JP5321079B2 - Gas adsorption filter and gas adsorption device - Google Patents

Gas adsorption filter and gas adsorption device Download PDF

Info

Publication number
JP5321079B2
JP5321079B2 JP2009009512A JP2009009512A JP5321079B2 JP 5321079 B2 JP5321079 B2 JP 5321079B2 JP 2009009512 A JP2009009512 A JP 2009009512A JP 2009009512 A JP2009009512 A JP 2009009512A JP 5321079 B2 JP5321079 B2 JP 5321079B2
Authority
JP
Japan
Prior art keywords
filter
molded
hole
gas adsorption
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009009512A
Other languages
Japanese (ja)
Other versions
JP2010167324A (en
Inventor
由浩 辻
孝明 島戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009009512A priority Critical patent/JP5321079B2/en
Publication of JP2010167324A publication Critical patent/JP2010167324A/en
Application granted granted Critical
Publication of JP5321079B2 publication Critical patent/JP5321079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、気中のガス成分を吸着するケミカルフィルタなどガス吸着フィルタ及びガス吸着フィルタを搭載したガス吸着装置に関するものである。   The present invention relates to a gas adsorption filter such as a chemical filter that adsorbs gas components in the air, and a gas adsorption device equipped with the gas adsorption filter.

半導体製造工場や精密電子部品製造工場のクリーンルームにおける製造過程に使用されるケミカルフィルタに代表されるように、微量のガス状不純物を除去して高清浄度空気を保ち、かつ長寿命であるガス吸着フィルタが求められている。この種のガス吸着フィルタとして、特許文献1、2および3に記載されるような形状のガス吸着フィルタが提案されている。   As represented by chemical filters used in the manufacturing process in clean rooms of semiconductor manufacturing plants and precision electronic component manufacturing plants, gas adsorption that removes trace amounts of gaseous impurities to maintain high clean air and has a long service life A filter is sought. As this type of gas adsorption filter, a gas adsorption filter having a shape as described in Patent Documents 1, 2, and 3 has been proposed.

特許文献1に記載のガス吸着フィルタは細孔をもたせ表面積を増大させた粒子状の吸着剤を収納ケースに充填したものであり、空気の流入口と流出口に多孔板が設けられている。この多孔板は空気を通過させるための穴が開いており、この目の大きさは吸着剤が収納ケースから落ちない程度のものである。   The gas adsorption filter described in Patent Document 1 is a container in which a particulate adsorbent having a pore and an increased surface area is filled in a storage case, and porous plates are provided at an air inlet and an outlet. The perforated plate has holes for allowing air to pass through, and the size of the eyes is such that the adsorbent does not fall out of the storage case.

特許文献2に記載のガス吸着フィルタは、粒状吸着剤とプラスチック粉末の混合物を加熱し、加熱した混合物をゴムの型を用いて圧縮して、壁面断面形状が涙滴形状のハニカムになるように成型したものである。
特開平09−220425号公報 特許第2523059号公報
The gas adsorption filter described in Patent Document 2 heats a mixture of a granular adsorbent and a plastic powder, and compresses the heated mixture using a rubber mold so that a wall surface cross-sectional shape becomes a teardrop-shaped honeycomb. Molded.
JP 09-220425 A Japanese Patent No. 2523059

ガス吸着フィルタにはガスの捕集効率がある値まで低下するまでの時間、すなわち寿命という特性があり、ガスをいかに効率よく多く吸着できるかを表す。長寿命化のためにはガスとの接触効率を高め、吸着剤のフィルタ内への充填量を増やす必要があるが、充填量を多くすると圧力損失が大きくなり、フィルタに通風する際には、通風のための消費電力が大きくなることや騒音が大きくなるといった問題が生じる。そのため、超寿命でありながら、圧力損失が低いフィルタが求められている。   The gas adsorption filter has a characteristic of a time until the gas collection efficiency is lowered to a certain value, that is, a life, and indicates how much gas can be adsorbed efficiently. In order to extend the service life, it is necessary to increase the efficiency of contact with the gas and increase the amount of adsorbent filled into the filter, but increasing the amount of charge increases the pressure loss. There arises a problem that power consumption for ventilation increases and noise increases. Therefore, there is a demand for a filter that has a long lifetime and low pressure loss.

従来の技術において、特許文献1のようなフィルタはガスの捕集効率を上げるために吸着剤を隙間なく充填するため、圧力損失が高いという課題がある。   In the prior art, a filter such as Patent Document 1 has a problem of high pressure loss because it fills the adsorbent without gaps in order to increase gas collection efficiency.

また、特許文献2のようなフィルタは、ハニカム状であり通気性があって圧力損失が低くすることができる。しかしながら、ハニカム形状とするために吸着剤の充填量を増やすことができず、ガスの吸着容量が低くなってしまい、長寿命のフィルタを得ることが難しい。また、製造上、ハニカムのセル密度は1平方インチあたり1〜50程度であり、押し出し成形で得られるハニカムと比べるとかなり小さく、結果あまり大きい表面積を得ることができない。また、壁厚も1mm程度であり、通風面積に対する開口面積の比率、つまり開口率をあまり大きくはできないため、セルを通過する際に、セル内部での通過風速が大きくなり、1パスの吸着性能が低下してしまうという課題がある。   Moreover, the filter like patent document 2 is honeycomb-like, has air permeability, and can make a pressure loss low. However, since the honeycomb shape is used, the filling amount of the adsorbent cannot be increased, the gas adsorption capacity is lowered, and it is difficult to obtain a long-life filter. Further, in manufacturing, the cell density of the honeycomb is about 1 to 50 per square inch, which is considerably smaller than the honeycomb obtained by extrusion molding, and as a result, a very large surface area cannot be obtained. In addition, the wall thickness is about 1 mm, and the ratio of the opening area to the ventilation area, that is, the opening ratio cannot be increased so much that when passing through the cell, the passing air speed inside the cell increases and the one-pass adsorption performance. There is a problem that will be reduced.

本発明では、このような従来の課題を解決するものであり、通気性をもち圧力損失が低いながらも、1パスの吸着性能が高い高性能のガス吸着フィルタ及びガス吸着装置を提供することを目的としている。   The present invention solves such a conventional problem, and provides a high-performance gas adsorption filter and gas adsorption device having high one-pass adsorption performance while having air permeability and low pressure loss. It is aimed.

本発明のガス吸着フィルタは上記目的を達成するために、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔を規則的に配列するように設けた成形フィルタを、ガスが通過する厚み方向に間隔を設けて複数枚並べたものである。これによって得られる成形フィルタは、通気孔によって低圧力損失のものが得られる。さらにこの成形フィルタをガスが通過する厚み方向に間隔を設けて複数枚並べてなるガス吸着フィルタは、成形フィルタ同士で挟まれた空間によって圧力変化による気流変化が発生し、吸着剤とガスとの接触確率が向上するため、1パス吸着能力の高いガス吸着フィルタが得られる。   In order to achieve the above object, the gas adsorption filter of the present invention is arranged so that a plurality of circular through holes are regularly arranged on a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin. A plurality of the formed filters arranged in a row are arranged at intervals in the thickness direction through which gas passes. The molded filter obtained in this way has a low pressure loss due to the vent holes. In addition, the gas adsorption filter formed by arranging a plurality of gas filters through this molded filter at intervals in the thickness direction causes an air flow change due to a pressure change due to the space between the molded filters, and the adsorbent and gas contact each other. Since the probability is improved, a gas adsorption filter having a high one-pass adsorption capability can be obtained.

また、本発明のガス吸着フィルタは上記目的を達成するために、前記成形フィルタに設けた前記貫通孔の孔径及び配列パターンが同一である前記成形フィルタを複数枚並べ、n枚目の前記成形フィルタの前記貫通孔の投影面が、n+1枚目の前記成形フィルタの前記貫通孔と完全一致しないようにn+1枚目の前記成形フィルタを90度回転させて配置し、前記成形フィルタに設けた貫通孔の配列パターンが1つの孔を中心に60度間隔で等距離の位置に6つの孔を配置する60度の千鳥配列であることを特徴とするものである。これによって前段の成形フィルタの貫通孔から流出したガスは、後段の成形フィルタの貫通孔に流入するまでに流れに乱れを起こし、吸着剤とガスとの接触確率が向上するため、1パス吸着能力の高いガス吸着フィルタが得られる In order to achieve the above object, the gas adsorption filter according to the present invention includes a plurality of the molding filters having the same hole diameter and arrangement pattern of the through holes provided in the molding filter, and the nth molding filter. The through hole provided in the molded filter is arranged by rotating the n + 1th molded filter by 90 degrees so that the projection surface of the through hole does not completely coincide with the through hole of the (n + 1) th molded filter. The arrangement pattern is a staggered arrangement of 60 degrees in which six holes are arranged at equidistant positions at intervals of 60 degrees around one hole . As a result, the gas flowing out from the through hole of the former forming filter disturbs the flow until it flows into the through hole of the latter forming filter, and the contact probability between the adsorbent and the gas is improved. A gas adsorption filter with a high level can be obtained .

本発明によれば、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔を規則的に配列するように設けた成形フィルタを、ガスが通過する厚み方向に間隔を設けて複数枚並べてガス吸着フィルタとすることで、通気性をもち圧力損失が低いながらも、1パスの吸着性能が高く、高性能のガス吸着フィルタ及びガス吸着装置を提供することができる。   According to the present invention, a molded filter provided with a plurality of circular through holes regularly arranged on a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin, A plurality of gas adsorbing filters arranged at intervals in the thickness direction to pass through are used as a gas adsorbing filter and gas adsorbing device with high permeability in one pass and high performance while having low airflow and pressure loss. Can be provided.

本発明の請求項1記載の発明は、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔を規則的に配列するように設けた成形フィルタを、ガスが通過する厚み方向に複数枚並べたガス吸着フィルタであって、各成形フィルタを間隔を設けて配置することを特徴とするものである。本発明では粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に無数の貫通孔を設けることで圧力損失が小さい成形フィルタを製造することができる。また、各成形フィルタを間隔を設けて配置することで、フィルタの内部分とフィルタ間の空間部分で大きな圧力差が生じ、乱流を生じることでガスと吸着剤の接触確立を向上させることができ、1パスの吸着性能を向上させることができる。また、成形フィルタに設けた貫通孔の孔径及び配列パターンが同一である成形フィルタを複数枚並べたガス吸着フィルタにおいて、n枚目の成形フィルタの貫通孔の投影面が、n+1枚目の成形フィルタの貫通孔と完全一致しないようにn+1枚目の前記成形フィルタを90度回転させて配置することを特徴とするものであり、90度回転させることで配列パターンをずらすことができる。こうすることで、1種類の配列パターンの成形フィルタのみでn枚目の成形フィルタに設けた貫通孔と、それに最も近いn+1枚目の成形フィルタに設けた貫通孔のそれぞれの孔を意図的にずらすことができ、少ない構成部材で1パスの吸着性能を向上させることができるという作用を有する。また、成形フィルタに設けた貫通孔の配列パターンが60度の千鳥配列であることを特徴とするものである。貫通孔の配列パターンについてはフィルタの仕様に合わせて任意に様々な配列パターンを選ぶことができるが、最も最密に配列するには、1つの孔を中心に60度間隔で等距離の位置に6つの孔を配置する60度の千鳥配列が好ましく、こうすることで正六角形が縦横に配列したハニカム構造に近い形状となる。この配列であれば隣り合う貫通孔同士のピッチが一定となるので、強度、性能を両立できるという作用を有する。 The invention according to claim 1 of the present invention is a molding in which a plurality of circular through holes are regularly arranged in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin. A gas adsorption filter in which a plurality of filters are arranged in the thickness direction through which gas passes, and each forming filter is arranged with a space therebetween. In the present invention, a molded filter with a small pressure loss can be produced by providing innumerable through holes in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin. In addition, by arranging the molded filters at intervals, a large pressure difference occurs between the inner part of the filter and the space part between the filters, and turbulent flow can be generated to improve the establishment of contact between the gas and the adsorbent. In addition, the one-pass adsorption performance can be improved. Further, in the gas adsorption filter in which a plurality of molding filters having the same hole diameter and arrangement pattern of the through holes provided in the molding filter are arranged, the projection surface of the through hole of the nth molding filter has an n + 1th molding filter. The (n + 1) th forming filter is arranged so as to be rotated by 90 degrees so that it does not completely coincide with the through-holes, and the arrangement pattern can be shifted by rotating by 90 degrees. In this way, each of the through hole provided in the nth molded filter and the through hole provided in the nearest (n + 1) th molded filter is intentionally formed using only one type of array pattern molded filter. It can be shifted and has the effect of improving the one-pass adsorption performance with a small number of components. Further, the arrangement pattern of the through holes provided in the molded filter is a staggered arrangement of 60 degrees. As for the arrangement pattern of the through holes, various arrangement patterns can be arbitrarily selected according to the specifications of the filter. However, in order to arrange the most densely, the positions are equidistant at intervals of 60 degrees around one hole. A 60-degree staggered arrangement in which six holes are arranged is preferable, and by doing so, a shape close to a honeycomb structure in which regular hexagons are arranged vertically and horizontally is obtained. With this arrangement, the pitch between adjacent through-holes is constant, so that the strength and performance can be achieved.

なお、貫通孔を設ける手段としては幾つかの方法が考えられ、例えば針状突起を多数有する型枠に粒状吸着剤と粒状熱可塑性樹脂を混合したものを充填し、加熱成形後に型枠を抜き取るという方法が考えられる。しかし、この方法では無数に密集して立てられた針状突起に粒状吸着剤を均一に充填することは困難であり、生産効率を考えると好ましいとは言えない。   There are several methods for providing the through holes. For example, a mold having a large number of needle-like protrusions is filled with a mixture of a granular adsorbent and a granular thermoplastic resin, and the mold is removed after heat molding. The method can be considered. However, in this method, it is difficult to uniformly fill the granular adsorbent into the needle-like protrusions that are infinitely densely arranged, and it is not preferable in view of production efficiency.

また、加熱成形した板状成形体に穴抜き加工を施すという方法が考えられる。これは例えばパンチングメタルを製造するように、複数のパンチを有する機械を用いて板状成形体の端部から連続的に穴抜き加工を施すというものであるが、この方法では穴抜き加工した断面の粒状吸着剤が破損し、粉落ちの原因になってしまうだけでなく、穴抜きした欠片がロスとなり、材料を効率的に利用できない。また、加工する板状成形体の厚みの制限も大きく、あまり分厚い成形体には加工が困難である。   Moreover, the method of giving a hole punching process to the plate-shaped molded object heat-molded can be considered. In this method, for example, punching metal is manufactured by continuously punching from the end of a plate-shaped molded body using a machine having a plurality of punches. Not only will the granular adsorbent be damaged and cause powder to fall off, but the punched pieces will be lost, and the material cannot be used efficiently. In addition, the thickness of the plate-shaped molded body to be processed is greatly limited, and it is difficult to process a thick molded body.

そこで本発明では、貫通孔を設ける手段として、複数の先端の尖った針状の突起を有する型を用いて、これを板状成形体に突き刺して貫通孔を設ける方法を用いることにした。こうすることで一本の針状突起に対して一個の通風孔を形成するため、針状突起を任意に配置することでその配置に対応した通風孔が容易に形成できるという作用を有する。なお、板状成形体は、型枠に粒状吸着剤と粒状熱可塑性樹脂を混合したものを充填し、加熱成形後、加熱された状態で複数の針状突起を有する型を突き刺して貫通孔を設けることが好ましい。こうすることで突き刺した針状突起によって加熱状態の板状成形体は容易に押し広げられ、貫通孔を設けることができるという作用を有する。   Therefore, in the present invention, as a means for providing the through hole, a method is used in which a die having a plurality of pointed needle-like protrusions is used, and this is pierced into a plate-like molded body to provide the through hole. By doing so, since one ventilation hole is formed for one needle-like projection, the ventilation hole corresponding to the arrangement can be easily formed by arbitrarily arranging the needle-like projection. The plate-shaped molded body is filled with a mixture of a granular adsorbent and a granular thermoplastic resin in a mold, and after thermoforming, a mold having a plurality of needle-like protrusions is pierced in a heated state to form a through hole. It is preferable to provide it. By doing so, the heated plate-shaped molded body is easily spread by the pierced needle-like projections and has an effect that a through hole can be provided.

また、板状成形体を加熱成形すると同時に複数の針状突起を有する型を突き刺して貫通孔を設ける方法を用いても良い。こうすることで一度の工程で貫通孔を設けた成形フィルタを作製することができ、生産性を大幅に向上させることができるという作用を有する。なお、このとき型枠及び針状突起を有する型を同時に加熱しておくことで、熱可塑性樹脂は型枠及び針状突起の熱によって直に熱せられるため、加熱時間を大幅に短縮することができるという作用を有する。   Moreover, you may use the method of providing a through-hole by piercing the type | mold which has a some acicular protrusion simultaneously with heat-molding a plate-shaped molded object. By doing so, it is possible to produce a molded filter provided with a through hole in a single step, which has the effect of greatly improving productivity. At this time, by simultaneously heating the mold having the mold and the needle-like protrusion, the thermoplastic resin is directly heated by the heat of the mold and the needle-like protrusion, so that the heating time can be greatly shortened. Has the effect of being able to.

また本発明では、成形フィルタが粒状吸着剤と粒状熱可塑性樹脂のみで構成されていることを特徴としている。通常、表面を介して吸着性能を発現する粒状吸着剤の表面を粒状熱可塑性樹脂が被覆してしまうと、ガス成分の粒状吸着剤表面への到達や粒状吸着剤からのガス成分の放出が妨げられるので機能性を発現できなくなってしまう。   Further, the present invention is characterized in that the molded filter is composed of only a granular adsorbent and a granular thermoplastic resin. Usually, if the surface of a granular adsorbent that exhibits adsorption performance through the surface is coated with a granular thermoplastic resin, the arrival of the gas component on the surface of the granular adsorbent and the release of the gas component from the granular adsorbent are hindered. Therefore, the functionality cannot be expressed.

そこで、粒状吸着剤を成形あるいはフィルタ化するような場合、粒状吸着剤の表面を覆わないように最小限の接着面積で固定化することが求められる。しかし、こうした場合は粒状吸着剤との接着面積が少なくなるので接着強度が弱くなり、振動や衝撃によって粒状吸着剤が脱落することが多い。   Therefore, when molding or filtering the granular adsorbent, it is required to fix it with a minimum adhesion area so as not to cover the surface of the granular adsorbent. However, in such a case, since the adhesion area with the granular adsorbent is reduced, the adhesive strength is weakened, and the granular adsorbent often falls off due to vibration or impact.

本発明では、粒状吸着剤と粒状熱可塑性樹脂を混合して加熱成形することで、熱可塑性樹脂が架橋の役割を果たし、板状成形体の粒状吸着剤同士が点接着されるため、粒状熱可塑性樹脂による吸着剤の被覆を最小限に抑えつつ、振動や衝撃にも強い成形フィルタを提供することができるという作用を有する。なお、熱可塑性樹脂としては、ポリエチレン、ポリスチレン、ポリプロピレン、ポリ酢酸ビニル、ポリアミド、ポリエチレンテレフタラート、ポリアミドイミドなどが挙げられる。   In the present invention, the granular adsorbent and the granular thermoplastic resin are mixed and heat-molded, so that the thermoplastic resin plays a role of crosslinking, and the granular adsorbents of the plate-shaped molded body are point-bonded to each other. It has the effect of providing a molded filter that is resistant to vibration and impact while minimizing the coating of the adsorbent with the plastic resin. Examples of the thermoplastic resin include polyethylene, polystyrene, polypropylene, polyvinyl acetate, polyamide, polyethylene terephthalate, and polyamideimide.

また、本発明の請求項記載の発明は、成形フィルタ同士の間に設ける間隔がmでり、n枚目の成形フィルタの貫通孔の投影面が、n+1枚目の成形フィルタの貫通孔と孔径の1/3〜2/3ずれており完全一致しないことを特徴とするものである。ケミカルフィルタなどガス吸着フィルタ及びガス吸着フィルタを搭載したガス吸着装置などにおいては設置する条件や、材料コストから収納できる体積が限られていることがほとんどである。本発明においては、吸着剤を充填できる部分に敢えて空間を設けることを特長としているが、成形フィルタ同士の間に設ける間隔を貫通孔と孔径の1/3〜2/3ずれに対し2mmにすることで低圧力損失と高い吸着性能を両立することが可能である。1mm以下の間隔では急激に圧力損失が向上してしまい、また、4mm以上間隔を設けてもほとんど圧力損失に変化はなく、逆に充填できる吸着剤の重量が減少してしまい、吸着能力が低下してしまう。 The invention of claim 2 of the present invention, the spacing provided between the adjacent shaping filter Ri Ah at 2 m m, the projection surface of the through hole of the shaping filter of the n th is, n + 1 th of the molded filter This is characterized in that the through hole and the hole diameter are shifted by 1/3 to 2/3 and do not completely coincide with each other. In gas adsorption filters such as chemical filters and gas adsorption devices equipped with gas adsorption filters, the volume that can be accommodated is almost limited due to installation conditions and material costs. The present invention is characterized in that a space is intentionally provided in a portion where the adsorbent can be filled, but the interval provided between the molded filters is 2 mm with respect to the 1/3 to 2/3 deviation of the through hole and the hole diameter. By doing so, it is possible to achieve both low pressure loss and high adsorption performance. Pressure loss improves rapidly at intervals of 1 mm or less, and there is almost no change in pressure loss even when intervals of 4 mm or more are provided. Conversely, the weight of the adsorbent that can be filled decreases, and the adsorption capacity decreases. Resulting in.

また、本発明の請求項記載の発明は、粒状吸着剤の粒子径は100μm〜1000μmの範囲であることを特徴とする。こうすることで、樹脂膜による吸着剤の埋没を防ぎ、吸着性能の低下を抑制する作用を有する。 The invention according to claim 3 of the present invention is characterized in that the particle size of the granular adsorbent is in the range of 100 μm to 1000 μm. By carrying out like this, it has the effect | action which prevents burying of the adsorption agent by a resin film, and suppresses the fall of adsorption | suction performance.

また、本発明の請求項記載の発明は、粒状吸着剤の粒子径に対する粒状熱可塑性樹脂の粒子径比が0.1〜1の範囲であることを特徴とするものであり、こうすることで接着強度を十分に保持しつつ、吸着性能の高いガス吸着フィルタを形成することが可能であるという作用を有する。 The invention of claim 4 wherein the present invention, the particle diameter ratio of the particulate thermoplastic resin to the particle diameter of the granular adsorbent is characterized in range der Rukoto of 0.1, doing while the adhesive strength sufficiently held by, has the effect of Ru can der to form a high gas adsorption filter adsorption performance.

また、本発明の請求項記載の発明は、貫通孔を加熱した針状突起で設けることを特徴とするものであり、こうすることで突き刺した針状突起によって加熱状態の板状成形体は容易に押し広げられ、貫通孔を設けることができるという作用を有する。 The invention of claim 5 of the present invention is characterized in Rukoto provided with barbs heating the through hole, the plate-shaped molding of a heated state by a needle-like projections pierced by this Uslu body easily pushed spread, has the effect of a through hole provided can Rukoto.

また、本発明の請求項記載のガス吸着装置は、吸込み口と吹出し口を有する筐体内に請求項1乃至いずれか記載のガス吸着フィルタと送風手段を備えたことを特徴とするものであり、通気性をもち圧力損失が低いながらも、1パスの吸着性能が高い、高性能のガス吸着フィルタを搭載したガス吸着装置を提供することができる。 According to a sixth aspect of the present invention, there is provided a gas adsorption device comprising the gas adsorption filter according to any one of the first to fifth aspects and an air blowing means in a housing having a suction port and a blowout port. In addition, it is possible to provide a gas adsorption device equipped with a high-performance gas adsorption filter that has air permeability and low pressure loss, but has high one-pass adsorption performance.

以下、本発明の実施の形態について図面を参照しながら説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

(実施の形態1)
本発明によるガス吸着フィルタの概略図及びフィルタの拡大部分の概略図を図1に示す。図1に示すようにガス吸着フィルタ1は、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔2を規則的に配列するように設けた成形フィルタ3を、ガスが通過する厚み方向に複数枚並べてなり、各成形フィルタ3を間隔4を設けて配置している。
(Embodiment 1)
A schematic diagram of a gas adsorption filter according to the present invention and a schematic diagram of an enlarged portion of the filter are shown in FIG. As shown in FIG. 1, the gas adsorption filter 1 is provided so that a plurality of circular through holes 2 are regularly arranged in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin. A plurality of the formed filters 3 are arranged in the thickness direction through which the gas passes, and the formed filters 3 are arranged at intervals 4.

粒状吸着剤としては破砕炭や造粒炭などの粒状活性炭やイオン交換樹脂などが挙げられ、強度があり、熱可塑性樹脂との接着性が確保できるものであることが好ましい。なお、粒状吸着剤の種類は脱臭の対象となるガスの性質に合わせて選ぶことができ、1種類あるいは2種類以上の粒状吸着剤を組み合わせても良い。また、粒状吸着剤の粒子径としては100μm〜1000μmの範囲であることが好ましく、より好ましくは250μm〜500μmの範囲である。こうすることで、樹脂膜による吸着剤の埋没を防ぎ、吸着性能の低下を抑制する作用を有する。   Examples of the particulate adsorbent include granular activated carbon such as crushed charcoal and granulated charcoal, ion exchange resin, and the like, and it is preferable that it has strength and can secure adhesiveness with a thermoplastic resin. In addition, the kind of granular adsorbent can be selected according to the property of the gas to be deodorized, and one kind or two or more kinds of particulate adsorbents may be combined. Moreover, it is preferable that it is the range of 100 micrometers-1000 micrometers as a particle diameter of a granular adsorbent, More preferably, it is the range of 250 micrometers-500 micrometers. By carrying out like this, it has the effect | action which prevents burying of the adsorption agent by a resin film, and suppresses the fall of adsorption | suction performance.

また、粒状熱可塑性樹脂としてはホットメルトと呼ばれる樹脂粒子が好ましく、その材質としては、ポリエチレン、ポリスチレン、ポリプロピレン、ポリ酢酸ビニル、ポリアミド、ポリエチレンテレフタラート、ポリアミドイミドなどが挙げられる。また、粒状熱可塑性樹脂の粒子径としては、粒状吸着剤の粒子径に対する粒状熱可塑性樹脂の粒子径比が0.1〜1の範囲であることが好ましい。こうすることで接着強度を十分に保持しつつ、吸着性能の高いガス吸着フィルタを形成することが可能であるという作用を有する。また、粒状吸着剤に対する熱可塑性樹脂の混合重量比は5%〜30%であることが好ましく、より好ましくは10%〜20%の範囲である。混合重量比が5%以下では接着強度が弱く、フィルタを形成することは困難であり、また混合重量比が30%以上では強度は高くなるが、樹脂成分が多くなりすぎて吸着剤表面の大部分を覆ってしまい、吸着性能が低下してしまう。粒状吸着剤に対する粒状熱可塑性樹脂の重量混合比を前記範囲にすることで高い強度を持ったフィルタが成型可能であり、且つ高い吸着性能を持たせることができるという作用を有する。   The granular thermoplastic resin is preferably resin particles called hot melt, and examples of the material thereof include polyethylene, polystyrene, polypropylene, polyvinyl acetate, polyamide, polyethylene terephthalate, and polyamideimide. Moreover, as a particle diameter of a granular thermoplastic resin, it is preferable that the particle diameter ratio of the granular thermoplastic resin with respect to the particle diameter of a granular adsorbent is the range of 0.1-1. By doing so, it has an effect that it is possible to form a gas adsorption filter having high adsorption performance while maintaining sufficient adhesive strength. Further, the mixing weight ratio of the thermoplastic resin to the particulate adsorbent is preferably 5% to 30%, more preferably 10% to 20%. If the mixing weight ratio is 5% or less, the adhesive strength is weak and it is difficult to form a filter, and if the mixing weight ratio is 30% or more, the strength is high, but the resin component becomes too large and the surface of the adsorbent becomes large. The part is covered and the adsorption performance is lowered. By setting the weight mixing ratio of the granular thermoplastic resin to the granular adsorbent within the above range, a filter having high strength can be molded, and high adsorption performance can be obtained.

成形フィルタ3の厚みは成形性、フィルタ強度、吸着性能を考慮して1mm〜15mm程度が好ましく、ガス吸着フィルタ全体の厚みを考慮すれば5mm〜10mm程度がより好ましい。並べる成形フィルタ3の枚数としてはいかなる枚数でもよいが、吸着性能やガス吸着フィルタ全体の厚みを考慮すれば3〜10枚程度が好ましい。フィルタ同士の間隔4は貫通孔の径やピッチによって最適な値は変動するが、概ね1mm〜4mmの間であることが好ましい。1mm以下の間隔では急激に圧力損失が向上してしまい、また、4mm以上間隔を設けてもほとんど圧力損失に変化はなく、逆に充填できる吸着剤の重量が減少してしまい、吸着能力が低下してしまうためである。1mm以上4mm以下の範囲にすることで低圧力損失と高い吸着性能を両立することが可能である。   The thickness of the molded filter 3 is preferably about 1 mm to 15 mm in consideration of moldability, filter strength, and adsorption performance, and more preferably about 5 mm to 10 mm in consideration of the thickness of the entire gas adsorption filter. The number of the molded filters 3 to be arranged may be any number, but is preferably about 3 to 10 in consideration of the adsorption performance and the thickness of the entire gas adsorption filter. The optimum value of the distance 4 between the filters varies depending on the diameter and pitch of the through holes, but is preferably approximately 1 mm to 4 mm. Pressure loss improves rapidly at intervals of 1 mm or less, and there is almost no change in pressure loss even when intervals of 4 mm or more are provided. Conversely, the weight of the adsorbent that can be filled decreases, and the adsorption capacity decreases. It is because it will do. By making the range from 1 mm to 4 mm, it is possible to achieve both low pressure loss and high adsorption performance.

また、フィルタの拡大図に示すように、本実施の形態において、n枚目の成形フィルタ3に設けた貫通孔2において、前記貫通孔2と、それに最も近いn+1枚目の成形フィルタ3に設けた貫通孔2のそれぞれの孔の中心を結ぶ中心線5が、n枚目の成形フィルタ3に設けた貫通孔2の貫通方向6に対して平行にならないようにずらして配置してある。n枚目の成形フィルタ3に設けた貫通孔2に対して、それに最も近いn+1枚目の成形フィルタ3に設けた貫通孔2の位置を意図的にずらすことでより乱流を生じさせることが可能であり、1パスの吸着性能を向上させることができる。貫通孔2をずらす方法としては例えば図2または図3に示すような方法が挙げられる。なお、図2及び図3は複数枚並べた成形フィルタの一部を正面から見たときの概略図であり、n枚目の成型フィルタに設けた貫通孔(n)7を実線、n+1枚目の成型フィルタに設けた貫通孔(n+1)8を点線で表している。すなわち、成形フィルタに設けた貫通孔の孔径及び配列パターンが同一である成形フィルタを複数枚並べたガス吸着フィルタにおいて、n枚目の成形フィルタの貫通孔(n)7の投影面が、n+1枚目の成形フィルタの貫通孔(n+1)8と完全一致しないように配置しており、例えば図2に示すようにn+1枚目の成型フィルタの表裏を逆にして重ねるか、あるいは180度回転させて重ねればよく、また図3に示すようにn+1枚目の成型フィルタを90度回転させて重ねることで容易に配列パターンをずらすことができる。こうすることで、1種類の配列パターンの成形フィルタのみでn枚目の成形フィルタに設けた貫通孔と、それに最も近いn+1枚目の成形フィルタに設けた貫通孔のそれぞれの孔を意図的にずらすことができ、少ない構成部材で1パスの吸着性能を向上させることができるという作用を有する。なお、貫通孔の配列パターンはn枚目の成形フィルタの貫通孔(n)7の投影面が、n+1枚目の成形フィルタの貫通孔(n+1)8と完全一致しないように配置することができればいかなるものでも効果に差はないが、本実施の形態のように貫通孔の配列パターンを全て60度の千鳥配列にすることで隣り合う貫通孔同士のピッチが一定となるので、強度、性能を両立できるという作用を有する。   Further, as shown in the enlarged view of the filter, in the present embodiment, in the through hole 2 provided in the nth molded filter 3, the through hole 2 and the nearest n + 1 molded filter 3 are provided. The center lines 5 connecting the centers of the respective through holes 2 are shifted so as not to be parallel to the through direction 6 of the through hole 2 provided in the nth molded filter 3. It is possible to generate more turbulent flow by intentionally shifting the position of the through hole 2 provided in the (n + 1) th forming filter 3 closest to the through hole 2 provided in the nth forming filter 3. This is possible, and the one-pass adsorption performance can be improved. Examples of the method for shifting the through hole 2 include a method as shown in FIG. 2 or FIG. 2 and 3 are schematic views of a part of a plurality of molded filters arranged from the front, and the through hole (n) 7 provided in the nth molded filter is indicated by a solid line, the (n + 1) th sheet. A through hole (n + 1) 8 provided in the molding filter is indicated by a dotted line. That is, in a gas adsorption filter in which a plurality of molded filters having the same hole diameter and arrangement pattern of the through holes provided in the molded filter are arranged, the projection surface of the through hole (n) 7 of the nth molded filter has n + 1 projection surfaces. It is arranged so that it does not completely coincide with the through hole (n + 1) 8 of the molded filter of the eye, for example, as shown in FIG. 2, the n + 1-th molded filter is turned upside down or rotated 180 degrees. As shown in FIG. 3, the arrangement pattern can be easily shifted by rotating the n + 1-th molded filter by 90 degrees and stacking them. In this way, each of the through hole provided in the nth molded filter and the through hole provided in the nearest (n + 1) th molded filter is intentionally formed using only one type of array pattern molded filter. It can be shifted and has the effect of improving the one-pass adsorption performance with a small number of components. The arrangement pattern of the through holes can be arranged so that the projection surface of the through hole (n) 7 of the nth molded filter does not completely coincide with the through hole (n + 1) 8 of the (n + 1) th molded filter. There is no difference in the effect of anything, but since the pitch of adjacent through holes becomes constant by making the arrangement pattern of the through holes all staggered at 60 degrees as in this embodiment, strength and performance are improved. Has the effect of being compatible.

また、貫通孔2をずらす別の方法としては例えば図4に示すような方法が挙げられる。なお、図4は複数枚並べた成形フィルタの一部を正面から見たときの概略図であり、n枚目の成型フィルタに設けた貫通孔(n)7を実線、n+1枚目の成型フィルタに設けた貫通孔(n+1)8を点線で表している。すなわち、成形フィルタに設けた貫通孔の配列パターンが異なる成形フィルタを交互に並べたガス吸着フィルタにおいて、n枚目の成形フィルタの貫通孔(n)7の投影面が、n+1枚目の成形フィルタの貫通孔(n+1)8と一部を除いて完全一致しないように配置しており、例えば図4に示すようにn枚目の成形フィルタのピッチに対してn+1枚目の成形フィルタのピッチを広くしたものを並べることで容易に配列パターンをずらすことができる。こうすることで、2種類の配列パターンの成形フィルタを単純に交互に並べるだけでn枚目の成形フィルタに設けた貫通孔と、それに最も近いn+1枚目の成形フィルタに設けた貫通孔のそれぞれの孔を意図的にずらすことができ、少ない構成部材で1パスの吸着性能を向上させることができるという作用を有する。なお、本実施の形態のように貫通孔の配列パターンが全て60度の千鳥配列であり、且つn枚目の成形フィルタのピッチに対してn+1枚目の成形フィルタのピッチを広くした場合、2枚のフィルタを重ねることで干渉紋が生じ、そのピッチ幅の組み合わせによってまれにn枚目とn+1枚目の貫通孔が完全一致する部分が生まれる。ピッチの組み合わせによってその数は変動するが、n枚目の成形フィルタのピッチをP(n)、n+1枚目の成形フィルタのピッチをP(n+1)としたとき、P(n)=2P(n+1)あるいは3P(n)=2P(n+1)のような特殊な組み合わせを除けば数%で、フィルタ全体の貫通孔の数から考えれば極めて微小であり、吸着性能にはなんら影響はないと考えられる。   Further, as another method for shifting the through hole 2, for example, a method as shown in FIG. FIG. 4 is a schematic view of a part of a plurality of molded filters arranged from the front. The through hole (n) 7 provided in the nth molded filter is shown by a solid line, and the (n + 1) th molded filter. The through-hole (n + 1) 8 provided in FIG. That is, in the gas adsorption filter in which the molding filters having different through hole arrangement patterns provided in the molding filter are alternately arranged, the projection surface of the through hole (n) 7 of the nth molding filter is the (n + 1) th molding filter. The through holes (n + 1) 8 are arranged so that they do not completely coincide with each other except for a part. For example, as shown in FIG. 4, the pitch of the (n + 1) th forming filter is set to the pitch of the nth forming filter. The arrangement pattern can be easily shifted by arranging the widened ones. By doing so, each of the through holes provided in the nth molded filter and the through holes provided in the n + 1th molded filter closest thereto by simply arranging alternately the molded filters of two types of arrangement patterns. The holes can be intentionally displaced, and the one-pass adsorption performance can be improved with a small number of components. Note that when the arrangement pattern of the through holes is a staggered arrangement of 60 degrees and the pitch of the (n + 1) th shaping filter is wider than the pitch of the nth shaping filter as in the present embodiment, 2 An interference pattern is generated by overlapping the filters, and a portion where the nth and (n + 1) th through-holes completely coincide with each other is rarely generated by the combination of the pitch widths. The number varies depending on the combination of pitches, but when the pitch of the nth molding filter is P (n) and the pitch of the (n + 1) th molding filter is P (n + 1), P (n) = 2P (n + 1) ) Or 3P (n) = 2P (n + 1) except for a special combination, and it is very small considering the number of through-holes in the entire filter, and it seems that there is no effect on the adsorption performance. .

参考の形態
本発明による別のガス吸着フィルタの概略図及びフィルタの拡大部分の概略図を図5に示す。図1と同じ構成、作用は、同一番号を付し、説明は省略する。
( Reference form 1 )
A schematic diagram of another gas adsorption filter according to the present invention and a schematic diagram of an enlarged portion of the filter are shown in FIG. The same configurations and operations as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

図5に示すようにガス吸着フィルタ1は、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔2をフィルタの厚み方向に対してガスの通風方向に角度を持たせるように規則的に配列するように設けた成形フィルタ3を、ガスが通過する厚み方向に複数枚並べてなり、各成形フィルタ3を間隔4を設けて配置している。こうすることで成形フィルタに設けた貫通孔の孔径及び配列パターンが同一である成形フィルタを単純に並べたガス吸着フィルタにおいて、n枚目の成形フィルタの貫通孔(n)7の投影面が、n+1枚目の成形フィルタの貫通孔(n+1)8と完全一致しないように配置しており、n枚目の成形フィルタに設けた貫通孔と、それに最も近いn+1枚目の成形フィルタに設けた貫通孔のそれぞれの孔を意図的にずらすことができ、少ない構成部材で1パスの吸着性能を向上させることができるという作用を有する。なお、貫通孔の角度としては成形フィルタの厚み、孔径、配列パターン、ピッチによって最適な角度が決まるが、n枚目の成形フィルタの貫通孔とn+1枚目の成形フィルタの貫通孔が同一線上にならない範囲であることが望ましい。   As shown in FIG. 5, the gas adsorption filter 1 has a plate-like molded body obtained by heat-molding a mixture of a granular adsorbent and a granular thermoplastic resin, and a plurality of circular through holes 2 are formed in a gas direction with respect to the thickness direction of the filter. A plurality of molded filters 3 provided so as to be regularly arranged so as to have an angle in the direction of air flow are arranged in the thickness direction through which the gas passes, and the molded filters 3 are arranged at intervals 4. . In this way, in the gas adsorption filter in which the molding filters having the same hole diameter and arrangement pattern of the through holes provided in the molding filter are simply arranged, the projection surface of the through hole (n) 7 of the nth molding filter is The through hole (n + 1) 8 of the (n + 1) th molded filter is arranged so as not to completely coincide with the through hole provided in the nth molded filter and the through hole provided in the nearest (n + 1) th molded filter. Each hole of the holes can be intentionally shifted, and the one-pass adsorption performance can be improved with a small number of components. The optimum angle for the through hole is determined by the thickness, hole diameter, arrangement pattern, and pitch of the molded filter. The through hole of the nth molded filter and the through hole of the (n + 1) th molded filter are on the same line. It is desirable that the range does not fall.

参考の形態
本発明による別のガス吸着フィルタの概略図及びフィルタの拡大部分の概略図を図6に示す。図1と同じ構成、作用は、同一番号を付し、説明は省略する。
( Reference form 2 )
A schematic diagram of another gas adsorption filter according to the present invention and a schematic diagram of an enlarged portion of the filter are shown in FIG. The same configurations and operations as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

図6に示すようにガス吸着フィルタ1は、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔2を規則的に配列するように設けた成形フィルタ3を、ガスが通過する厚み方向に複数枚並べてなり、各成形フィルタ3を間隔4を設けて、且つ成形フィルタ3同士の間隔が均一になるように間隔保持材9を成形フィルタの間に設けて配置している。   As shown in FIG. 6, the gas adsorption filter 1 is provided so that a plurality of circular through holes 2 are regularly arranged in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin. A plurality of the formed filters 3 are arranged in the thickness direction through which gas passes, and the interval maintaining material 9 is formed on the formed filter so that the formed filters 3 are provided with the intervals 4 and the intervals between the formed filters 3 are uniform. It is provided in between.

間隔保持材9としては例えば成形フィルタの間にフレーム枠やスペーサを挟んだりすることで容易に成形フィルタ間の間隔を均一に保持することが可能であり、こうすることで安定した圧力損失と吸着性能を持ったガス吸着フィルタを提供することができるが、本実施の形態では、間隔保持材として例えば発泡ウレタンのような空隙率が高いにも関わらず、形状保持性が高く、低圧力損失な間隔保持材を用いることで、ガスが容易に通過でき、且つガスの流れに乱流を起こすことが可能であり、成形フィルタ間の間隔を均一に保持することが可能であると同時により乱流を引き起こすことで吸着剤とガスとの接触効率を高め、1パス吸着性能を向上させることができるという作用を有する。更に、三次元構造を有するシート状の基材に吸着剤を担持することでフィルタ間の間隔を均一に保持することが可能であると同時に吸着性能としては減少要因であった成形フィルタ間の間隔部分においても吸着性能を発揮することができ、1パス吸着性能を向上させることができるという作用を有する。   As the spacing member 9, for example, a frame frame or a spacer is sandwiched between the molded filters, so that the spacing between the molded filters can be easily maintained uniformly. In this way, stable pressure loss and adsorption can be achieved. Although a gas adsorption filter having performance can be provided, in the present embodiment, the shape retaining property is high and the low pressure loss is achieved even though the porosity is high, such as urethane foam, as the spacing retaining material. By using a spacing material, gas can easily pass through, and it is possible to cause a turbulent flow in the gas flow, and it is possible to maintain a uniform spacing between the forming filters, and at the same time, more turbulent flow This has the effect of increasing the contact efficiency between the adsorbent and the gas and improving the one-pass adsorption performance. Furthermore, by supporting the adsorbent on a sheet-like base material having a three-dimensional structure, it is possible to keep the distance between the filters uniform, and at the same time, the distance between the formed filters, which is a reduction factor in the adsorption performance. Adsorption performance can be exhibited even in the portion, and the one-pass adsorption performance can be improved.

(実施の形態
本発明によるガス吸着装置の概略図を図7に示す。図1と同じ構成、作用は、同一番号を付し、説明は省略する。図7に示すようにガス吸着装置10は、粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔2を規則的に配列するように設けた成形フィルタ3を、ガスが通過する厚み方向に各成形フィルタ3を間隔4を設けて複数枚並べてなるガス吸着フィルタ1と送風手段11を吸い込み口12と吹き出し口13を有する筐体14の内部に備えてなり、送風手段11によって吸い込み口12から筐体14に導入されたガスをガス吸着フィルタ1によって吸着除去し、吹き出し口13から清浄空気を放出するものである。これによって通気性をもち圧力損失が低いながらも、1パスの吸着性能が高く、高性能のガス吸着装置を提供することができる。
(Embodiment 2 )
A schematic view of a gas adsorption apparatus according to the present invention is shown in FIG. The same configurations and operations as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 7, the gas adsorbing device 10 is provided so that a plurality of circular through holes 2 are regularly arranged in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin. The inside of the housing 14 having the gas adsorbing filter 1 and the blowing means 11 in which a plurality of the forming filters 3 are arranged in the thickness direction through which the gas passes are arranged at intervals 4 and the air blowing means 11. The gas introduced into the housing 14 from the suction port 12 by the blower 11 is adsorbed and removed by the gas adsorption filter 1 and the clean air is discharged from the blowout port 13. As a result, it is possible to provide a high-performance gas adsorbing device that has air permeability and low pressure loss but has high one-pass adsorption performance.

以下、実施例を挙げて本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
横102mm、縦53mm、厚み12mmの樹脂製プレートに、孔径φ1.2mm、ピッチ2.4mmで60度千鳥配列の配列パターンで無数の貫通孔を設けた樹脂成形プレートを3枚作製した。これら3枚の樹脂成形プレートをそれぞれの貫通孔が揃うように隙間なく重ね、専用のダクトに設置し、プレートの通過風速を0.5m/sとしたときの圧力損失を測定した。続けて、3枚重ねた樹脂成形プレートの内、真ん中の樹脂成形プレートのみをプレートと平行に少しずつずらし、3枚の樹脂成形プレートに設けた貫通孔に重なり部分ができた状態で同様に圧力損失を測定した。プレートのずれは0.4mm、0.8mm、1.2mmの3点での測定とし、1.2mmのときに最も貫通孔の重なり部分が大きい。これらの測定結果を比較例1とした。
Example 1
Three resin-molded plates were prepared in which a resin plate having a width of 102 mm, a length of 53 mm, and a thickness of 12 mm was provided with an infinite number of through holes in an array pattern of a hole diameter of φ1.2 mm and a pitch of 2.4 mm in a 60-degree staggered arrangement. These three resin-molded plates were stacked with no gaps so that the respective through holes were aligned, placed in a dedicated duct, and the pressure loss was measured when the passing air speed of the plate was 0.5 m / s. Next, out of the three laminated resin molding plates, only the middle resin molding plate is shifted little by little in parallel with the plates, and the pressure is similarly applied in the state where the overlapping portions are formed in the through holes provided in the three resin molding plates. Loss was measured. The displacement of the plate is measured at three points of 0.4 mm, 0.8 mm, and 1.2 mm, and the overlapping portion of the through holes is the largest at 1.2 mm. These measurement results were designated as Comparative Example 1.

次に、3枚の樹脂成形プレート同士を一定の間隔を設け、その状態で比較例と同様に真ん中のプレートをずらしたときの圧力損失の変化を測定した。プレート同士の間に設ける間隔として、1mm、2mm、4mm、6mmの4条件で測定を行い、これらの測定結果を実施例1とした。結果を表1に示す。   Next, a fixed interval was provided between the three resin molded plates, and the change in pressure loss was measured when the middle plate was shifted in the same manner as in the comparative example. Measurements were performed under four conditions of 1 mm, 2 mm, 4 mm, and 6 mm as intervals provided between the plates. The results are shown in Table 1.

Figure 0005321079
Figure 0005321079

表1に示すように、3枚プレートを隙間なく重ねた比較例1では、プレートのずれが大きくなるにつれて圧力損失が急激に増加することがわかる。一方、実施例1ではプレート同士の間の隙間をたった1mm設けるだけで、貫通孔にずれが生じても圧力損失の増加は劇的に抑えられることがわかる。さらに間隔を増やすごとにその抑制効果は向上するが、4mmの間隔で貫通孔のずれによる圧力損失の上昇はほとんどなくなり、それ以上の間隔を設けても圧力損失抑制に効果はみられなかった。この結果から、複数枚の成形フィルタを並べたガス吸着フィルタにおいて、乱流を引き起こすようにそれぞれの貫通孔が重なり合うように成形フィルタを並べても、成形フィルタ同士の間隔を1mm〜4mm設けることでほとんど圧力損失を増加させることなく吸着性能の高いガス吸着フィルタを提供することができる。   As shown in Table 1, it can be seen that in Comparative Example 1 in which the three plates are stacked without a gap, the pressure loss increases rapidly as the plate displacement increases. On the other hand, in Example 1, only 1 mm of clearance between the plates is provided, and it can be seen that the increase in pressure loss can be dramatically suppressed even if the through hole is displaced. Further, the suppression effect is improved as the interval is further increased. However, the increase in pressure loss due to the displacement of the through hole is almost eliminated at an interval of 4 mm, and no effect is observed in suppressing the pressure loss even if a longer interval is provided. From this result, in the gas adsorption filter in which a plurality of molded filters are arranged, even if the molded filters are arranged so that the respective through holes are overlapped so as to cause turbulent flow, the spacing between the molded filters is almost 1 mm to 4 mm. A gas adsorption filter with high adsorption performance can be provided without increasing pressure loss.

(実施例2)
ガスを吸着するための粒子状吸着剤としての粒子の大きさが0.32mm以上1.6mm以下の範囲で分布を持つ活性炭粒子と粒子状熱可塑性樹脂として大きさが0.08mm以上0.16mm以下の範囲で分布を持つポリアミド粒子とを、活性炭重量80に対し水を重量40で一旦混合し活性炭と水をなじませた後、ポリアミド粒子を10で混合する。これを容器内に前記混合材料を深さが等しくまた、平面になるようにならして入れ、130℃のオーブンで加熱する。材料表面を観察し、ポリアミド粒子が溶解して、白い粒子が見えなくなった時点を加熱終了とし、板状成形体を作製する。
(Example 2)
Activated carbon particles having a particle size distribution in the range of 0.32 mm to 1.6 mm and particulate thermoplastic resin having a particle size of 0.08 mm to 0.16 mm for adsorbing gas. The polyamide particles having a distribution in the following range are once mixed with water at a weight of 40 with respect to the weight of activated carbon 80, and the activated carbon and water are mixed together. The mixed material is placed in a container so that the depth is equal and flat, and the mixture is heated in an oven at 130 ° C. The surface of the material is observed, and when the polyamide particles are dissolved and the white particles are no longer visible, the heating is finished, and a plate-like molded body is produced.

貫通孔を設けるために複数の針状突起が規則的に配列した針金型を用いる。針状突起として鋼線の直径が1.13mmであり、先端を尖らせた針を用意し、これを針の中心間距離であるピッチが2.2mm且つ、中心間を結んだ線がそれぞれ60度で交わるような60度千鳥配列の配列パターンで配置し、固定する。針はそれぞれが平行に林立するように並べ、針金型とする。また、それぞれの針が貫通するパンチング板を林立する針に通して設置する。   In order to provide a through hole, a wire mold in which a plurality of needle-like protrusions are regularly arranged is used. As the needle-like protrusions, a steel wire having a diameter of 1.13 mm and a pointed tip is prepared, and the pitch between the centers of the needles is 2.2 mm, and the lines connecting the centers are 60. It is arranged and fixed in a 60-degree zigzag array pattern that intersects at a degree. The needles are arranged so that they stand in parallel and form a needle mold. Moreover, the punching board which each needle penetrates is installed through the needle that stands.

この針金型と、針を貫通させて針金型上に設置したパンチング板を130℃のオーブンで加熱する。   The needle mold and a punching plate installed on the needle mold through the needle are heated in an oven at 130 ° C.

加熱成形した板状成形体に、加熱した針金型を刺して、混合材料に貫通孔を開け、パンチング板で押さえながら、針金型を抜いて成形フィルタを作製する。   A heated mold is pierced into the heat-molded plate-shaped body, a through-hole is formed in the mixed material, and the mold is removed while pressing with a punching plate to produce a molded filter.

こうして得られる成形フィルタについて、縦40mm、横40mm、厚みが約8mm〜9mmのものを複数枚作成し、4枚を隙間がないように重ね合わせて35mmの厚みになるように調整し、数箇所の貫通孔にピンを貫通させて4枚全ての貫通孔が揃うようにしたガス吸着フィルタ比較例2とした。同様に、縦40mm、横40mm、厚みが約10mm〜11mmのものを複数枚作成し、3枚をフィルタ同士の間隔が1.5mmになるように並べ、隙間を含めた合計の厚みが35mmになるように調整し、さらに真ん中の成形フィルタのみを貫通孔の配列が90度傾くように回転させた状態で固定し、3枚の成形フィルタの貫通孔に重なり部分ができるようにしたガス吸着フィルタを実施例2とした。   Regarding the molded filter thus obtained, a plurality of sheets having a length of 40 mm, a width of 40 mm, and a thickness of about 8 mm to 9 mm are prepared, and the four sheets are adjusted so as to have a thickness of 35 mm by overlapping so that there is no gap. A gas adsorbing filter comparative example 2 in which all four through-holes were aligned by passing pins through the through-holes was used. Similarly, a plurality of sheets having a length of 40 mm, a width of 40 mm, and a thickness of about 10 mm to 11 mm are prepared, and the three sheets are arranged so that the distance between the filters is 1.5 mm, and the total thickness including the gap is 35 mm. In addition, only the middle molded filter is fixed in a state where the arrangement of the through holes is rotated so that the arrangement of the through holes is inclined by 90 degrees, and an overlap portion is formed in the through holes of the three molded filters. Was taken as Example 2.

こうして得られたガス吸着フィルタのガス吸着性能の評価として、フィルタの通過風速を0.5m/sとして通過する気中のトルエン20ppmガスのトルエン除去率を測定した。結果を図7に示す。   As an evaluation of the gas adsorption performance of the gas adsorption filter thus obtained, the toluene removal rate of 20 ppm of toluene in the air passing through the filter with a passing air speed of 0.5 m / s was measured. The results are shown in FIG.

図7に示すように、比較例2では初期のトルエンの1パス除去率が86%程度であるのに対し、実施例2では92%と1パス除去率が約6%向上していることがわかる。35mmというフィルタの厚みの内、比較例2ではその全てにおいて活性炭で占められているのに対し、実施例2ではフィルタとフィルタの間に3mm分の隙間が存在し、32mm分の厚みにしか活性炭が占めていない。それにもかかわらず1パス除去性能に6%もの優位性を示しており、貫通孔をずらすことによって乱流を発生させ、吸着剤とガスとの接触確立を向上させることでガス吸着フィルタの1パス除去率を向上させることができることがわかった。   As shown in FIG. 7, in Comparative Example 2, the initial 1-pass removal rate of toluene is about 86%, whereas in Example 2, the 1-pass removal rate is improved by 92% to about 6%. Recognize. Of the thickness of the filter of 35 mm, in Comparative Example 2, all of it is occupied by activated carbon, whereas in Example 2, there is a gap of 3 mm between the filters, and the activated carbon has a thickness of only 32 mm. Does not occupy. Nevertheless, it shows an advantage of 6% in the 1-pass removal performance. By shifting the through-hole, turbulence is generated, and the contact establishment between the adsorbent and the gas is improved, so that 1 pass of the gas adsorption filter is achieved. It was found that the removal rate can be improved.

粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔を規則的に配列するように設けた成形フィルタを、ガスが通過する厚み方向に複数枚並べることで圧力損失が小さくまたガス除去寿命が長いガス吸着フィルタを提供できる。また、複数枚並べた成形フィルタのそれぞれ設けた貫通孔を意識的にずらすことによって乱流を引き起こし、吸着剤とガスとの接触確立を向上させることで1パス除去性能の高いガス吸着フィルタを提供でき、クリーンルームなどの有害ガスの除去などの用途に適用できる。   A plurality of molded filters provided in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin so as to regularly arrange a plurality of circular through holes in the thickness direction through which gas passes. Arranging the sheets can provide a gas adsorption filter with a small pressure loss and a long gas removal life. In addition, turbulent flow is caused by intentionally shifting the through holes provided for each of the molded filters arranged in multiple sheets, and a gas adsorption filter with high one-pass removal performance is provided by improving the contact establishment between the adsorbent and the gas. It can be applied to applications such as removal of harmful gases in clean rooms.

実施の形態1のガス吸着フィルタの概略図及びフィルタの拡大部分の概略図Schematic diagram of gas adsorption filter of Embodiment 1 and schematic diagram of an enlarged portion of the filter 実施の形態1の成形フィルタの一部を正面から見たときの概略図Schematic when part of the molded filter of Embodiment 1 is viewed from the front 実施の形態1の別の成形フィルタの一部を正面から見たときの概略図Schematic when a part of another molded filter of Embodiment 1 is seen from the front 実施の形態1の別の成形フィルタの一部を正面から見たときの概略図Schematic when a part of another molded filter of Embodiment 1 is seen from the front 参考の形態のガス吸着フィルタの概略図及びフィルタの拡大部分の概略図Schematic diagram of gas adsorption filter of reference form 1 and schematic diagram of enlarged portion of filter 参考の形態のガス吸着フィルタの概略図及びフィルタの拡大部分の概略図Schematic diagram of gas adsorption filter of reference form 2 and schematic diagram of enlarged portion of filter 実施の形態のガス吸着装置の概略図Schematic of the gas adsorption apparatus of Embodiment 2 トルエンガス試験の試験時間に対する除去率変化を表したグラフGraph showing change in removal rate against test time for toluene gas test

1 ガス吸着フィルタ
2 貫通孔
3 成形フィルタ
4 間隔
5 中心線
6 貫通方向
7 貫通孔(n)
8 貫通孔(n+1)
9 間隔保持材
10 ガス吸着装置
11 送風手段
12 吸い込み口
13 吹き出し口
14 筐体
DESCRIPTION OF SYMBOLS 1 Gas adsorption filter 2 Through-hole 3 Molding filter 4 Space | interval 5 Center line 6 Through direction 7 Through-hole (n)
8 Through hole (n + 1)
DESCRIPTION OF SYMBOLS 9 Space | interval holding | maintenance material 10 Gas adsorption apparatus 11 Blower means 12 Suction port 13 Outlet 14 Case

Claims (6)

粒状吸着剤と粒状熱可塑性樹脂を混合したものを加熱成形した板状成形体に、複数の円形の貫通孔を規則的に配列するように設けた成形フィルタを、ガスが通過する厚み方向に複数枚並べたガス吸着フィルタであって、各成形フィルタを間隔を設けて配置し、
前記成形フィルタに設けた前記貫通孔の孔径及び配列パターンが同一である前記成形フィルタを複数枚並べ、n枚目の前記成形フィルタの前記貫通孔の投影面が、n+1枚目の前記成形フィルタの前記貫通孔と完全一致しないようにn+1枚目の前記成形フィルタを90度回転させて配置し、
前記成形フィルタに設けた貫通孔の配列パターンが1つの孔を中心に60度間隔で等距離の位置に6つの孔を配置する60度の千鳥配列であることを特徴とするガス吸着フィルタ。
A plurality of molded filters provided in a plate-like molded body obtained by thermoforming a mixture of a granular adsorbent and a granular thermoplastic resin so as to regularly arrange a plurality of circular through holes in the thickness direction through which gas passes. It is a gas adsorption filter arranged side by side, each molding filter is arranged with an interval,
A plurality of the molding filters having the same hole diameter and arrangement pattern of the through holes provided in the molding filter are arranged, and the projection surface of the through hole of the nth molding filter has an n + 1th molding filter. The n + 1-th molded filter is rotated 90 degrees so as not to completely coincide with the through hole,
The gas adsorption filter according to claim 1, wherein the array pattern of the through holes provided in the molded filter is a staggered array of 60 degrees in which six holes are arranged at equidistant positions with an interval of 60 degrees around one hole .
成形フィルタ同士の間に設ける間隔が2mmであり、
n枚目の成形フィルタの貫通孔の投影面が、n+1枚目の成形フィルタの貫通孔と孔径の1/3〜2/3ずれており完全一致しないことを特徴とする請求項1記載のガス吸着フィルタ。
The interval provided between the molded filters is 2 mm,
2. The gas according to claim 1 , wherein the projection surface of the through hole of the nth molded filter is shifted from 1/3 to 2/3 of the diameter of the through hole of the (n + 1) th molded filter and does not completely match. Adsorption filter.
粒状吸着剤の粒子径は100μm〜1000μmの範囲であることを特徴とする請求項1または2記載のガス吸着フィルタ。The gas adsorption filter according to claim 1 or 2, wherein the particle size of the particulate adsorbent is in the range of 100 µm to 1000 µm. 粒状吸着剤の粒子径に対する粒状熱可塑性樹脂の粒子径比が0.1〜1の範囲であることを特徴とする請求項1乃至3いずれか記載のガス吸着フィルタ。The gas adsorption filter according to any one of claims 1 to 3, wherein a particle diameter ratio of the granular thermoplastic resin to a particle diameter of the granular adsorbent is in a range of 0.1 to 1. 貫通孔を加熱した針状突起で設けることを特徴とする請求項1乃至4いずれか記載のガス吸着フィルタ The gas adsorption filter according to any one of claims 1 to 4, wherein the through hole is provided by a heated needle-like protrusion . 吸込み口と吹出し口を有する筐体内に請求項1乃至いずれか記載のガス吸着フィルタと送風手段を備えたガス吸着装置。 A gas adsorption apparatus comprising the gas adsorption filter according to any one of claims 1 to 5 and an air blowing means in a housing having an inlet and an outlet.
JP2009009512A 2009-01-20 2009-01-20 Gas adsorption filter and gas adsorption device Active JP5321079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009512A JP5321079B2 (en) 2009-01-20 2009-01-20 Gas adsorption filter and gas adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009512A JP5321079B2 (en) 2009-01-20 2009-01-20 Gas adsorption filter and gas adsorption device

Publications (2)

Publication Number Publication Date
JP2010167324A JP2010167324A (en) 2010-08-05
JP5321079B2 true JP5321079B2 (en) 2013-10-23

Family

ID=42699961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009512A Active JP5321079B2 (en) 2009-01-20 2009-01-20 Gas adsorption filter and gas adsorption device

Country Status (1)

Country Link
JP (1) JP5321079B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108744874A (en) * 2018-08-16 2018-11-06 成都托格尔科技有限公司 A kind of toxic and harmful gas occurs and gas-solid adsorption reaction system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169919A (en) * 1983-03-14 1984-09-26 Toshiyuki Nakajima Formed activated carbon
JPS60153941A (en) * 1984-01-21 1985-08-13 Tezuka Kogyo Kk Adsorbing material for purifying water
JPH02253817A (en) * 1989-03-27 1990-10-12 Osaka Gas Co Ltd Adsorber, activated-carbon fiber plate used therefor and production of the fiber plate
JP3007336U (en) * 1994-07-29 1995-02-14 クラレケミカル株式会社 Deodorizing filter for car air conditioner
JP3234165B2 (en) * 1996-12-27 2001-12-04 二村化学工業株式会社 Deodorizing filter and manufacturing method thereof
JPH11300138A (en) * 1998-04-17 1999-11-02 Kawai Musical Instr Mfg Co Ltd Purifying filter and air purifier
JP3714149B2 (en) * 2000-10-31 2005-11-09 株式会社島津製作所 Air cleaner
JP2005131506A (en) * 2003-10-29 2005-05-26 Dan Takuma:Kk Chemical filter

Also Published As

Publication number Publication date
JP2010167324A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
EP1372819B1 (en) A combination filter for filtering fluids
JP2006341220A (en) Parallel flow electret filter
CN102164719B (en) Suction sheet
JP4733321B2 (en) Gas adsorption filter
RU2013144426A (en) POLYCRYSTALLINE PLATES, POLYCRYSTALLINE ELEMENTS AND RELATED WAYS
US20130032032A1 (en) Filter device
US20180126316A1 (en) Gas filter
JP5321079B2 (en) Gas adsorption filter and gas adsorption device
US11819792B2 (en) Bidirectional airflow filter
CN106696246A (en) High-moisture-permeability, microporous plastic film, and its production method and apparatus
US7674306B2 (en) Multilayered long life filter using convoluted foam
US11207631B2 (en) System and method for improving mass air flow signal quality
CN206663396U (en) Cellular ultramicropore environmental protection noise reduction sheet material processing mold
JP5504671B2 (en) Gas adsorption filter and method for producing gas adsorption filter
US20160051911A1 (en) Retainer for filter, and filter using same
JP6318716B2 (en) Air filter unit
CN116033953A (en) Metal porous body, method for producing metal porous body, and filter
JP3817057B2 (en) Deodorizing filter media unit
WO2021044272A1 (en) Assembly including acoustic baffles
JPS5925613B2 (en) electret filter
US11071936B2 (en) Filter with perforated separator plates
JP3434587B2 (en) Filter media for air filter
JP2017070900A (en) Reinforced air filter unit
KR20160041688A (en) Air filter
CN106039809A (en) Novel filter structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5321079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151