JP5321342B2 - Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model - Google Patents

Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model Download PDF

Info

Publication number
JP5321342B2
JP5321342B2 JP2009185291A JP2009185291A JP5321342B2 JP 5321342 B2 JP5321342 B2 JP 5321342B2 JP 2009185291 A JP2009185291 A JP 2009185291A JP 2009185291 A JP2009185291 A JP 2009185291A JP 5321342 B2 JP5321342 B2 JP 5321342B2
Authority
JP
Japan
Prior art keywords
pressure loss
model
resistance
thickness
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009185291A
Other languages
Japanese (ja)
Other versions
JP2011038861A (en
Inventor
嘉丈 武井
朋冬 松浮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009185291A priority Critical patent/JP5321342B2/en
Publication of JP2011038861A publication Critical patent/JP2011038861A/en
Application granted granted Critical
Publication of JP5321342B2 publication Critical patent/JP5321342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

本発明は、自動車等の風洞試験等の流体試験で用いる、模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型に関する。   The present invention relates to a model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model used in a fluid test such as a wind tunnel test of an automobile or the like.

自動車、橋梁、建造物等の実物に生じる空気(風)の流れを把握するために、風洞を用いた模型試験が行われている。また、船や海洋構造物や堤防などの実物に生じる水の流れを把握するために、回流水槽や水槽を用いた模型試験が行われている。   In order to grasp the flow of air (wind) generated in actual objects such as automobiles, bridges, and buildings, model tests using a wind tunnel are being conducted. In addition, in order to grasp the flow of water generated in actual objects such as ships, offshore structures and embankments, model tests using circulating water tanks and water tanks are performed.

風洞試験における空気の流れには、模型の外側を流れる流れと、模型の内部を流れる流れとがある。この内部の流れを特に通風と呼び、通風の妨げとなるものを通風抵抗体と言っている。この模型内部の空気の流れを実物で生じる流れに近づける上で、通風抵抗体の設定が重要となる。   The air flow in the wind tunnel test includes a flow that flows outside the model and a flow that flows inside the model. This internal flow is called ventilation, and it is a ventilation resistor that hinders ventilation. In order to bring the air flow inside the model closer to the actual flow, the setting of the ventilation resistor is important.

しかし、この通風抵抗体においては、図6に示すように、風量と圧力の関係が非線形となるので、適切な通風抵抗体を選定し設定することは難しい。そこで、図7及び図8に示すように、抵抗を調整するための抵抗調整部材11,12である金属メッシュと、この抵抗調整部材11,12を支持するハニカム材14を組合せて、通風抵抗体と呼ばれる模型の圧力損失調整用構造体10Xの圧力損失を調整する試みが行われてきた。   However, in this ventilation resistor, as shown in FIG. 6, since the relationship between the air volume and the pressure becomes nonlinear, it is difficult to select and set an appropriate ventilation resistor. Therefore, as shown in FIG. 7 and FIG. 8, a ventilation resistor is formed by combining a metal mesh that is resistance adjusting members 11 and 12 for adjusting resistance and a honeycomb material 14 that supports the resistance adjusting members 11 and 12. Attempts have been made to adjust the pressure loss of the model pressure loss adjusting structure 10X.

この図7及び図8に示すような方法では、必ずしも、所望の抵抗特性に対して適切な抵抗特性を持つ模型の圧力損失調整用構造体10Xを提供できるとは限らず、また、提供できた場合でも模型の圧力損失調整用構造体10Xを設定できるまでに多大の労力を必要とする場合が多い。その結果、模型試験の実施に時間がかかるだけでなく、模型試験の結果を利用する、後のステップも影響を受けることになる。   In the method as shown in FIGS. 7 and 8, it is not always possible to provide the model pressure loss adjusting structure 10X having the appropriate resistance characteristic with respect to the desired resistance characteristic. Even in this case, a great deal of labor is often required before the model pressure loss adjusting structure 10X can be set. As a result, not only does the model test take time, but the subsequent steps using the model test results are also affected.

一般に模型の圧力損失調整用構造体10Xに用いる抵抗調整部材11,12には薄い板状の部材が用いられるので、機械的強度が比較的弱く、上流側と下流側に抵抗調整部材11,12を配置する場合には、両者の間でこれらの抵抗調整部材11,12を支持するための支持部材14が必要となる。   In general, since thin plate-like members are used for the resistance adjusting members 11 and 12 used in the model pressure loss adjusting structure 10X, the mechanical strength is relatively weak, and the resistance adjusting members 11 and 12 are provided upstream and downstream. When the is disposed, a support member 14 for supporting these resistance adjusting members 11 and 12 is required between them.

この支持部材14にはハニカム材を用いる場合が多いが、その場合には、間に挟まれた支持部材14の抵抗特性が、設定した抵抗調整部材11,12の抵抗特性に影響を及ぼすので、図9に示すように、圧力損失が増加する。従って、このハニカム材14の抵抗特性を考慮に入れて抵抗調整部材11,12の厚みを設定する必要が生じる。そのため、全体の厚みが模型1Xによって設定されている中での、抵抗調整部材11,12の厚みと、この抵抗調整部材11,12とは流れの特性が異なる支持部材14の厚みの設定が難しくなるという問題がある。   In many cases, a honeycomb material is used for the support member 14, but in this case, the resistance characteristic of the support member 14 sandwiched therebetween affects the resistance characteristics of the set resistance adjusting members 11 and 12. As shown in FIG. 9, the pressure loss increases. Therefore, it is necessary to set the thickness of the resistance adjusting members 11 and 12 in consideration of the resistance characteristics of the honeycomb material 14. Therefore, it is difficult to set the thickness of the resistance adjusting members 11 and 12 and the thickness of the support member 14 having different flow characteristics from the resistance adjusting members 11 and 12 in the total thickness set by the model 1X. There is a problem of becoming.

この模型1Xにおいては、通風抵抗は、模型1Xに要求される圧力損失を、抵抗調整部材11,12と支持部材14の圧力損失で置き換えると共に、更に、模型の圧力損失調整用構造体(抵抗体モデル)10Xの厚みも模型の縮尺に合わせる必要がある。通常金属メッシュ等で形成される抵抗調整部材11,12は厚さが薄く、それ自体のみでは、要求される厚さに模型の圧力損失調整用構造体10Xの厚さを合わせることができない。   In this model 1X, the ventilation resistance replaces the pressure loss required for the model 1X with the pressure loss of the resistance adjusting members 11, 12 and the support member 14, and further, the model pressure loss adjusting structure (resistor) Model) The thickness of 10X must be matched to the scale of the model. The resistance adjusting members 11 and 12 usually formed of a metal mesh or the like are thin, and the thickness of the model pressure loss adjusting structure 10X cannot be adjusted to the required thickness by itself.

また、模型の圧力損失調整用構造体10Xを、数種の材料を用いて枚数を重ねて厚さを稼いで要求される厚さにしたとしても、必ずしも要求される抵抗特性を満足できるとは限らない。そのため、抵抗特性と厚みの両方の要求を満たすことは難しく、模型の圧力損失調整用構造体10Xの全体を一度にモデル化しようとすると多くの労力を要するという問題がある。   Further, even if the model pressure loss adjusting structure 10X is made to have the required thickness by increasing the number of layers using several kinds of materials to obtain the required thickness, the required resistance characteristics are not necessarily satisfied. Not exclusively. Therefore, it is difficult to satisfy both requirements of resistance characteristics and thickness, and there is a problem that much effort is required to model the entire model pressure loss adjusting structure 10X at once.

この風洞試験等の通風抵抗を考慮した模型試験に関するものではないが、この風洞試験に関係して、自動車排ガスの拡散濃度調査風洞実験用の地表模型において、道路を走行する自動車から連続的に排出される排気ガスを正確に再現する地表模型が提案されている(例えば、特許文献1参照。)。   Although not related to this wind tunnel test and other model tests that take into consideration the draft resistance, in relation to this wind tunnel test, in the ground model for the diffusion concentration investigation wind tunnel test of automobile exhaust gas, it is continuously discharged from the automobile running on the road. A surface model that accurately reproduces exhaust gas is proposed (see, for example, Patent Document 1).

また、風洞内の模型を支持・変角する支持装置に作用する気流が模型の空力特性に及ぼす影響を少なくするとともに、模型の実機相似性を損うことなく、更に模型変角時の模型中心の移動を少なくする風洞試験模型支持装置が提案されている(例えば、特許文献2参照。)。   In addition, the airflow acting on the support device for supporting and turning the model in the wind tunnel reduces the effect of the airflow on the model's aerodynamic characteristics, and further reduces the center of the model at the time of turning the model without losing the similarity of the model. There has been proposed a wind tunnel test model support device that reduces the movement of (see, for example, Patent Document 2).

特開平10−232182号公報Japanese Patent Laid-Open No. 10-232182 特開平06−307978号公報Japanese Patent Laid-Open No. 06-307978

そこで、本発明者らは、図10〜図12に示すように、流体を用いた試験で用いる模型1Yの内部を流れる流体Fに関する圧力損失を調整するために、模型1Yの内部に配置されて流体Fの流れに対する抵抗となって圧力損失を発生する抵抗調整部材11,12を、流体Fの流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材11,12の間に空隙部3を設けて構成した模型の圧力損失調整用構造体10Yで、両方の抵抗調整部材11,12の圧力特性と厚みt1,t2の調整により模型1Yに必要な圧力損失を発生するように調整し、それと共に、空隙部3の厚みBsの調整により模型1Yに必要な厚みttに調整する模型の圧力損失調整方法において、上流側の抵抗調整部材11の単位厚みに対する圧力損失ΔP1を模型1Yで必要とされる厚みttと必要とされる圧力損失から算出される目標の単位厚みに対する圧力損失ΔPtよりも小さくすると共に、下流側の抵抗調整部材12の単位厚みに対する圧力損失ΔP2を目標の単位厚みに対する圧力損失ΔPtよりも大きくし、更に、上流側の抵抗調整部材11の厚みt1を下流側の抵抗調整部材12の厚みt2よりも大きくする模型の圧力損失設定方法を考えた。   Therefore, as shown in FIGS. 10 to 12, the present inventors are arranged inside the model 1Y in order to adjust the pressure loss related to the fluid F flowing inside the model 1Y used in the test using the fluid. The resistance adjusting members 11 and 12 that generate a pressure loss as a resistance to the flow of the fluid F are arranged on the upstream side and the downstream side of the flow of the fluid F, respectively, and between the resistance adjusting members 11 and 12. In the model pressure loss adjusting structure 10Y configured by providing the gap 3, the pressure loss necessary for the model 1Y is generated by adjusting the pressure characteristics and the thicknesses t1 and t2 of the resistance adjusting members 11 and 12. In the method for adjusting the pressure loss of the model, the pressure loss ΔP1 with respect to the unit thickness of the resistance adjusting member 11 on the upstream side is adjusted. The pressure loss ΔP2 with respect to the unit thickness of the resistance adjusting member 12 on the downstream side is made smaller than the pressure loss ΔPt with respect to the target unit thickness calculated from the thickness tt required for the mold 1Y and the required pressure loss. The pressure loss setting method of the model is considered in which the pressure loss ΔPt with respect to the unit thickness is larger and the thickness t1 of the upstream resistance adjusting member 11 is larger than the thickness t2 of the downstream resistance adjusting member 12.

しかしながら、この模型の圧力損失設定方法においても次のような問題がある。つまり、上流側と下流側に配置する抵抗調整部材11,12は、一枚あるいは複数枚の重ね合わせによって構成されるが、同じ抵抗特性の材料の複数枚の重ね合わせや抵抗特性の異なる材料の重ね合わせで抵抗調整部材11,12を構成しても、必ずしも、図12に示すような模型1Yの圧力損失特性を得られるとは限らず、図3に示すように製作された模型1Aの圧力損失(実線:模型)Pmが目標の圧力損失(点線:目標)Ptにならないで目標圧力損失Ptとの間で乖離ΔPt1を生じる場合がある。このような場合においては、所望の圧力損失Ptを持つ抵抗調整部材11,12又はこれを形成する素材を新たに製作することで問題が解決できるように思われるが、実際には、開発期間の短縮を考えると現実的ではない。   However, the pressure loss setting method of this model also has the following problems. In other words, the resistance adjusting members 11 and 12 arranged on the upstream side and the downstream side are configured by one or a plurality of overlapping layers, but the overlapping of a plurality of materials having the same resistance characteristic or materials having different resistance characteristics are used. Even if the resistance adjusting members 11 and 12 are configured by overlapping, the pressure loss characteristics of the model 1Y as shown in FIG. 12 are not necessarily obtained, and the pressure of the model 1A manufactured as shown in FIG. In some cases, the loss (solid line: model) Pm does not become the target pressure loss (dotted line: target) Pt, but a difference ΔPt1 occurs with the target pressure loss Pt. In such a case, it seems that the problem can be solved by newly manufacturing the resistance adjusting members 11 and 12 having the desired pressure loss Pt or the material forming the same. It is not realistic considering the shortening.

本発明は、上記の状況を鑑みてなされたものであり、その目的は、風等の流体の流れに関して上流側と下流側(前後)に抵抗調整部材を備え、両者の間に空隙部を有する模型の圧力損失調整用構造体(抵抗体モデル)において、目標の圧力損失特性により合致させることができる模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to provide resistance adjusting members on the upstream side and the downstream side (front and rear) with respect to the flow of fluid such as wind, and to have a gap between them. Model pressure loss adjustment structure (resistor model) provides model pressure loss setting method, model pressure loss adjustment structure, and fluid test model that can be matched to the target pressure loss characteristics There is to do.

上記のような目的を達成するための本発明の模型の圧力損失調整方法は、流体を用いた試験で用いる模型の内部を流れる流体に関する圧力損失を調整するために、模型の内部に配置されて流体の流れに対する抵抗となって圧力損失を発生する抵抗調整部材を、流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材の間に空隙部を設けて構成した模型の圧力損失調整用構造体で、両方の抵抗調整部材の圧力特性と厚みの調整により模型に必要な圧力損失を発生するように調整すると共に、前記空隙部の厚みの調整により模型に必要な厚みに調整する第1ステップを有する模型の圧力損失調整方法において、前記第1ステップで調整した模型の圧力損失調整用構造体の圧力損失が、目標の圧力損失とずれた場合に、上流側の抵抗調整部材又は下流側の抵抗調整部材の一方を、再調整用の抵抗調整部材とし、この再調整用の抵抗調整部材を、新たな2つの副抵抗調整部材を間に副空隙部を設けて配置して形成し、両方の副抵抗調整部材の圧力特性と厚みの調整により、前記再調整用の抵抗調整部材に要求される圧力損失を発生するように調整すると共に、前記副空隙部の厚みの調整により前記再調整用の抵抗調整部材に要求される厚みに調整する第2ステップを備えたことを特徴とする方法である。   In order to achieve the above object, the pressure loss adjusting method of the model of the present invention is arranged inside the model in order to adjust the pressure loss related to the fluid flowing in the model used in the test using the fluid. A model in which resistance adjusting members that generate pressure loss as resistance to the fluid flow are arranged on the upstream side and the downstream side of the fluid flow, respectively, and a gap is provided between both resistance adjusting members. The pressure loss adjusting structure is adjusted so that the pressure loss required for the model is generated by adjusting the pressure characteristics and thickness of both resistance adjusting members, and the thickness required for the model is adjusted by adjusting the thickness of the gap. In the method for adjusting the pressure loss of the model having the first step of adjusting the pressure loss of the model, the pressure loss of the structure for adjusting the pressure loss of the model adjusted in the first step deviates from the target pressure loss. One of the resistance adjustment member or the resistance adjustment member on the downstream side is used as a resistance adjustment member for readjustment, and the resistance adjustment member for readjustment is provided with a sub-gap portion between two new sub-resistance adjustment members. By adjusting the pressure characteristics and thickness of both sub resistance adjusting members, adjustment is made so as to generate the pressure loss required for the resistance adjusting member for readjustment, and The method is characterized by comprising a second step of adjusting the thickness required for the readjustment resistance adjusting member by adjusting the thickness.

つまり、前部(上流側)又は後部(下流側)に設けた抵抗調整部材の一方を、2つの副抵抗調整部材と副空隙部で形成し、抵抗調整部材とこれを構成する副抵抗調整部材と副空隙部の関係を、模型の圧力損失調整用構造体とこれを構成する抵抗調整部材と空隙部の関係と同じにして、自己相似的(フラクタル)とした設定方法を採る。   That is, one of the resistance adjusting members provided at the front (upstream side) or the rear (downstream side) is formed by two sub resistance adjusting members and a sub gap, and the resistance adjusting member and the sub resistance adjusting member constituting the resistance adjusting member. A self-similar (fractal) setting method is adopted in which the relationship between the sub-gap and the sub-gap is the same as the relationship between the model pressure loss adjustment structure, the resistance adjusting member constituting the model, and the gap.

この方法によれば、これまで抵抗調整部材の材料の重ね合わせのみで得ていた抵抗調整部材の抵抗特性を、副抵抗調整部材と副空隙部の組合せを再度適用して得ることができるため、これまでの目標の圧力損失の特性との乖離を容易に補うことができる。従って、先に考えた模型の圧力損失調整方法に比べて、目標の圧力損失の特性により合致した抵抗調整部材の組合せを設定できるようになる。   According to this method, since the resistance characteristic of the resistance adjusting member that has been obtained only by superimposing the materials of the resistance adjusting member so far can be obtained by applying again the combination of the sub resistance adjusting member and the sub gap portion, The deviation from the target pressure loss characteristic can be easily compensated. Therefore, compared to the model pressure loss adjustment method considered above, it is possible to set a combination of resistance adjustment members that matches the target pressure loss characteristics.

上記の模型の圧力損失調整方法において、前記抵抗調整部材として、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せを用いると、模型の圧力損失調整用構造体の抵抗特性を、必要とされる抵抗特性に、より容易に、かつ、より近似するように調整できるようになる。   In the pressure loss adjusting method of the above model, as the resistance adjusting member, a resistor whose pressure loss changes by a flow from the front side and a flow from the back side, a resistor having a single layer structure, a resistor having a three-dimensional network structure When any one of these or a combination thereof is used, the resistance characteristic of the model pressure loss adjusting structure can be adjusted more easily and more closely to the required resistance characteristic.

また、上記のような目的を達成するための本発明の模型の圧力損失調整用構造体は、流体を用いた試験で用いる模型の内部を流れる流体に関する圧力損失を調整するために、模型の内部に配置されて流体の流れに対する抵抗となって圧力損失を発生する抵抗調整部材を、流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材の間に空隙部を設けて構成した模型の圧力損失調整用構造体において、上流側の抵抗調整部材又は下流側の抵抗調整部材の一方を再調整用の抵抗調整部材にして、この再調整用の抵抗調整部材を、新たな2つの副抵抗調整部材を流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の副抵抗調整部材の間に副空隙部を設けて構成し、両方の副抵抗調整部材の圧力特性と厚みの調整により、前記再調整用の抵抗調整部材に要求される圧力損失を発生するように調整すると共に、前記副空隙部の厚みの調整により前記再調整用の抵抗調整部材に要求される厚みに調整して構成される。   In addition, the structure for adjusting the pressure loss of the model of the present invention for achieving the above-described object is provided in order to adjust the pressure loss related to the fluid flowing in the model used in the test using the fluid. The resistance adjusting members that are disposed in the flow path and generate pressure loss due to resistance to the fluid flow are disposed on the upstream side and the downstream side of the fluid flow, respectively, and a gap is provided between both resistance adjusting members. In the pressure loss adjustment structure of the model configured as described above, one of the upstream side resistance adjustment member or the downstream side resistance adjustment member is used as a resistance adjustment member for readjustment, and this resistance adjustment member for readjustment is newly added. The two sub-resistance adjusting members are arranged on the upstream side and the downstream side of the fluid flow, respectively, and a sub-gap portion is provided between both the sub-resistance adjusting members. For adjustment of characteristics and thickness And adjusting the thickness to be required for the readjustment resistance adjustment member by adjusting the thickness of the sub-gap part. Configured.

この構成によれば、これまで抵抗調整部材の材料の重ね合わせのみで得ていた抵抗調整部材の抵抗特性を、副抵抗調整部材と副空隙部の組合せを再度適用して得ることができるため、これまでの目標の圧力損失の特性との乖離を容易に補うことができる。従って、先に考えたの模型の圧力損失調整方法に比べて、目標の圧力損失の特性により合致した抵抗調整部材の組合せを設定できるようになる。   According to this configuration, the resistance characteristic of the resistance adjusting member that has been obtained only by superimposing the material of the resistance adjusting member so far can be obtained by reapplying the combination of the sub resistance adjusting member and the sub gap portion. The deviation from the target pressure loss characteristic can be easily compensated. Therefore, compared with the model pressure loss adjustment method previously considered, it is possible to set a combination of resistance adjustment members that matches the target pressure loss characteristics.

上記の模型の圧力損失調整用構造体において、前記抵抗調整部材を、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せで形成すると、模型の圧力損失調整用構造体の抵抗特性を、必要とされる抵抗特性に、より容易に、かつ、より近似するように調整できるようになる。   In the pressure loss adjusting structure of the above model, the resistance adjusting member includes a resistor whose pressure loss changes depending on a flow from the front side and a flow from the back side, a resistor having a single layer structure, and a three-dimensional network structure. When formed with one of these resistors or a combination of these, the resistance characteristics of the model pressure loss adjustment structure can be adjusted more easily and more closely to the required resistance characteristics. Become.

上記のような目的を達成するための本発明の流体試験用模型は、上記の模型の圧力損失調整用構造体を備えて構成される。   In order to achieve the above object, a fluid test model of the present invention includes the pressure loss adjusting structure of the above model.

本発明に係る自動車等の風洞試験等の流体試験で用いる、模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型によれば、これまで抵抗調整部材の材料の重ね合わせのみで得ていた抵抗調整部材の抵抗特性を、副抵抗調整部材と副空隙部の組合せを再度適用して得ることができるため、これまでの目標の圧力損失の特性との乖離を容易に補うことができる。従って、目標の圧力損失の特性により合致した抵抗調整部材の組合せを設定できるようになる。   According to the model pressure loss setting method, the model pressure loss adjustment structure, and the fluid test model used in the fluid test such as the wind tunnel test of the automobile according to the present invention, the material of the resistance adjustment member has been used so far. The resistance characteristic of the resistance adjustment member that was obtained only by superimposition can be obtained by re-applying the combination of the sub resistance adjustment member and the sub air gap part, so it is easy to deviate from the target pressure loss characteristics so far Can make up for. Therefore, it becomes possible to set a combination of resistance adjusting members that matches the target pressure loss characteristics.

また、模型の寸法に必要な厚さに左右されずに、所望の圧力特性になるように模型の圧力損失調整用構造体を設定できるので、抵抗調整部材に関して素材選択の自由度が増加し、所望の抵抗特性を持った模型の圧力損失調整用構造体(抵抗体モデル)を容易に製作できる。   In addition, since the structure for adjusting the pressure loss of the model can be set so as to have the desired pressure characteristics without being influenced by the thickness required for the dimensions of the model, the degree of freedom in selecting the material with respect to the resistance adjustment member is increased. A model pressure loss adjusting structure (resistor model) having a desired resistance characteristic can be easily manufactured.

そして、模型に必要な厚さ要件を満足した模型の圧力損失調整用構造体を製作できるので、流速に対する圧力損失の特性が所望の圧力損失の特性と一致した模型となり、比較検証する際の解析計算における結果の精度を向上することができる。   And, since the structure for adjusting the pressure loss of the model that satisfies the thickness requirement necessary for the model can be manufactured, the model has a pressure loss characteristic that matches the desired pressure loss characteristic with respect to the flow velocity. The accuracy of the result in the calculation can be improved.

本発明に係る実施の形態の模型の圧力損失設定方法を説明するための第1ステップにおける模型の圧力損失調整用構造体の構成を示した模式的な組立て図である。It is a typical assembly figure showing composition of a structure for pressure loss adjustment of a model in the 1st step for explaining a pressure loss setting method of a model of an embodiment concerning the present invention. 図1の模型の圧力損失調整用構造体の構成を示した模式的な側断面図である。It is the typical sectional side view which showed the structure of the structure for pressure loss adjustment of the model of FIG. 図1の模型の圧力損失調整用構造体の内部の圧力損失を示す図である。It is a figure which shows the pressure loss inside the structure for pressure loss adjustment of the model of FIG. 本発明に係る実施の形態の模型の圧力損失設定方法を説明するための第2ステップにおける模型の圧力調整用構造体の構成を示した模式的な組立て図である。It is a typical assembly figure showing composition of a model pressure regulation structure in the 2nd step for explaining a pressure loss setting method of a model of an embodiment concerning the present invention. 本発明に係る実施の形態の模型の圧力損失調整用構造体の構成と内部の圧力損失を示す図である。It is a figure which shows the structure of the pressure loss adjustment structure of the model of embodiment which concerns on this invention, and an internal pressure loss. 模型の圧力損失調整用構造体による風速と圧力損失の関係を示す図である。It is a figure which shows the relationship between the wind speed and pressure loss by the structure for pressure loss adjustment of a model. 従来技術の模型の圧力損失調整用構造体の構成を示した模式的な組立て図である。It is the typical assembly figure which showed the structure of the structure for pressure loss adjustment of the model of a prior art. 従来技術の模型の圧力損失調整用構造体の構成を示した模式的な側断面図である。It is the typical sectional side view which showed the structure of the structure for pressure loss adjustment of the model of a prior art. 支持部材による圧力損失の上昇を示した風速と圧力損失の関係を示す図である。It is a figure which shows the relationship between the wind speed and pressure loss which showed the raise of the pressure loss by a supporting member. 改良技術の模型の圧力損失調整用構造体の構成を示した模式的な組立て図である。It is the typical assembly figure showing the composition of the structure for pressure loss adjustment of the model of improved technology. 改良技術の模型の圧力損失調整用構造体の構成を示した模式的な側断面図である。It is the typical sectional side view which showed the structure of the structure for pressure loss adjustment of the model of an improved technique. 改良技術の模型の圧力損失調整用構造体の構成と内部の圧力損失を示す図である。It is a figure which shows the structure of the structure for pressure loss adjustment of the model of an improved technique, and an internal pressure loss.

以下、本発明に係る実施の形態の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型について、図面を参照しながら説明する。なお、以下の説明では風洞試験における模型を例に説明するが、本発明はこの風洞試験に限定されるものではなく、回流水槽や水槽の試験における模型にも適用できる。   Hereinafter, a model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model according to embodiments of the present invention will be described with reference to the drawings. In the following description, a model in a wind tunnel test will be described as an example. However, the present invention is not limited to this wind tunnel test, and can be applied to a model in a circulating water tank or water tank test.

図1〜図5を参照しながら本発明に係る実施の形態の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型について説明する。   A model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model according to an embodiment of the present invention will be described with reference to FIGS.

最初に、図1〜図3に示す最初に製造される模型の圧力損失調整用構造体10Aについて説明する。図1〜図3に示すように、この模型の圧力損失調整用構造体10Aは、空気(流体)Fを用いた風洞試験で用いる模型1Aの内部を流れる空気Fの圧力損失を調整するための構造体であり、模型1Aのハウジング2の内部に、空気Fの流れに対する抵抗となって圧力損失を発生する抵抗調整部材(通風抵抗体)11,12を、空隙部3を挟んで上流側と下流側にそれぞれ配置して構成される。   First, the model 10A for pressure loss adjustment of the model manufactured first shown in FIGS. 1 to 3 will be described. As shown in FIGS. 1 to 3, the pressure loss adjusting structure 10 </ b> A of this model is for adjusting the pressure loss of the air F flowing inside the model 1 </ b> A used in the wind tunnel test using air (fluid) F. In the housing 2 of the model 1A, resistance adjusting members (ventilating resistors) 11 and 12 that generate a pressure loss as a resistance against the flow of the air F are disposed on the upstream side with the gap 3 interposed therebetween. Each is arranged on the downstream side.

この抵抗調整部材11,12としては、抵抗調整部材を形成する材料が、密着して厚さ内で連続した特性を示せば良いので、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せを用いることができる。具体的なものとしては金属メッシュとその積層体、金属発泡体等がある。この抵抗調整部材11,12は板状に形成される。   As the resistance adjusting members 11 and 12, it is sufficient that the material forming the resistance adjusting member is in close contact and exhibits a continuous characteristic within the thickness. Therefore, the pressure loss varies depending on the flow from the front side and the flow from the back side. Any of a resistor, a resistor having a single layer structure, a resistor having a three-dimensional network structure, or a combination thereof can be used. Specific examples include a metal mesh, a laminate thereof, and a metal foam. The resistance adjusting members 11 and 12 are formed in a plate shape.

次に、図1〜図3の模型の圧力損失調整用構造体10Aにおける、模型の圧力損失設定方法について説明する。   Next, a model pressure loss setting method in the model 10A for pressure loss adjustment of the model shown in FIGS. 1 to 3 will be described.

この模型の圧力損失設定方法では、第1ステップで、空気Fの流れの上流側と下流側のそれぞれに抵抗調整部材11,12を配置すると共に、両方の抵抗調整部材11,12の間に空隙部3を設けて構成し、模型1Aに必要な圧力損失の発生量を両方の抵抗調整部材11,12の圧力特性と厚みt1,t2に基づいて設定し、両方の抵抗調整部材11,12の厚みt1,t2と空隙部3の厚みBsの和が模型の圧力損失調整用構造体10Aとして必要な厚みttとなるように空隙部3の厚みBsを設定する。また、上流側の抵抗調整部材11の単位厚みに対する圧力損失ΔP1aを模型1Aで必要とされる厚みttと必要とされる圧力損失Ptから算出される目標の単位厚みに対する圧力損失ΔPtよりも小さくすると共に、下流側の抵抗調整部材12の単位厚みに対する圧力損失ΔP2を前記目標の単位厚みに対する圧力損失ΔPtよりも大きく形成する。更に、上流側の抵抗調整部材11の厚みt1を下流側の抵抗調整部材12の厚みt2よりも大きくして構成する。   In this model pressure loss setting method, in the first step, the resistance adjusting members 11 and 12 are disposed on the upstream side and the downstream side of the flow of the air F, respectively, and a gap is provided between both the resistance adjusting members 11 and 12. 3 is provided, and the amount of pressure loss required for the model 1A is set based on the pressure characteristics and thicknesses t1 and t2 of both resistance adjustment members 11 and 12, and the resistance adjustment members 11 and 12 The thickness Bs of the gap 3 is set so that the sum of the thicknesses t1 and t2 and the thickness Bs of the gap 3 becomes the thickness tt necessary for the model pressure loss adjusting structure 10A. Further, the pressure loss ΔP1a with respect to the unit thickness of the resistance adjusting member 11 on the upstream side is made smaller than the pressure loss ΔPt with respect to the target unit thickness calculated from the thickness tt required for the model 1A and the required pressure loss Pt. At the same time, the pressure loss ΔP2 with respect to the unit thickness of the downstream resistance adjusting member 12 is formed to be larger than the pressure loss ΔPt with respect to the target unit thickness. Furthermore, the thickness t1 of the upstream resistance adjusting member 11 is made larger than the thickness t2 of the downstream resistance adjusting member 12.

つまり、模型1の前後に配置する抵抗調整部材11,12を、抵抗となる材料の単独又は複数の材料を積層して形成し、圧力が抵抗調整部材11,12の内部で連続的に変化するように構成する。上流側即ち前部に設ける抵抗調整部材11は、目標とする圧力特性より穏やかな圧力勾配を持ったものを選択し、抵抗調整部材11の厚みt1を大きくとる。模型の圧力損失調整用構造体10Aの全体で必要な圧力損失Ptを、前後面に配置する抵抗調整部材11,12に分配させて受け持たせ、必要な模型の圧力損失調整用構造体10Aの厚さttを空隙部3の厚みBsで調整する。   That is, the resistance adjusting members 11 and 12 disposed before and after the model 1 are formed by laminating a single material or a plurality of materials that become resistance, and the pressure continuously changes inside the resistance adjusting members 11 and 12. Configure as follows. The resistance adjusting member 11 provided on the upstream side, that is, the front portion, is selected to have a gentler pressure gradient than the target pressure characteristic, and the thickness t1 of the resistance adjusting member 11 is increased. The required pressure loss Pt of the entire model pressure loss adjusting structure 10A is distributed and supported by the resistance adjusting members 11 and 12 arranged on the front and rear surfaces of the model pressure loss adjusting structure 10A. The thickness tt is adjusted by the thickness Bs of the gap 3.

より詳細には、第1ステップにおいては、上流側の抵抗調整部材11の材料には、図3に示すように、単位厚さに対する圧力勾配ΔP1a(図3の「模型」で示す圧力勾配)が、模型の圧力損失調整用構造体10Aで要求される、単位厚さに対する圧力勾配(所望の圧力損失(Pt)/模型の圧力損失調整用構造体の厚み(tt))ΔPt(図3の「目標」で示す圧力勾配)よりも、好ましくは小さく緩やかなものを選択する。   More specifically, in the first step, as shown in FIG. 3, the material of the upstream resistance adjusting member 11 has a pressure gradient ΔP1a (pressure gradient shown by “model” in FIG. 3) with respect to the unit thickness. , Pressure gradient with respect to unit thickness (desired pressure loss (Pt) / thickness of model pressure loss adjusting structure (tt)) required for model pressure loss adjusting structure 10A ΔPt (“ The pressure gradient is preferably selected to be smaller than the target pressure gradient).

一方、下流側の抵抗調整部材12の材料には、図3に示すように、単位厚さに対する圧力勾配ΔP2(図3の「模型1A」で示す圧力勾配)が、模型の圧力損失調整用構造体10Aで要求される、単位厚さに対する圧力勾配(所望の圧力損失(Pt)/模型の圧力損失調整用構造体の厚み(tt))ΔPt(図3の「目標」で示す圧力勾配)よりも大きく急なものを選択する。   On the other hand, as shown in FIG. 3, the material of the resistance adjusting member 12 on the downstream side has a pressure gradient ΔP2 (pressure gradient shown by “model 1A” in FIG. 3) with respect to the unit thickness. From the pressure gradient (desired pressure loss (Pt) / model pressure loss adjusting structure thickness (tt)) ΔPt (pressure gradient indicated by “target” in FIG. 3) required for the body 10A Choose a big and steep one.

そして、抵抗調整部材11の厚みt1を、風圧(流体圧)に対して、撓み量が許容範囲内に収まるような厚みとし、抵抗調整部材11の材料の単位厚さに対する圧力損失ΔP1aに厚みt1を掛け算して、この抵抗調整部材11による圧力損失P1aを算出する。この圧力損失P1aを所望の圧力損失Ptから引き算して、下流側の抵抗調整部材12で発生すべき圧力損失P2を算出する。   The thickness t1 of the resistance adjusting member 11 is set to a thickness that allows the deflection amount to be within an allowable range with respect to the wind pressure (fluid pressure), and the thickness t1 is equal to the pressure loss ΔP1a with respect to the unit thickness of the material of the resistance adjusting member 11. To calculate the pressure loss P1a due to the resistance adjusting member 11. This pressure loss P1a is subtracted from the desired pressure loss Pt to calculate the pressure loss P2 to be generated in the resistance adjusting member 12 on the downstream side.

この圧力損失P2を下流側の抵抗調整部材12の材料の単位厚さに対する圧力損失ΔP2で割り算して、下流側の抵抗調整部材12の厚みt2を算出する。この厚みt2で、風圧(流体圧)に対して、抵抗調整部材11の撓み量が許容範囲内に収まることを確認する。抵抗調整部材11の撓み量が許容範囲内に収まらない場合は、下流側の抵抗調整部材12の材料を選定し直す。   The pressure loss P2 is divided by the pressure loss ΔP2 with respect to the unit thickness of the material of the downstream resistance adjusting member 12, thereby calculating the thickness t2 of the downstream resistance adjusting member 12. With this thickness t2, it is confirmed that the amount of deflection of the resistance adjusting member 11 is within an allowable range with respect to the wind pressure (fluid pressure). If the amount of deflection of the resistance adjusting member 11 is not within the allowable range, the material of the resistance adjusting member 12 on the downstream side is selected again.

そして、抵抗調整部材11の撓み量を許容範囲内に収めた後で、所望の厚みttから抵抗調整部材11の厚みt1と抵抗調整部材12の厚みt2の合計を引き算して、空隙部3の厚みBsを算出する。つまり、Bs=tt−(t1+t2)とする。   Then, after the amount of deflection of the resistance adjusting member 11 falls within the allowable range, the sum of the thickness t1 of the resistance adjusting member 11 and the thickness t2 of the resistance adjusting member 12 is subtracted from the desired thickness tt, The thickness Bs is calculated. That is, Bs = tt− (t1 + t2).

なお、抵抗調整部材11の厚みt1と抵抗調整部材12の厚みt2の合計が所望の厚みttよりも大きいときには、抵抗調整部材11,12の材料を選定し直して、再度厚みt1,t2と空隙部3の厚みBsを算出し直す。   When the sum of the thickness t1 of the resistance adjusting member 11 and the thickness t2 of the resistance adjusting member 12 is larger than the desired thickness tt, the material of the resistance adjusting members 11 and 12 is selected again, and the thicknesses t1 and t2 and the gap are again selected. The thickness Bs of the part 3 is recalculated.

これらの抵抗調整部材11,12の厚みt1,t2と空隙部3の厚みBsを有して、図1に示すように、上流側の抵抗調整部材11と下流側の抵抗調整部材12を配置して、模型の圧力損失調整用構造体10Aを構成する。   As shown in FIG. 1, the resistance adjusting member 11 on the upstream side and the resistance adjusting member 12 on the downstream side are arranged with the thickness t1, t2 of the resistance adjusting member 11, 12 and the thickness Bs of the gap 3. Thus, the model pressure loss adjusting structure 10A is configured.

この方法によって得られた模型の圧力損失調整用構造体10Aの圧力損失Pmが所望の圧力損失Ptになれば、それで模型の圧力損失調整用構造体10Aは目標のものが得られたことになるが、実際には、同じ抵抗特性の材料の複数枚の重ね合わせや抵抗特性の異なる材料の重ね合わせで抵抗調整部材11,12を構成しても、必ずしも、図3に示すような目標の圧力損失特性を得られるとは限らず、図3に示すように製作された模型1Aの圧力損失(実線:模型)Pmが目標の圧力損失(点線:目標)Ptにならないで目標圧力損失Ptとの間で乖離ΔPt1を生じる場合がある。   If the pressure loss Pm of the model pressure loss adjusting structure 10A obtained by this method becomes the desired pressure loss Pt, then the model pressure loss adjusting structure 10A is the target. In practice, however, even if the resistance adjusting members 11 and 12 are configured by superimposing a plurality of materials having the same resistance characteristic or by superimposing materials having different resistance characteristics, the target pressure as shown in FIG. The loss characteristic is not always obtained, and the pressure loss (solid line: model) Pm of the model 1A manufactured as shown in FIG. 3 does not become the target pressure loss (dotted line: target) Pt, but the target pressure loss Pt There may be a difference ΔPt1 between the two.

本発明は、このような場合に適用されるものであり、この場合には、第2ステップとして、図4に示すように、上流側の抵抗調整部材11(又は下流側の抵抗調整部材12)を、再調整用の抵抗調整部材11とし、この再調整用の抵抗調整部材11を、新たな2つの副抵抗調整部材11a,11bを間に副空隙部4を設けて配置して形成する。この両方の副抵抗調整部材11a,11bの圧力特性と厚みt11,t12の調整により、再調整用の抵抗調整部材11に要求される圧力損失Ptを発生するように調整すると共に、副空隙部4の厚みBs1の調整により再調整用の抵抗調整部材11に要求される厚みt1に調整する。   The present invention is applied to such a case. In this case, as shown in FIG. 4, the upstream side resistance adjusting member 11 (or the downstream side resistance adjusting member 12) is used as the second step. Is a resistance adjustment member 11 for readjustment, and this resistance adjustment member 11 for readjustment is formed by arranging a new two sub resistance adjustment members 11a and 11b with a sub gap portion 4 therebetween. By adjusting the pressure characteristics and the thicknesses t11 and t12 of both of the auxiliary resistance adjusting members 11a and 11b, adjustment is made so as to generate the pressure loss Pt required for the resistance adjusting member 11 for readjustment, and the auxiliary gap 4 By adjusting the thickness Bs1, the thickness t1 required for the resistance adjustment member 11 for readjustment is adjusted.

つまり、前部又は後部に設けた抵抗調整部材11,12の一方11を、2つの副抵抗調整部材11a,11bと副空隙部4で形成し、抵抗調整部材11とこれを構成する副抵抗調整部材11a,11bと副空隙部4の関係を、模型の圧力損失調整用構造体1Aとこれを構成する抵抗調整部材11,12と空隙部3の関係と同じにして、自己相似的(フラクタル)とした設定方法を採る。   That is, one of the resistance adjusting members 11 and 12 provided in the front part or the rear part is formed by the two sub resistance adjusting members 11a and 11b and the sub gap part 4, and the resistance adjusting member 11 and the sub resistance adjusting member constituting the resistance adjusting member 11 are formed. The relationship between the members 11a and 11b and the sub-gap portion 4 is the same as the relationship between the model pressure loss adjusting structure 1A, the resistance adjusting members 11 and 12 constituting this, and the gap portion 3, and is self-similar (fractal). Use the setting method.

より詳細には、第2ステップにおいては、上流側の抵抗調整部材11と置き換える副抵抗調整部材11a,11bの材料には、図5に示すように、単位厚さに対する圧力勾配ΔP11,ΔP12(図5の「模型1B」で示す圧力勾配)が、上流側の抵抗調整部材11で要求される、単位厚さに対する圧力勾配(所望の圧力損失(Pt−P2)/抵抗調整部材の厚み(t1))ΔP1tよりも大きく急なものを選択する。   More specifically, in the second step, as shown in FIG. 5, pressure gradients ΔP11 and ΔP12 (see FIG. 5) for the sub resistance adjusting members 11a and 11b to be replaced with the upstream resistance adjusting member 11 are used. 5 is the pressure gradient with respect to the unit thickness (desired pressure loss (Pt-P2) / resistance adjusting member thickness (t1)) required by the upstream resistance adjusting member 11. ) Select a larger one than ΔP1t.

そして、副抵抗調整部材11aの厚みt11を、風圧(流体圧)に対して、撓み量が許容範囲内に収まるような厚みとし、副抵抗調整部材11aの材料の単位厚さに対する圧力損失ΔP11に厚みt11を掛け算して、この副抵抗調整部材11aによる圧力損失P11を算出する。この圧力損失P11を抵抗調整部材11に要求される圧力損失P1bから引き算して、下流側の副抵抗調整部材11bで発生すべき圧力損失P12を算出する。   Then, the thickness t11 of the auxiliary resistance adjusting member 11a is set to such a thickness that the deflection amount is within an allowable range with respect to the wind pressure (fluid pressure), and the pressure loss ΔP11 with respect to the unit thickness of the material of the auxiliary resistance adjusting member 11a. By multiplying the thickness t11, the pressure loss P11 due to the sub resistance adjusting member 11a is calculated. This pressure loss P11 is subtracted from the pressure loss P1b required for the resistance adjusting member 11 to calculate the pressure loss P12 that should be generated in the sub resistance adjusting member 11b on the downstream side.

この圧力損失P12を下流側の副抵抗調整部材11bの材料の単位厚さに対する圧力損失ΔP12で割り算して、下流側の副抵抗調整部材11bの厚みt12を算出する。この厚みt12で、風圧(流体圧)に対して、副抵抗調整部材11bの撓み量が許容範囲内に収まることを確認する。副抵抗調整部材11bの撓み量が許容範囲内に収まらない場合は、下流側の副抵抗調整部材11bの材料を選定し直す。   The pressure loss P12 is divided by the pressure loss ΔP12 with respect to the unit thickness of the material of the downstream side secondary resistance adjusting member 11b to calculate the thickness t12 of the downstream side secondary resistance adjusting member 11b. With this thickness t12, it is confirmed that the amount of bending of the auxiliary resistance adjusting member 11b is within an allowable range with respect to the wind pressure (fluid pressure). If the amount of bending of the sub resistance adjusting member 11b does not fall within the allowable range, the material of the sub resistance adjusting member 11b on the downstream side is selected again.

そして、副抵抗調整部材11bの撓み量を許容範囲内に収めた後で、抵抗調整部材11に要求される厚みt1から副抵抗調整部材11aの厚みt11と副抵抗調整部材11bの厚みt12の合計を引き算して、副空隙部4の厚みBs1を算出する。つまり、Bs1=t1−(t11+t12)とする。   Then, after the amount of deflection of the auxiliary resistance adjusting member 11b falls within the allowable range, the total of the thickness t11 of the auxiliary resistance adjusting member 11a and the thickness t12 of the auxiliary resistance adjusting member 11b is calculated from the thickness t1 required for the resistance adjusting member 11. Is subtracted to calculate the thickness Bs1 of the sub gap 4. That is, Bs1 = t1− (t11 + t12).

なお、副抵抗調整部材11aの厚みt11と副抵抗調整部材11bの厚みt12の合計が抵抗調整部材11の厚みt1よりも大きいときには、副抵抗調整部材11a,11bの材料を選定し直して、再度厚みt11,t12と副空隙部4の厚みBs1を算出し直す。   When the sum of the thickness t11 of the auxiliary resistance adjusting member 11a and the thickness t12 of the auxiliary resistance adjusting member 11b is larger than the thickness t1 of the resistance adjusting member 11, the material of the auxiliary resistance adjusting members 11a and 11b is selected again and again. The thicknesses t11 and t12 and the thickness Bs1 of the sub-gap part 4 are recalculated.

これらの副抵抗調整部材11a,11bの厚みt11,t12と副空隙部4の厚みBs1を有して、図4に示すように、上流側の副抵抗調整部材11aと下流側の副抵抗調整部材11bと下流側の抵抗調整部材12を配置して、模型の圧力損失調整用構造体10Bを構成する。   As shown in FIG. 4, the auxiliary resistance adjusting members 11a and 11b have thicknesses t11 and t12 and the thickness Bs1 of the auxiliary gap 4, and the upstream auxiliary resistance adjusting member 11a and the downstream auxiliary resistance adjusting member are provided. 11b and the resistance adjusting member 12 on the downstream side are arranged to constitute a model pressure loss adjusting structure 10B.

これにより、図5に示すような圧力損失(「模型1B」で示した実線)を有する模型の圧力損失調整用構造体10Bを製作できる。なお、図5の「目標」で示した点線は、所望の圧力損失Ptにおける圧力勾配ΔPtを示す。   Accordingly, a model pressure loss adjusting structure 10B having a pressure loss as shown in FIG. 5 (solid line indicated by “model 1B”) can be manufactured. Note that the dotted line indicated by “target” in FIG. 5 indicates the pressure gradient ΔPt at the desired pressure loss Pt.

この方法によれば、これまで抵抗調整部材11,12の材料の重ね合わせのみで得ていた抵抗調整部材11,12の抵抗特性を、副抵抗調整部材11a,11bと副空隙部4の組合せを再度適用して得ることができるため、これまでの目標の圧力損失ΔPtとの乖離ΔPt1を容易に補うことができる。従って、第1ステップの模型の圧力損失調整用構造体10Aに比べて、目標の圧力損失ΔPtにより合致した模型の圧力損失調整用構造体10Bを製作できるようになる。   According to this method, the resistance characteristics of the resistance adjusting members 11 and 12 that have been obtained only by superimposing the materials of the resistance adjusting members 11 and 12 until now are obtained by combining the sub resistance adjusting members 11a and 11b and the sub gap portion 4. Since it can be obtained by applying again, the deviation ΔPt1 from the target pressure loss ΔPt so far can be easily compensated. Accordingly, the model pressure loss adjusting structure 10B that matches the target pressure loss ΔPt can be manufactured as compared with the pressure loss adjusting structure 10A of the first step model.

また、これにより、比較的簡単な構造で、所望の圧力損失Ptを発生できるとともに、容易に流れ方向の厚みを所望の厚さttとすることができる。特に、空隙部3及び副空隙部4の厚みBs,Bs1で、模型の圧力損失調整用構造体10Bの厚みttを調整するので、抵抗調整部材12及び副抵抗調整部材11a,11bの厚みの総和が模型の厚みttになるように抵抗調整部材12及び副抵抗調整部材11a,11bを選定する必要がなくなり、様々な抵抗調整部材12及び副抵抗調整部材11a,11bの厚みと組合せに対して事前に測定した圧力特性を利用できるようになり、模型作成時に抵抗を測定する手間を省くことができる。   As a result, a desired pressure loss Pt can be generated with a relatively simple structure, and the thickness in the flow direction can be easily set to the desired thickness tt. In particular, since the thickness tt of the pressure loss adjusting structure 10B of the model is adjusted by the thicknesses Bs and Bs1 of the gap 3 and the sub-gap 4, the total thickness of the resistance adjustment member 12 and the sub-resistance adjustment members 11a and 11b. It is no longer necessary to select the resistance adjusting member 12 and the auxiliary resistance adjusting members 11a and 11b so that the thickness of the model becomes tt, and the thicknesses and combinations of the various resistance adjusting members 12 and the auxiliary resistance adjusting members 11a and 11b are preliminarily determined. This makes it possible to use the measured pressure characteristics, and saves the trouble of measuring the resistance when creating a model.

また、模型1Bに必要な厚さ要件も満足した模型の圧力損失調整用構造体(抵抗体モデル)10Bを設定できるので、流速に対する圧力損失の特性を所望の圧力損失の特性により一致させた模型の圧力損失調整用構造体10Bを作成でき、比較検証する際の解析計算における結果の精度を向上させることができる。   In addition, since the model pressure loss adjusting structure (resistor model) 10B satisfying the thickness requirement necessary for the model 1B can be set, the model in which the characteristics of the pressure loss with respect to the flow velocity are matched with the characteristics of the desired pressure loss. The pressure loss adjusting structure 10B can be created, and the accuracy of the result in the analytical calculation at the time of comparative verification can be improved.

上記の模型の圧力損失設定方法により、上流側の抵抗調整部材11又は下流側の抵抗調整部材12の一方を再調整用の抵抗調整部材11にして、この再調整用の抵抗調整部材11を、新たな2つの副抵抗調整部材11a,11bを流体Fの流れの上流側と下流側のそれぞれに配置すると共に、両方の副抵抗調整部材11a,11bの間に副空隙部4を設けて構成し、両方の副抵抗調整部材11a,11bの圧力特性ΔP11,ΔP12と厚みt11,t12の調整により、再調整用の抵抗調整部材11に要求される圧力損失ΔP1tを発生するように調整すると共に、副空隙部4の厚みBs1の調整により再調整用の抵抗調整部材11に要求される厚みt1に調整した模型の圧力損失調整用構造体調整用構造体10Bを得ることができる。   According to the pressure loss setting method of the above model, one of the upstream side resistance adjusting member 11 or the downstream side resistance adjusting member 12 is used as a resistance adjusting member 11 for readjustment, and this resistance adjusting member 11 for readjustment is Two new sub resistance adjusting members 11a and 11b are arranged on the upstream side and the downstream side of the flow of the fluid F, respectively, and the sub gap part 4 is provided between both the sub resistance adjusting members 11a and 11b. By adjusting the pressure characteristics ΔP11, ΔP12 and the thicknesses t11, t12 of both the auxiliary resistance adjusting members 11a, 11b, adjustment is made so as to generate the pressure loss ΔP1t required for the resistance adjusting member 11 for readjustment. By adjusting the thickness Bs1 of the gap 4, the model pressure loss adjusting structure adjusting structure 10B adjusted to the thickness t1 required for the readjustment resistance adjusting member 11 can be obtained.

また、この模型の圧力損失調整用構造体10Bを備えて流体試験用模型1Bを製作することにより、模型の流速に対する圧力損失の特性が所望の圧力損失の特性と一致した模型となり、比較検証する際の解析計算における結果の精度を向上することができる。   Further, by producing the fluid test model 1B including the pressure loss adjusting structure 10B of the model, the model has a pressure loss characteristic with respect to the flow velocity of the model that matches the desired pressure loss characteristic, and is compared and verified. It is possible to improve the accuracy of the result in the analysis calculation.

本発明の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型は、これまで抵抗調整部材の重ね合わせのみで得ていた抵抗調整部材の抵抗特性を、副抵抗調整部材と副空隙部の組合せを再度適用して得ることができるため、これまでの目標の圧力損失の特性との乖離を容易に補うことができる。従って、抵抗調整部材に関して素材選択の自由度がより増加し、所望の抵抗特性により近い抵抗特性を持った模型の圧力損失調整用構造体(抵抗体モデル)を容易に製作できる。   The model pressure loss setting method of the present invention, the model pressure loss adjusting structure, and the model for fluid test have the resistance characteristics of the resistance adjusting member obtained only by superimposing the resistance adjusting members so far, sub resistance Since the combination of the adjustment member and the sub-gap part can be obtained again, it is possible to easily compensate for the deviation from the target pressure loss characteristic so far. Therefore, the degree of freedom in selecting a material for the resistance adjusting member is further increased, and a model pressure loss adjusting structure (resistor model) having a resistance characteristic closer to a desired resistance characteristic can be easily manufactured.

そのため、本発明の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型は、自動車や航空機や建造物等の空洞試験や回流水槽試験や水槽試験等で使用する模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型として利用できる。   Therefore, the model pressure loss setting method, model pressure loss adjustment structure, and fluid test model of the present invention are used in cavity tests, circulating water tank tests, water tank tests, etc. for automobiles, aircraft, buildings, etc. It can be used as a model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model.

1A,1B,1X,1Y 模型
2 ハウジング
3 空隙部
4 副空隙部
10A,10B,10X,10Y 模型の圧力損失調整用構造体
11,12 抵抗調整部材
11a,11b 副抵抗調整部材
14 支持部材
Bs 空隙部の厚み
Bs1 副空隙部の厚み
F 空気(流体)
P1a 上流側の抵抗調整部材による圧力損失
P1b 副抵抗調整部材による圧力損失
P2 下流側の抵抗調整部材による圧力損失
Pm 第1ステップで得られた模型の圧力損失
Pt 模型に要求される所望の圧力損失
ΔP1a 上流側の抵抗調整部材の単位厚みあたりの圧力損失(圧力勾配)
ΔP11 上流側の副抵抗調整部材の単位厚みあたりの圧力損失(圧力勾配)
ΔP12 下流側の副抵抗調整部材の単位厚みあたりの圧力損失(圧力勾配)
ΔP2 下流側の抵抗調整部材の単位厚みあたりの圧力損失(圧力勾配)
ΔP1t 上流側の抵抗調整部材に要求される単位厚みあたりの圧力損失(圧力勾配) ΔPt 模型に要求される圧力損失と厚みから算出される単位厚みあたりの圧力損失(圧力勾配)
ΔPt1 第1ステップで得られた模型の圧力損失と所望の圧力損失の差
t1,t2 抵抗調整部材の厚み
t11,t12 副抵抗調整部材の厚み
tt 模型の圧力損失調整用構造体に要求される所望の厚み
1A, 1B, 1X, 1Y Model 2 Housing 3 Gap 4 Sub-gap 10A, 10B, 10X, 10Y Model pressure loss adjustment structure 11, 12 Resistance adjustment member 11a, 11b Sub-resistance adjustment member 14 Support member Bs Gap Part thickness Bs1 Sub-gap thickness F Air (fluid)
P1a Pressure loss due to the upstream resistance adjustment member P1b Pressure loss due to the secondary resistance adjustment member P2 Pressure loss due to the downstream resistance adjustment member Pm Pressure loss of the model obtained in the first step Pt Desired pressure loss required for the model ΔP1a Pressure loss per unit thickness of upstream resistance adjusting member (pressure gradient)
ΔP11 Pressure loss per unit thickness (pressure gradient) of the auxiliary resistance adjusting member on the upstream side
ΔP12 Pressure loss per unit thickness of the secondary resistance adjusting member on the downstream side (pressure gradient)
ΔP2 Pressure loss per unit thickness of the resistance adjustment member on the downstream side (pressure gradient)
ΔP1t Pressure loss per unit thickness (pressure gradient) required for upstream resistance adjusting member ΔPt Pressure loss per unit thickness (pressure gradient) calculated from pressure loss and thickness required for model
ΔPt1 Difference between the pressure loss of the model obtained in the first step and the desired pressure loss t1, t2 Thickness of the resistance adjusting member t11, t12 Thickness of the auxiliary resistance adjusting member tt Desired required for the pressure loss adjusting structure of the model Thickness

Claims (5)

流体を用いた試験で用いる模型の内部を流れる流体に関する圧力損失を調整するために、模型の内部に配置されて流体の流れに対する抵抗となって圧力損失を発生する抵抗調整部材を、流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材の間に空隙部を設けて構成した模型の圧力損失調整用構造体で、両方の抵抗調整部材の圧力特性と厚みの調整により模型に必要な圧力損失を発生するように調整すると共に、前記空隙部の厚みの調整により模型に必要な厚みに調整する第1ステップを有する模型の圧力損失調整方法において、
前記第1ステップで調整した模型の圧力損失調整用構造体の圧力損失が、目標の圧力損失とずれた場合に、上流側の抵抗調整部材又は下流側の抵抗調整部材の一方を、再調整用の抵抗調整部材とし、この再調整用の抵抗調整部材を、新たな2つの副抵抗調整部材を間に副空隙部を設けて配置して形成し、両方の副抵抗調整部材の圧力特性と厚みの調整により、前記再調整用の抵抗調整部材に要求される圧力損失を発生するように調整すると共に、前記副空隙部の厚みの調整により前記再調整用の抵抗調整部材に要求される厚みに調整する第2ステップを備えたことを特徴とする模型の圧力損失設定方法。
In order to adjust the pressure loss related to the fluid flowing inside the model used in the test using the fluid, a resistance adjusting member which is disposed inside the model and becomes a resistance to the flow of the fluid to generate a pressure loss is provided. This is a model pressure loss adjustment structure that is arranged on both the upstream side and the downstream side of the sheet, and that is configured by providing a gap between both resistance adjustment members. Adjustment of pressure characteristics and thickness of both resistance adjustment members In the method for adjusting the pressure loss of the model, the first step of adjusting the thickness required for the model by adjusting the thickness of the gap is adjusted so as to generate the pressure loss required for the model.
When the pressure loss of the pressure loss adjustment structure of the model adjusted in the first step deviates from the target pressure loss, either the upstream side resistance adjustment member or the downstream side resistance adjustment member is readjusted. The resistance adjustment member for readjustment is formed by arranging two new sub-resistance adjustment members with a sub-gap between them, and the pressure characteristics and thickness of both sub-resistance adjustment members By adjusting the thickness of the sub-gap, the adjustment is made so that the pressure loss required for the readjustment resistance adjustment member is generated. A pressure loss setting method for a model, comprising a second step of adjusting.
前記抵抗調整部材として、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せを用いることを特徴とする請求項1記載の模型の圧力損失設定方法。   As the resistance adjusting member, a resistor whose pressure loss is changed by a flow from the front side and a flow from the back side, a resistor having a single layer structure, a resistor having a three-dimensional network structure, or a combination thereof is used. The method for setting a pressure loss of a model according to claim 1. 流体を用いた試験で用いる模型の内部を流れる流体に関する圧力損失を調整するために、模型の内部に配置されて流体の流れに対する抵抗となって圧力損失を発生する抵抗調整部材を、流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材の間に空隙部を設けて構成した模型の圧力損失調整用構造体において、
上流側の抵抗調整部材又は下流側の抵抗調整部材の一方を再調整用の抵抗調整部材にして、この再調整用の抵抗調整部材を、新たな2つの副抵抗調整部材を流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の副抵抗調整部材の間に副空隙部を設けて構成し、両方の副抵抗調整部材の圧力特性と厚みの調整により、前記再調整用の抵抗調整部材に要求される圧力損失を発生するように調整すると共に、前記副空隙部の厚みの調整により前記再調整用の抵抗調整部材に要求される厚みに調整したことを特徴とする模型の圧力損失調整用構造体。
In order to adjust the pressure loss related to the fluid flowing inside the model used in the test using the fluid, a resistance adjusting member which is disposed inside the model and becomes a resistance to the flow of the fluid to generate a pressure loss is provided. In the structure for pressure loss adjustment of the model, which is arranged on each of the upstream side and the downstream side of the model and is configured by providing a gap between both resistance adjustment members,
One of the upstream side resistance adjusting member or the downstream side resistance adjusting member is used as a resistance adjusting member for readjustment, and the resistance adjusting member for readjustment is replaced with two new sub resistance adjusting members upstream of the fluid flow. And adjusting the pressure characteristics and thickness of both of the sub-resistance adjusting members to adjust the resistance for readjustment. The pressure of the model is adjusted so as to generate a pressure loss required for the adjusting member, and adjusted to the thickness required for the resistance adjusting member for readjustment by adjusting the thickness of the sub-gap. Loss adjustment structure.
前記抵抗調整部材を、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せで形成したことを特徴とする請求項3記載の模型の圧力損失調整用構造体。   The resistance adjusting member is formed of a resistor whose pressure loss changes depending on a flow from the front side and a flow from the back side, a resistor having a single layer structure, a resistor having a three-dimensional network structure, or a combination thereof. The structure for adjusting the pressure loss of the model according to claim 3, wherein 請求項3又は4に記載の模型の圧力損失調整用構造体を備えたことを特徴とする流体試験用模型。   A model for fluid testing, comprising the pressure loss adjusting structure for a model according to claim 3 or 4.
JP2009185291A 2009-08-07 2009-08-07 Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model Expired - Fee Related JP5321342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185291A JP5321342B2 (en) 2009-08-07 2009-08-07 Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185291A JP5321342B2 (en) 2009-08-07 2009-08-07 Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model

Publications (2)

Publication Number Publication Date
JP2011038861A JP2011038861A (en) 2011-02-24
JP5321342B2 true JP5321342B2 (en) 2013-10-23

Family

ID=43766796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185291A Expired - Fee Related JP5321342B2 (en) 2009-08-07 2009-08-07 Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model

Country Status (1)

Country Link
JP (1) JP5321342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421589A (en) * 2015-12-15 2016-03-23 重庆交通大学 House applied to in-site measuring study of wind pressure of roof of low-rise building

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110287643B (en) * 2019-07-09 2023-04-07 中国空气动力研究与发展中心高速空气动力研究所 Wind tunnel experiment simulation method for cavity flow-induced vibration and flow-induced noise coupling characteristic
CN112129484A (en) * 2020-10-12 2020-12-25 中铁西南科学研究院有限公司 Method for testing head pressure loss coefficient of high-speed train dynamic model test

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166940A (en) * 1984-09-10 1986-04-05 Mitsubishi Heavy Ind Ltd Body to be tested for wind tunnel experiment
JPH041547A (en) * 1990-04-17 1992-01-07 Mitsubishi Heavy Ind Ltd Air storage tank
JPH05164653A (en) * 1991-12-12 1993-06-29 Mitsubishi Heavy Ind Ltd Fluid pressure loss characteristic simulation structure
JP3367856B2 (en) * 1997-02-20 2003-01-20 三菱重工業株式会社 Ground model
JP3728990B2 (en) * 1999-08-31 2005-12-21 コニカミノルタホールディングス株式会社 Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105421589A (en) * 2015-12-15 2016-03-23 重庆交通大学 House applied to in-site measuring study of wind pressure of roof of low-rise building

Also Published As

Publication number Publication date
JP2011038861A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
US7967570B2 (en) Low transient thermal stress turbine engine components
US7921966B2 (en) Linear acoustic liner
JP5321342B2 (en) Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model
JP4494444B2 (en) Coated turbine blade
US9938852B2 (en) Noise attenuating lipskin assembly and methods of assembling the same
JP6335318B2 (en) Reverse thruster cascade and manufacturing method thereof, turbofan jet engine assembly
EP2682262A1 (en) Nanoreinforced Films and Laminates for Aerospace Structures
JP2007315386A (en) Method for manufacturing noise attenuation liner, method for manufacturing perforated face sheet for noise attenuation liner and noise attenuation liner assembly
US6557338B2 (en) Thrust reverser for a gas turbine engine
US20180029719A1 (en) Drag reducing liner assembly and methods of assembling the same
US20040048027A1 (en) Honeycomb cores for aerospace applications
CA2670272C (en) Metal/polymer laminate ducting and method of making same
GB2577844A (en) Aircraft engine nacelle bulkheads and methods of assembling the same
US20160153295A1 (en) Composite vane for a turbine engine
JP2012507415A (en) Perforated composite structure and method therefor
GB2567445A (en) Noise attenuation panel
CA3065464C (en) Bulkhead shims for curvilinear components
US10746130B2 (en) Composite panel and aircraft turbojet engine nacelle comprising such a panel
JP5321339B2 (en) Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model
DE102009006166A1 (en) Process for producing a composite panel
JP5321337B2 (en) Model for adjusting pressure loss of model, model for fluid test, and method for adjusting pressure loss of model
JP5321338B2 (en) Model pressure loss setting method
US10369763B2 (en) Segmented acoustic insert
US10569504B2 (en) Panel and method of forming a three-sheet panel
CN116702348A (en) Method for estimating axial force of aero-engine rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees