JP5321339B2 - Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model - Google Patents
Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model Download PDFInfo
- Publication number
- JP5321339B2 JP5321339B2 JP2009183900A JP2009183900A JP5321339B2 JP 5321339 B2 JP5321339 B2 JP 5321339B2 JP 2009183900 A JP2009183900 A JP 2009183900A JP 2009183900 A JP2009183900 A JP 2009183900A JP 5321339 B2 JP5321339 B2 JP 5321339B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure loss
- model
- thickness
- resistance
- adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
本発明は、自動車等の風洞試験等の流体試験で用いる、模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型に関する。 The present invention relates to a model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model used in a fluid test such as a wind tunnel test of an automobile or the like.
自動車、橋梁、建造物等の実物に生じる空気(風)の流れを把握するために、風洞を用いた模型試験が行われている。また、船や海洋構造物や堤防などの実物に生じる水の流れを把握するために、回流水槽や水槽を用いた模型試験が行われている。 In order to grasp the flow of air (wind) generated in actual objects such as automobiles, bridges, and buildings, model tests using a wind tunnel are being conducted. In addition, in order to grasp the flow of water generated in actual objects such as ships, offshore structures and embankments, model tests using circulating water tanks and water tanks are performed.
風洞試験における空気の流れには、模型の外側を流れる流れと、模型の内部を流れる流れとがある。この内部の流れを特に通風と呼び、通風の妨げとなるものを通風抵抗体と言っている。この模型内部の空気の流れを実物で生じる流れに近づける上で、通風抵抗体の設定が重要となる。 The air flow in the wind tunnel test includes a flow that flows outside the model and a flow that flows inside the model. This internal flow is called ventilation, and it is a ventilation resistor that hinders ventilation. In order to bring the air flow inside the model closer to the actual flow, the setting of the ventilation resistor is important.
しかし、この通風抵抗体においては、図4に示すように、風量と圧力の関係が非線形となるので、適切な通風抵抗体を選定し設定することは難しい。そこで、図5及び図6に示すように、抵抗を調整するための抵抗調整部材11,12である金属メッシュと、この抵抗調整部材11,12を支持するハニカム材14を組合せて、通風抵抗体と呼ばれる模型の圧力損失調整用構造体10Xの圧力損失を調整する試みが行われてきた。
However, in this ventilation resistor, as shown in FIG. 4, since the relationship between the air volume and the pressure becomes nonlinear, it is difficult to select and set an appropriate ventilation resistor. Therefore, as shown in FIGS. 5 and 6, the ventilation resistor is formed by combining the metal mesh that is the
この図5及び図6に示すような方法では、必ずしも、所望の抵抗特性に対して適切な抵抗特性を持つ模型の圧力損失調整用構造体10Xを提供できるとは限らず、また、提供できた場合でも模型の圧力損失調整用構造体10Xを設定できるまでに多大の労力を必要とする場合が多い。その結果、模型試験の実施に時間がかかるだけでなく、模型試験の結果を利用する、後のステップも影響を受けることになる。
The method shown in FIGS. 5 and 6 does not necessarily provide the model pressure
一般に模型の圧力損失調整用構造体10Xに用いる抵抗調整部材11,12には薄い板状の部材が用いられるので、機械的強度が比較的弱く、上流側と下流側に抵抗調整部材11,12を配置する場合には、両者の間でこれらの抵抗調整部材11,12を支持するための支持部材14が必要となる。
In general, since thin plate-like members are used for the
この支持部材14にはハニカム材を用いる場合が多いが、その場合には、間に挟まれた支持部材14の抵抗特性が、設定した抵抗調整部材11,12の抵抗特性に影響を及ぼすので、図7に示すように、圧力損失が増加する。従って、このハニカム材14の抵抗特性を考慮に入れて抵抗調整部材11,12の厚みを設定する必要が生じる。そのため、全体の厚みが模型1によって設定されている中での、抵抗調整部材11,12の厚みと、この抵抗調整部材11,12とは流れの特性が異なる支持部材14の厚みの設定が難しくなるという問題がある。
In many cases, a honeycomb material is used for the
この模型においては、通風抵抗は、模型に要求される圧力損失を、抵抗調整部材11,12と支持部材14の圧力損失で置き換えると共に、更に、模型の圧力損失調整用構造体(抵抗体モデル)10の厚みも模型の縮尺に合わせる必要がある。通常金属メッシュ等で形成される抵抗調整部材11,12は厚さが薄く、それ自体のみでは、要求される厚さに模型の圧力損失調整用構造体10の厚さを合わせることができない。また、模型の圧力損失調整用構造体10を、数種の材料を用いて枚数を重ねて厚さを稼いで要求される厚さにしたとしても、必ずしも要求される抵抗特性を満足できるとは限らない。そのため、抵抗特性と厚みの両方の要求を満たすことは難しく、模型の圧力損失調整用構造体10の全体を一度にモデル化しようとすると多くの労力を要するという問題がある。
In this model, the ventilation resistance replaces the pressure loss required for the model with the pressure loss of the
更に、図8に示すように、支持部材14の下流側に設けた抵抗調整部材12は風圧により撓んで、支持部材14との間に間隙Sが生じる場合がある。このような場合には、風の流れに沿った抵抗調整部材12の厚みが撓みによって変化してしまうため、模型の圧力損失調整用構造体10X全体としての圧力特性も変化してしまうので、解析計算による結果と乖離が生じるという問題もある。
Further, as shown in FIG. 8, the
この風洞試験等の通風抵抗を考慮した模型試験に関するものではないが、この風洞試験に関係して、自動車排ガスの拡散濃度調査風洞実験用の地表模型において、道路を走行する自動車から連続的に排出される排気ガスを正確に再現する地表模型が提案されている(例えば、特許文献1参照。)。 Although not related to this wind tunnel test and other model tests that take into consideration the draft resistance, in relation to this wind tunnel test, in the ground model for the diffusion concentration investigation wind tunnel test of automobile exhaust gas, it is continuously discharged from the automobile running on the road. A surface model that accurately reproduces exhaust gas is proposed (see, for example, Patent Document 1).
また、風洞内の模型を支持・変角する支持装置に作用する気流が模型の空力特性に及ぼす影響を少なくするとともに、模型の実機相似性を損うことなく、更に模型変角時の模型中心の移動を少なくする風洞試験模型支持装置が提案されている(例えば、特許文献2参照。)。 In addition, the airflow acting on the support device for supporting and turning the model in the wind tunnel reduces the effect of the airflow on the model's aerodynamic characteristics, and further reduces the center of the model at the time of turning the model without losing the similarity of the model. There has been proposed a wind tunnel test model support device that reduces the movement of (see, for example, Patent Document 2).
この対策として、図9及び図10に示すように、流体Fを用いた試験で用いる模型1Yの内部を流れる流体Fの圧力損失を調整するために、模型1Yの内部に配置されて流体Fの流れに対する抵抗となって圧力損失を発生する抵抗調整部材11,12を配置する模型の圧力損失調整用構造体10Yにおいて、前記抵抗調整部材11,12を板状に形成すると共に、前記抵抗調整部材11,12を保持する支持部材を設けずに、流体Fの流れの方向に沿った断面に関して、一つ又は複数の前記抵抗調整部材11の一部を折り曲げて箱型形状を形成して、該箱型形状の辺に相当する部位に配置された前記抵抗調整部材11a,12が流体Fの流れの上流側と下流側にそれぞれ配置されるように模型1Yの内部に配置して構成することが考えられる。
As a countermeasure against this, as shown in FIG. 9 and FIG. 10, in order to adjust the pressure loss of the fluid F flowing inside the
しかしながら、上流側と下流側に異なった機械的強度を持つ抵抗調整部材11,12を採用した場合には、図11に示すように、上流側の抵抗調整部材11と下流側の抵抗調整部材12で撓み量が異なり、抵抗調整部材11,12の組合せの厚さ、つまり、流体Fが通過する方向の抵抗調整部材11,12の累積厚さが一定にならないおそれが生じる。
However, when the
本発明は、上記の状況を鑑みてなされたものであり、その目的は、風等の流体の流れに関して上流側と下流側(前後)に抵抗調整部材を備え、両者の間に空隙部を有する模型の圧力損失調整用構造体(抵抗体モデル)において、容易に抵抗特性と厚みを所望の抵抗特性と厚みに設定できると共に、同時に抵抗調整部材の撓みも防止することできる模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型を提供することにある。 The present invention has been made in view of the above situation, and an object of the present invention is to provide resistance adjusting members on the upstream side and the downstream side (front and rear) with respect to the flow of fluid such as wind, and to have a gap between them. Model pressure loss adjustment structure (resistor model) for model pressure loss can be easily set to the desired resistance characteristics and thickness, and at the same time, the resistance of the resistance adjustment member can be prevented from being bent. Another object is to provide a model pressure loss adjusting structure and a fluid test model.
上記のような目的を達成するための本発明の模型の圧力損失調整方法は、流体を用いた試験で用いる模型の内部を流れる流体に関する圧力損失を調整するために、模型の内部に配置されて流体の流れに対する抵抗となって圧力損失を発生する抵抗調整部材を、流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材の間に空隙部を設けて構成した模型の圧力損失調整用構造体で、両方の抵抗調整部材の圧力特性と厚みの調整により模型に必要な圧力損失を発生するように調整すると共に、前記空隙部の幅の調整により模型に必要な厚みに調整する模型の圧力損失調整方法において、前記上流側の抵抗調整部材の単位厚みに対する圧力損失を模型で必要とされる厚みと必要とされる圧力損失から算出される目標の単位厚みに対する圧力損失よりも小さくすると共に、前記下流側の抵抗調整部材の単位厚みに対する圧力損失を前記目標の単位厚みに対する圧力損失よりも大きくし、更に、前記上流側の抵抗調整部材の厚みを前記下流側の抵抗調整部材の厚みよりも大きくすることを特徴とする方法である。 In order to achieve the above object, the pressure loss adjusting method of the model of the present invention is arranged inside the model in order to adjust the pressure loss related to the fluid flowing in the model used in the test using the fluid. A model in which resistance adjusting members that generate pressure loss as resistance to the fluid flow are arranged on the upstream side and the downstream side of the fluid flow, respectively, and a gap is provided between both resistance adjusting members. The pressure loss adjusting structure is adjusted so that the pressure loss necessary for the model is generated by adjusting the pressure characteristics and thickness of both resistance adjusting members, and the thickness required for the model is adjusted by adjusting the width of the gap. In the pressure loss adjustment method of the model to be adjusted to, the target unit thickness calculated from the thickness required for the model and the required pressure loss with respect to the unit thickness of the upstream resistance adjusting member The pressure loss with respect to the unit thickness of the downstream resistance adjusting member is larger than the pressure loss with respect to the target unit thickness, and the thickness of the upstream resistance adjusting member is further reduced It is a method characterized by making it larger than the thickness of the resistance adjusting member on the side.
つまり、模型(モデル)の前後に配置する抵抗調整部材を単独又は複数の材料を密着させた部材で構成し、流体の圧力はこの内部で連続的に変化するように構成する。前部に設ける抵抗調整部材は、目標の圧力損失の勾配より穏やかな圧力損失の勾配を持った材料を選択して、抵抗調整部材の厚みを大きくとり、撓み難くする。また、模型の圧力損失調整用構造体全体で必要な圧力損失を前後面に配置する抵抗調整部材に分配して受け持たせ、空隙部の幅を調整して必要な厚さになるようにする。 That is, the resistance adjusting member disposed before and after the model (model) is configured by a single member or a member in which a plurality of materials are in close contact with each other, and the pressure of the fluid is configured to continuously change therein. For the resistance adjustment member provided at the front part, a material having a pressure loss gradient gentler than the target pressure loss gradient is selected to increase the thickness of the resistance adjustment member and make it difficult to bend. In addition, the pressure loss necessary for the entire pressure loss adjusting structure of the model is distributed to the resistance adjusting members arranged on the front and rear surfaces, and the width of the gap is adjusted so as to have the required thickness. .
この模型の圧力損失調整方法によれば、上流側の抵抗調整部材の厚みを厚くして構成するので、流体圧による撓みが発生し難くなる。また、比較的簡単な構造で、所望の圧力損失を発生できるとともに、容易に流れ方向の厚みを所望の厚さとすることができる。 According to the pressure loss adjusting method of this model, since the upstream resistance adjusting member is configured to be thick, it is difficult for the fluid pressure to be bent. In addition, a desired pressure loss can be generated with a relatively simple structure, and the thickness in the flow direction can be easily set to a desired thickness.
特に、空隙部の幅で、模型用の圧力損失調整部材の厚みを調整するので、圧力損失調整部材の厚みが模型の厚みになるように圧力損失調整部材を選定する必要がなくなり、様々な圧力損失調整部材の厚みと組合せに対して事前に測定した圧力特性を利用できるようになり、模型作成時に抵抗を測定する手間を省くことができる。 In particular, since the thickness of the pressure loss adjusting member for the model is adjusted by the width of the gap portion, it is not necessary to select the pressure loss adjusting member so that the thickness of the pressure loss adjusting member becomes the thickness of the model. The pressure characteristic measured in advance for the thickness and combination of the loss adjusting member can be used, and the time and effort for measuring the resistance can be saved when creating the model.
また、模型に必要な厚さ要件も満足した模型の圧力損失調整用構造体(抵抗体モデル)を設定できるので、流速に対する圧力損失の特性を所望の圧力損失の特性に一致させた模型の圧力損失調整用構造体を作成でき、比較検証する際の解析計算における結果の精度を向上させることができる。 In addition, because the model pressure loss adjustment structure (resistor model) that satisfies the thickness requirements necessary for the model can be set, the pressure of the model that matches the pressure loss characteristics with the desired pressure loss characteristics with respect to the flow velocity. A loss adjustment structure can be created, and the accuracy of the result in the analytical calculation at the time of comparative verification can be improved.
従って、模型の圧力損失調整用構造体全体として、要求される厚さを満足しつつ、要求される圧力損失を得ることが可能となる。更に、前部の抵抗調整部材は、流体圧による撓みが発生し難くなるように、その厚さを厚くして構成するので、特別な撓み防止対策を施す必要が無くなる。 Therefore, the required pressure loss can be obtained while satisfying the required thickness of the entire model pressure loss adjusting structure. Furthermore, since the resistance adjusting member at the front portion is configured to be thick so that bending due to fluid pressure is less likely to occur, it is not necessary to take special measures for preventing bending.
上記の模型の圧力損失調整方法において、前記抵抗調整部材として、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せを用いると、模型の圧力損失調整用構造体の抵抗特性を、必要とされる抵抗特性に、より容易に、かつ、より近似するように調整できるようになる。 In the pressure loss adjusting method of the above model, as the resistance adjusting member, a resistor whose pressure loss changes by a flow from the front side and a flow from the back side, a resistor having a single layer structure, a resistor having a three-dimensional network structure When any one of these or a combination thereof is used, the resistance characteristic of the model pressure loss adjusting structure can be adjusted more easily and more closely to the required resistance characteristic.
また、上記のような目的を達成するための本発明の模型の圧力損失調整用構造体は、流体を用いた試験で用いる模型の内部を流れる流体に関する圧力損失を調整するために、模型の内部に配置されて流体の流れに対する抵抗となって圧力損失を発生する抵抗調整部材を、流体の流れの上流側と下流側のそれぞれに配置すると共に、両方の抵抗調整部材の間に空隙部を設けて構成した模型の圧力損失調整用構造体において、前記上流側の抵抗調整部材の単位厚みに対する圧力損失を模型で必要とされる厚みと必要とされる圧力損失から算出される目標の単位厚みに対する圧力損失よりも小さくすると共に、前記下流側の抵抗調整部材の単位厚みに対する圧力損失を前記目標の単位厚みに対する圧力損失よりも大きくし、更に、前記上流側の抵抗調整部材の厚みを前記下流側の抵抗調整部材の厚みよりも大きくして構成される。 In addition, the structure for adjusting the pressure loss of the model of the present invention for achieving the above-described object is provided in order to adjust the pressure loss related to the fluid flowing in the model used in the test using the fluid. The resistance adjusting members that are disposed in the flow path and generate pressure loss due to resistance to the fluid flow are disposed on the upstream side and the downstream side of the fluid flow, respectively, and a gap is provided between both resistance adjusting members. In the pressure loss adjusting structure of the model configured as described above, the pressure loss with respect to the unit thickness of the upstream resistance adjusting member is the thickness required for the model and the target unit thickness calculated from the required pressure loss. The pressure loss with respect to the unit thickness of the downstream side resistance adjusting member is made larger than the pressure loss with respect to the target unit thickness, and the upstream side resistance is further reduced. It constituted the thickness of the integer member is made larger than the thickness of the downstream resistance adjusting member.
この構成によれば、上流側の抵抗調整部材の厚みを厚くして構成するので、流体圧による撓みが発生し難くなる。また、比較的簡単な構造で、所望の圧力損失を発生できるとともに、容易に流れ方向の厚みを所望の厚さとすることができる。 According to this configuration, the thickness of the upstream resistance adjusting member is increased, so that bending due to fluid pressure is less likely to occur. In addition, a desired pressure loss can be generated with a relatively simple structure, and the thickness in the flow direction can be easily set to a desired thickness.
特に、空隙部の幅で、模型用の圧力損失調整部材の厚みを調整するので、圧力損失調整部材の厚みが模型の厚みになるように圧力損失調整部材を選定する必要がなくなり、様々な圧力損失調整部材の厚みと組合せに対して事前に測定した圧力特性を利用できるようになり、模型作成時に抵抗を測定する手間を省くことができる。 In particular, since the thickness of the pressure loss adjusting member for the model is adjusted by the width of the gap portion, it is not necessary to select the pressure loss adjusting member so that the thickness of the pressure loss adjusting member becomes the thickness of the model. The pressure characteristic measured in advance for the thickness and combination of the loss adjusting member can be used, and the time and effort for measuring the resistance can be saved when creating the model.
また、模型に必要な厚さ要件も満足した模型の圧力損失調整用構造体(抵抗体モデル)を設定できるので、流速に対する圧力損失の特性を所望の圧力損失の特性に一致させた模型の圧力損失調整用構造体を作成でき、比較検証する際の解析計算における結果の精度を向上させることができる。 In addition, because the model pressure loss adjustment structure (resistor model) that satisfies the thickness requirements necessary for the model can be set, the pressure of the model that matches the pressure loss characteristics with the desired pressure loss characteristics with respect to the flow velocity. A loss adjustment structure can be created, and the accuracy of the result in the analytical calculation at the time of comparative verification can be improved.
上記の模型の圧力損失調整用構造体において、前記抵抗調整部材を、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せで形成すると、模型の圧力損失調整用構造体の抵抗特性を、必要とされる抵抗特性に、より容易に、かつ、より近似するように調整できるようになる。 In the pressure loss adjusting structure of the above model, the resistance adjusting member includes a resistor whose pressure loss changes depending on a flow from the front side and a flow from the back side, a resistor having a single layer structure, and a three-dimensional network structure. When formed with one of these resistors or a combination of these, the resistance characteristics of the model pressure loss adjustment structure can be adjusted more easily and more closely to the required resistance characteristics. Become.
上記のような目的を達成するための本発明の流体試験用模型は、上記の模型の圧力損失調整用構造体を備えて構成される。 In order to achieve the above object, a fluid test model of the present invention includes the pressure loss adjusting structure of the above model.
本発明に係る自動車等の風洞試験等の流体試験で用いる、模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型によれば、上流側(前面部)の抵抗調整部材の厚みを厚く形成したので、流体圧による撓みが生じ難くなる。 According to the model pressure loss setting method, model pressure loss adjustment structure, and fluid test model used in fluid tests such as wind tunnel tests for automobiles according to the present invention, the resistance on the upstream side (front surface) Since the adjustment member is formed thick, it is difficult for the fluid pressure to bend.
また、模型の寸法に必要な厚さに左右されずに、所望の圧力特性になるように模型の圧力損失調整用構造体を設定できるので、抵抗調整部材に関して素材選択の自由度が増加し、所望の抵抗特性を持った模型の圧力損失調整用構造体(抵抗体モデル)を容易に製作できる。 In addition, since the structure for adjusting the pressure loss of the model can be set so as to have the desired pressure characteristics without being influenced by the thickness required for the dimensions of the model, the degree of freedom in selecting the material with respect to the resistance adjustment member is increased. A model pressure loss adjusting structure (resistor model) having a desired resistance characteristic can be easily manufactured.
そして、模型に必要な厚さ要件を満足した模型の圧力損失調整用構造体を製作できるので、流速に対する圧力損失の特性が所望の圧力損失の特性と一致した模型となり、比較検証する際の解析計算における結果の精度を向上することができる。 And, since the structure for adjusting the pressure loss of the model that satisfies the thickness requirement necessary for the model can be manufactured, the model has a pressure loss characteristic that matches the desired pressure loss characteristic with respect to the flow velocity. The accuracy of the result in the calculation can be improved.
以下、本発明に係る実施の形態の模型の圧力損失設定方法について、図面を参照しながら説明する。なお、以下の説明では風洞試験における模型を例に説明するが、本発明はこの風洞試験に限定されるものではなく、回流水槽や水槽の試験における模型にも適用できる。 Hereinafter, a model pressure loss setting method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, a model in a wind tunnel test will be described as an example. However, the present invention is not limited to this wind tunnel test, and can be applied to a model in a circulating water tank or water tank test.
図1〜図3を参照しながら本発明に係る実施の形態の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型について説明する。 A model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model according to an embodiment of the present invention will be described with reference to FIGS.
最初に、本発明の実施の形態の模型の圧力損失調整用構造体10について説明する。図1及び図2に示すように、この模型の圧力損失調整用構造体10は、空気(流体)Fを用いた風洞試験で用いる模型1の内部を流れる空気Fの圧力損失を調整するための構造体であり、模型1のハウジング2の内部に、空気Fの流れに対する抵抗となって圧力損失を発生する抵抗調整部材(通風抵抗体)11,12を、空隙部3を挟んで上流側と下流側にそれぞれ配置して構成される。
First, the pressure
この抵抗調整部材11,12としては、抵抗調整部材を形成する材料が、密着して厚さ内で連続した特性を示せば良いので、表側からの流れと裏側からの流れで圧力損失が変化する抵抗体、単層構造を持つ抵抗体、三次元網目構造を持つ抵抗体のいずれか、あるいはこれらの組合せを用いることができる。具体的なものとしては金属メッシュとその積層体、金属発泡体等がある。この抵抗調整部材11,12は板状に形成される。
As the
次に、図1及び図2の模型の圧力損失調整用構造体10における、模型の圧力損失設定方法について説明する。
Next, a model pressure loss setting method in the model pressure
この模型の圧力損失設定方法では、空気Fの流れの上流側と下流側のそれぞれに抵抗調整部材11,12を配置すると共に、両方の抵抗調整部材11,12の間に空隙部3を設けて構成し、模型2に必要な圧力損失の発生量を両方の抵抗調整部材11,12の圧力特性と厚みt1,t2に基づいて設定し、両方の抵抗調整部材11,12の厚みt1,t2と空隙部3の幅Bsの和が模型の圧力損失調整用構造体10として必要な厚みttとなるように空隙部3の幅Bsを設定する。
In this model pressure loss setting method, the
また、上流側の抵抗調整部材11の単位厚みに対する圧力損失ΔP1を模型1で必要とされる厚みttと必要とされる圧力損失Ptから算出される目標の単位厚みに対する圧力損失ΔPtよりも小さくすると共に、下流側の抵抗調整部材12の単位厚みに対する圧力損失ΔP2を前記目標の単位厚みに対する圧力損失ΔPtよりも大きく形成する。更に、上流側の抵抗調整部材11の厚みt1を下流側の抵抗調整部材12の厚みt2よりも大きくして構成する。
Further, the pressure loss ΔP1 with respect to the unit thickness of the
つまり、模型1の前後に配置する抵抗調整部材11,12を、抵抗となる材料の単独又は複数の材料を積層して形成し、圧力が抵抗調整部材11,12の内部で連続的に変化するように構成する。上流側即ち前部に設ける抵抗調整部材11は、目標とする圧力特性より穏やかな圧力勾配を持ったものを選択し、抵抗調整部材11の厚みt1を大きくとる。模型の圧力損失調整用構造体10の全体で必要な圧力損失Ptを、前後面に配置する抵抗調整部材11,12に分配させて受け持たせ、必要な圧力損失調整用構造体10の厚さttを空隙部3の幅Bsで調整する。
That is, the
このように設定することで、模型の圧力損失調整用構造体10に全体として要求される厚さttで、必要な圧力損失Ptに設定することが可能となる。また、上流側即ち前部の抵抗調整部材11は厚みt1が比較的大きいので、流体圧による撓みも発生し難くなるため、抵抗調整部材11の撓みを防止するための特別な撓み防止対策を施す必要がない。なお、下流側即ち後部の抵抗調整部材12は厚みt2が比較的小さいが、上流側の抵抗調整部材11により下流側の抵抗調整部材12に作用する流体圧が小さくなっているので、流体圧による撓みが発生し難くなる。
By setting in this way, it is possible to set the required pressure loss Pt with the thickness tt required for the model pressure
この方法によれば、上流側の抵抗調整部材11の厚みt1を厚くして構成するので、流体圧による撓みが発生し難くなる。また、比較的簡単な構造で、所望の圧力損失を発生できるとともに、容易に流れ方向の厚みttを所望の厚さとすることができる。特に、空隙部3の幅Bsで、模型の圧力損失調整用構造体10の厚みttを調整するので、圧力損失調整部材11,12の厚みt1,t2の和が模型の厚みttになるように圧力損失調整部材11,12を選定する必要がなくなり、様々な圧力損失調整部材11,12の厚みt1,t2と組合せに対して事前に測定した圧力特性を利用できるようになり、模型作成時に抵抗を測定する手間を省くことができる。
According to this method, since the thickness t1 of the upstream
また、模型に必要な厚さ要件も満足した模型の圧力損失調整用構造体(抵抗体モデル)10を設定できるので、流速に対する圧力損失の特性を所望の圧力損失の特性に一致させた模型の圧力損失調整用構造体10を作成でき、比較検証する際の解析計算における結果の精度を向上させることができる。
In addition, since the structure (resistor model) 10 for adjusting the pressure loss of the model that satisfies the thickness requirement necessary for the model can be set, the characteristics of the pressure loss with respect to the flow velocity are matched with the characteristics of the desired pressure loss. The pressure
より詳細には、上流側の抵抗調整部材11の材料には、図3に示すように、単位厚さに対する圧力勾配ΔP1(図3の「模型」で示す圧力勾配)が、模型の圧力損失調整用構造体10で要求される、単位厚さに対する圧力勾配(所望の圧力損失(Pt)/圧力損失調整用構造体の厚み(tt))ΔPt(図3の「目標」で示す圧力勾配)よりも小さく緩やかなものを選択する。
More specifically, as shown in FIG. 3, the material of the upstream side
一方、下流側の抵抗調整部材12の材料には、図3に示すように、単位厚さに対する圧力勾配ΔP2(図3の「模型」で示す圧力勾配)が、模型の圧力損失調整用構造体10で要求される、単位厚さに対する圧力勾配(所望の圧力損失(Pt)/圧力損失調整用構造体の厚み(tt))ΔPt(図3の「目標」で示す圧力勾配)よりも大きく急なものを選択する。
On the other hand, as shown in FIG. 3, the material of the
そして、抵抗調整部材11の厚みt1を、風圧(流体圧)に対して、撓み量が許容範囲内に収まるような厚みとし、抵抗調整部材11の材料の単位厚さに対する圧力損失ΔP1に厚みt1を掛け算して、この抵抗調整部材11による圧力損失P1を算出する。この圧力損失P1を所望の圧力損失Ptから引き算して、下流側の抵抗調整部材12で発生すべき圧力損失P2を算出する。
The thickness t1 of the
この圧力損失P2を下流側の抵抗調整部材12の材料の単位厚さに対する圧力損失ΔP2で割り算して、下流側の抵抗調整部材12の厚みt2を算出する。この厚みt2で、風圧(流体圧)に対して、抵抗調整部材11の撓み量が許容範囲内に収まることを確認する。抵抗調整部材11の撓み量が許容範囲内に収まらない場合は、下流側の抵抗調整部材12の材料を選定し直す。
The pressure loss P2 is divided by the pressure loss ΔP2 with respect to the unit thickness of the material of the downstream
そして、抵抗調整部材11の撓み量を許容範囲内に収めた後で、所望の厚みttから抵抗調整部材11の厚みt1と抵抗調整部材12の厚みt2の合計を引き算して、空隙部3の幅Bsを算出する。つまり、Bd=tt−(t1+t2)とする。
Then, after the amount of deflection of the
なお、抵抗調整部材11の厚みt1と抵抗調整部材12の厚みt2の合計が所望の厚みttよりも大きいときには、抵抗調整部材11,12の材料を選定し直して、再度厚みt1,t2と空隙部3の幅Bsを算出し直す。
When the sum of the thickness t1 of the
これらの抵抗調整部材11,12の厚みt1,t2と空隙部3の幅Bsを有して、図1に示すように、上流側の抵抗調整部材11と下流側の抵抗調整部材12を配置して、模型の圧力損失調整用構造体10を構成する。これにより、図3に示すような圧力損失(「模型」で示した実線)を有する模型の圧力損失調整用構造体10を製作できる。なお、図3の「目標」で示した点線は、所望の圧力損失Ptの圧力勾配ΔPtを示す。
As shown in FIG. 1, the
この構成によれば、比較的簡単な構造で、所望の圧力損失Ptを発生できるとともに、容易に流れ方向の厚みを所望の厚さttとすることができる。また、空隙部3の幅Bsで、模型の圧力損失調整部材10の厚みを調整できるので、抵抗調整部材11,12の厚みt1,t2の合計が模型の厚みttになるように抵抗調整部材11,12の材料を選定する必要がなくなり、様々な抵抗調整部材11,12の厚みt1,t2と組合せに対して事前に測定した圧力特性を利用できるようになり、模型作成時に抵抗を測定する手間を省くことができる。
According to this configuration, a desired pressure loss Pt can be generated with a relatively simple structure, and the thickness in the flow direction can be easily set to the desired thickness tt. Further, since the thickness of the pressure
また、模型1に必要な厚さ要件も満足した模型の圧力損失調整用構造体(抵抗体モデル)10を設定できるので、流速に対する圧力損失の特性を所望の圧力損失の特性に一致させた圧力損失調整用構造体10を製作でき、比較検証する際の解析計算における結果の精度を向上させることができる。
In addition, since the model pressure loss adjusting structure (resistor model) 10 that satisfies the thickness requirement necessary for the
本発明の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型は、上流側(前面部)の抵抗調整部材の厚みを厚く形成したので、流体圧による撓みが生じ難くなり、また、模型の寸法に必要な厚さに左右されずに、所望の圧力特性になるように模型の圧力損失調整用構造体を設定できるので、抵抗調整部材に関して素材選択の自由度が増加し、所望の抵抗特性を持った模型の圧力損失調整用構造体(抵抗体モデル)を容易に製作できる。 In the model pressure loss setting method, model pressure loss adjustment structure, and fluid test model of the present invention, the thickness of the resistance adjustment member on the upstream side (front surface part) is formed thick, so that the deflection due to the fluid pressure does not occur. Since the structure for adjusting the pressure loss of the model can be set to achieve the desired pressure characteristics regardless of the thickness required for the dimensions of the model, the degree of freedom of material selection for the resistance adjustment member The pressure loss adjusting structure (resistor model) having a desired resistance characteristic can be easily manufactured.
そのため、本発明の模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型は、自動車や航空機や建造物等の空洞試験や回流水槽試験や水槽試験等で使用する模型の圧力損失設定方法、模型の圧力損失調整用構造体、及び、流体試験用模型として利用できる。 Therefore, the model pressure loss setting method, model pressure loss adjustment structure, and fluid test model of the present invention are used in cavity tests, circulating water tank tests, water tank tests, etc. for automobiles, aircraft, buildings, etc. It can be used as a model pressure loss setting method, a model pressure loss adjusting structure, and a fluid test model.
1 模型
2 ハウジング
3 空隙部
10,10X,10Y 模型の圧力損失調整用構造体
11,12 抵抗調整部材
14 支持部材
Bs 空隙部の幅
F 空気(流体)
P1 上流側の抵抗調整部材による圧力損失
P2 下流側の抵抗調整部材による圧力損失
Pt 模型に要求される所望の圧力損失
ΔP1 上流側の抵抗調整部材の単位厚みあたりの圧力損失(圧力勾配)
ΔP2 下流側の抵抗調整部材の単位厚みあたりの圧力損失(圧力勾配)
ΔPt 模型に要求される所望の圧力損失と厚みから算出される単位厚みあたりの圧力損失(圧力勾配)
t1,t2 抵抗調整部材の厚み
tt 模型の圧力損失調整用構造体に要求される所望の厚み
DESCRIPTION OF
P1 Pressure loss due to upstream resistance adjustment member P2 Pressure loss due to downstream resistance adjustment member Pt Desired pressure loss required for model ΔP1 Pressure loss per unit thickness of upstream resistance adjustment member (pressure gradient)
ΔP2 Pressure loss per unit thickness of the resistance adjustment member on the downstream side (pressure gradient)
ΔPt Pressure loss per unit thickness (pressure gradient) calculated from the desired pressure loss and thickness required for the model
t1, t2 Resistance adjustment member thickness tt Desired thickness required for model pressure loss adjustment structure
Claims (5)
前記上流側の抵抗調整部材の単位厚みに対する圧力損失を模型で必要とされる厚みと必要とされる圧力損失から算出される目標の単位厚みに対する圧力損失よりも小さくすると共に、前記下流側の抵抗調整部材の単位厚みに対する圧力損失を前記目標の単位厚みに対する圧力損失よりも大きくし、更に、前記上流側の抵抗調整部材の厚みを前記下流側の抵抗調整部材の厚みよりも大きくすることを特徴とする模型の圧力損失調整用構造体。 In order to adjust the pressure loss related to the fluid flowing inside the model used in the test using the fluid, a resistance adjusting member which is disposed inside the model and becomes a resistance to the flow of the fluid to generate a pressure loss is provided. In the structure for pressure loss adjustment of the model, which is arranged on each of the upstream side and the downstream side of the model and is configured by providing a gap between both resistance adjustment members,
The pressure loss with respect to the unit thickness of the resistance adjusting member on the upstream side is made smaller than the pressure loss with respect to the target unit thickness calculated from the thickness required in the model and the required pressure loss, and the resistance on the downstream side The pressure loss with respect to the unit thickness of the adjustment member is made larger than the pressure loss with respect to the target unit thickness, and the thickness of the resistance adjustment member on the upstream side is made larger than the thickness of the resistance adjustment member on the downstream side. Model for pressure loss adjustment of model.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009183900A JP5321339B2 (en) | 2009-08-06 | 2009-08-06 | Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009183900A JP5321339B2 (en) | 2009-08-06 | 2009-08-06 | Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011038806A JP2011038806A (en) | 2011-02-24 |
JP5321339B2 true JP5321339B2 (en) | 2013-10-23 |
Family
ID=43766750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009183900A Expired - Fee Related JP5321339B2 (en) | 2009-08-06 | 2009-08-06 | Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5321339B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114818369B (en) * | 2022-05-19 | 2023-03-03 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Method, system, device and medium for designing continuous transonic wind tunnel section |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6166940A (en) * | 1984-09-10 | 1986-04-05 | Mitsubishi Heavy Ind Ltd | Body to be tested for wind tunnel experiment |
JPH041547A (en) * | 1990-04-17 | 1992-01-07 | Mitsubishi Heavy Ind Ltd | Air storage tank |
JPH05164653A (en) * | 1991-12-12 | 1993-06-29 | Mitsubishi Heavy Ind Ltd | Fluid pressure loss characteristic simulation structure |
JP3367856B2 (en) * | 1997-02-20 | 2003-01-20 | 三菱重工業株式会社 | Ground model |
JP2001006684A (en) * | 1999-06-23 | 2001-01-12 | Sony Corp | Nonaqueous electrolyte battery |
-
2009
- 2009-08-06 JP JP2009183900A patent/JP5321339B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011038806A (en) | 2011-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1860301B1 (en) | Micro-perforated acoustic liner | |
Duell et al. | The BMW AVZ wind tunnel center | |
JP2005180430A (en) | Aircraft engine part for noise reduction | |
US6772627B2 (en) | Flow vector analyzer for flow bench | |
US8061983B1 (en) | Exhaust diffuser strut with stepped trailing edge | |
JP2020153657A (en) | Airflow guide | |
US20170276397A1 (en) | Sound Attenuating Baffle Including a Non-Eroding Liner Sheet | |
Howerton et al. | Acoustic liner drag: measurements on novel facesheet perforate geometries | |
US11604007B2 (en) | Trailing member to reduce pressure drop across a duct mounted sound attenuating baffle | |
Zamponi et al. | Experimental investigation of airfoil turbulence-impingement noise reduction using porous treatment | |
JP5321342B2 (en) | Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model | |
JP5321339B2 (en) | Model pressure loss setting method, model pressure loss adjustment structure, and fluid test model | |
Suryadi et al. | Trailing edge noise reduction technologies for applications in wind energy | |
US20080242210A1 (en) | Low-Noise Volume Flow Rate Throttling of Fluid-Carrying Pipes | |
EP2107216A3 (en) | Method for determining the total pressure distribution across a fan entry plane | |
JP5321337B2 (en) | Model for adjusting pressure loss of model, model for fluid test, and method for adjusting pressure loss of model | |
JP5321338B2 (en) | Model pressure loss setting method | |
FI3704374T3 (en) | Swirling element and method for producing a swirling element | |
Berg et al. | Aerodynamic and aeroacoustic properties of flatback airfoils | |
Vera et al. | The effects of a trip wire and unsteadiness on a high-speed highly loaded low-pressure turbine blade | |
EP1980798A2 (en) | Electronic volume flow regulator with power sensor | |
JP5996265B2 (en) | Sound insulation device | |
JP2009041891A (en) | Sound absorbing duct | |
US11866172B2 (en) | Flow body for a vehicle and method for manufacturing a flow body | |
JP5321318B2 (en) | Model for adjusting pressure loss of model, model for fluid test, and method for adjusting pressure loss of model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120705 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5321339 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |