JP5321324B2 - Automatic analyzer capable of switching reaction vessel supply means - Google Patents

Automatic analyzer capable of switching reaction vessel supply means Download PDF

Info

Publication number
JP5321324B2
JP5321324B2 JP2009178078A JP2009178078A JP5321324B2 JP 5321324 B2 JP5321324 B2 JP 5321324B2 JP 2009178078 A JP2009178078 A JP 2009178078A JP 2009178078 A JP2009178078 A JP 2009178078A JP 5321324 B2 JP5321324 B2 JP 5321324B2
Authority
JP
Japan
Prior art keywords
point
reaction
container
transfer
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009178078A
Other languages
Japanese (ja)
Other versions
JP2011033401A (en
Inventor
暁男 蔦永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009178078A priority Critical patent/JP5321324B2/en
Publication of JP2011033401A publication Critical patent/JP2011033401A/en
Application granted granted Critical
Publication of JP5321324B2 publication Critical patent/JP5321324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、試料中に含まれる微量成分を分析する自動分析装置に係る。特に本発明は、比較的小型で柔軟に処理能力を向上させ得る自動分析装置に関する。   The present invention relates to an automatic analyzer that analyzes trace components contained in a sample. In particular, the present invention relates to an automatic analyzer that is relatively small and can flexibly improve processing capability.

血清、血漿、尿といった生体試料の臨床検査は、操作者の技量が検査結果に及ぼす影響が排除でき、かつ多くの試料を短時間に処理可能な、自動分析装置を用いて行なわれるのが一般的である。一般に、生体試料の生化学的検査に用いられる自動分析装置は、
検査対象の生体試料を収容する複数の試料容器を準備する手段と、
前記生体試料と反応させる試薬を準備する手段と、
前記生体試料と前記試薬とを反応させるための反応容器を準備する手段と、
前記反応容器に所定量の前記生体試料及び試薬を分注する手段と、
前記生体試料と試薬が分注された反応容器を所定の条件下で維持することで生体試料と試薬とを反応させる手段と、
前記反応後の反応容器中の溶液を測定する手段と、
これらの手段間の試料容器および/または反応容器を移送する手段から構成される。以上、自動分析装置には多くの手段が必要であるため、処理速度といった性能の向上に応えようとすると、装置自体の大型化につながり、各手段の構成および操作性も複雑化する傾向となる。
Clinical testing of biological samples such as serum, plasma, and urine is generally performed using an automated analyzer that can eliminate the effects of operator skill on test results and can process many samples in a short time. Is. In general, automatic analyzers used for biochemical examination of biological samples are:
Means for preparing a plurality of sample containers for storing biological samples to be examined;
Means for preparing a reagent to be reacted with the biological sample;
Means for preparing a reaction vessel for reacting the biological sample with the reagent;
Means for dispensing a predetermined amount of the biological sample and reagent into the reaction vessel;
Means for reacting the biological sample and the reagent by maintaining a reaction container in which the biological sample and the reagent are dispensed under predetermined conditions;
Means for measuring the solution in the reaction vessel after the reaction;
It is comprised from the means to transfer the sample container and / or reaction container between these means. As described above, since many means are required for an automatic analyzer, attempts to respond to performance improvements such as processing speed lead to an increase in the size of the apparatus itself, and the configuration and operability of each means tend to be complicated. .

一方、検査の処理件数が比較的少ない施設では、前述した処理速度の向上より、むしろ装置設置面積の低減や前記各手段の構成/操作性の簡略化といった要請がある。生体試料についての免疫分析を自動的に行なう自動免疫分析装置を一例として説明すると、前記要請に対しては従来、生体試料を収容する試料容器および生体試料と反応させる試薬を収容する反応容器を、それぞれ異なる供給手段に手動で設置した後、測定結果の出力までを自動で行なう卓上型の自動免疫分析装置が開示されている(特許文献1)。特許文献1の装置において試料容器および反応容器を供給する手段は、共に環状のコンベア式スネークチェーンで構成されている。そして、試料容器を供給する手段と反応容器を供給する手段の一部領域は、両手段が同期しつつ平行して間欠移動するよう制御している。また、供給手段は試料容器用と反応容器用とで共通とし、試料容器と反応容器とを混在した状態で供給する装置(特許文献2)もあり、前記装置は、特許文献1の装置と比較し、各手段の構成/操作性の簡略化および設置面積の低減を実現している。   On the other hand, in a facility with a relatively small number of inspections, there is a demand for a reduction in apparatus installation area and a simplification of the configuration / operability of each means rather than the improvement in the processing speed described above. An automatic immunoanalyzer that automatically performs an immunoassay on a biological sample will be described as an example. Conventionally, a sample container that contains a biological sample and a reaction container that contains a reagent that reacts with the biological sample, There is disclosed a desktop type automatic immunoanalyzer that automatically installs each of different supply means and then outputs a measurement result (Patent Document 1). In the apparatus of Patent Document 1, the means for supplying the sample container and the reaction container are both constituted by an annular conveyor type snake chain. And the partial area | region of the means to supply a sample container and the means to supply a reaction container is controlled so that both means may intermittently move in parallel, synchronizing. Further, the supply means is common to the sample container and the reaction container, and there is an apparatus (Patent Document 2) that supplies the sample container and the reaction container in a mixed state. The apparatus is compared with the apparatus of Patent Document 1 In addition, the configuration / operability of each unit is simplified and the installation area is reduced.

ところで、自動分析装置は、稼動中、常に操作者の監視を必要とするものではなく、特に問題がなければ測定者は前記装置から離れ、他の仕事に従事することが可能である。一方、自動分析装置では、容器に付着した生体試料および反応容器を短時間に洗浄することが困難なため、通常、一度使用した反応容器は再利用することなく廃棄する。したがって、特許文献1および2の装置では、操作者が不在の場合、供給手段に最初に設置した試料容器および反応容器の総数(最大架設数)が処理数の上限となり、最大架設数を超える測定を行なおうとする場合には、供給手段へ最初に設置した試料容器および反応容器の処理が全て終わる前までに、処理済の容器を装置外へ取り出して新たな容器を搬送手段へ設置する必要があった。また、測定者が他の仕事に従事可能な時間を延ばすために最大架設数を増やそうとすると供給手段も大型化するため、自動分析装置全体も大型化する問題があった。   By the way, the automatic analyzer is not always required to be monitored by the operator during operation, and if there is no problem, the measurer can leave the apparatus and engage in other work. On the other hand, in the automatic analyzer, since it is difficult to clean the biological sample and the reaction container attached to the container in a short time, the reaction container once used is usually discarded without being reused. Therefore, in the apparatuses of Patent Documents 1 and 2, when there is no operator, the total number of sample containers and reaction containers initially installed in the supply means (maximum number of installations) is the upper limit of the processing number, and the measurement exceeds the maximum number of installations. In order to perform the process, it is necessary to take out the treated container outside the apparatus and install a new container on the transport means before the processing of the sample container and the reaction container that are initially placed on the supply means is completed. was there. Also, if the maximum number of installations is increased in order to extend the time during which the measurer can engage in other work, the supply means also becomes larger, so that there is a problem that the entire automatic analyzer becomes larger.

特許第2884604号公報Japanese Patent No. 2884604 特許第3991495号公報Japanese Patent No. 399495

生体試料の臨床検査を行なう施設において、検査対象の生体試料数や各検査項目の測定数は時期によって変動するため、求められる処理能力も時期によって異なる。また、検査内容も多数の生体試料を迅速に測定する場合や、少数の生体試料を詳細に測定する場合など多岐にわたる。本発明の課題は、生体試料の臨床検査を行なう自動分析装置において、装置全体を大型化することなく、検査対象の試料数や各検査項目の測定数の変動、検査内容の多様性に柔軟に対応可能な自動分析装置を提供することである。   In a facility that conducts a clinical test of a biological sample, the number of biological samples to be tested and the number of measurements for each test item vary depending on the time, so the required processing capacity varies depending on the time. In addition, the contents of examinations vary widely, such as when quickly measuring a large number of biological samples and when measuring a small number of biological samples in detail. An object of the present invention is to flexibly adapt to variations in the number of samples to be inspected, the number of measurements of each inspection item, and the variety of inspection contents without increasing the size of the entire apparatus in an automatic analyzer that performs clinical inspection of biological samples. It is to provide an automatic analyzer that can be used.

上記課題を鑑みてなされた本発明は、以下の発明を包含する。   The present invention made in view of the above problems includes the following inventions.

第一の発明は、
反応容器を供給する第一供給手段、
試料容器のみを供給する、または試料容器と反応容器を供給する第二供給手段、
前記第一供給手段および/または前記第二供給手段に配置された反応容器を受け入れて配置する搬送手段、
搬送手段に配置された反応容器を受け入れて所定の温度に維持する反応手段、
第一供給手段に配置された反応容器を搬送手段に移送する第一移送手段、
搬送手段に配置された反応容器を反応手段に移送する第三移送手段、および
第二供給手段に配置された試料容器中の試料を吸引し搬送手段に配置された反応容器に分注する分注手段、
を有した自動分析装置において、
前記第二供給手段が試料容器のみを供給する手段の場合は、第一移送手段より反応容器を搬送手段に移送し、
前記第二供給手段が試料容器と反応容器を供給する手段の場合は、第二供給手段に配置された反応容器を搬送手段に移送する第二移送手段より、または第一移送手段と第二移送手段より反応容器を搬送手段に移送する、前記装置である。
The first invention is
A first supply means for supplying the reaction vessel;
A second supply means for supplying only the sample container or for supplying the sample container and the reaction container;
Conveying means for receiving and arranging the reaction vessel arranged in the first supply means and / or the second supply means;
A reaction means for receiving a reaction vessel arranged in the conveying means and maintaining it at a predetermined temperature;
First transfer means for transferring the reaction vessel arranged in the first supply means to the transport means;
Dispensing for sucking the sample in the sample container arranged in the second supply means and dispensing the reaction container arranged in the conveyance means to the reaction container arranged in the conveyance means. means,
In an automatic analyzer having
When the second supply means is a means for supplying only the sample container, the reaction container is transferred from the first transfer means to the transfer means,
When the second supply means is a means for supplying the sample container and the reaction container, the second transfer means for transferring the reaction container arranged in the second supply means to the transport means, or the first transfer means and the second transfer It is the said apparatus which transfers the reaction container to a conveyance means from a means.

第二の発明は、
前記第二供給手段が試料容器のみを、または試料容器と反応容器を順次地点AおよびBに供給可能な手段であり、
前記搬送手段が反応容器を地点C、地点Dおよび地点Gとの間で搬送可能な手段であり、
前記反応手段が前記搬送手段に配置された反応容器を地点Eで受け入れ可能な手段であり、
前記第一移送手段が前記第一供給手段に配置された反応容器を地点Gに移送可能な手段であり、
前記第二移送手段が前記第二供給手段上の地点Aに配置された反応容器を地点Cに移送可能な手段であり、
前記第三移送手段が前記搬送手段上の地点Cに配置された反応容器を地点Eに移送可能な手段であり、
前記分注手段が前記第一供給手段に配置された試料容器中の試料を地点Bで吸引し、前記搬送手段上の地点Dに配置された反応容器に分注する手段である、第一の発明に記載の装置である。
The second invention is
The second supply means is a means capable of supplying only the sample container or the sample container and the reaction container to the points A and B sequentially,
The transport means is a means capable of transporting the reaction vessel between the points C, D and G;
The reaction means is a means capable of accepting a reaction vessel arranged in the transport means at a point E,
The first transfer means is a means capable of transferring a reaction vessel arranged in the first supply means to a point G;
The second transfer means is a means capable of transferring a reaction vessel disposed at a point A on the second supply means to a point C;
The third transfer means is a means capable of transferring a reaction vessel disposed at a point C on the transfer means to a point E;
The first dispensing means is a means for sucking a sample in a sample container arranged in the first supply means at a point B and dispensing the sample into a reaction container arranged at a point D on the conveying means. A device according to the invention.

第三の発明は、
前記第二供給手段での地点Aと地点B間の試料容器の、または試料容器と反応容器の供給経路と、
前記搬送手段での地点C、地点Dおよび地点G間の搬送経路とがいずれも直線かつ互いに平行である、第二の発明に記載の装置である。
The third invention is
The sample container between point A and point B in the second supply means, or the supply path of the sample container and the reaction container;
It is an apparatus according to the second aspect of the present invention, in which the transport path between the point C, the point D, and the point G in the transport means is straight and parallel to each other.

第四の発明は、
(1)前記第二移送手段による地点Aから地点Cへの反応容器の移送経路、
(2)前記第三移送手段による地点Cから地点Eへの反応容器の移送経路、
(3)前記分注手段による地点Bから地点Dへの移送経路、
がいずれも直線であり、
前記(1)と(2)の移送経路の方向は一致しており、
かつ前記(1)と(2)の移送経路、および(3)の移送経路は互いに平行である、第二または第三の発明に記載の装置である。
The fourth invention is
(1) The transfer path of the reaction vessel from the point A to the point C by the second transfer means,
(2) The transfer path of the reaction vessel from the point C to the point E by the third transfer means,
(3) Transfer route from point B to point D by the dispensing means,
Are both straight lines,
(1) and (2) have the same transfer path direction,
The transfer path of (1) and (2) and the transfer path of (3) are parallel to each other, and the apparatus according to the second or third invention.

第五の発明は、前記反応手段は地点Eで受け入れた反応容器を地点Fに移動可能であり、地点Bと地点Dとの間および/または地点Dと地点Fとの間に試薬の入った試薬容器が配置されている、第二から第四の発明に記載の装置である。   In the fifth invention, the reaction means can move the reaction container received at the point E to the point F, and a reagent is inserted between the point B and the point D and / or between the point D and the point F. It is an apparatus as described in 2nd-4th invention by which the reagent container is arrange | positioned.

第六の発明は、前記分注手段が前記試薬容器中の試薬を吸引し地点Fに移動された反応容器に分注可能である、第五の発明に記載の装置である。   A sixth invention is the apparatus according to the fifth invention, wherein the dispensing means is capable of sucking the reagent in the reagent container and dispensing it into the reaction container moved to the point F.

第七の発明は、前記第一供給手段が複数の反応容器をXY軸方向に配置する反応容器配列手段からなり、XY軸および垂直方向のZ軸方向に自在に移動可能なピックアップ搬送ヘッドを備えた前記第一移送手段により、前記反応容器配列手段に配置された反応容器を地点Gに移送する、第二から第六の発明に記載の装置である。   In a seventh aspect of the invention, the first supply means comprises a reaction container arrangement means for arranging a plurality of reaction containers in the XY-axis direction, and includes a pickup transport head that can move freely in the XY-axis and the vertical Z-axis direction. The apparatus according to the second to sixth inventions, wherein the first transfer means transfers the reaction container arranged in the reaction container arrangement means to the point G.

本発明の自動分析装置は、二つの供給手段(反応容器を供給する第一供給手段、試料容器のみを供給する、または試料容器と反応容器を供給する第二供給手段)と、搬送手段へ反応容器を移送する移送手段とを備え、前記第二供給手段が試料容器のみを供給する手段の場合は第一供給手段に配置された反応容器を搬送手段に移送する第一移送手段より反応容器を搬送手段に移送し、前記第二供給手段が試料容器と反応容器を供給する手段の場合は、第二供給手段に配置された反応容器を搬送手段に移送する第二移送手段より、または第一移送手段と第二移送手段より反応容器を搬送手段に移送することを特徴としている。よって、本発明の自動分析装置は、検査対象の試料数や各測定項目の測定数の変動に柔軟に対応することができる。   The automatic analyzer of the present invention reacts with two supply means (a first supply means for supplying a reaction container, a second supply means for supplying only a sample container or a sample container and a reaction container), and a conveying means. A transfer means for transferring the container, and when the second supply means is a means for supplying only the sample container, the reaction container is transferred from the first transfer means for transferring the reaction container arranged in the first supply means to the transfer means. In the case where the second supply means is a means for supplying the sample container and the reaction container, the second supply means for transferring the reaction container arranged in the second supply means to the transfer means, or the first supply means The reaction container is transferred to the transfer means by the transfer means and the second transfer means. Therefore, the automatic analyzer of the present invention can flexibly cope with fluctuations in the number of samples to be inspected and the number of measurements of each measurement item.

例えば、検査対象試料が少ない場合および/または一つの試料に対する測定数が少ない場合は、第二供給手段に試料容器と反応容器を設置して、搬送手段への反応容器の移送を第二移送手段より行なえばよい。なお前記操作を実施中、検査対象試料に対して追加の測定または異なる測定を行ないたい場合は、第一供給手段に反応容器を設置後、搬送手段への反応容器の移送を第二移送手段から第一移送手段に切り替えることで対応可能である。検査対象試料が少なく、一つの試料に対する測定数が多いまたは測定数が各試料により大きく異なる場合は、第一供給手段に反応容器を設置し、第二供給手段に試料容器と反応容器を設置して、搬送手段への反応容器の移送を第一移送手段および第二移送手段より行なえばよい。検査対象試料が多い場合および/または一つの試料に対する測定数が多い場合は、第二供給手段に試料容器のみを設置して、搬送手段への反応容器の移送を第一移送手段より行なえばよい。   For example, when the number of samples to be inspected is small and / or when the number of measurements for one sample is small, a sample container and a reaction container are installed in the second supply means, and the transfer of the reaction container to the transport means is performed by the second transport means. You can do more. In addition, when performing the above-described operation, if additional measurement or different measurement is to be performed on the sample to be inspected, the reaction container is transferred from the second transfer means to the transfer means after the reaction container is installed in the first supply means. This can be done by switching to the first transfer means. If the number of samples to be inspected is small and the number of measurements for one sample is large or the number of measurements varies greatly from sample to sample, install a reaction container in the first supply means and install a sample container and reaction container in the second supply means. Thus, the transfer of the reaction container to the transfer means may be performed by the first transfer means and the second transfer means. When there are many samples to be inspected and / or when the number of measurements for one sample is large, only the sample container may be installed in the second supply means, and the reaction container may be transferred to the transfer means from the first transfer means. .

また本発明の自動分析装置は、検査対象試料が多い場合および/または一つの試料に対する測定数が多い場合でも、搬送手段や反応手段を大型化することなく測定が可能であるため、従来の装置と比較し設置スペースの小型化が可能である。   The automatic analyzer according to the present invention can measure without increasing the size of the transport means and the reaction means even when there are many samples to be inspected and / or when the number of measurements on one sample is large. The installation space can be reduced compared to

本発明の自動分析装置の基本的全体構成の一例を説明する模式図。The schematic diagram explaining an example of the fundamental whole structure of the automatic analyzer of this invention. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第二供給手段10を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation at the time of using the 2nd supply means 10 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第二供給手段10を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation at the time of using the 2nd supply means 10 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第二供給手段10を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation at the time of using the 2nd supply means 10 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第二供給手段10を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation at the time of using the 2nd supply means 10 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第一供給手段70を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation when using the 1st supply means 70 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第一供給手段70を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation when using the 1st supply means 70 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG. 図1の自動分析装置で反応容器を反応手段へ供給する際に、反応容器供給手段として第一供給手段70を用いた時の、搬送および分注操作の説明図。Explanatory drawing of conveyance and dispensing operation when using the 1st supply means 70 as a reaction container supply means, when supplying a reaction container to a reaction means with the automatic analyzer of FIG.

以下、免疫分析のための自動免疫分析装置を例として本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by taking an automatic immune analyzer for immunoassay as an example.

図1は本発明の自動分析装置の基本的全体構成の一例を説明する模式図である。   FIG. 1 is a schematic diagram illustrating an example of a basic overall configuration of an automatic analyzer according to the present invention.

第二供給手段10はステッピングモーター等の制御が容易な駆動装置等によって構成される環状軌道11(以下、無限軌道と表記)を有しており、試料容器12および反応容器13は両者が混在した状態で配置後、矢印の方向(右回り)に供給し、各容器ごとに無限軌道11上の地点AおよびBへ順次供給する。図1の装置における反応容器13には、分析項目に対応した固相化抗体および酵素標識抗体が予め凍結乾燥状態で封入されている。また、図1の装置における試料容器12には、血液、血清、血漿、尿等の生体試料、前記生体試料を定量するための標準試料、または分析装置の精度管理用試料が収容されている。なお、前記のように、反応容器13に予め試薬が封入されている場合には、第二供給手段10により反応容器13が無限軌道11上の地点Aに供給される前、または第二移送手段21により反応容器13が無限軌道11上の地点Aから搬送手段40上の地点Cに移送後、かつ搬送手段40上の地点Dにて試料の分注が行なわれる前に、容器の封入部を破開するための手段(図1には不図示)を設置する。   The second supply means 10 has an annular track 11 (hereinafter referred to as an endless track) constituted by a drive device that can be easily controlled, such as a stepping motor, and both the sample container 12 and the reaction container 13 are mixed. After being arranged in a state, it is supplied in the direction of the arrow (clockwise) and supplied sequentially to points A and B on the endless track 11 for each container. In the reaction container 13 in the apparatus of FIG. 1, a solid-phased antibody and an enzyme-labeled antibody corresponding to the analysis item are sealed in a freeze-dried state in advance. Further, the sample container 12 in the apparatus of FIG. 1 accommodates a biological sample such as blood, serum, plasma, urine, a standard sample for quantifying the biological sample, or a sample for quality control of the analyzer. As described above, when the reagent is sealed in the reaction vessel 13 in advance, the second supply unit 10 supplies the reaction vessel 13 to the point A on the endless track 11 or the second transfer unit. 21, after the reaction vessel 13 is transferred from the point A on the endless track 11 to the point C on the transport unit 40 and before the sample is dispensed at the point D on the transport unit 40, A means (not shown in FIG. 1) for breaking is installed.

図1における第二供給手段10は、試料容器12および反応容器13を保持する市販の容器ラック14を移動させる構成であるが、試料容器12または反応容器13を設置可能な凹部を有するトレイをスネークチェーンで環状に連結することで無限軌道11を形成し、前記軌道をスプロケットで駆動する手段や、前記トレイを1つずつ通すだけの幅を有した溝形の無限軌道11の底部にベルトコンベアを設けトレイを1つずつ移動させる手段等の、公知の手段を採用することもできる。   The second supply means 10 in FIG. 1 is configured to move a commercially available container rack 14 that holds a sample container 12 and a reaction container 13, but a snake having a recess in which the sample container 12 or the reaction container 13 can be installed is snaked. An endless track 11 is formed by connecting the ring with a chain, and a belt conveyor is installed at the bottom of the groove-shaped endless track 11 having a width enough to pass the tray one by one, or a means for driving the track with a sprocket. Known means such as means for moving the provided trays one by one can also be adopted.

図1において無限軌道11は、概ね長方形型の軌道となっているが、円形、多角形または不定形の軌道であってもよい。また容器ラック14を、無限軌道11の短辺部分(図1では縦の部分)では容器ラック14の長辺方向が無限軌道11の短辺方向に対して直交するように移動させ、無限軌道11の長辺部分(図1では横の部分)では容器ラック14の長辺方向と無限軌道11の長辺方向とが一致するように移動させることで、無限軌道11上の容器ラック14の設置数を向上させることができる。   In FIG. 1, the endless track 11 is a substantially rectangular track, but may be a circular, polygonal, or irregular track. Further, the container rack 14 is moved so that the long side direction of the container rack 14 is orthogonal to the short side direction of the endless track 11 at the short side portion (vertical portion in FIG. 1) of the endless track 11. The long side portion of FIG. 1 (the horizontal portion in FIG. 1) is moved so that the long side direction of the container rack 14 and the long side direction of the endless track 11 coincide with each other. Can be improved.

図1の第二供給手段10はさらに、無限軌道11上に設置された試料容器12および/または反応容器13に関する情報を取得するためのセンサー15を備えている。センサー15の機能としては、容器ラック14に前記容器が設置されているか否かの情報、および前記容器が設置されている場合はその種別(試料容器12か反応容器13か)等の情報を読み取る機能が例示できる。なお、反応容器13中に予め所定の反応のための試薬の一部または全部が封入されている場合、予め反応容器13に反応種別に応じたラベルを貼付し、それをセンサー15で読み取ることで、後述する分注手段30による試料の分注量を反応種別に応じて変更させることができる。また、センサー15の設置場所としては、無限軌道11上の地点Aに至る以前の地点(図1では地点Aより左側の地点)に設けるのが好ましい。もちろん、第二供給手段10により供給される容器の種別について、例えば独立した容器ラック14の移動方向側先頭(図1では容器ラック14の最も右側にある位置)に必ず試料容器12を設置するといった取り決めがあれば、容器の種別を読み取るためのセンサー15を設置する必要はない。   The second supply means 10 of FIG. 1 further includes a sensor 15 for acquiring information related to the sample container 12 and / or the reaction container 13 installed on the endless track 11. As a function of the sensor 15, information on whether or not the container is installed in the container rack 14 and information on the type (sample container 12 or reaction container 13) when the container is installed are read. The function can be exemplified. When a part or all of the reagent for a predetermined reaction is sealed in the reaction container 13 in advance, a label corresponding to the reaction type is attached to the reaction container 13 in advance and the sensor 15 reads the label. The amount of sample dispensed by the dispensing means 30 described later can be changed according to the reaction type. The sensor 15 is preferably installed at a point before reaching the point A on the endless track 11 (a point on the left side of the point A in FIG. 1). Of course, with respect to the type of the container supplied by the second supply means 10, for example, the sample container 12 is always installed at the head of the independent container rack 14 in the moving direction (the position on the rightmost side of the container rack 14 in FIG. 1). If there is an agreement, there is no need to install a sensor 15 for reading the type of container.

容器を供給する第二供給手段10は、設備の簡略化等の点で一平面上に存在するのが好ましいが、移動途中に高さ方向(Z軸方向)に容器を移動させる手段をさらに設置してもよく、前記手段を設置することにより、平行な二平面以上で容器を移動させることができるため、第二供給手段10における最大架設数をさらに向上させることができる。   The second supply means 10 for supplying the container is preferably present on one plane in terms of simplification of equipment, etc., but further means for moving the container in the height direction (Z-axis direction) during the movement is further installed. Alternatively, by installing the means, the container can be moved in two or more parallel planes, so that the maximum number of installations in the second supply means 10 can be further improved.

第二供給手段10に設置した反応容器13は、第二供給手段10中にあるセンサー15により、反応容器13と認識され、無限軌道11上の地点Aに到達後、後述する第二移送手段21により搬送手段40にある地点Cに移送される。図1の場合、試料容器12に続いて5個の反応容器13が設置されているが、前記5個の反応容器はそれぞれ、第二供給手段10により無限軌道11上の地点Aに供給された段階で第二移送手段21により搬送手段40に移送される。搬送手段40は、地点Cで反応容器13を受け入れるとともに、受け入れた反応容器13を地点Dへ搬送する。地点Dでは、後述する分注手段30により、地点Bに供給された試料容器12から吸引された所定量の試料が分注される。   The reaction container 13 installed in the second supply means 10 is recognized as the reaction container 13 by the sensor 15 in the second supply means 10 and reaches the point A on the endless track 11, and then the second transfer means 21 described later. Is transferred to a point C in the conveying means 40. In the case of FIG. 1, five reaction containers 13 are installed following the sample container 12, and each of the five reaction containers is supplied to the point A on the endless track 11 by the second supply means 10. In step, the second transfer means 21 transfers the transfer means 40 to the transfer means 40. The transport means 40 receives the reaction container 13 at the point C and transports the received reaction container 13 to the point D. At the point D, a predetermined amount of sample sucked from the sample container 12 supplied to the point B is dispensed by the dispensing means 30 described later.

無限軌道11上の地点Aから地点Bまでの最大容器設置数については、1試料について実施が予定される分析回数、すなわち、1試料について消費される反応容器13の数(例えば、1試料について同一分析をX回行なう場合や異なるX回の分析を行なう場合はX)を考慮の上、決定する方法が例示できる。また別の例として、市販の容器ラック14に設置可能な容器数に基づいて決定してもよい。図1の装置では、容器ラック14に設置可能な容器の数(6個)に基づき、無限軌道11上の地点Aから地点Bの間に最大6個の容器を設置可能としている。よって、反応容器13が全て同じ試薬を収容した場合は同一分析が5回可能であり、反応容器13が全て異なる分析に対応した試薬を収容した場合は同一試料に対して5回異なる分析を行なうことができる。なお、地点Aから地点Bまでの間により多くの容器を配置する場合は、地点Aから地点Bまでの無限軌道11を図1とは異なるものに変更すればよい。   Regarding the maximum number of containers installed from point A to point B on the endless track 11, the number of analyzes scheduled to be performed for one sample, that is, the number of reaction containers 13 consumed for one sample (for example, the same for one sample) In the case where the analysis is performed X times or different X times of analysis, a method of determining in consideration of X) can be exemplified. As another example, it may be determined based on the number of containers that can be installed in a commercially available container rack 14. In the apparatus of FIG. 1, a maximum of six containers can be installed between point A and point B on the endless track 11 based on the number (6) of containers that can be installed in the container rack 14. Therefore, when all the reaction containers 13 contain the same reagent, the same analysis can be performed five times, and when all the reaction containers 13 contain reagents corresponding to different analyses, the same sample is analyzed five times differently. be able to. In the case where more containers are arranged between the point A and the point B, the endless track 11 from the point A to the point B may be changed to a different one from that in FIG.

搬送手段40は、後述する第二移送手段21または第一移送手段80により受け入れた反応容器13を地点Cと地点Dまたは地点Cと地点Gとの間で搬送する手段である。そのため、第二供給手段10のような環状の無限軌道からなる手段よりも、図1に示すような所定数の反応容器13を保持し、かつ反応容器13を直線軌道上で往復搬送させる手段のほうが、装置構成が簡略化できる点で好ましい。搬送手段40を所定数の反応容器13を保持し得る構成とした場合、前記所定数としては、第二供給手段10における無限軌道11上の地点Aから地点Bまでの間に設置可能な容器数と同一とするのが好ましい。なお、第二供給手段10から搬送手段40は、反応容器13の移送に加え、第二供給手段10に設置した試料容器12から吸引された試料の分注操作が行なわれるため、同一平面上に設置しているのが好ましい。ただし、高さ方向(Z軸方向)に反応容器13を移送可能な手段を、後述する第二移送手段21として採用した場合は、第二供給手段10による無限軌道11が属する平面と高さ方向に平行な平面上で反応容器13を往復搬送するような構成をとってもよい。さらに、図1に示したように、第二供給手段10と搬送手段40において、容器を設置した場合の隣接する容器の間隔をほぼ同一としておき、かつ前記間隔分ずつ第二供給手段10および搬送手段40に設置した容器を間欠移動させると、装置を制御する点で特に好ましい。間欠移動の速度には特に限定はなく、一例として10から100秒毎に前記間隔分ずつ移動させる方法があげられる。もっとも、常に同じ速度/間隔で移動する必要はなく、例えば試料容器12が無限軌道11上の地点Bに供給された場合は、分注手段30による分注操作を確実に実施する上で必要な時間、供給(移動)を停止すること等があげられる。   The transport means 40 is a means for transporting the reaction vessel 13 received by the second transport means 21 or the first transport means 80 described later between the point C and the point D or between the point C and the point G. Therefore, rather than a means having an annular endless track such as the second supply means 10, a means for holding a predetermined number of reaction vessels 13 as shown in FIG. This is preferable in that the device configuration can be simplified. When the transport unit 40 is configured to hold a predetermined number of reaction vessels 13, the predetermined number is the number of containers that can be installed between point A and point B on the endless track 11 in the second supply unit 10. Is preferably the same. The second supply means 10 to the transport means 40 perform the dispensing operation of the sample sucked from the sample container 12 installed in the second supply means 10 in addition to the transfer of the reaction container 13, so that they are on the same plane. It is preferable to install. However, when a means capable of transferring the reaction vessel 13 in the height direction (Z-axis direction) is adopted as the second transfer means 21 described later, the plane to which the endless track 11 belongs by the second supply means 10 and the height direction. The reaction vessel 13 may be reciprocated on a plane parallel to the surface. Further, as shown in FIG. 1, in the second supply means 10 and the transport means 40, the interval between adjacent containers when the containers are installed is made substantially the same, and the second supply means 10 and the transport are carried by the interval. It is particularly preferable to intermittently move the container installed in the means 40 in terms of controlling the apparatus. There is no particular limitation on the speed of the intermittent movement, and an example is a method of moving by the interval every 10 to 100 seconds. However, it is not always necessary to move at the same speed / interval. For example, when the sample container 12 is supplied to the point B on the endless track 11, it is necessary to reliably perform the dispensing operation by the dispensing means 30. For example, time and supply (movement) are stopped.

搬送手段40は、反応容器13に分注された試料を分析のための試薬と混合し、均一化するための撹拌手段をさらに備えているのが好ましい。撹拌手段の例としては、反応容器の上部から撹拌パドルを反応容器13中に挿入して撹拌するパドル手段、搬送手段40下部に偏心カムを取り付けておき前記カムの回転により振動を加えるカム手段、水平面内の振動のためのガイド部材を介してモーターと繋合した振動伝達板を搬送手段40に取りつける手段等公知の手段があげられるが、反応液と接触しない撹拌方法を用いた手段が特に好ましい。   The transport means 40 preferably further includes a stirring means for mixing the sample dispensed into the reaction vessel 13 with a reagent for analysis and homogenizing it. Examples of stirring means include paddle means for stirring by inserting a stirring paddle into the reaction container 13 from the upper part of the reaction container, cam means for attaching an eccentric cam to the lower part of the conveying means 40 and applying vibration by rotation of the cam, Known means such as means for attaching a vibration transmission plate connected to a motor via a guide member for vibration in a horizontal plane to the conveying means 40 can be mentioned, but means using a stirring method that does not contact the reaction liquid is particularly preferable. .

反応手段50は、後述する第三移送手段22により、搬送手段40から移送された反応容器13を同心円軌道51上の地点Eで受け入れ、反応容器13を所定温度に維持し、所定の一定温度条件下での免疫反応といった所定の反応を進めるものである。図1における反応手段50は、ステッピングモーター等の駆動手段(図1には不図示)で回転駆動される、同心円軌道51上に反応容器を保持するための孔が設けられた円板で構成されているが、反応手段50の構成はこれに限定されるものではなく、第二供給手段10と同様、環状の無限軌道からなる構成であってもよい。また免疫分析装置として構成された図1の装置では、いわゆるB/F分離のための装置、標識酵素の作用を受け蛍光物質に変化する酵素基質を分注する装置、反応を促進するための撹拌装置(いずれも図1には不図示)等とともに、測定手段52が、反応手段50の同心円軌道51上に位置する反応容器13に対して、それぞれB/F分離、基質分注および測定が実施できるように配置されている。   The reaction unit 50 receives the reaction vessel 13 transferred from the transfer unit 40 by a third transfer unit 22 described later at a point E on the concentric circular orbit 51, maintains the reaction vessel 13 at a predetermined temperature, and maintains a predetermined constant temperature condition. It promotes a predetermined reaction such as an immune reaction below. The reaction means 50 in FIG. 1 is composed of a disc provided with a hole for holding a reaction vessel on a concentric circular orbit 51 that is rotationally driven by a drive means such as a stepping motor (not shown in FIG. 1). However, the structure of the reaction means 50 is not limited to this, and may be a structure composed of an annular endless track like the second supply means 10. In the apparatus of FIG. 1 configured as an immunoassay apparatus, an apparatus for so-called B / F separation, an apparatus for dispensing an enzyme substrate that changes to a fluorescent substance under the action of a labeling enzyme, and an agitation for promoting the reaction Along with the apparatus (both not shown in FIG. 1) and the like, the measurement means 52 performs B / F separation, substrate dispensing, and measurement on the reaction vessel 13 positioned on the concentric circular orbit 51 of the reaction means 50, respectively. Arranged to be able to.

反応手段50における反応容器13を所定の温度に維持するための温調装置の一例として、例えば前記円板自体を所定の温度に維持する装置や、反応容器13の受け入れ地点E等を除いて反応手段50全体を筐体で覆い、前記筐体の内部温度をヒーター等で温度調節する装置があげられる。また、必要に応じて、反応手段50には反応を促進させるための撹拌装置を付加することができる。前記撹拌装置の例としては、予め反応容器13中に微小の磁性物質を入れておき、反応手段50内に設置した磁性体を移動させることで、反応容器13中の磁性物質を移動させ撹拌させる装置があげられる。   As an example of a temperature control device for maintaining the reaction vessel 13 at a predetermined temperature in the reaction means 50, for example, the reaction is performed except for the device for maintaining the disk itself at a predetermined temperature, the receiving point E of the reaction vessel 13, and the like. A device that covers the entire means 50 with a casing and adjusts the internal temperature of the casing with a heater or the like can be mentioned. Further, if necessary, the reaction means 50 can be added with a stirring device for promoting the reaction. As an example of the agitation device, a minute magnetic substance is put in the reaction vessel 13 in advance, and the magnetic substance installed in the reaction means 50 is moved to move and stir the magnetic substance in the reaction vessel 13. Equipment.

反応手段50が設置可能な反応容器13の数は、第二供給手段10の搬送能力、後述する第一供給手段70の供給能力、分注手段30の分注処理能力、反応手段50上に配置した測定手段52の処理能力に加え、分析のために必要な反応時間を考慮して適切な数を決定すればよい。設置すべき反応容器13の数を少なくすると、反応手段50自体を小型化することが可能である。反応容器13の設置数を多くするため反応手段50のためのスペースを大きくする必要がある場合は、反応手段50を第二供給手段10、搬送手段40および第一供給手段70が設置される平面と高さ方向に平行な平面上に設置すればよい。前記構成をとることで、設置すべき反応容器13の数を多くする必要があっても装置の小型化が可能となり、設置面積を小さくすることが可能となる。   The number of reaction vessels 13 in which the reaction means 50 can be installed is the transfer capacity of the second supply means 10, the supply capacity of the first supply means 70 described later, the dispensing processing capacity of the dispensing means 30, and the reaction container 50. In addition to the processing capability of the measuring means 52, an appropriate number may be determined in consideration of the reaction time required for analysis. If the number of reaction vessels 13 to be installed is reduced, the reaction means 50 itself can be reduced in size. When it is necessary to increase the space for the reaction means 50 in order to increase the number of reaction vessels 13 installed, the reaction means 50 is a plane on which the second supply means 10, the transport means 40, and the first supply means 70 are installed. It should be installed on a plane parallel to the height direction. By adopting the above-described configuration, the apparatus can be downsized and the installation area can be reduced even when the number of reaction vessels 13 to be installed needs to be increased.

第二供給手段10の無限軌道11上の地点Aから搬送手段40にある地点Cへの反応容器13の移送は第二移送手段21により、搬送手段40にある地点Cから反応手段50の同心円軌道51上にある地点Eへの反応容器13の移送は第三移送手段22により、それぞれ行なわれる。第二移送手段21が移送する反応容器13は試料が分注される以前の容器であるが、第三移送手段22が移送する反応容器13は試料分注後の容器である。そのため、第三移送手段22は、第二移送手段21と比較し、より高い精度で容器を移送可能な手段であるのが好ましい。なお、高い精度で容器を移送可能な手段を用いる場合は、第二移送手段21および第三移送手段22を単一の移送手段で兼用してもよく、前記構成をとることで装置構成をより簡略化することができる。高い精度で容器を移送可能な手段の具体例としては、反応容器13にあるフランジと把持する挟持部(チャックヘッド)等の挟持手段とこれを移動する公知の手段があげられる。   The transfer of the reaction vessel 13 from the point A on the endless track 11 of the second supply means 10 to the point C in the transfer means 40 is performed by the second transfer means 21 from the point C in the transfer means 40 to the concentric circular orbit of the reaction means 50. The transfer of the reaction vessel 13 to the point E on 51 is performed by the third transfer means 22. The reaction container 13 transferred by the second transfer means 21 is a container before the sample is dispensed, whereas the reaction container 13 transferred by the third transfer means 22 is a container after sample dispensing. Therefore, it is preferable that the third transfer means 22 is a means capable of transferring the container with higher accuracy than the second transfer means 21. In addition, when using a means capable of transferring the container with high accuracy, the second transfer means 21 and the third transfer means 22 may be used as a single transfer means. It can be simplified. Specific examples of the means capable of transferring the container with high accuracy include a holding means such as a flange in the reaction vessel 13 and a holding part (chuck head) for gripping, and a known means for moving the holding means.

第二移送手段21による反応容器13の移送は第二供給手段10から搬送手段40への一方的な移送である。一方、第三移送手段22による反応容器13の移送は、搬送手段40から反応手段50への移送に加え、場合によっては反応手段50から搬送手段40への移送も行なわれる。反応手段50から搬送手段40への反応容器の移送が行なわれる例としては、試料を反応容器13に分注し、所定の温度条件下で第1の反応を行なった後、さらに試薬を分注し、後述する搬送手段40が有する撹拌手段により撹拌後、所定の温度条件下で第2の反応を行なう例があげられる。ここで、前記第1および第2の反応は、多段免疫反応の各段階に対応する反応であってもよい。また例として、全血試料を溶血したり血清試料中のタンパク質をアルカリ変性する処理を搬送手段40上で行なった後、反応容器13を反応手段50に移して一定温度で一定時間加温処理する工程を第1の反応とみなし、前記工程後に反応容器13を搬送手段40に戻して中和剤を分注し撹拌操作を伴う中和処理を行なう工程を第2の反応とみなすことができる。   The transfer of the reaction vessel 13 by the second transfer means 21 is a one-way transfer from the second supply means 10 to the transport means 40. On the other hand, the transfer of the reaction vessel 13 by the third transfer unit 22 is performed in addition to the transfer from the transfer unit 40 to the reaction unit 50 and, in some cases, the transfer from the reaction unit 50 to the transfer unit 40. As an example in which the reaction container is transferred from the reaction means 50 to the transport means 40, a sample is dispensed into the reaction container 13, the first reaction is performed under a predetermined temperature condition, and then a reagent is further dispensed. An example in which the second reaction is performed under a predetermined temperature condition after stirring by a stirring unit included in the transport unit 40 described later. Here, the first and second reactions may be reactions corresponding to each stage of a multistage immune reaction. Further, as an example, after the treatment for lysing the whole blood sample or alkali denaturing the protein in the serum sample is performed on the transport means 40, the reaction vessel 13 is transferred to the reaction means 50 and heated at a constant temperature for a certain time. The step can be regarded as the first reaction, and the step of returning the reaction vessel 13 to the conveying means 40 after the step and dispensing the neutralizing agent to perform the neutralization process with the stirring operation can be regarded as the second reaction.

前述の第二移送手段21および第三移送手段22は、単一の手段で兼用する場合であっても、それぞれ異なる手段で構成する場合であっても、その移送経路は直線が好ましい。特に、地点Aから地点Cへの移送経路、および地点Cから地点Eへの移送経路がともに直線からなり、かつ両移送経路の方向が一致している構成が好ましい。   Whether the second transfer means 21 and the third transfer means 22 are used as a single means or configured as different means, the transfer path is preferably a straight line. In particular, it is preferable that the transfer route from the point A to the point C and the transfer route from the point C to the point E are both straight lines and the directions of the two transfer routes are the same.

第二供給手段10に設置した試料容器12中の試料は分注手段30により、搬送手段40に移送し設置された反応容器13に分注される。試料を希釈する必要がある場合には、希釈液を供給する構成を採用し、分注手段30が無限軌道11上の地点Bで試料の吸引前または吸引後に、希釈液を吸引するようにしてもよい。分注手段30自体は、ポンプに接続されたノズル軸と、前記ノズル軸を試料を吸引する無限軌道11上にある地点Bから試料を分注する搬送手段40にある地点Dへ移動する装置で構成されるが、前記装置は公知の装置を採用することができる。なお、分析中の試料間汚染を避けるためには試料毎に異なるノズルチップを使用するのが好ましく、図1の装置においても試料毎に異なるノズルチップを使用している。試料毎に異なるノズルチップを使用している場合、分注手段30に対して交換用のノズルチップを供給するため、分注手段30が移動する地点Bから地点Dの途中に交換用ノズル61を搬送する手段を追加するとともに、使用後のノズルチップを廃棄するための廃棄箱(図1には不図示)を分注手段30の移動経路内に配置する構成が例示できる。前記構成を採用する場合は、分注手段30はノズルチップの有無を検出するセンサを取り付けて、ノズルチップが装着されていない状態で分注操作が生じないようにするのが好ましい。また、分注手段30の移動に関しては、無限軌道11上の地点Bにて試料を吸引した後、分注する搬送手段40にある地点Dに移動させる際に、ノズルチップの先端外部に付着した試料の液だれが生じる可能性に備え、ノズルチップを一度分注手段30の移送経路直下から待避させる方法が例示できる。   The sample in the sample container 12 installed in the second supply means 10 is dispensed by the dispensing means 30 to the reaction container 13 that is transferred to the transport means 40 and installed. When it is necessary to dilute the sample, a configuration in which the diluent is supplied is adopted, and the dispensing means 30 sucks the diluent at the point B on the endless track 11 before or after the sample is sucked. Also good. The dispensing means 30 itself is a device that moves from a nozzle shaft connected to a pump and a point D on the conveying means 40 that dispenses the sample from a point B on the endless track 11 that sucks the sample to the nozzle shaft. Although it is configured, a known device can be adopted as the device. In order to avoid contamination between samples during analysis, it is preferable to use a different nozzle tip for each sample, and the apparatus of FIG. 1 also uses a different nozzle tip for each sample. When a different nozzle tip is used for each sample, the replacement nozzle 61 is provided in the middle of the point D from the point B where the dispensing unit 30 moves in order to supply the replacement nozzle tip to the dispensing unit 30. A configuration in which a means for conveying is added and a disposal box (not shown in FIG. 1) for discarding the used nozzle tip is disposed in the movement path of the dispensing means 30 can be exemplified. In the case of adopting the above configuration, it is preferable that the dispensing means 30 is provided with a sensor for detecting the presence or absence of the nozzle tip so that the dispensing operation does not occur in a state where the nozzle tip is not mounted. Regarding the movement of the dispensing means 30, after the sample was sucked at the point B on the endless track 11, it was attached to the outside of the tip of the nozzle tip when moved to the point D in the conveying means 40 to be dispensed. In preparation for the possibility of sample dripping, a method of retracting the nozzle tip from directly under the transfer path of the dispensing means 30 can be exemplified.

分注手段30は、必要な場合は、反応手段50に受け入れられた反応容器13に対し、反応手段50の同心円軌道51上にある地点Fにて試薬を分注可能なように構成することができる。一例として、調整された温度の下、反応容器13に分析のために必要な試薬の一部が分注された状態で最初の反応をさせた後、残りの試薬を追加分注する必要がある場合(例えば、免疫反応を2段階で行なう場合、標識試薬を追加的に分注することになる)があげられる。前記の場合、追加的に分注する試薬を吸引するために、分注手段30の移送経路上にある、無限軌道11上の地点Bから搬送手段40にある地点Dの間または地点Dから同心円軌道51上にある地点Fの間に、追加分注すべき試薬を保持する容器62を配置、または前記位置に試薬を保持する容器62を搬送する手段を追加する方法が例示できる。なお、図1の装置では、交換用のノズルチップ61と追加試薬を保持する容器62を一体に移動して供給する構成を例示しているが、これらを別個に移動してもよい。   If necessary, the dispensing means 30 may be configured so that the reagent can be dispensed to the reaction vessel 13 received by the reaction means 50 at a point F on the concentric orbit 51 of the reaction means 50. it can. As an example, after the initial reaction is performed in a state where a part of the reagent necessary for analysis is dispensed in the reaction vessel 13 under the adjusted temperature, it is necessary to dispense the remaining reagent additionally. In some cases (for example, when an immune reaction is performed in two stages, a labeling reagent is additionally dispensed). In the above case, in order to aspirate the reagent to be additionally dispensed, it is on the transfer path of the dispensing means 30 between the point B on the endless track 11 and the point D on the conveying means 40 or concentric from the point D. A method of arranging a container 62 for holding a reagent to be additionally dispensed between points F on the track 51 or adding means for transporting the container 62 for holding a reagent to the position can be exemplified. In addition, although the apparatus of FIG. 1 illustrates the configuration in which the replacement nozzle tip 61 and the container 62 holding the additional reagent are integrally moved and supplied, these may be moved separately.

前述した、同心円軌道51上にある地点Fにて追加的に試薬を分注するための手段は、搬送手段40にある地点Dにて分注する分注手段とは別個の分注手段を設置してもよい。しかしながら、分注手段30を地点Fまで移動する構成のほうが、装置のメンテナンスの利便性を向上する点、装置構成が簡単である点、不要な駆動系を排除し単純化できる点で好ましい。   The above-described means for additionally dispensing the reagent at the point F on the concentric circular orbit 51 is provided with a dispensing means separate from the dispensing means for dispensing at the point D in the transport means 40. May be. However, the configuration in which the dispensing means 30 is moved to the point F is preferable in terms of improving the convenience of maintenance of the device, simplifying the device configuration, and simplifying by eliminating unnecessary drive systems.

なお、追加的な試薬を分注する位置は、反応テーブル上の分注位置Fに限定するものではなく、反応容器13に試料容器12中の試料を分注後、反応手段50に移送して所定時間反応の後、同心円軌道51上にある地点Eから搬送手段40にある地点Cを経て、反応容器13を分注位置Dまで戻して追加的な試薬を分注する実施態様も例示できる。前記実施態様は、搬送手段40に設置した加振手段により反応容器13を十分に攪拌することが可能なため、反応容器13中に撹拌のための磁性物質等を含まない場合、あるいは磁性物質による攪拌では不十分な場合に特に好ましい。   The position at which the additional reagent is dispensed is not limited to the dispensing position F on the reaction table, but the sample in the sample container 12 is dispensed to the reaction container 13 and then transferred to the reaction means 50. An embodiment in which an additional reagent is dispensed by returning the reaction vessel 13 to the dispensing position D from the point E on the concentric circular orbit 51 through the point C on the transport means 40 after the reaction for a predetermined time can be exemplified. In the above embodiment, since the reaction vessel 13 can be sufficiently stirred by the vibration means installed in the conveying means 40, the reaction vessel 13 does not contain a magnetic substance for stirring, or is based on a magnetic substance. This is particularly preferable when stirring is insufficient.

分注手段30の無限軌道11上の地点Bから搬送手段40にある地点Dへの移動経路は、装置構成を単純化するためにも、直線が好ましい。また、必要に応じて地点Dから同心円軌道51上にある地点Fに分注手段30を移動する場合には、前記移動経路が、地点Bから地点Dへの移動経路の延長線上に、一直線となるような構成をとると、装置構成の単純化の点で好ましい。   The movement path from the point B on the endless track 11 of the dispensing means 30 to the point D in the transport means 40 is preferably a straight line in order to simplify the apparatus configuration. In addition, when the dispensing means 30 is moved from the point D to the point F on the concentric circular orbit 51 as necessary, the movement route is a straight line on the extension line of the movement route from the point B to the point D. Such a configuration is preferable in terms of simplifying the device configuration.

さらに図1の装置には反応容器13を搬送手段40へ供給する第一供給手段70および第一移送手段80を有している。第一供給手段70は反応容器13を容易に配置可能で、かつ前記反応容器13を搬送手段40の経路上にある地点Gまで移送可能な装置であれば特に限定されないが、装置の小型化を維持しながら反応容器13を大量に配置できる点で、複数の反応容器をXY軸方向に配置する容器配列手段からなる供給手段が好ましい。また、第一移送手段80としては第一供給手段70に配置された反応容器13を搬送手段40の搬送経路上にある地点Gまで1個ずつ移送する手段であればよい。さらに第一供給手段70に配置された反応容器13の配置位置を特定し記憶するための容器在庫マッピング手段や、各試料について分析しようとする検査項目を対応付けたワークリストが指示する検査項目の反応容器13を前記マッピング手段から検索し第一移送手段80で移送すべき反応容器13を決定する手段が第一供給手段70に備わっていると、配置場所を気にすることなく第一供給手段70の空いている箇所に反応容器13を設置できる点でより好ましい。図1の装置の場合、第一供給手段70は、反応容器を縦5個×横4列に並べるトレイを11個、平面状に整列した構成となっている。第一移送手段80は、第一供給手段70の全体をカバーする水平面内で互いに直交するX軸、Y軸と、垂直方向のZ軸とからなるXYZ軸を自在に動き、位置決め可能なピックアップ搬送ヘッドを備えている。ピックアップ搬送ヘッドは、第二移送手段21および第三移送手段22と同様、公知の技術である吸引搬送機構、挟持機構その他のチャック機構を有している。また、このピックアップ搬送ヘッドは、トレイの縁部に付された検査項目識別情報を光学的に読み取るセンサ(図1には不図示)および反応容器の有無検知センサ(図1には不図示)を備え、反応容器の配置位置を特定し記憶するための容器在庫マッピング手段(図1には不図示)の一部を構成する。   Further, the apparatus of FIG. 1 has a first supply means 70 and a first transfer means 80 for supplying the reaction vessel 13 to the transport means 40. The first supply unit 70 is not particularly limited as long as the reaction vessel 13 can be easily arranged and can transfer the reaction vessel 13 to a point G on the path of the transport unit 40, but the size of the device can be reduced. The supply means which consists of the container arrangement | positioning means which arrange | positions several reaction containers to an XY-axis direction is preferable at the point which can arrange | position the reaction container 13 in large quantities, maintaining. The first transfer means 80 may be any means that transfers the reaction vessels 13 arranged in the first supply means 70 one by one to the point G on the transfer path of the transfer means 40. Further, the container inventory mapping means for specifying and storing the arrangement position of the reaction container 13 arranged in the first supply means 70, and the inspection items instructed by the work list in which the inspection items to be analyzed for each sample are associated. If the first supply means 70 has a means for retrieving the reaction container 13 from the mapping means and determining the reaction container 13 to be transferred by the first transfer means 80, the first supply means without worrying about the arrangement location. It is more preferable in that the reaction vessel 13 can be installed at 70 vacant locations. In the case of the apparatus of FIG. 1, the first supply means 70 has a configuration in which 11 trays for arranging reaction vessels in 5 × 4 rows are arranged in a plane. The first transfer means 80 is a pickup transport that can freely move and position an XYZ axis composed of an X axis, a Y axis, and a vertical Z axis that are orthogonal to each other in a horizontal plane that covers the entire first supply means 70. It has a head. Similar to the second transfer means 21 and the third transfer means 22, the pickup transfer head has a known transfer mechanism such as a suction transfer mechanism, a clamping mechanism, and other chuck mechanisms. The pickup transport head includes a sensor (not shown in FIG. 1) for optically reading inspection item identification information attached to the edge of the tray and a reaction container presence / absence detection sensor (not shown in FIG. 1). And a part of container inventory mapping means (not shown in FIG. 1) for specifying and storing the arrangement position of the reaction container.

図1の装置は、検査対象の試料数、各検査項目の測定数および検査内容により、試料容器および反応容器の供給方法ならびに反応容器の移送方法を、
(1)第一供給手段70に反応容器13を配置して反応容器13を供給し、第二供給手段10に試料容器12のみを配置して試料容器12を供給し、第一供給手段70に配置した反応容器13を第一移送手段80で搬送手段40に移送する方法、
(2)第一供給手段70に反応容器13を配置して反応容器13を供給し、第二供給手段10に試料容器12と反応容器13を配置して試料容器12と反応容器13を供給して、第一供給手段70に配置した反応容器13を第一移送手段80で、第二供給手段10に配置した反応容器13を第二移送手段21で、それぞれ搬送手段40に移送する方法、
(3)第二供給手段10に試料容器12と反応容器13を配置して試料容器12と反応容器13を供給し、第二供給手段10に配置した反応容器13を第二移送手段21で搬送手段40に移送する方法、
のいずれかを選択することができる。本構成により、小型の装置を維持したまま試料数、測定数、検査内容の変動に柔軟に対応することができる。反応容器13の供給手段として第二供給手段10を用いる場合(前記(2)および(3)の方法)は、搬送手段40は、第二供給手段10の無限軌道11上の地点Aから第二移送手段21により、搬送手段40にある地点Cで反応容器13を受け入れる。一方、反応容器13の供給手段として第一供給手段70を用いる場合(前記(1)および(2)の方法)は、搬送手段40は、第一供給手段70にある反応容器13を第一移送手段80により、搬送手段40の搬送軌道上にある地点Gで反応容器13を受け入れる。その後、反応容器13の供給手段としてどちらを使用したかにより搬送手段40の動作様式が異なる。詳細は後述するが、いずれの場合も、受け入れた反応容器13は、試料容器12中の試料を分注するために、搬送手段40にある地点Dまで搬送される。
The apparatus of FIG. 1 has a method for supplying a sample container and a reaction container and a method for transferring the reaction container depending on the number of samples to be inspected, the number of measurements for each inspection item, and the contents of the inspection.
(1) The reaction container 13 is arranged in the first supply means 70 to supply the reaction container 13, only the sample container 12 is arranged in the second supply means 10, and the sample container 12 is supplied to the first supply means 70. A method of transferring the arranged reaction vessel 13 to the transfer means 40 by the first transfer means 80;
(2) The reaction container 13 is arranged in the first supply means 70 to supply the reaction container 13, and the sample container 12 and the reaction container 13 are arranged in the second supply means 10 to supply the sample container 12 and the reaction container 13. A method of transferring the reaction container 13 arranged in the first supply means 70 to the conveying means 40 by the first transfer means 80 and the reaction container 13 arranged in the second supply means 10 by the second transfer means 21, respectively.
(3) The sample container 12 and the reaction container 13 are arranged on the second supply means 10 to supply the sample container 12 and the reaction container 13, and the reaction container 13 arranged on the second supply means 10 is conveyed by the second transfer means 21. A method of transferring to means 40;
You can choose either. With this configuration, it is possible to flexibly cope with variations in the number of samples, the number of measurements, and the contents of inspection while maintaining a small apparatus. When the second supply means 10 is used as the supply means for the reaction vessel 13 (methods (2) and (3) above), the transport means 40 moves from the point A on the endless track 11 of the second supply means 10 to the second. The transfer vessel 21 receives the reaction vessel 13 at a point C in the transfer device 40. On the other hand, when the first supply means 70 is used as the supply means for the reaction container 13 (the methods (1) and (2)), the transport means 40 first transfers the reaction container 13 in the first supply means 70. By means 80, the reaction vessel 13 is received at a point G on the transport path of the transport means 40. Thereafter, the operation mode of the transport means 40 differs depending on which one is used as the supply means of the reaction vessel 13. Although details will be described later, in any case, the received reaction container 13 is transported to a point D in the transport means 40 in order to dispense the sample in the sample container 12.

次に、図1の自動分析装置における、反応容器13の反応手段50への供給方法を図を用いて詳細に説明する。なお、無限軌道11上にある容器ラック14は10個の試薬容器12または反応容器13を収容可能な容器、搬送手段40は6個の反応容器13を収容可能な容器である。   Next, a method for supplying the reaction vessel 13 to the reaction means 50 in the automatic analyzer of FIG. 1 will be described in detail with reference to the drawings. The container rack 14 on the endless track 11 is a container capable of accommodating ten reagent containers 12 or reaction containers 13, and the transport means 40 is a container capable of accommodating six reaction containers 13.

反応容器の供給手段として第二供給手段10を用いたときは、まず図2に示すように、容器ラック14に試料容器12(以降の図では黒丸で図示)および反応容器(13aから13e、以降の図では白丸で図示)を、無限軌道11の進行方向(左から右)と逆の順番(右から左)に配置する。なお、以降の図では容器ラック14および搬送手段40にある容器保持部を白四角で図示する。図2の時点では、容器ラック14にある試料容器12は、第二移送手段21の軌道23と交差する地点Aにある。また、搬送手段40のうち右端に位置する反応容器保持部は、反応容器13を受け入れる地点Cにある。   When the second supply means 10 is used as the reaction container supply means, first, as shown in FIG. 2, a sample container 12 (illustrated by black circles in the following drawings) and reaction containers (13a to 13e, hereinafter) are placed in a container rack 14. Are arranged in the reverse order (from right to left) in the direction of travel of the endless track 11 (from left to right). In the following drawings, the container holding portions in the container rack 14 and the transport means 40 are illustrated by white squares. At the time of FIG. 2, the sample container 12 in the container rack 14 is at a point A that intersects the track 23 of the second transfer means 21. Further, the reaction container holding portion located at the right end of the transport means 40 is at a point C where the reaction container 13 is received.

図2から容器ラック14を容器保持部1つ分だけ第二供給手段10の進行方向(右方向)に移動した状態を図3に示す。図3の状態では反応容器13aが地点Aに位置しており、第二移送手段21により搬送手段40の地点Cまで移送される。以降、
(1)容器ラック14および搬送手段40を容器保持部1つ分だけ第二供給手段10の進行方向(右方向)に移動する、
(2)地点Aに位置する反応容器13を第二移送手段21により搬送手段40の地点Cまで移送する、
作業を4回繰返し、最終的に容器ラック14の最も右側にある容器保持部(つまり試料容器12が配置されている箇所)が分注手段30の軌道31と交差する地点Bまで、搬送手段40の最も右側にある容器保持部(つまり反応容器13aが配置されている箇所)が分注手段30の軌道31と交差する地点Dまで、それぞれ移動した状態を図4に示す。図4の状態では、分注手段30により地点Bにある試料容器12から試料を吸引後移動し、地点Dにて反応容器13a中へ試料を分注する。なお、以降の図では試料が分注された反応容器を二重丸で図示する。
FIG. 3 shows a state in which the container rack 14 is moved in the advancing direction (right direction) of the second supply means 10 by one container holding part from FIG. In the state of FIG. 3, the reaction vessel 13 a is located at the point A, and is transferred to the point C of the transfer means 40 by the second transfer means 21. Or later,
(1) The container rack 14 and the transport means 40 are moved in the traveling direction (right direction) of the second supply means 10 by one container holding portion.
(2) The reaction vessel 13 located at the point A is transferred to the point C of the transfer means 40 by the second transfer means 21.
The operation is repeated four times, and finally, the transport means 40 reaches the point B where the container holding portion (that is, the place where the sample container 12 is disposed) on the rightmost side of the container rack 14 intersects the track 31 of the dispensing means 30. FIG. 4 shows a state in which the rightmost container holding part (that is, the place where the reaction container 13a is disposed) has moved to a point D where it intersects the track 31 of the dispensing means 30. In the state of FIG. 4, the sample is aspirated and moved from the sample container 12 at the point B by the dispensing means 30, and the sample is dispensed into the reaction container 13 a at the point D. In the following figures, the reaction vessel into which the sample has been dispensed is illustrated by a double circle.

試料が分注された反応容器13aは第三移送手段22の軌道24と交差する地点Cの位置まで搬送後(図5)、第三移送手段22により反応手段50の同心円軌道51上にある地点Eまで移送される。反応手段50では所定の時間、所定の温度条件下で反応(例えば抗原抗体反応)を行ない、B/F分離後、検出手段52により検出を行ない、分析結果が出力される。図3から5の操作により、反応容器(13aから13e)が全て同じ試薬を収容している場合は5回の繰り返し測定をすることができ、反応容器(13aから13e)がそれぞれ異なる検査項目に対応する試薬を収容している場合は、同一試料に対して5つの異なる検査項目を実施することができる。   The reaction container 13a into which the sample has been dispensed is transported to the position of the point C intersecting with the track 24 of the third transfer means 22 (FIG. 5), and then the point on the concentric circular track 51 of the reaction means 50 by the third transfer means 22. To E. The reaction unit 50 performs a reaction (for example, an antigen-antibody reaction) for a predetermined time under a predetermined temperature condition. After the B / F separation, the detection unit 52 performs detection and outputs an analysis result. When the reaction containers (13a to 13e) all contain the same reagent by the operations shown in FIGS. 3 to 5, the measurement can be repeated five times, and the reaction containers (13a to 13e) have different test items. When the corresponding reagent is accommodated, five different inspection items can be performed on the same sample.

一方、反応容器の供給手段として第一供給手段70を用いた場合は、第一供給手段70に相当数の反応容器13が配置可能なため、検査対象試料が多い場合は、第二供給手段10に設置した容器ラック14に試料容器12のみを配置してもよい。以降、第二供給手段10が試料容器12のみを供給する場合における、反応容器13の反応手段50への供給方法を図を用いて詳細に説明する(図6から8では試料容器12を測定順に12a、12b、12c・・・と表す)。まず反応容器13を受け取るため、搬送手段40の最も右側にある容器保持部が第一移送手段80による受け入れ地点(地点G)の位置まで移動する(図6)。   On the other hand, when the first supply means 70 is used as the reaction container supply means, a considerable number of reaction containers 13 can be arranged in the first supply means 70. Only the sample container 12 may be arranged in the container rack 14 installed in the above. Hereinafter, a method of supplying the reaction vessel 13 to the reaction means 50 when the second supply means 10 supplies only the sample container 12 will be described in detail with reference to the drawings (FIGS. 6 to 8 show the sample containers 12 in the order of measurement). 12a, 12b, 12c... First, in order to receive the reaction container 13, the container holding part on the rightmost side of the transport means 40 moves to the position of the receiving point (point G) by the first transfer means 80 (FIG. 6).

地点Gにて反応容器13を受け取った後、搬送手段40により反応容器13を分注手段30の軌道31と交差する地点Dの位置まで搬送する(図7)。容器ラック14に設置した試料容器12のうち、最初に測定する試料の入った試料容器12aは分注手段30の軌道31と交差する地点Bに位置しており、試料容器12a中の試料を分注手段30により吸引後移動し、地点Dにて反応容器13中へ試料を分注する。   After receiving the reaction container 13 at the point G, the reaction container 13 is conveyed by the conveying means 40 to the position of the point D that intersects the track 31 of the dispensing means 30 (FIG. 7). Among the sample containers 12 installed on the container rack 14, the sample container 12a containing the sample to be measured first is located at a point B intersecting the track 31 of the dispensing means 30, and the sample in the sample container 12a is separated. The sample is moved after being sucked by the pouring means 30, and the sample is dispensed into the reaction vessel 13 at the point D.

反応容器13中に試料が分注された後、搬送手段40により反応容器13を第三移送手段22の軌道24と交差する地点Cの位置まで搬送し(図8)、反応容器13を第三移送手段22により反応手段50の同心円軌道51上にある地点Eまで移送する。反応手段50では所定の時間、所定の温度条件下で反応(例えば抗原抗体反応)を行ない、B/F分離後、検出手段52により検出を行ない、分析結果が出力される。図6から8の操作により、原理的には制限なく反応容器を架設することができ、ワークリストに従って各試料に対して多くの検査項目、多数の繰り返し測定が可能となる。   After the sample is dispensed into the reaction vessel 13, the reaction vessel 13 is conveyed by the conveying means 40 to the position of the point C that intersects the track 24 of the third transfer means 22 (FIG. 8). The transfer means 22 transfers to a point E on the concentric circular orbit 51 of the reaction means 50. The reaction unit 50 performs a reaction (for example, an antigen-antibody reaction) for a predetermined time under a predetermined temperature condition. After the B / F separation, the detection unit 52 performs detection and outputs an analysis result. 6 to 8, in principle, the reaction vessel can be installed without limitation, and many test items and many repeated measurements can be performed on each sample according to the work list.

以上図1の装置は、検査対象の試料数や各検査項目の測定数の変動、検査内容の多様性に柔軟に対応可能な自動分析装置であることがわかる。また、図1は第二供給手段10や反応手段50を大型化する必要がないため、大量に試料を処理する従来の自動分析装置と比較し、設置スペースの小型化が可能である。   As described above, it can be seen that the apparatus shown in FIG. 1 is an automatic analyzer that can flexibly cope with variations in the number of samples to be inspected, the number of measurements of each inspection item, and the variety of inspection contents. In addition, since it is not necessary to increase the size of the second supply means 10 and the reaction means 50 in FIG. 1, the installation space can be reduced as compared with a conventional automatic analyzer that processes a large amount of samples.

10 第二供給手段
11 環状軌道(無限軌道)
12 試料容器
13 反応容器
14 容器ラック
15 センサ
21 第二移送手段
22 第三移送手段
23 第二移送手段の軌道
24 第三移送手段の軌道
30 分注手段
31 分注手段の軌道
40 搬送手段
50 反応手段
51 同心円軌道
52 検出手段
61 交換用ノズル
62 追加分注試薬
70 第一供給手段
80 第一移送手段
10 Second supply means 11 Circular orbit (infinite orbit)
12 Sample container 13 Reaction container 14 Container rack 15 Sensor 21 Second transfer means 22 Third transfer means 23 Orbit of second transfer means 24 Orbit of third transfer means 30 Dispensing means 31 Orbit of dispensing means 40 Conveying means 50 Reaction Means 51 Concentric orbit 52 Detection means 61 Replacement nozzle 62 Additional dispensing reagent 70 First supply means 80 First transfer means

Claims (6)

反応容器を供給する第一供給手段、
試料容器のみを供給する、または試料容器と反応容器を供給する第二供給手段、
前記第一供給手段および/または前記第二供給手段に配置された反応容器を受け入れて配置する搬送手段、
搬送手段に配置された反応容器を受け入れて所定の温度に維持する反応手段、
第一供給手段に配置された反応容器を搬送手段に移送する第一移送手段、
搬送手段に配置された反応容器を反応手段に移送する第三移送手段、および
第二供給手段に配置された試料容器中の試料を吸引し搬送手段に配置された反応容器に分注する分注手段、
を有した自動分析装置において、
前記第二供給手段が試料容器のみを供給する手段の場合は、第一移送手段より反応容器を搬送手段に移送し、
前記第二供給手段が試料容器と反応容器を供給する手段の場合は、第二供給手段に配置された反応容器を搬送手段に移送する第二移送手段より、または第一移送手段と第二移送手段より反応容器を搬送手段に移送し、かつ、
前記第二供給手段は、反応容器を第二移送手段による搬送手段への移送地点である地点Aに、試料容器を分注手段による試料吸引地点である地点Bに、それぞれ供給可能な手段であり、
前記第一移送手段は、第一供給手段に配置された反応容器を搬送手段の受け入れ地点である地点Gに移送可能な手段であり、
前記第二移送手段は、第二供給手段により地点Aに供給された反応容器を搬送手段の受け入れ地点である地点Cに移送可能な手段であり、
前記搬送手段は、第一移送手段により移送された反応容器を地点Gで受け入れ、第二移送手段により移送された反応容器を地点Cで受け入れ、かつ、第二供給手段により地点Bに供給された試料容器から分注手段により吸引された試料を分注する地点である地点Dと前記地点Gと前記地点Cとの間で搬送可能な手段であり、
前記第三移送手段は、搬送手段により地点Cに搬送された反応容器を反応手段の受け入れ位置である地点Eに移送可能な手段であり、
前記反応手段が、第三移送手段により移送された反応容器を地点Eで受け入れ可能な手段であり、
前記分注手段が、第二供給手段により地点Bに供給された試料容器中の試料を吸引し、前記吸引した試料を搬送手段により地点Dに搬送された反応容器に分注可能な手段である、
前記装置。
A first supply means for supplying the reaction vessel;
A second supply means for supplying only the sample container or for supplying the sample container and the reaction container;
Conveying means for receiving and arranging the reaction vessel arranged in the first supply means and / or the second supply means;
A reaction means for receiving a reaction vessel arranged in the conveying means and maintaining it at a predetermined temperature;
First transfer means for transferring the reaction vessel arranged in the first supply means to the transport means;
Dispensing for sucking the sample in the sample container arranged in the second supply means and dispensing the reaction container arranged in the conveyance means to the reaction container arranged in the conveyance means. means,
In an automatic analyzer having
When the second supply means is a means for supplying only the sample container, the reaction container is transferred from the first transfer means to the transfer means,
When the second supply means is a means for supplying the sample container and the reaction container, the second transfer means for transferring the reaction container arranged in the second supply means to the transport means, or the first transfer means and the second transfer Means to transfer the reaction vessel to the conveying means , and
The second supply means is means capable of supplying the reaction container to the point A which is a transfer point to the transfer means by the second transfer means and the sample container to the point B which is a sample suction point by the dispensing means. ,
The first transfer means is means capable of transferring the reaction vessel arranged in the first supply means to a point G that is a receiving point of the transfer means,
The second transfer means is a means capable of transferring the reaction vessel supplied to the point A by the second supply means to the point C which is a receiving point of the transfer means,
The transfer means receives the reaction container transferred by the first transfer means at the point G, receives the reaction container transferred by the second transfer means at the point C, and is supplied to the point B by the second supply means. A means capable of transporting between the point D, the point G, and the point C, which are points where the sample sucked from the sample container is dispensed,
The third transfer means is a means capable of transferring the reaction vessel transferred to the point C by the transfer means to the point E which is the receiving position of the reaction means,
The reaction means is a means capable of receiving the reaction container transferred by the third transfer means at the point E,
The dispensing means is means capable of sucking the sample in the sample container supplied to the point B by the second supply means and dispensing the sucked sample into the reaction container transported to the point D by the transport means. ,
Said device.
前記第二供給手段での地点Aと地点B間の試料容器の、または試料容器と反応容器の供給経路と、
前記搬送手段での地点C、地点Dおよび地点G間の搬送経路とがいずれも直線かつ互いに平行である、請求項に記載の装置。
The sample container between point A and point B in the second supply means, or the supply path of the sample container and the reaction container;
The apparatus according to claim 1 , wherein a point C, a point D, and a transfer path between the points G in the transfer unit are all linear and parallel to each other.
(1)前記第二移送手段による地点Aから地点Cへの反応容器の移送経路、
(2)前記第三移送手段による地点Cから地点Eへの反応容器の移送経路、
(3)前記分注手段による地点Bから地点Dへの移送経路、
はいずれも直線であり、
前記(1)と(2)の移送経路の方向は一致しており、
かつ前記(1)と(2)の移送経路、および(3)の移送経路は互いに平行である、請求項またはに記載の装置。
(1) The transfer path of the reaction vessel from the point A to the point C by the second transfer means,
(2) The transfer path of the reaction vessel from the point C to the point E by the third transfer means,
(3) Transfer route from point B to point D by the dispensing means,
Are both straight lines,
(1) and (2) have the same transfer path direction,
The apparatus according to claim 1 or 2 , wherein the transfer paths (1) and (2) and the transfer path (3) are parallel to each other.
前記反応手段が地点Eで受け入れた反応容器を分注手段による試薬分注地点である地点Fに移動可能であり、地点Bと地点Dとの間および/または地点Dと地点Fとの間に前記試薬の入った試薬容器が配置されている、請求項から3のいずれかに記載の装置。 The reaction container received by the reaction means at the point E can be moved to the point F which is the reagent dispensing point by the dispensing means , and between the point B and the point D and / or between the point D and the point F. the reagent of containing reagent containers are arranged, according to any of claims 1 to 3. 前記分注手段が前記試薬容器中の試薬を吸引し地点Fに移動された反応容器に分注可能である、請求項に記載の装置。 The apparatus according to claim 4 , wherein the dispensing means is capable of sucking the reagent in the reagent container and dispensing the reagent into the reaction container moved to the point F. 前記第一供給手段が複数の反応容器をXY軸方向に配置する反応容器配列手段からなり、XY軸および垂直方向のZ軸方向に自在に移動可能なピックアップ搬送ヘッドを備えた前記第一移送手段により、前記反応容器配列手段に配置された反応容器を地点Gに移送する、請求項から5のいずれかに記載の装置。 The first feeding means comprises reaction container arranging means for arranging a plurality of reaction containers in the XY-axis direction, and includes a pickup transport head that can move freely in the XY-axis and vertical Z-axis directions. Accordingly, transferring a reaction vessel that is disposed on the reaction vessel array means to the point G, apparatus according to any one of claims 1 to 5.
JP2009178078A 2009-07-30 2009-07-30 Automatic analyzer capable of switching reaction vessel supply means Active JP5321324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178078A JP5321324B2 (en) 2009-07-30 2009-07-30 Automatic analyzer capable of switching reaction vessel supply means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178078A JP5321324B2 (en) 2009-07-30 2009-07-30 Automatic analyzer capable of switching reaction vessel supply means

Publications (2)

Publication Number Publication Date
JP2011033401A JP2011033401A (en) 2011-02-17
JP5321324B2 true JP5321324B2 (en) 2013-10-23

Family

ID=43762628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178078A Active JP5321324B2 (en) 2009-07-30 2009-07-30 Automatic analyzer capable of switching reaction vessel supply means

Country Status (1)

Country Link
JP (1) JP5321324B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275970A (en) * 1996-04-18 1997-10-28 Tosoh Corp Stirring apparatus for biochemical reaction
JP3582240B2 (en) * 1996-06-14 2004-10-27 東ソー株式会社 Automatic sample pretreatment device and automatic sample pretreatment method
JP3991495B2 (en) * 1999-03-25 2007-10-17 東ソー株式会社 Analysis equipment
JP2001165936A (en) * 1999-12-09 2001-06-22 Tosoh Corp Analytical apparatus
JP2009081922A (en) * 2007-09-25 2009-04-16 Tosoh Corp Method of driving pulse motor
JP5428332B2 (en) * 2008-12-25 2014-02-26 東ソー株式会社 Automatic analyzer

Also Published As

Publication number Publication date
JP2011033401A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP6345850B2 (en) Automatic diagnostic analyzer with rear accessible truck system and related method
US9594089B2 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
JP5564037B2 (en) Automatic analyzer
US9063103B2 (en) Conveyor of specimen containers with spur units in laboratory automation systems
US7341691B2 (en) Automatic analyzing apparatus
WO2010090138A1 (en) Autoanalyzer and rack transfer method
JP6120763B2 (en) Apparatus and process for transporting reaction vessel
JP7113941B2 (en) In vitro diagnostic analysis method and system
JPH0894636A (en) Device and method for automatically analyzing analyte
WO2010106885A1 (en) Automatic analytical device
WO2017061555A1 (en) Specimen rack transfer device and automatic analysis system
WO2007139212A1 (en) Automatic analyzer
JP2008003010A (en) Autoanalyzer
US20170315047A1 (en) Pretreatment apparatus and sample analyzer
JP3991495B2 (en) Analysis equipment
JP5990974B2 (en) Automatic analyzer
JP2012103097A (en) Reagent kit and autoanalyzer equipped with the same
JPH0996643A (en) Enzyme immunoassay system
JP2001165936A (en) Analytical apparatus
JP5428332B2 (en) Automatic analyzer
JP5321324B2 (en) Automatic analyzer capable of switching reaction vessel supply means
WO2020152991A1 (en) Automatic analysis system and specimen conveying method
JP5880604B2 (en) Automatic analyzer
US20190201904A1 (en) Sample measuring apparatus and sample measuring method
CN113711053B (en) Automatic analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5321324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151