材には耐湿性に優れたエチレン酢酸ビニル共重合体などが用いられる。また、防湿・絶縁性が要求される保護部材にはアルミニウムをフッ化ビニルフィルムで挟んだ構造のシートやアルミニウムを耐加水分解性ポリエチレンテレフタレートフィルムで挟んだものなどが用いられている。   The solar cell module can be manufactured by fixing solar cell sealing materials on the upper and lower sides of the solar cell element, but is generally manufactured by thermocompression bonding with a vacuum laminator. As such a solar cell module, for example, a superstrate sandwiched between solar cell encapsulants from both sides of the solar cell element such as transparent substrate / solar cell encapsulant / solar cell element / solar cell encapsulant / protective member Structures and solar cell elements formed on the surface of the substrate such as transparent substrate / solar cell element / solar cell encapsulant / protective member are laminated with solar cell encapsulant and protective member. It is done. For the transparent substrate, a heat-strengthened white plate glass or a transparent film is used, and for the sealing material, an ethylene vinyl acetate copolymer having excellent moisture resistance is used. In addition, a sheet having a structure in which aluminum is sandwiched between vinyl fluoride films, a sheet in which aluminum is sandwiched between hydrolysis-resistant polyethylene terephthalate films, and the like are used as protective members that are required to be moistureproof and insulating.

以下に、実施例により、本発明をさらに詳細に説明するが、本発明はこれらにより何ら限定されるものではない。部は重量部、%は重量%を意味する。なお本明細書において実施例3〜5および9〜11は、参考例である。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. “Part” means “part by weight” and “%” means “wt%”. In this specification, Examples 3 to 5 and 9 to 11 are reference examples.

実施例および比較例に用いるエチレン重合体と層状複合金属化合物およびその焼成物を表1に示す。   Table 1 shows an ethylene polymer, a layered composite metal compound, and a fired product thereof used in Examples and Comparative Examples.

(A)エチレン重合体
(A−1)エチレン酢酸ビニル共重合体(NUC−3195 ダウ・ケミカル社製、酢酸ビニル含有量:24%)
(A−2)エチレン酢酸ビニル共重合体(ウルトラセン751 東ソー社製、酢酸ビニル含有量:28%)
(A−3)エチレン酢酸ビニル共重合体(エバフレックスV523 三井・デュポンポリケミカル社製、酢酸ビニル含有量:33%)
(A) Ethylene polymer (A-1) Ethylene vinyl acetate copolymer (NUC-3195, manufactured by Dow Chemical Company, vinyl acetate content: 24%)
(A-2) Ethylene vinyl acetate copolymer (Ultrasen 751 manufactured by Tosoh Corporation, vinyl acetate content: 28%)
(A-3) Ethylene vinyl acetate copolymer (Evaflex V523, Mitsui / DuPont Polychemical Co., Ltd., vinyl acetate content: 33%)

(B)層状複合金属化合物その焼成物
(B−1)〜(B−10)の化学組成は、表1、2、3に示した。
(C−1):層状複合金属化合物(B−1)を300℃で3時間熱処理した焼成物
(C−2):層状複合金属化合物(B−3)を700℃で4時間熱処理した焼成物
(C−3):層状複合金属化合物(B−2)を650℃で3時間半熱処理した焼成物
(C−4):層状複合金属化合物(B−8)を500℃で5時間熱処理した焼成物
(C−5):層状複合金属化合物(B−5)を280℃で3時間半熱処理した焼成物
(B) The chemical composition of the layered composite metal compound (B-1) to (B-10) is shown in Tables 1, 2, and 3.
(C-1): Baked product obtained by heat-treating layered composite metal compound (B-1) at 300 ° C. for 3 hours (C-2): Baked product obtained by heat-treating layered composite metal compound (B-3) at 700 ° C. for 4 hours (C-3): Baked product obtained by heat-treating layered composite metal compound (B-2) at 650 ° C. for 3 hours and half (C-4): Firing obtained by heat-treating layered composite metal compound (B-8) at 500 ° C. for 5 hours Product (C-5): Baked product obtained by heat-treating layered composite metal compound (B-5) at 280 ° C. for 3 and a half hours

Figure 0005321543
Figure 0005321543

(D)ベンゾフェノン系化合物
(D−1)〜(D−4)の諸特性は、表2に示した。
(D−1)2−ヒドロキシ−4−n−オクトキシベンゾフェノン
(D−2)2−ヒドロキシ−4−メトキシベンゾフェノン
(D−3)2,2’−ジヒドロキシ−4−メトキシベンゾフェノン
(D−4)2−ヒドロキシ−4−ドデシルオキシベンゾフェノン
The characteristics of (D) benzophenone compounds (D-1) to (D-4) are shown in Table 2.
(D-1) 2-hydroxy-4-n-octoxybenzophenone (D-2) 2-hydroxy-4-methoxybenzophenone (D-3) 2,2′-dihydroxy-4-methoxybenzophenone (D-4) 2-hydroxy-4-dodecyloxybenzophenone

Figure 0005321543
Figure 0005321543

(実施例1)
エチレン酢酸ビニル共重合体(A−1)85重量部と層状複合金属化合物の焼成物(C−1)10重量部とベンゾフェノン系化合物(D−1)5重量部をスーパーミキサー(三井鉱山社製)に投入し温度20℃、時間2分の条件で撹拌した後、二軸押出し機(日本プラコン社製)を用いることにより太陽電池封止材用樹脂組成物を得た。また、太陽電池封止材用樹脂組成物と同様の方法により、エチレン酢酸ビニル共重合体85重量部に光安定剤10重量部、酸化防止剤5重量部を配合した安定化剤マスターバッチを得た。さらに、エチレン酢酸ビニル共重合体70重量部に架橋剤10重量部、架橋助剤10重量部、シランカップリング剤10重量部をスーパーミキサーで撹拌しながら、エチレン酢酸ビニル共重合体に含浸した架橋剤マスターバッチを得た。
得られた太陽電池封止材用樹脂組成物と、エチレン酢酸ビニル共重合体を用いて表3の配合量となるように調整し、架橋剤マスターバッチと、安定化剤マスターバッチと共にT−ダイ押出機で90℃にて押出し成形し、図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
なお、架橋剤マスターバッチ、安定化剤マスターバッチは、表3の配合量であるエチレン酢酸ビニル共重合体と層状複合金属化合物とベンゾフェノン系化合物の合計100重量部に対して各5重量部を配合した。架橋剤、架橋助剤、シランカップリング剤、光安定剤、酸化防止剤の種類は下記の通りである。
架橋剤:2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン
架橋助剤:トリアリルイソシアヌレート
シランカップリング剤:3−メタクリロキシプロピルトリメトキシシラン
光安定剤:ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート
酸化防止剤:トリス(ジブチルフェニル)ホスファイト
Example 1
85 parts by weight of an ethylene vinyl acetate copolymer (A-1), 10 parts by weight of a fired product of a layered composite metal compound (C-1) and 5 parts by weight of a benzophenone compound (D-1) were mixed with a super mixer (Mitsui Mining Co., Ltd.). The mixture was stirred at a temperature of 20 ° C. for 2 minutes, and then a biaxial extruder (manufactured by Nippon Placon Co., Ltd.) was used to obtain a resin composition for a solar cell encapsulant. Moreover, the stabilizer masterbatch which mix | blended 10 weight part of light stabilizers and 5 weight part of antioxidant with 85 weight part of ethylene vinyl acetate copolymers by the method similar to the resin composition for solar cell sealing materials is obtained. It was. Furthermore, 70 parts by weight of ethylene vinyl acetate copolymer, 10 parts by weight of a crosslinking agent, 10 parts by weight of a crosslinking aid, and 10 parts by weight of a silane coupling agent are impregnated into the ethylene vinyl acetate copolymer while stirring with a super mixer. An agent masterbatch was obtained.
The obtained resin composition for solar cell encapsulant and ethylene vinyl acetate copolymer were used to adjust to the blending amounts shown in Table 3, and the T-die together with the crosslinking agent masterbatch and the stabilizer masterbatch. Extrusion molding was performed at 90 ° C. with an extruder, and solar cell sealing materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) used for the test samples of FIGS.
In addition, 5 parts by weight of each of the crosslinking agent masterbatch and the stabilizer masterbatch are blended with respect to a total of 100 parts by weight of the ethylene vinyl acetate copolymer, the layered composite metal compound, and the benzophenone compound as shown in Table 3. did. The types of the crosslinking agent, the crosslinking assistant, the silane coupling agent, the light stabilizer, and the antioxidant are as follows.
Cross-linking agent: 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane cross-linking aid: triallyl isocyanurate silane coupling agent: 3-methacryloxypropyltrimethoxysilane light stabilizer: bis (2 , 2,6,6-tetramethyl-4-piperidyl) sebacate antioxidant: tris (dibutylphenyl) phosphite

(実施例2〜9)
太陽電池封止材用樹脂組成物を調整して、それぞれ表3に示す配合とした以外は、実施例1と同様にして図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23を作成した。
(Examples 2-9)
Solar cell encapsulants 12A, 12B used for the test samples of FIGS. 1 to 4 in the same manner as in Example 1 except that the resin composition for solar cell encapsulant was adjusted and blended as shown in Table 3, respectively. 16, 18, 21, and 23 were created.

(実施例10〜12)
エチレン酢酸ビニル共重合体80重量部と層状複合金属化合物またはその焼成物10重量部とベンゾフェノン系化合物10重量部にした以外は、実施例1と同様にして、表3に示す配合となるよう、太陽電池封止材用樹脂組成物を調整して図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
(Examples 10 to 12)
In the same manner as in Example 1 except that 80 parts by weight of ethylene vinyl acetate copolymer, 10 parts by weight of a layered composite metal compound or a fired product thereof, and 10 parts by weight of a benzophenone-based compound were used. The solar cell sealing material 12A, 12B, 16, 18, 21, 23 (thickness 0.5 mm) used for the test sample of FIGS. 1-4 was prepared by adjusting the resin composition for solar cell sealing material.

(実施例13〜16)
層状複合金属化合物またはその焼成物10重量部をスーパーミキサーで撹拌しながら、130℃のオーブン内で溶融させたベンゾフェノン系化合物5重量部を滴下し、予め、前記層状複合金属化合物またはその焼成物に処理を施した後、エチレン酢酸ビニル共重合体85重量部とその処理物15重量部をスーパーミキサー(三井鉱山社製)に投入し温度20℃、時間2分の条件で撹拌した後、二軸押出し機(日本プラコン社製)により太陽電池封止材用樹脂組成物を得た以外は、実施例1と同様にして、表3に示す配合となるよう太陽電池封止材用樹脂組成物を調整して図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
(Examples 13 to 16)
While stirring 10 parts by weight of the layered composite metal compound or a fired product thereof with a super mixer, 5 parts by weight of a benzophenone-based compound melted in an oven at 130 ° C. is dropped, and the layered composite metal compound or the fired product thereof is previously added. After the treatment, 85 parts by weight of ethylene vinyl acetate copolymer and 15 parts by weight of the treated product were put into a super mixer (manufactured by Mitsui Mining Co., Ltd.) and stirred at a temperature of 20 ° C. for 2 minutes. Except having obtained the resin composition for solar cell sealing materials by the extruder (made by Nippon Placon Co., Ltd.), the resin composition for solar cell sealing materials was prepared so that it might become the mixing | blending shown in Table 3 like Example 1. FIG. Solar cell sealing materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) used for the test samples of FIGS.

(実施例17〜22)
表3に示す配合量になるようにエチレン酢酸ビニル共重合体と層状複合金属化合物またはその焼成物とベンゾフェノン系化合物をスーパーミキサー(三井鉱山社製)に投入し温度20℃、時間2分の条件で撹拌した後、二軸押出し機(日本プラコン社製)により太陽電池封止材用樹脂組成物を作製した以外は、実施例1と同様にして図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
(Examples 17 to 22)
An ethylene vinyl acetate copolymer and a layered composite metal compound or a fired product thereof and a benzophenone compound are charged into a supermixer (manufactured by Mitsui Mining Co., Ltd.) so that the blending amounts shown in Table 3 are satisfied. The solar cell seal used for the test samples of FIGS. 1 to 4 is the same as in Example 1 except that the resin composition for solar cell encapsulant is produced by a twin screw extruder (manufactured by Nippon Placon Co., Ltd.). Stop materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) were produced.

(比較例1〜5)
表4に示す配合量になるようにエチレン酢酸ビニル共重合体と層状複合金属化合物またはその焼成物をスーパーミキサー(三井鉱山社製)に投入し温度20℃、時間2分の条件で撹拌した後、二軸押出し機(日本プラコン社製)により樹脂組成物を作製し、実施例1と同様の架橋剤マスターバッチと、安定化剤マスターバッチと共にT−ダイ押出機で90℃にて押出し成形し、図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
なお、架橋剤マスターバッチ、安定化剤マスターバッチは、表4の配合量であるエチレン酢酸ビニル共重合体と層状複合金属化合物またはその焼成物の合計100重量部に対して各5重量部を配合した。架橋剤、架橋助剤、シランカップリング剤、光安定剤、酸化防止剤の種類は実施例1と同様である。
(Comparative Examples 1-5)
After the ethylene vinyl acetate copolymer and the layered composite metal compound or the fired product thereof are put into a super mixer (made by Mitsui Mining Co., Ltd.) so as to have the blending amounts shown in Table 4, the mixture is stirred at a temperature of 20 ° C. for 2 minutes. Then, a resin composition was prepared by a twin screw extruder (manufactured by Nippon Placon Co., Ltd.) and extruded at 90 ° C. with a T-die extruder together with the same crosslinking agent master batch and stabilizer master batch as in Example 1. Solar cell sealing materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) used for the test samples of FIGS.
In addition, 5 parts by weight of each of the crosslinking agent masterbatch and the stabilizer masterbatch are blended with respect to a total of 100 parts by weight of the ethylene vinyl acetate copolymer and the layered composite metal compound, or the fired product, as shown in Table 4. did. The types of the crosslinking agent, crosslinking aid, silane coupling agent, light stabilizer, and antioxidant are the same as in Example 1.

(比較例6)
表4に示す配合量になるようにエチレン酢酸ビニル共重合体とベンゾフェノン系化合物をスーパーミキサー(三井鉱山社製)に投入し温度20℃、時間2分の条件で撹拌した後、二軸押出し機(日本プラコン社製)により樹脂組成物を作製し、実施例1と同様の架橋剤マスターバッチと、安定化剤マスターバッチと共にT−ダイ押出機で90℃にて押出し成形し、図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
(Comparative Example 6)
An ethylene vinyl acetate copolymer and a benzophenone compound were added to a supermixer (manufactured by Mitsui Mining Co., Ltd.) so as to have the blending amounts shown in Table 4, and stirred at a temperature of 20 ° C. for 2 minutes, and then a twin screw extruder. A resin composition is prepared by (made by Nippon Placon Co., Ltd.), and is extruded and molded at 90 ° C. with a T-die extruder together with the same crosslinking agent masterbatch as in Example 1 and a stabilizer masterbatch. Solar cell encapsulants 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) used for the test samples were prepared.

(比較例7)
表4に示す配合量になるようにエチレン酢酸ビニル共重合体と層状複合金属化合物の焼成物とベンゾトリアゾール系化合物をスーパーミキサー(三井鉱山社製)に投入し温度20℃、時間2分の条件で撹拌した後、二軸押出し機(日本プラコン社製)により樹脂組成物を作製し、実施例1と同様の架橋剤マスターバッチと、安定化剤マスターバッチと共にT−ダイ押出機で90℃にて押出し成形し、図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
なお、太陽電池封止材中の架橋剤、架橋助剤、シランカップリング剤、光安定剤、酸化防止剤の種類と添加量は、エチレン酢酸ビニル共重合体と層状複合金属化合物またはその焼成物とベンゾトリアゾ−ル系紫外線吸収剤の合計100重量部対して実施例1同様の化合物、重量を配合した。
ベンゾトリアゾール系化合物:2−(2−メチル−4−ヒドロキシフェニル)ベンゾトリアゾール
(Comparative Example 7)
The ethylene vinyl acetate copolymer, the fired product of the layered composite metal compound, and the benzotriazole compound were added to a supermixer (made by Mitsui Mining Co., Ltd.) so that the blending amounts shown in Table 4 were satisfied. After stirring, a resin composition was prepared with a twin screw extruder (manufactured by Nippon Placon Co., Ltd.), and the same crosslinking agent master batch as in Example 1 and a stabilizer master batch were heated to 90 ° C. with a T-die extruder. The solar cell sealing materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) used for the test samples of FIGS.
The type and amount of the crosslinking agent, crosslinking aid, silane coupling agent, light stabilizer, and antioxidant in the solar cell encapsulant are the ethylene vinyl acetate copolymer and the layered composite metal compound or the fired product thereof. The same compound and weight as in Example 1 were blended with respect to a total of 100 parts by weight of benzotriazole-based ultraviolet absorber.
Benzotriazole compound: 2- (2-methyl-4-hydroxyphenyl) benzotriazole

(比較例8)
ベンゾトリアゾール系化合物に変えてベンゾトリアジン系化合物を用いた以外は、比較例7と同様にして、表4に示す配合となるよう樹脂組成物を調整し、図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
なお、太陽電池封止材中の架橋剤、架橋助剤、シランカップリング剤、光安定剤、酸化防止剤の種類と添加量は、エチレン酢酸ビニル共重合体と層状複合金属化合物またはその焼成物とベンゾトリアジン系紫外線吸収剤の合計100重量部対して実施例1同様の化合物、重量を配合した。
ベンゾトリアジン系化合物:2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール
(Comparative Example 8)
Except that the benzotriazine compound was used instead of the benzotriazole compound, the resin composition was adjusted so as to have the composition shown in Table 4 in the same manner as in Comparative Example 7, and the sun used for the test samples of FIGS. Battery sealing materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) were produced.
The type and amount of the crosslinking agent, crosslinking aid, silane coupling agent, light stabilizer, and antioxidant in the solar cell encapsulant are the ethylene vinyl acetate copolymer and the layered composite metal compound or the fired product thereof. The same compound and weight as in Example 1 were added to 100 parts by weight of the total of benzotriazine-based UV absorber.
Benzotriazine-based compound: 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol

(比較例9)
エチレン酢酸ビニル共重合体100重量部に対して、実施例1と同様の架橋剤マスターバッチ5重量部と、安定化剤マスターバッチ各5重量部を配合してT−ダイ押出機で90℃にて押出し成形し、図1〜4の試験サンプルに用いる太陽電池封止材12A、12B、16、18、21、23(厚さ0.5mm)を作製した。
なお、太陽電池封止材中の架橋剤、架橋助剤、シランカップリング剤、光安定剤、酸化防止剤の種類は、実施例1同様の化合物を用いた。
(Comparative Example 9)
5 parts by weight of the same crosslinker masterbatch as in Example 1 and 5 parts by weight of the stabilizer masterbatch were blended with 100 parts by weight of the ethylene vinyl acetate copolymer, and the mixture was heated to 90 ° C. with a T-die extruder. The solar cell sealing materials 12A, 12B, 16, 18, 21, and 23 (thickness 0.5 mm) used for the test samples of FIGS.
In addition, the compound similar to Example 1 was used for the kind of the crosslinking agent in a solar cell sealing material, a crosslinking adjuvant, a silane coupling agent, a light stabilizer, and antioxidant.

Figure 0005321543
Figure 0005321543

Figure 0005321543
Figure 0005321543

実施例で得られた試験片を以下の基準で評価し、評価結果を表5に示した。

The test pieces obtained in the examples were evaluated according to the following criteria, and the evaluation results are shown in Table 5.

[波長変換効果]
実施例で得られた太陽電池封止材23を用いて、日立製作所製F−2500により、340〜420nm波長域における励起ピーク波長で励起した時の蛍光強度を測定し、下記の通り評価した。
◎:発光強度が非常に強い
○:発光強度が強い
△:発光強度が弱い
×:発光しない
[Wavelength conversion effect]
Using the solar cell encapsulant 23 obtained in the examples, the fluorescence intensity when excited at an excitation peak wavelength in the 340 to 420 nm wavelength region was measured by Hitachi F-2500 and evaluated as follows.
A: Very high emission intensity B: High emission intensity B: Low emission intensity X: No emission

[酸捕捉効果]
実施例で得られた太陽電池封止材16を用いて図2に示すように透明基板(厚さ3mm)15とポリエステルフィルム(東レ製、ルミラーX−10S、厚さ50μm)の保護部材17とで挟んで積層体にした後、真空ラミネーターによる真空下で、150℃、20分間加熱圧着し、耐久試験用サンプルを作製し、加速試験により酸発生の速度を促進させた後、酸発生量を測定した。
[Acid capture effect]
As shown in FIG. 2, using the solar cell encapsulant 16 obtained in the example, a transparent substrate (thickness 3 mm) 15 and a protective member 17 of a polyester film (Toray, Lumirror X-10S, thickness 50 μm) and After being laminated in a laminate, heat-pressed at 150 ° C. for 20 minutes under vacuum by a vacuum laminator to prepare a sample for durability test, and after accelerating the rate of acid generation by an acceleration test, It was measured.

加速試験は、プレッシャークッカー試験により、耐久試験用サンプルを温度121℃、湿度100%RH、圧力2kg/cm2の環境下、72時間静置の条件で行い、その後、太陽電池封止材を透明基板、ポリエステルフィルムから剥がし、封止材2gを25℃の精製水20mlに24時間浸漬し、超音波洗浄に10分間かけた後、水抽出液に含まれる酢酸量をイオンクロマトグラフィーにより定量した。 The acceleration test is performed by a pressure cooker test, where the durability test sample is left to stand for 72 hours in an environment of a temperature of 121 ° C., a humidity of 100% RH, and a pressure of 2 kg / cm 2 , and then the solar cell encapsulant is transparent The substrate and the polyester film were peeled off, 2 g of the sealing material was immersed in 20 ml of purified water at 25 ° C. for 24 hours, subjected to ultrasonic cleaning for 10 minutes, and then the amount of acetic acid contained in the water extract was quantified by ion chromatography.

[透明性]
実施例で得られた太陽電池封止材18を用いて図3に示すように透明基板(厚さ3mm)19、20で挟み込み、3層にした後、真空ラミネーターによる真空下で、150℃、20分間加熱圧着し、耐久試験用サンプルを作製し、加速試験前、試験後の全光線透過率をBYK Gardner製ヘーズメーターにより測定した。
[transparency]
As shown in FIG. 3, the solar cell encapsulant 18 obtained in the example was sandwiched between transparent substrates (thickness 3 mm) 19 and 20 to form three layers, and then vacuumed at 150 ° C. under a vacuum laminator. The sample was subjected to thermocompression bonding for 20 minutes to prepare an endurance test sample, and the total light transmittance before and after the acceleration test was measured with a BYK Gardner haze meter.

加速試験は、プレッシャークッカー試験により、耐久試験用サンプルを温度121℃、湿度100%RH、圧力2kg/cm2の環境下、120時間静置の条件により行った。 The acceleration test was carried out by a pressure cooker test, and the sample for durability test was allowed to stand for 120 hours in an environment of a temperature of 121 ° C., a humidity of 100% RH, and a pressure of 2 kg / cm 2 .

[経時後剥離強度]
実施例で得られた太陽電池封止材21を用いて図4に示すように耐加水分解ポリエチレンテレフタレートフィルム(厚さ0.1mm)の保護部材22とで2層にした後、真空ラミネーターによる真空下で、150℃、20分間加熱圧着し、耐久試験用サンプルを作製した。そして耐久試験後の太陽電池封止材と保護部材との密着性を剥離試験により測定した。
[Peel strength after time]
The solar cell encapsulant 21 obtained in the example was used to form two layers with a protective member 22 of a hydrolysis-resistant polyethylene terephthalate film (thickness 0.1 mm) as shown in FIG. 4, and then vacuumed by a vacuum laminator The sample for a durability test was produced by thermocompression bonding at 150 ° C. for 20 minutes. And the adhesiveness of the solar cell sealing material and protective member after an endurance test was measured by the peeling test.

耐久試験は、耐久試験用サンプルを温度85℃、湿度85%RHの環境下、1000時間静置の条件により行った。   The durability test was performed under the condition that the sample for durability test was allowed to stand for 1000 hours in an environment of a temperature of 85 ° C. and a humidity of 85% RH.

太陽電池封止材と保護部材との剥離強度は、耐久試験用サンプルから幅25mmの短冊状に切り取り試験片とした。そして、試験片を引張り試験機を用いて引張速度50mm/minにて180°剥離試験を行った。
経時後剥離強度は、層状複合金属化合物と、ベンゾフェノン系化合物を配合していない比較例9の耐久試験前サンプルの剥離強度を100とした時の耐久試験後の剥離強度を示した。
The peel strength between the solar cell encapsulant and the protective member was cut from a sample for durability test into a strip shape having a width of 25 mm and used as a test piece. Then, the test piece was subjected to a 180 ° peel test using a tensile tester at a tensile speed of 50 mm / min.
The peel strength after time indicates the peel strength after the durability test when the peel strength of the sample before the durability test of Comparative Example 9 in which the layered composite metal compound and the benzophenone compound are not blended is 100.

[変換効率変化]
得られた太陽電池封止材12A、Bを用いて発電素子を挟み込み、図1に示すように透明基板(厚さ3mm)11と耐加水分解ポリエチレンテレフタレート/アルミ/耐加水分解ポリエチレンテレフタレートの3層(厚さ1.0mm)の保護部材14とで挟んで積層体にした後、真空ラミネーターによる真空下で、150℃で20分間加熱圧着し、太陽電池モジュールサンプルを作製した。
試験は、プレッシャークッカー試験機により、サンプルを温度121℃、湿度100%RH、圧力2kg/cm2の環境下、72時間静置の条件により行った。
変換効率は、入光エネルギーと最適動作点での出力と、発電素子の面積から算出した。
評価は、試験前の変換効率の値から発電素子単体の変換効率の値を引いた値を初期変換効率変化とした。そして、試験後の変換効率の値からサンプル試験前の変換効率の値を引いた値を経時変換効率変化とした。
初期変換効率が向上している時、初期変換効率変化の値は正となり、経時変換効率の低下が少ないほど、初期変換効率変化の値との差が小さくなる。
[Conversion efficiency change]
Using the obtained solar cell encapsulants 12A and 12B, a power generation element is sandwiched, and as shown in FIG. 1, three layers of a transparent substrate (thickness 3 mm) 11 and hydrolysis-resistant polyethylene terephthalate / aluminum / hydrolysis-resistant polyethylene terephthalate After being laminated with a protective member 14 (thickness: 1.0 mm), a solar cell module sample was produced by thermocompression bonding at 150 ° C. for 20 minutes under vacuum using a vacuum laminator.
The test was performed with a pressure cooker tester under the condition that the sample was left for 72 hours in an environment of a temperature of 121 ° C., a humidity of 100% RH, and a pressure of 2 kg / cm 2 .
The conversion efficiency was calculated from the incident light energy, the output at the optimum operating point, and the area of the power generation element.
In the evaluation, a value obtained by subtracting the value of the conversion efficiency of the power generation element alone from the value of the conversion efficiency before the test was defined as the initial conversion efficiency change. And the value which subtracted the value of the conversion efficiency before a sample test from the value of the conversion efficiency after a test was made into the time-dependent conversion efficiency change.
When the initial conversion efficiency is improved, the value of the initial conversion efficiency change becomes positive. The smaller the decrease in the conversion efficiency with time, the smaller the difference from the value of the initial conversion efficiency change.

Figure 0005321543
Figure 0005321543

表5より本発明の太陽電池封止材用組成物を用いた太陽電池封止材は、実施例と比較例の結果から、層状複合金属化合物やその焼成物とベンゾフェノン系化合物を配合することで、初期変換効率が向上するとともに、透明性の維持と、高い酸・水捕捉効果による経時における保護部材との密着性維持と変換効率の低下を抑制することができた。   From Table 5, the solar cell encapsulant using the composition for solar cell encapsulant of the present invention is based on the results of Examples and Comparative Examples by blending a layered composite metal compound or a fired product thereof with a benzophenone compound. In addition to improving the initial conversion efficiency, it was possible to maintain transparency, maintain adhesiveness with the protective member over time due to a high acid / water scavenging effect, and suppress a decrease in conversion efficiency.

11 透明基板
12A 表面太陽電池封止材
12B 裏面太陽電池封止材
13 発電素子
14 保護部材
15 透明基板
16 封止材
17 保護部材
18 封止材
19 透明基板
20 透明基板
21 封止材
22 保護部材
23 封止材
DESCRIPTION OF SYMBOLS 11 Transparent substrate 12A Front surface solar cell sealing material 12B Back surface solar cell sealing material 13 Power generation element 14 Protection member 15 Transparent substrate 16 Sealing material 17 Protection member 18 Sealing material 19 Transparent substrate 20 Transparent substrate 21 Sealing material 22 Protection member 23 Sealing material

Claims (11)

エチレン共重合体(A)と、下記一般式(2)で表される層状複合金属化合物(B)およびその焼成物(C)ならびに下記一般式(1)で表される層状複合金属化合物(B)を200〜800℃で熱処理されてなる焼成物(C)からなる群より選択されるいずれかと、ベンゾフェノン系化合物(D)を含むことを特徴とする太陽電池封止材用樹脂組成物。
Mg1-a・Ala(OH)2・Ann- a/n・cH2O 一般式(1)
(0.2≦a≦0.35、0≦c≦1、An:n価の陰イオン)
(MaMg1-a1-b・Alb(OH)2・Ann- b/n・cH2O 一般式(2)
(MはNi、Zn、Cu、およびCaより選ばれる金属を示し、a、bおよびcはそれぞれ式0<a≦1、0.2≦b≦0.35、0≦c≦1、An:n価の陰イオン)
An ethylene copolymer (A), a layered composite metal compound (B) represented by the following general formula (2) and a fired product (C) thereof, and a layered composite metal compound (B) represented by the following general formula (1) ) And a benzophenone-based compound (D) , which is selected from the group consisting of a fired product (C) obtained by heat treatment at 200 to 800 ° C.
Mg 1-a · Al a (OH) 2 · An n- a / n · cH 2 O General formula (1)
(0.2 ≦ a ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)
(M a Mg 1-a ) 1-b · Al b (OH) 2 · An n- b / n · cH 2 O General formula (2)
(M represents a metal selected from Ni, Zn, Cu and Ca, and a, b and c are the formulas 0 <a ≦ 1 , 0.2 ≦ b ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)
ベンゾフェノン系化合物(D)が融点25〜120℃であることを特徴とする請求項1記載の太陽電池封止材用樹脂組成物。   The resin composition for a solar cell encapsulant according to claim 1, wherein the benzophenone compound (D) has a melting point of 25 to 120 ° C. 層状複合金属化合物(B)とその焼成物(C)がBET比表面積1〜200m2/gであることを特徴とする請求項1または2記載の太陽電池封止材用樹脂組成物。 The layered composite metal compound (B) and the fired product (C) thereof have a BET specific surface area of 1 to 200 m 2 / g, and the resin composition for a solar cell encapsulant according to claim 1 or 2 . エチレン共重合体(A)が、エチレン酢酸ビニル共重合体、エチレンアクリル酸メチル共重合体、エチレンアクリル酸エチル共重合体、およびエチレンメタクリル酸メチル共重合体、エチレンメタクリル酸エチル共重合体からなる群より選択される1種以上の共重合体であることを特徴とする請求項1〜いずれか記載の太陽電池封止材用樹脂組成物。 The ethylene copolymer (A) comprises an ethylene vinyl acetate copolymer, an ethylene methyl acrylate copolymer, an ethylene ethyl acrylate copolymer, an ethylene methyl methacrylate copolymer, and an ethylene ethyl methacrylate copolymer. The resin composition for a solar cell encapsulant according to any one of claims 1 to 3 , wherein the resin composition is one or more types of copolymers selected from the group. エチレン共重合体(A)100重量部に対して、層状複合金属化合物(B)および/またはその焼成物(C)を0.01〜15重量部、ベンゾフェノン系化合物(C)を0.01〜15重量部用いることを特徴とする請求項1〜いずれか記載の太陽電池封止材用樹脂組成物。 With respect to 100 parts by weight of the ethylene copolymer (A), the layered composite metal compound (B) and / or the fired product (C) thereof is 0.01 to 15 parts by weight, and the benzophenone compound (C) is 0.01 to The resin composition for a solar cell encapsulant according to any one of claims 1 to 4 , wherein 15 parts by weight is used. ベンゾフェノン系化合物(C)が、340nmにおけるモル吸光係数1000〜15000(l/mol・cm)であることを特徴とする請求項1〜いずれか記載の太陽電池封止材用樹脂組成物。 The resin composition for a solar cell sealing material according to any one of claims 1 to 5, wherein the benzophenone compound (C) has a molar extinction coefficient of 1000 to 15000 (l / mol · cm) at 340 nm. エチレン共重合体(A)と、層状複合金属化合物(B)および/またはその焼成物(C)と、ベンゾフェノン系化合物(C)とを用いて形成してなる太陽電池封止材であって、
前記層状複合金属化合物(B)が、下記一般式(2)で表される化合物であり、
前記焼成物(C)が、下記一般式(1)および下記一般式(2)で表される前記層状複合金属化合物(B)を200〜800℃で熱処理されてなる焼成物(C)であることを特徴とする太陽電池封止材。
Mg1-a・Ala(OH)2・Ann- a/n・cH2O 一般式(1)
(0.2≦a≦0.35、0≦c≦1、An:n価の陰イオン)
(MaMg1-a1-b・Alb(OH)2・Ann- b/n・cH2O 一般式(2)
(MはNi、Zn、Cu、およびCaより選ばれる金属を示し、a、bおよびcはそれぞれ式0<a≦1、0.2≦b≦0.35、0≦c≦1、An:n価の陰イオン)
A solar cell encapsulant formed by using an ethylene copolymer (A), a layered composite metal compound (B) and / or a fired product (C) thereof, and a benzophenone compound (C),
The layered composite metal compound (B) is a compound represented by the following general formula (2) ,
The fired product (C) is, is the following general formula (1) and the following general formula wherein layered composite metal compound (B) and 200 to 800 fired product formed by heat treatment at ℃ represented by (2) (C) The solar cell sealing material characterized by the above-mentioned.
Mg 1-a · Al a (OH) 2 · An n- a / n · cH 2 O General formula (1)
(0.2 ≦ a ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)
(M a Mg 1-a ) 1-b · Al b (OH) 2 · An n- b / n · cH 2 O General formula (2)
(M represents a metal selected from Ni, Zn, Cu and Ca, and a, b and c are the formulas 0 <a ≦ 1 , 0.2 ≦ b ≦ 0.35, 0 ≦ c ≦ 1, An: n-valent anion)
エチレン酢酸ビニル共重合体と、請求項1〜いずれか記載の太陽電池封止材用樹脂組成物とを用いて形成してなる太陽電池封止材。 The solar cell sealing material formed using an ethylene vinyl acetate copolymer and the resin composition for solar cell sealing materials in any one of Claims 1-6 . 層状複合金属化合物(B)および/またはその焼成物(C)100重量部に対してベンゾフェノン系化合物(D)を0.5〜2000重量部用いることを特徴とする請求項7または8記載の太陽電池封止材。 The sun according to claim 7 or 8 , wherein 0.5 to 2000 parts by weight of the benzophenone compound (D) is used with respect to 100 parts by weight of the layered composite metal compound (B) and / or the fired product (C) thereof. Battery encapsulant. 請求項1〜いずれか記載の太陽電池封止材用樹脂組成物を用いて形成してなる太陽電池封止材を用いた太陽電池モジュール。 The solar cell module using the solar cell sealing material formed using the resin composition for solar cell sealing materials in any one of Claims 1-6 . 請求項7〜9記載の太陽電池封止材を用いた太陽電池モジュール。 The solar cell module using the solar cell sealing material of Claims 7-9 .
JP2010150853A 2010-07-01 2010-07-01 Resin composition for solar cell encapsulant Expired - Fee Related JP5321543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150853A JP5321543B2 (en) 2010-07-01 2010-07-01 Resin composition for solar cell encapsulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150853A JP5321543B2 (en) 2010-07-01 2010-07-01 Resin composition for solar cell encapsulant

Publications (3)

Publication Number Publication Date
JP2012015346A JP2012015346A (en) 2012-01-19
JP2012015346A5 JP2012015346A5 (en) 2013-01-31
JP5321543B2 true JP5321543B2 (en) 2013-10-23

Family

ID=45601410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150853A Expired - Fee Related JP5321543B2 (en) 2010-07-01 2010-07-01 Resin composition for solar cell encapsulant

Country Status (1)

Country Link
JP (1) JP5321543B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068416B1 (en) * 2018-08-20 2020-01-20 한화토탈 주식회사 Photovoltaic cells including aluminum-based solar converters
KR20220043566A (en) * 2020-09-29 2022-04-05 한화토탈 주식회사 Solar energy converting materials and Solar cell comprising the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234210B1 (en) * 2012-07-20 2013-07-10 東洋インキScホールディングス株式会社 Resin composition for solar cell encapsulant
KR102259452B1 (en) * 2019-07-15 2021-06-01 한화토탈 주식회사 Solar energy converting material, High-Durability Encapsulants for Sola cells and Sola Cells comprising the same
US20220259493A1 (en) * 2019-07-15 2022-08-18 Hanwha Total Petrochemical Co., Ltd. Solar wavelength conversion material, solar cell encapsulant comprising same, and solar cell comprising same
KR102315458B1 (en) * 2019-12-18 2021-10-20 한화토탈 주식회사 Colloidal aluminum based solar wavelength conversion materials, method for producing the same and solar cells including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251490A (en) * 1987-04-08 1988-10-18 Chuzo Kato Phorochromic intercalation compound and electrochromic intercalation compound
JPH09310065A (en) * 1996-05-22 1997-12-02 Kagaku Gijutsu Shinko Jigyodan Organic-inorganic composite fluorescent material
JP2006291119A (en) * 2005-04-14 2006-10-26 National Institute For Materials Science Phosphor material, method for producing the same and light-emitting device
JP5540302B2 (en) * 2008-03-11 2014-07-02 独立行政法人物質・材料研究機構 Organic inorganic composite
WO2010005101A1 (en) * 2008-07-11 2010-01-14 独立行政法人物質・材料研究機構 Luminescent nanosheet, fluorescent device, solar cell and color display using the same, and nanosheet coating
JP2010086206A (en) * 2008-09-30 2010-04-15 Yokogawa Electric Corp Setting device and field network system
JP5375055B2 (en) * 2008-12-02 2013-12-25 電気化学工業株式会社 Protective sheet for solar power generation module and manufacturing method thereof, solar power generation module and protection method thereof, and solar power generation system
JP2011216829A (en) * 2010-04-02 2011-10-27 Toppan Printing Co Ltd Composition, sheet, and solar cell module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068416B1 (en) * 2018-08-20 2020-01-20 한화토탈 주식회사 Photovoltaic cells including aluminum-based solar converters
WO2020040417A1 (en) * 2018-08-20 2020-02-27 한화토탈 주식회사 Solar cell including aluminum-based solar energy conversion material
US11824127B2 (en) 2018-08-20 2023-11-21 Hanwha Total Petrochemical Co., Ltd. Solar cell including aluminum-based solar energy conversion material
KR20220043566A (en) * 2020-09-29 2022-04-05 한화토탈 주식회사 Solar energy converting materials and Solar cell comprising the same
KR102442755B1 (en) 2020-09-29 2022-09-13 한화토탈에너지스 주식회사 Solar energy converting materials and Solar cell comprising the same
US11837462B2 (en) 2020-09-29 2023-12-05 Hanwha Total Petrochemical Co., Ltd. Solar spectral wavelength converting material and solar cell comprising same

Also Published As

Publication number Publication date
JP2012015346A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP2011258879A (en) Solar cell module
JP5922232B2 (en) Solar cell module
JP5321543B2 (en) Resin composition for solar cell encapsulant
KR101260901B1 (en) Crosslinkable ethylene copolymer, solar battery sealing material sheet produced from the crosslinkable ethylene copolymer, and solar battery module using the solar battery sealing material sheet
JP2006190865A (en) Solar cell sealing material
JP5416345B2 (en) Method for producing sealing film for solar cell
JP2008118073A (en) Sealing film on light-receiving surface side for photovoltaic cell
JP5395816B2 (en) Solar cell sealing film and solar cell using the sealing film
WO2011016233A1 (en) Resin composition for solar cell-sealing material
WO2015107905A1 (en) Resin composition for solar cell sealing materials, master batch for solar cell sealing materials, and solar cell sealing material
EP2680318B1 (en) Solar cell sealing film and solar cell utilizing same
JP2012195561A (en) Sealing material sheet for solar cell module
JP5565520B1 (en) Resin composition for solar cell encapsulant, solar cell encapsulant and solar cell module
JP2012069865A (en) Solar cell sealant and solar cell module using the same
JP2006186233A (en) Solar cell sealing material
JP2014036076A (en) Resin composition for solar battery sealing material
JP2011077089A (en) Backside sealing material for solar cell, and solar cell module
CN105027303A (en) Encapsulants for solar battery, and solar battery module
KR20110104603A (en) Sealing material for solar cell and sheet for solar-cell sealing
JP4702495B1 (en) Resin composition for solar cell encapsulant
JP2013118281A (en) Sealing material for solar battery, and solar battery module
JP2012019179A (en) Resin composition for solar cell sealing material
JP2009188425A (en) Pair or solar battery sealing films
JP2013084801A (en) Resin composition for solar cell sealing material
JP2014139992A (en) Resin composition for solar cell sealing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees