JP5320084B2 - Manufacturing method of high Cr content steel with good descalability - Google Patents

Manufacturing method of high Cr content steel with good descalability Download PDF

Info

Publication number
JP5320084B2
JP5320084B2 JP2009009141A JP2009009141A JP5320084B2 JP 5320084 B2 JP5320084 B2 JP 5320084B2 JP 2009009141 A JP2009009141 A JP 2009009141A JP 2009009141 A JP2009009141 A JP 2009009141A JP 5320084 B2 JP5320084 B2 JP 5320084B2
Authority
JP
Japan
Prior art keywords
steel
temperature
scale
mass
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009009141A
Other languages
Japanese (ja)
Other versions
JP2009275285A (en
Inventor
昌平 中久保
実佳子 武田
隆 大西
英典 酒井
智也 土橋
和彦 桐原
剛 白野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009009141A priority Critical patent/JP5320084B2/en
Publication of JP2009275285A publication Critical patent/JP2009275285A/en
Application granted granted Critical
Publication of JP5320084B2 publication Critical patent/JP5320084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、燃焼雰囲気加熱炉で加熱された鋼ビレットから冷圧用高Cr含有鋼材、とくにその条鋼材を製造する方法に関し、鋼材の表面に生成するスケールを抑制して製造歩留まりを向上するとともに、スケールの剥離性を高めて表面品質のよい製品を得るための加熱炉制御条件の改良に関する。   The present invention relates to a method for producing a high-Cr steel material for cold pressure from a steel billet heated in a combustion atmosphere heating furnace, in particular, the strip steel material, and suppresses the scale generated on the surface of the steel material to improve the production yield, The present invention relates to an improvement in heating furnace control conditions for obtaining a product having a good surface quality by increasing the peelability of the scale.

自動車用部品材として多用される冷圧用条鋼材であって、とくに高強度を確保する目的で製造される高Cr含有鋼には、必然的に生成するスケールに起因してつぎのような問題が随伴する。   Cold-rolled steel bars frequently used as automotive parts materials, and especially high Cr-containing steels manufactured for the purpose of ensuring high strength, have the following problems due to the inevitably generated scale. Accompanying.

加熱処理されたCr含有鋼のビレットを熱間圧延するとき、図1の左方に示された模式図に見られるように、鋼とスケールとの界面に、内方酸化層としてクロマイト(FeCr)を主体とする、いわゆるサブスケールが生成する。このサブスケールの生成は、都合の悪いことに、鋼へのスケール密着性を強固にし、熱延後のデスケーリング時に必要とされるスケール剥離性を悪化させる。その結果、取り残されたスケールは、圧延時に鋼材に押し込まれ、いわゆる押し込み疵を鋼材表面に刻印する事態となる。 When hot-rolling a billet of Cr-containing steel that has been heat-treated, as shown in the schematic diagram shown on the left side of FIG. 1, chromite (FeCr 2) is formed as an inner oxide layer at the interface between the steel and the scale. A so-called subscale mainly composed of O 4 ) is generated. This subscale formation unfortunately increases the scale adhesion to the steel and worsens the scale peelability required during descaling after hot rolling. As a result, the remaining scale is pushed into the steel material during rolling, and a so-called indentation ridge is imprinted on the steel material surface.

押し込み疵が持ち込まれたままの製品鋼材は、その外観を悪化させるばかりか破壊や脆化の起点となり不良品化する。その対策として、従来から、ビレット加熱炉の温度を上げてスケールの剥離性を高める解決策が工夫されている。   The product steel with the indentation flaws brought in deteriorates not only the appearance but also becomes the starting point of destruction and embrittlement and becomes defective. As countermeasures, conventionally, a solution has been devised that increases the temperature of the billet heating furnace to increase the peelability of the scale.

たとえば、下記特許文献1は、従来、1000〜1200℃・数10分〜数時間の加熱条件を、1100℃以上・10分以上あるいは1200℃以上・5分以上の高温処理とし、同時に炉内に給水する方法を示す。この方法は、高温加熱によりスケールの剥離性を高めようとするが、1100〜1200℃さらには1200℃以上もの高温加熱は、一方でスケールロスを増加させる致命的な実用面の問題が伏在する。   For example, in the following Patent Document 1, a conventional heating condition of 1000 to 1200 ° C. and several tens of minutes to several hours is set to a high temperature treatment of 1100 ° C. or higher, 10 minutes or higher, or 1200 ° C. or higher and 5 minutes or higher, and at the same time in the furnace Shows how to supply water. This method tries to increase the peelability of the scale by high-temperature heating, but high-temperature heating at 1100 to 1200 ° C. or even 1200 ° C. or more has a fatal practical problem that increases scale loss. .

また、下記特許文献2は、通常おこなわれる熱延後の高圧水噴射によるデスケールでは、気孔が原因となって下層スケールの残留が避けられない点を重視し、1200〜1350℃・水蒸気濃度20〜35%以上の1次加熱ならびに1000〜1200℃・水蒸気濃度20%未満での2次加熱により、表面性状のよい熱延鋼材の製法を提案する。しかし、このように、高温での1次加熱から温度を下さげて2次加熱に移行させる方法は、明らかに生産効率を低下させる一方、スケールロス増を招くおそれがある。   Moreover, the following patent document 2 attaches importance to the fact that the residual of the lower scale is unavoidable due to pores in the descaling by high-pressure water injection after hot rolling, which is normally performed, and has a temperature of 1200 to 1350 ° C and a water vapor concentration of 20 to We propose a method for producing hot rolled steel with good surface properties by primary heating of 35% or more and secondary heating at 1000 to 1200 ° C. and a water vapor concentration of less than 20%. However, in this way, the method of lowering the temperature from the primary heating at the high temperature to the secondary heating obviously decreases the production efficiency, but may increase the scale loss.

また、Cr含有鋼を対象とするものではないが、表面性状のよい熱延鋼材を製造するために加熱炉の雰囲気を制御することもいくつか提案されている。   Although not intended for Cr-containing steels, some proposals have been made to control the atmosphere of the heating furnace in order to produce hot-rolled steel with good surface properties.

たとえば、下記特許文献3は、いわゆる直送圧延を高速化してスケールロスの低減をはかる場合、連続鋳造時の欠陥が地鉄中に残存して製品表層に移行する点に着目し、加熱炉の雰囲気をつぎのように制御する。すなわち、加熱炉の露点W℃を、加熱炉の温度T℃および加熱時間Hhrの関数として、下式(1)により算出し、その露点以上で操業する方法である。この条件にて加熱炉の露点を制御することにより、連続鋳造機で発生したスラブ表層の鋳造欠陥が除去できるとする。   For example, Patent Document 3 below focuses on the point that defects at the time of continuous casting remain in the steel and move to the surface of the product when the so-called direct feed rolling is speeded up to reduce scale loss, and the atmosphere of the heating furnace Is controlled as follows. That is, the dew point W ° C. of the heating furnace is calculated by the following equation (1) as a function of the temperature T ° C. of the heating furnace and the heating time Hhr, and the operation is performed at or above the dew point. By controlling the dew point of the heating furnace under these conditions, it is assumed that casting defects on the slab surface layer generated by the continuous casting machine can be removed.

W=5.85×10−5/(T+273)−1.5H+10−3−294
・・・(式1)
しかし、実施面から考察すると、つぎのような問題が潜在するように推察される。まず、この種鋼に必然的に含まれるSiやCr等のサブスケール形成の素因となる濃化元素の量により左右される鋼種の違いにより、加熱炉の雰囲気が相違し、上式(1)に沿って一概に雰囲気操作してもデスケーリング性の向上が保証され難いと考えられる。
W = 5.85 × 10 −5 /(T+273)−1.5H+10 −3 H 2 −294
... (Formula 1)
However, from the viewpoint of implementation, the following problems are inferred. First, the atmosphere of the heating furnace differs due to the difference in the steel type that depends on the amount of the concentrated element that is a predisposing factor for the formation of subscales such as Si and Cr contained in this seed steel. Therefore, it is considered difficult to guarantee the improvement of descaling performance even if the atmosphere is manipulated in general.

また、通常、冷圧用鋼板は、1000〜1350℃の温度で30〜120分間加熱して製造されるが、たとえば、これを1100℃・120分の条件を設定して上式(1)により、露点を求めると、W=129.1となる。そして、本値を、同1100℃・120分の条件とともに、同発明における水蒸気濃度XH2Oを求める下記算式(2)にそれぞれ代入すると、X=6.035%の水蒸気濃度が算出される。 Moreover, normally, the steel sheet for cold pressure is manufactured by heating at a temperature of 1000 to 1350 ° C. for 30 to 120 minutes. For example, by setting the conditions at 1100 ° C. and 120 minutes, the above equation (1) When the dew point is obtained, W = 129.1. Then, by substituting this value into the following formula (2) for obtaining the water vapor concentration X H2O in the present invention together with the conditions of 1100 ° C. and 120 minutes, a water vapor concentration of X = 6.035% is calculated.

H2O,1={7.02×(W+273.15)0.105−12.08}9.52
・・・(式2)
この(式2)により算出される水蒸気濃度XH2O%の対象値が明確を欠くが、合理的に考えてかりに体積%とすれば、この水蒸気濃度では、被処理鋼種であるCr含有鋼のスケール剥離性が絶望的に悪化する結果となり、実用性がないこととなる。
X H2O, 1 = {7.02 × (W + 273.15) 0.105 -12.08} 9.52
... (Formula 2)
Although the target value of the water vapor concentration X H2O % calculated by this (Equation 2) lacks clarity, if it is reasonably considered to be volume%, this water vapor concentration is the scale of the Cr-containing steel that is the steel type to be treated. As a result, the releasability is desperately deteriorated, and there is no practicality.

また、下記特許文献4は、スケールオフを最小限にして表面品質のよい鋼材を得るために、燃焼加熱炉における制御条件をつぎのように提案する。これは、加熱炉の抽出温度を鋼の平均温度で1100℃以下、また、炉内雰囲気ガスの水蒸気濃度を5%以上とし、同時に炉内の温度と酸素分圧を適正化する方法である。   Patent Document 4 below proposes control conditions in a combustion heating furnace as follows in order to obtain a steel material with good surface quality while minimizing the scale-off. This is a method in which the extraction temperature of the heating furnace is 1100 ° C. or less in terms of the average temperature of the steel, the water vapor concentration of the atmosphere gas in the furnace is 5% or more, and at the same time the furnace temperature and oxygen partial pressure are optimized.

ところが、この方法をCr含有鋼に適用しようとしても、加熱炉の抽出温度がCr含有鋼の平均温度1100℃以下のごとき前提条件のもとでは、対象とするCr含有鋼のCr含有量に応じた水蒸気濃度およびそれと酸素分圧との比率等を適正化すること自体が困難であり、とてもCr含有鋼のスケール剥離性の改善は期待できない。   However, even if this method is to be applied to Cr-containing steel, depending on the precondition that the extraction temperature of the heating furnace is 1100 ° C. or less of the average temperature of the Cr-containing steel, it depends on the Cr content of the target Cr-containing steel. Therefore, it is difficult to optimize the water vapor concentration and the ratio between the water vapor concentration and the oxygen partial pressure, and improvement of the scale peelability of the Cr-containing steel cannot be expected.

また、下記特許文献5は、この種鋼の熱延時の再加熱によるスケールの不均一発生、あるいは、局所的な深いくさび状の粒界酸化による表面欠陥を防止するために、加熱炉の酸素雰囲気濃度を0.1〜1.0%、水蒸気雰囲気濃度を25%以上となるように、燃焼用バーナーに燃料ガスおよび空気を供給すればよいとする。ところが、ここでは、1100℃未満の加熱条件下での加熱炉雰囲気における酸素および水蒸気濃度が示唆されていないので、高Cr含有鋼に適用して表面性状のよい製品が得られる保証がない。   In addition, Patent Document 5 below discloses an oxygen atmosphere in a heating furnace in order to prevent nonuniform generation of scale due to reheating during hot rolling of this seed steel or surface defects due to local deep wedge-shaped grain boundary oxidation. It is assumed that fuel gas and air may be supplied to the combustion burner so that the concentration is 0.1 to 1.0% and the water vapor atmosphere concentration is 25% or more. However, since oxygen and water vapor concentrations in the furnace atmosphere under heating conditions below 1100 ° C. are not suggested here, there is no guarantee that a product with good surface properties can be obtained when applied to high Cr content steel.

このように、従来公知の方法では、1次スケールに起因するスケール押し込み疵を確実かつ十分に低減して表面疵がきわめて少ない冷圧用の高Cr含有鋼材が製造できないのが実情である。   As described above, in the known methods, it is actually impossible to manufacture a high Cr content steel material for cold pressure with a very small surface wrinkle by reliably and sufficiently reducing the scale indentation wrinkles due to the primary scale.

特開2002−316207号公報JP 2002-316207 A 特開2003−119517号公報JP 2003-119517 A 特開平6−184627号公報JP-A-6-184627 特開平11−217629号公報JP 11-217629 A 特開平11−286718号公報JP-A-11-286718

本発明は、表面疵の発生が実質的に懸念されない程度を超えて多量のCrを含有する冷圧用鋼材を対象とし、加熱炉で生成する1次スケールの生成を抑制してスケールロスを低減することによりデスケーリング性を向上すること、および不可避のスケールの押し込み疵を低減して表面疵が少ない表面性状にすぐれた高Cr含有の冷圧用鋼材を提供することを解決課題とする。   The present invention is directed to a steel material for cold pressure containing a large amount of Cr exceeding the extent that generation of surface flaws is not substantially concerned, and suppresses the generation of primary scale generated in a heating furnace and reduces scale loss. It is an object of the present invention to provide a steel material for cold pressure containing high Cr that has excellent surface properties by improving the descalability and reducing the inevitable scale indentation flaws and reducing the surface flaws.

本発明は、表面疵の発生が実質的に懸念されない程度以上に多量のCrを含有する冷圧用鋼材を対象とし、下記する条件のもとで加熱制御することを特徴とし、そして熱間圧延することにより、表面疵が少ない表面性状にすぐれた高Cr含有の冷圧用鋼材が製造できる方法である。   The present invention is directed to a steel material for cold pressure containing a large amount of Cr more than the extent that generation of surface flaws is not substantially concerned, and is characterized by heating control under the following conditions and hot rolling By this, it is a method which can manufacture the steel material for cold pressure containing high Cr which was excellent in the surface property with few surface flaws.

(1)Cr:0.2〜4.0質量%を含有する鋼のビレットを燃焼雰囲気加熱炉で加熱、均熱保持したのち、加熱炉外に抽出して熱間圧延する方法において、鋼中のCr濃度をX質量%として、加熱炉内の水蒸気濃度が(4.47X+17.1)vol.%以上であり、かつ、水蒸気濃度と加熱炉内の酸素濃度(vol.%)との比が10以上に調整された雰囲気中において、1100℃未満の温度下で、10分以上均熱保持することを特徴とするデスケーリング性のよい高Cr含有冷圧用鋼材の製法。   (1) In a method in which a billet of steel containing 0.2% to 4.0% by mass of Cr is heated in a combustion atmosphere heating furnace and kept soaked, and then extracted outside the heating furnace and hot rolled. And the Cr concentration in the heating furnace is (4.47X + 17.1) vol. In an atmosphere in which the ratio of the water vapor concentration and the oxygen concentration (vol.%) In the heating furnace is adjusted to 10 or more, and soaking is maintained for 10 minutes or more at a temperature of less than 1100 ° C. A method for producing a high Cr-containing steel material for cold pressure with good descaling characteristics.

(2)前記鋼が、さらにSi:0.1〜0.5質量%を含有し、均熱保持後、さらに該均熱温度+70℃以上で且つ1180℃未満の温度に至るまで20℃/min.以上の昇温速度で急速加熱することを特徴とする上記(1)に記載のデスケーリング性のよい高Cr含有冷圧用鋼材の製法。   (2) The steel further contains Si: 0.1 to 0.5% by mass, and after the soaking is maintained, the soaking temperature is + 70 ° C. or higher and less than 1180 ° C. The method for producing a steel material for cold pressure containing high Cr with good descaling property according to the above (1), characterized in that rapid heating is performed at a temperature rising rate of min.

(3)前記鋼がさらに、C:0.02〜0.6質量%、Si:0.1〜0.5質量%、Mn:0.02〜3.0質量%、S<0.03質量%、Al<0.05質量%およびCa<0.003質量%を含有することを特徴とする上記(1)または(2)に記載のデスケーリング性のよい高Cr含有冷圧用鋼材の製法。   (3) The steel is further C: 0.02-0.6 mass%, Si: 0.1-0.5 mass%, Mn: 0.02-3.0 mass%, S <0.03 mass. %, Al <0.05 mass%, and Ca <0.003 mass%, The manufacturing method of the high Cr content cold-pressure steel material with the good descaling property as described in said (1) or (2) characterized by the above-mentioned.

本発明は、高Cr含有鋼を対象とし、ビレットが加熱炉で加熱そして均熱保持されるときの条件を、上述したように、炉内の水蒸気および酸素濃度を特定の数値範囲に制御することにより、1100℃以下の温度で処理できるようにしたことを特徴とする。その結果、スケールの生成量が問題とならない程度に抑制され、スケールロス低減による歩留まりが向上し、しかも、剥離性がよいスケール性状となり、後工程でのデスケーリングによって取り残されたスケール由来の押し込み疵が実質的に存在しない良好な表面性状の冷圧用鋼材が容易に製造できる。   The present invention targets high Cr-containing steel, and controls the water vapor and oxygen concentration in the furnace to a specific numerical range as described above under the conditions when the billet is heated and soaked in the heating furnace. Thus, the treatment can be performed at a temperature of 1100 ° C. or lower. As a result, the amount of scale generated is suppressed to an extent that it does not become a problem, the yield due to scale loss reduction is improved, and the scale properties have good peelability, and the scale-derived indentations left behind by descaling in the subsequent process Thus, a steel material for cold pressure having a good surface property that is substantially free of can be easily produced.

鋼表面の内方酸化層および外方酸化層生成の模式図。The schematic diagram of the production | generation of the inner oxide layer and outer oxide layer on the steel surface. 鋼のCr含有量に対する水蒸気濃度の適正関係を示す相関グラフ。The correlation graph which shows the appropriate relationship of the water vapor | steam density | concentration with respect to Cr content of steel. 鋼のスケール剥離性に対する昇温速度の影響を示すグラフ。The graph which shows the influence of the temperature increase rate with respect to the scale peelability of steel. 鋼のスケール剥離性に対する到達温度の影響を示すグラフ。The graph which shows the influence of the ultimate temperature with respect to the scale peelability of steel. 鋼表面の急速加熱によるファイアライト破壊の模式図。Schematic of firelight destruction by rapid heating of steel surface.

本発明は、Cr:0.2〜4.0質量%(各鋼材成分の含有量について以下では単に「%」と記載する)を含有する鋼ビレットを加熱炉で加熱処理して熱間圧延することにより冷圧用鋼材を製造するに際し、鋼中のCr濃度をX%として、水蒸気濃度が(4.47X+17.1)vol.%以上であり、かつ、この水蒸気濃度と酸素との比が10以上に調整された雰囲気の加熱炉中において、1100℃未満の温度のもとで、10分以上にわたって均熱保持することを特徴とする高Cr含有の冷圧用鋼材を製造する方法である。   In the present invention, a steel billet containing Cr: 0.2 to 4.0% by mass (the content of each steel material component is simply described as “%” in the following) is heat-treated in a heating furnace and hot-rolled. When manufacturing a steel for cold pressure, the Cr concentration in the steel is X%, and the water vapor concentration is (4.47X + 17.1) vol. %, And in a heating furnace having an atmosphere in which the ratio of water vapor concentration to oxygen is adjusted to 10 or more, soaking is maintained at a temperature of less than 1100 ° C. for 10 minutes or more. This is a method for producing a steel material for cold pressure containing high Cr.

本発明がCr:0.2〜4.0%含有する冷圧用鋼を対象とするのは、製品鋼材に要求される機械的強度を付与するために、0.2%以上のCrの含有を必要とするのはもとより、この程度未満のCr含有量であれば、以下に説明するようなメカニズムで鋼に表面疵が発生するおそれが実質的にないからである。一方、Cr含有量が4%以上に多くなっても、通常の加熱炉在炉時間内ならば炉内水蒸気による下記するような内方酸化層の増大効果が期待できないので、本発明を適用すべき積極的利益がない。   The subject of the present invention is a steel for cold pressure containing Cr: 0.2-4.0%, in order to give the mechanical strength required for the product steel material, containing 0.2% or more of Cr. This is because, of course, if the Cr content is less than this level, there is substantially no risk of surface flaws occurring in the steel by the mechanism described below. On the other hand, even if the Cr content is increased to 4% or more, the effect of increasing the inner oxide layer as described below by steam in the furnace cannot be expected within the normal furnace time, so the present invention is applied. There is no positive profit.

ここで、本発明の処理条件につて説明するに先立って、Cr以外の鋼成分について説明しておく。本発明の対象とする鋼は、Cr:0.2〜4.0%に加えて、C:0.02〜0.6%、Si:0.1〜0.5%、Mn:0.02〜3.0%、S<0.03%、Al<0.05%およびCa<0.003%を含有する。これらの所要元素以外にも使用目的に応じて各種の合金元素、たとえばMo<0.3%等を配合することができるのはいうまでもない。   Here, before explaining the processing conditions of the present invention, steel components other than Cr will be explained. In addition to Cr: 0.2-4.0%, the steel that is the subject of the present invention is C: 0.02-0.6%, Si: 0.1-0.5%, Mn: 0.02 -3.0%, S <0.03%, Al <0.05% and Ca <0.003%. In addition to these required elements, it goes without saying that various alloy elements such as Mo <0.3% can be blended depending on the purpose of use.

なお、上記各元素含有量の範囲を決めた理由はつぎのとおりである。   The reason for determining the range of each element content is as follows.

Cは鋼材の所要強度を確保するために0.02%以上の含有を必要とするが、0.6%を超えると、鋼材の冷間加工性が低下する。   C needs to contain 0.02% or more in order to ensure the required strength of the steel material, but if it exceeds 0.6%, the cold workability of the steel material will be reduced.

Siは所要強度を確保するために0.1%を下限とするが、0.5%以上の過剰添加は鋼材の延性を劣化すると同時に、本発明におけるCrの効果を阻害して好ましくない。   Si has a lower limit of 0.1% in order to ensure the required strength, but excessive addition of 0.5% or more is not preferable because it deteriorates the ductility of the steel material and at the same time inhibits the effect of Cr in the present invention.

Mnは鋼材の強度と靭性を確保するために0.02%以上必要であるが、3.0%以上になると、靭性および溶接性を阻害する。   Mn is required to be 0.02% or more in order to ensure the strength and toughness of the steel material, but if it is 3.0% or more, the toughness and weldability are hindered.

Sは硫化物系介在物MnSを形成して鋼の熱間加工時に偏析し、鋼材を脆化させるので、割れを防止するために0.03%以下に抑制することが必要である。   S forms sulfide inclusion MnS and segregates during hot working of steel, embrittles the steel material. Therefore, it is necessary to suppress it to 0.03% or less in order to prevent cracking.

Alは、鋼材の焼きならし加熱時にオーステナイト結晶粒の粗大化を図って添加される脱酸材であるが、0.05%以上の過剰添加は、同結晶粒を不安定化して好ましくない。   Al is a deoxidizing material added in order to coarsen austenite crystal grains during normalizing heating of the steel material, but an excessive addition of 0.05% or more is not preferable because the crystal grains become unstable.

Caは鋼材表面の腐食にともなう界面雰囲気の水素イオン濃度増大を抑制し、鋼材の耐食性を向上するのに有効であるが、過剰添加は延性を劣化させる。   Ca is effective in suppressing an increase in the hydrogen ion concentration in the interface atmosphere accompanying corrosion of the steel material surface and improving the corrosion resistance of the steel material, but excessive addition degrades the ductility.

なお、Moは鋼材の強度を増す目的で必要に応じて添加してよいが、粒界偏析してSi酸化物のファイアライト(FeSiO)が鋼中に浸潤するのを促進するのを阻止するために、0.3%以下とするのがよい。 Mo may be added as necessary for the purpose of increasing the strength of the steel material, but it promotes the infiltration of Si oxide firelite (Fe 2 SiO 4 ) into the steel by segregation at the grain boundaries. In order to prevent this, it should be 0.3% or less.

さて、本発明は、上述したCr含有鋼のビレットを加熱処理するときの温度ならびに炉内雰囲気における水蒸気濃度および酸素濃度の両条件を上述のように規制したことを特徴とし、本発明がこれらの条件を特徴とするに至った背景には、つぎに述べる技術上の考察がある。   Now, the present invention is characterized in that both the temperature when the billet of the Cr-containing steel described above is heat-treated and the water vapor concentration and the oxygen concentration in the furnace atmosphere are regulated as described above. The technical background described below is the background behind the conditions.

本発明が対象とするような高Cr含有鋼が加熱時に酸化すると、図1に模式的に示すように、ウスタイト(FeO)、マグネタイト(Fe)およびヘマタイト(Fe)から成る外方酸化層ならびにクロマイト(FeCr)主体のサブスケールと呼ばれる内方酸化層がそれぞれ生成する。外方酸化層は、酸化前の鋼材表面から外側に生成するスケールであって、鋼材からCrが拡散することにより成長する。また、内方酸化層のサブスケールは、酸化前の鋼表面から内側に向けて酸化が進行することにより成長する。 When a high Cr content steel as the object of the present invention is oxidized during heating, it is composed of wustite (FeO), magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ) as schematically shown in FIG. An outer oxide layer and an inner oxide layer called a subscale mainly composed of chromite (FeCr 2 O 4 ) are generated. The outer oxide layer is a scale generated outward from the surface of the steel material before oxidation, and grows by diffusion of Cr from the steel material. Further, the subscale of the inner oxide layer grows as oxidation proceeds inward from the steel surface before oxidation.

このような現象のメカニズムについては未解明の点を残すが、加熱炉内が水蒸気雰囲気の場合、水蒸気がスケール表層で解離してできる水素イオンが外方酸化層を通って鋼表面に到達し、同層の酸化物を還元して水分となり、これが鋼内部に向かって酸化層を成長させる腐食反応の一種と考えられる現象が起こる。   Although the mechanism of such a phenomenon remains unexplained, when the inside of the heating furnace is in a steam atmosphere, hydrogen ions formed by the dissociation of steam at the scale surface layer reach the steel surface through the outer oxide layer, A phenomenon occurs in which the oxide in the same layer is reduced to moisture, which is considered as a kind of corrosion reaction that grows an oxide layer toward the inside of the steel.

このような考察から、これらの生成スケールが示す機能面について、つぎのような理解が得られる。   From these considerations, the following understanding can be obtained regarding the functional aspects of these generation scales.

すなわち、サブスケールの主体をなすクロマイトは、スピネル構造のFeとCrとの複合酸化物(FeCr)であり、ウスタイト(FeO)よりも生成酸素圧が低いため、スケールと鋼との界面に濃化して両者の密着性を非常に強固にする性質がある。そして、この密着性はサブスケール中のクロマイト濃度が増加するほど強化される傾向があり、これはデスケーリング性の悪化を意味する。 That is, the chromite forming the main subscale is a composite oxide of Fe and Cr (FeCr 2 O 4 ) having a spinel structure, and the generated oxygen pressure is lower than that of wustite (FeO). It has the property of concentrating to a very strong adhesion between the two. And this adhesiveness tends to be strengthened as the chromite concentration in the subscale increases, which means deterioration of descaling property.

このような理解にもとづいて、加熱炉内の水蒸気雰囲気を加減することにより、サブスケールの成長を促進すれば、クロマイトの濃度を低減させることが可能になることを見出した。これが本発明の解決原理であり、加熱時の炉内雰囲気中の水蒸気ならびに酸素の濃度を適正範囲に制御する理由である。   Based on this understanding, it was found that the concentration of chromite can be reduced if the subscale growth is promoted by adjusting the water vapor atmosphere in the heating furnace. This is the solution principle of the present invention, and is the reason why the concentration of water vapor and oxygen in the furnace atmosphere during heating is controlled within an appropriate range.

すなわち、再度図1を引用すると、同図の左半は、加熱炉内雰囲気中の水蒸気および酸素の濃度が適正範囲を逸脱する条件でのスケール模式図を示すが、同右半の図に比較して、サブスケールの領域が狭く、クロマイトの濃度が大であることが理解されるはずである。つまり、同図の左半は、水蒸気による内方酸化の効果が発揮されないでサブスケールの成長速度がおそいために、クロマイトは、その狭い領域でゆるやかに濃化することができ、結果として、厚みが小さくクロマイト濃度が大なるサブスケール性状となる。   That is, referring to FIG. 1 again, the left half of the figure shows a schematic diagram of the conditions in which the concentration of water vapor and oxygen in the furnace atmosphere deviates from the appropriate range, but compared to the right half of the figure. Thus, it should be understood that the subscale area is narrow and the chromite concentration is high. In other words, in the left half of the figure, the effect of inward oxidation by water vapor is not exhibited, and the growth rate of the subscale is slow, so chromite can be gradually concentrated in its narrow area, resulting in a thickness increase. Is a subscale property with a small chromite concentration.

これに対し、加熱炉内雰囲気中の水蒸気および酸素の濃度を本発明の規制する適正範囲に制御すると、水蒸気による内方酸化の効果が助長されてサブスケールの成長速度が促進され、その広いサブスケール領域にてクロマイトは迅速に生成して成長することができる。その結果、同図右半に示すように、クロマイト濃度が薄く、厚みの厚いサブスケール性状となり、その剥離性を向上することになる。しかも、クロマイト量の減少にともなって剥離性良好なFeOの量を増大する効果も確認できるのである。   On the other hand, when the concentration of water vapor and oxygen in the heating furnace atmosphere is controlled within an appropriate range regulated by the present invention, the effect of inward oxidation by water vapor is promoted and the growth rate of the subscale is promoted. In the scale region, chromite can be generated and grown quickly. As a result, as shown in the right half of the figure, the chromite concentration is thin and the subscale property is thick, thereby improving the peelability. In addition, the effect of increasing the amount of FeO with good peelability can be confirmed as the amount of chromite decreases.

本発明がこのように加熱炉内雰囲気中の水蒸気および酸素の濃度を適正範囲に制御するについては、さらに、鋼中のCr含有量の増大にともなってクロマイト濃度も増加する相関関係を示すことが知見された事実がある。これは、Cr含有量が多い鋼ほど加熱により剥離性の悪いスケール性状を呈することを意味する。   The present invention controls the concentration of water vapor and oxygen in the furnace atmosphere in the proper range as described above, and further shows that there is a correlation that the chromite concentration increases as the Cr content in the steel increases. There are facts found. This means that steel with a higher Cr content exhibits a scale property with poor peelability due to heating.

本発明は、以上の理解と知見にもとづいて、加熱炉内雰囲気中の水蒸気濃度を増加させることにより、スケールの剥離性を改善することに成功した。具体的には、鋼中のCr含有量をX%として、水蒸気濃度を(4.47X+17.1)vol.%以上となるように調整することが特徴であり、この関係を図2に示す。この相関関係は、後記実施例にその一部を開示するように、多数の実験結果からスケールの剥離性の良否を鑑別することにより帰納された結果である。すなわち、上式(4.47X+17.1)vol.%を指示する同図の一次直線より上方域に分布する黒四角印の条件に該当する対Cr含有量・水蒸気濃度のもとで適切に加熱された鋼の圧延材には、0.02mm以上の表面疵の残存は認められない。ただし、このときの酸素濃度は、本発明の下記に詳述する条件下で適切に調整されていることはいうまでもない。   Based on the above understanding and knowledge, the present invention succeeded in improving the peelability of the scale by increasing the water vapor concentration in the atmosphere in the heating furnace. Specifically, assuming that the Cr content in the steel is X%, the water vapor concentration is (4.47X + 17.1) vol. The characteristic is that the adjustment is made to be at least%, and this relationship is shown in FIG. This correlation is a result obtained by discriminating whether the scale peelability is good or not from a large number of experimental results, as disclosed in part in the examples below. That is, the above formula (4.47X + 17.1) vol. 0.02 mm or more for rolled steel that is appropriately heated under the Cr content and water vapor concentration corresponding to the conditions of the black squares distributed above the primary line No surface defects remain. However, it goes without saying that the oxygen concentration at this time is appropriately adjusted under the conditions described in detail below.

すなわち、本発明が上述のようにして加熱炉内雰囲気中の水蒸気濃度を増加させる場合、共存する加熱炉内酸素が高濃度であれば、スケール表面における水蒸気の解離量が減少して解離水素の拡散量も減少し、水蒸気による内方酸化層の顕著な増大効果が認められないようになることが確認される。   That is, when the present invention increases the water vapor concentration in the furnace atmosphere as described above, if the coexisting furnace oxygen is high, the amount of water dissociation on the scale surface decreases and It is confirmed that the amount of diffusion also decreases, and the remarkable increase effect of the inner oxide layer due to water vapor is not recognized.

したがって、本発明は、できるだけ酸素濃度を低くし、水蒸気濃度をできるだけ大きくするように制御することにし、具体的には、水蒸気濃度と酸素濃度との比率を10以上とする。   Therefore, in the present invention, the oxygen concentration is controlled to be as low as possible and the water vapor concentration is increased as much as possible. Specifically, the ratio between the water vapor concentration and the oxygen concentration is set to 10 or more.

この条件下で加熱した鋼ビレットを常法により圧延すると、その製品鋼材に0.02mm以上の疵はできず、上記比率が20以上では、0.015mm以上の、また、30以上では、0.01mm以上の疵はできないことが確認でき、スケールの剥離性が確実に向上していることが明白となっている。   When a steel billet heated under these conditions is rolled by a conventional method, the product steel cannot be wrinkled by 0.02 mm or more, and when the ratio is 20 or more, it is 0.015 mm or more. It can be confirmed that wrinkles of 01 mm or more cannot be formed, and it is clear that the peelability of the scale is surely improved.

また、本発明は、上述の雰囲気下で鋼ビレットを加熱するとき、10分以上均熱保持することが必要であり、これ以下の短時間では、当然ながら加熱不足で圧延不良を招く。しかも、スケールを生成するのに加熱が不足してスケールの厚みが薄くとどまり、スケール中の残留応力が不十分でデスケーリング不良の原因となる。このときの加熱温度すなわち均熱保持温度は既述のようにスケールロスを極力減少させるため1100℃未満とするが、一方、950℃未満の低温下では熱間圧延時の圧延機への負荷が多大となって正常な圧延が困難となるため950℃以上とすることが好ましい。   Further, according to the present invention, when heating the steel billet in the above-mentioned atmosphere, it is necessary to keep soaking for 10 minutes or more, and in a short time shorter than this, of course, insufficient heating causes a rolling failure. Moreover, heating is insufficient to generate the scale and the thickness of the scale remains thin, and the residual stress in the scale is insufficient, which causes a descaling failure. As described above, the heating temperature at this time, that is, the soaking temperature, is set to less than 1100 ° C. in order to reduce the scale loss as much as possible. On the other hand, at a low temperature of less than 950 ° C., the load on the rolling mill during hot rolling is reduced. Since it becomes so large that normal rolling becomes difficult, the temperature is preferably set to 950 ° C. or higher.

なお、鋼のCr含有量と加熱条件との関係について説明を補足する必要があるのは、本発明がCr含有量を0.2〜4.0%と限定した理由が、以上に説明してきた本発明の加熱条件が前提になることによる。すなわち、加熱炉の温度1090℃、水蒸気濃度15%、酸素濃度1%、そして15分の均熱時間において、Cr含有量が0.18%、3.5%、4.05%の3種の鋼をそれぞれ加熱して圧延し、デスケーリングする試験をおこなった。表1は、各圧延材の表面疵の状況を示し、0.002mm以上の疵の有無で合否を判定した結果を表1に示す。   In addition, it is necessary to supplement explanation about the relationship between the Cr content of steel and the heating conditions. The reason why the present invention limited the Cr content to 0.2 to 4.0% has been explained above. This is because the heating conditions of the present invention are assumed. That is, in a heating furnace temperature of 1090 ° C., a water vapor concentration of 15%, an oxygen concentration of 1%, and a soaking time of 15 minutes, three types of Cr content of 0.18%, 3.5%, 4.05% Each of the steels was heated and rolled, and a descaling test was conducted. Table 1 shows the state of surface defects on each rolled material, and Table 1 shows the result of determining pass / fail by presence or absence of defects of 0.002 mm or more.

同表から、加熱処理が本発明の指示に従う条件を満足していても、Cr含有量が4%を超える材料は不合格となり、適用鋼種としては、自ずから0.2〜4.0%の範囲に限定されることが諒解される。
(実施例1群)
表2に示すように、組成が6種の鋼ビレットを溶製した。これらはいずれも本発明の規定する範囲で、Crの含有量に少しずつ変化を持たせ、処理条件を変えることにより、本発明実施例ならびに比較例にも共通して使用することとし、C等その他の含有元素もすべて本発明の規定する範囲とした。
From the table, even if the heat treatment satisfies the conditions in accordance with the instructions of the present invention, a material having a Cr content exceeding 4% is rejected, and as an applicable steel type, the range of 0.2 to 4.0% is naturally. It is understood that it is limited to.
(Example 1 group)
As shown in Table 2, 6 billet steel billets were melted. All of these are within the range defined by the present invention, and the Cr content is changed little by little, and the processing conditions are changed to be used in common with the present invention examples and comparative examples. All other contained elements were also within the range defined by the present invention.

これらの鋼ビレットを、表3(比較例)及び表4(実施例)に示すように、加熱温度、水蒸気濃度および酸素濃度が異なる条件のもとでいずれも15分間ずつ加熱し、150MPaの高圧水により1次デスケーリングしたのち、粗圧延および仕上げ圧延し、巻き線機で巻きとってφ10mmの線材を作成した。これらの熱延条件は常法により、格別のものではない。   As shown in Table 3 (Comparative Example) and Table 4 (Example), these steel billets were heated for 15 minutes each under different conditions of heating temperature, water vapor concentration and oxygen concentration, and a high pressure of 150 MPa. After primary descaling with water, rough rolling and finish rolling were performed, and a wire rod having a diameter of 10 mm was prepared by winding with a winding machine. These hot-rolling conditions are not exceptional because of conventional methods.

つぎに、各線材コイルの先端部、中央部ならびに後端部の3箇所から、それぞれ長さ1mずつの線材を切り出し、そして、各線材の任意4点における断面が観察できるように、計12個ずつの樹脂埋めサンプルを作成した。   Next, a total of 12 wires are cut out from each of the wire coils having a length of 1 m from each of the three positions of the front end portion, the center portion, and the rear end portion of each wire rod coil, and the cross sections at arbitrary four points of each wire rod can be observed. Each resin-filled sample was created.

そして、光学顕微鏡により各樹脂埋めサンプルの断面に散在する疵を観察し、0.02mm以上の疵、0.015mm以上の疵ならびに0.01mm以上の疵の有無を調査した。   And the wrinkles scattered on the cross section of each resin embedding sample were observed with the optical microscope, and the presence or absence of wrinkles of 0.02 mm or more, wrinkles of 0.015 mm or more, and wrinkles of 0.01 mm or more was investigated.

評価は、0.02mm以上の疵が一つでも発見されたものは、出荷不適として不合格と評価した。また、0.015mm以上の疵がないものは、線材として好ましいし、0.01mm以上の疵がないものはさらに好ましいので、これも評価の観点とした。なお、デスケーリング効果については、元のビレットに対する最終製品線材の質量比が95%未満とカウントできるものを、スケールロスが多いものとしての評価とした。   The evaluation was evaluated as rejected as unsatisfactory when any single wrinkle of 0.02 mm or more was found. Moreover, since the thing without a wrinkle of 0.015 mm or more is preferable as a wire, and the thing without a wrinkle of 0.01 mm or more is more preferable, this was also considered from the viewpoint of evaluation. In addition, about the descaling effect, what can count that the mass ratio of the final product wire with respect to the original billet is less than 95% was set as evaluation with many scale losses.

これらの結果は表5(比較例)及び表6(実施例)のとおりである。すなわち、表5の比較例においてNo.1〜6及びNo.21は、炉内雰囲気中の水蒸気および酸素濃度は、いずれも本発明の規定範囲内とするが、加熱温度のみ1100℃を超えるようにしたので、スケールロスが多く不合格である。   These results are as shown in Table 5 (Comparative Example) and Table 6 (Example). That is, in the comparative example of Table 5, No. 1-6 and no. No. 21 is that the water vapor and oxygen concentrations in the furnace atmosphere are both within the specified range of the present invention, but only the heating temperature is over 1100 ° C., so the scale loss is large and it is rejected.

同比較例のNo.7〜13及びNo.22は、鋼材のCr濃度に対して、水蒸気濃度が本発明の規定値未満であるために、0.02mm以上の疵が発生して不合格である。   No. of the comparative example. 7-13 and no. No. 22 is rejected because wrinkles of 0.02 mm or more occur because the water vapor concentration is less than the specified value of the present invention relative to the Cr concentration of the steel material.

同じく比較例のNo.2〜20及びNo.23は、水蒸気濃度と酸素濃度との比が本発明の規定値である10未満であるため、水蒸気による内方酸化層の増大作用が不十分となり、やはり0.02mm以上の疵が発生して不合格である。   Similarly, the comparative example No. 2-20 and no. 23, since the ratio of the water vapor concentration to the oxygen concentration is less than 10 which is the specified value of the present invention, the action of increasing the inner oxide layer by water vapor is insufficient, and soot of 0.02 mm or more is generated. Fail.

これらに対し、表6の実施例のNo.24〜37は、加熱温度、水蒸気濃度そして酸素濃度のいずれも本発明の規定範囲を満足している中で、水蒸気濃度と酸素濃度との比が10以上のものには、0.02mm以上の疵が発見されていない。さらに、この比を20以上としたものには、0.015mm以上の疵が、また、30以上としたものには、0.01mm以上の疵が発見されていない。   On the other hand, No. of the Example of Table 6 is shown. Nos. 24-37 satisfy the specified range of the present invention in all of the heating temperature, water vapor concentration and oxygen concentration, and those having a water vapor concentration to oxygen concentration ratio of 10 or more are 0.02 mm or more. No spider has been found. Further, no wrinkles of 0.015 mm or more were found for those having this ratio of 20 or more, and no wrinkles of 0.01 mm or more were found for those having this ratio of 30 or more.

Figure 0005320084
Figure 0005320084

Figure 0005320084
Figure 0005320084

Figure 0005320084
Figure 0005320084

Figure 0005320084
Figure 0005320084

Figure 0005320084
Figure 0005320084

Figure 0005320084
Figure 0005320084

以上の説明のように、Cr:0.2〜4.0質量%含有する高Cr鋼を対象に同鋼のビレットを燃焼雰囲気加熱炉で加熱、均熱保持するに際して、鋼中のCr濃度をX%として、加熱炉内の水蒸気濃度が(4.47X+17.1)vol.%以上であり、かつ、水蒸気濃度と加熱炉内の酸素との比が10以上に調整された雰囲気中において、1100℃未満の温度下で、10分以上均熱保持し、その後、鋼ビレットを加熱炉外に抽出して熱間圧延することで、加熱炉内で生成する鋼材との密着性が非常に強いクロマイト(FeCr)を主体とするサブスケールの剥離性改善を図ることができ、そして、このことにより残留スケールに由来する押し込み疵が実質的に存在しないレベル、すなわち具体的には0.02mm以上の表面疵が皆無となる表面性状に優れた冷圧用鋼材の製造が可能となった。 As described above, when high-Cr steel containing 0.2% to 4.0% by mass of Cr is heated in a combustion atmosphere heating furnace and maintained soaking, the Cr concentration in the steel is adjusted. As X%, the water vapor concentration in the heating furnace is (4.47X + 17.1) vol. %, And in the atmosphere in which the ratio of water vapor concentration and oxygen in the heating furnace is adjusted to 10 or more, soaking is maintained at a temperature of less than 1100 ° C. for 10 minutes or more. By extracting and hot rolling outside the heating furnace, it is possible to improve the peelability of the subscale mainly composed of chromite (FeCr 2 O 4 ), which has very strong adhesion to the steel material generated in the heating furnace. This makes it possible to produce a steel material for cold-pressure with excellent surface properties that has substantially no indentation flaws derived from residual scale, that is, specifically no surface flaws of 0.02 mm or more. It became.

ところで、鋼の成分としてCrに加えてSi が含有されている鋼材の場合には上記クロマイトとは別にファイアライト(FeSiO)なる複合酸化物がサブスケール中に形成され、これが鋼材表面に層状に濃化して鋼材と強固に密着する性質あるため、Siが0.1質量%以上、特に0.3質量%以上の高Cr鋼を対象とした際は、このファイアライトがスケールの剥離性を妨げることになる。 By the way, in the case of a steel material containing Si in addition to Cr as a component of steel, a complex oxide called firelite (Fe 2 SiO 4 ) is formed in the subscale separately from the chromite, and this is formed on the surface of the steel material. Because it has the property of being concentrated in layers and firmly adhering to the steel material, this firelite is a detachable scale when it is used for high Cr steels with Si content of 0.1% by mass or more, especially 0.3% by mass or more. Will be disturbed.

本発明の上記加熱炉内の均熱雰囲気制御により、Siを0.1質量%以上含有する高Cr鋼を対象とした場合にもこのファイアライトを形成したサブスケールの成長速度を速め、剥離性を改善させることができ、0.02mm以上の表面疵の発生を防止しできることは前述の実施例からも明らかである。   By controlling the soaking atmosphere in the heating furnace of the present invention, even when high Cr steel containing 0.1 mass% or more of Si is targeted, the growth rate of the subscale forming this firelight is increased, and the peelability is increased. It is clear from the above-described embodiment that the surface roughness of 0.02 mm or more can be prevented.

しかしながら、前記クロマイト層の場合はその生成が比較的遅いため、本発明の均熱雰囲気制御を適用することに1100℃未満の低温加熱でもサブスケール中に剥離性の良好なウスタイト(FeO)の生成によりその剥離性を容易に改善できるが、ファイアライト層の生成はクロマイト層に比べて速いことからこの雰囲気制御によってクロマイトと同じサブスケールの剥離性を必ずしも十分に確保することができない問題がある。つまり、クロマイト層が水蒸気酸化によるウスタイト主体の内方酸化層に効果的に取り込まれて行くのに対し、ファイアライト層はその生成速度が大きいため内方酸化層に取り込まれ難く、鋼材表面に濃化する傾向がある。   However, since the formation of the chromite layer is relatively slow, the application of the soaking atmosphere control of the present invention produces wustite (FeO) with good releasability in the subscale even when heated at a low temperature of less than 1100 ° C. However, since the formation of the firelite layer is faster than that of the chromite layer, there is a problem that it is not always possible to sufficiently ensure the same subscale peelability as that of chromite by this atmosphere control. In other words, the chromite layer is effectively taken into the inner oxide layer mainly composed of wustite by steam oxidation, whereas the firelite layer is difficult to be taken into the inner oxide layer because of its high generation rate, and is concentrated on the steel surface. There is a tendency to become.

従って、Siを0.1質量%以上、とりわけ0.3質量%以上含有する高Cr鋼を対象としたときには、このファイアライト生成に伴い、スケールの剥離性が相対的に低下し、この結果、製造された冷圧用鋼材に0.02mm以上の表面疵が発生することはないものの、より微細な表面疵、特に0.01mm以上0.020mm未満の表面疵については少なからず発生することになる。   Therefore, when high Cr steel containing 0.1% by mass or more, especially 0.3% by mass or more of Si is targeted, with this firelite generation, the peelability of the scale is relatively lowered. Although the produced steel sheet for cold pressure does not generate a surface flaw of 0.02 mm or more, a finer surface flaw, particularly a surface flaw of 0.01 mm or more and less than 0.020 mm, is generated in a considerable amount.

本発明者らはこのような状況に鑑み、Siを多く含有する高Cr鋼材対象とした場合においても、0.01mm以上0.020mm未満の微細な表面疵をもさらに減少させるべく、種々実験、検討を重ねたところ、加熱炉内の均熱雰囲気制御に加えて急速加熱制御を実施することが好ましいことが分かった。   In view of such a situation, the present inventors have conducted various experiments in order to further reduce fine surface defects of 0.01 mm or more and less than 0.020 mm even when a high Cr steel material containing a large amount of Si is used. As a result of repeated studies, it has been found that it is preferable to perform rapid heating control in addition to the soaking atmosphere control in the heating furnace.

すなわち、具体的には該鋼のビレットを加熱炉内で前記均熱雰囲気制御による均熱保持後、さらに該均熱温度+70℃以上で且つ1180℃未満の所定の温度に至るまで20℃/min.以上の昇温速度で急速加熱することを特徴とする方法を提案する。   Specifically, after the steel billet is soaked by the soaking atmosphere control in a heating furnace, it is further maintained at a temperature of 20 ° C./until it reaches a predetermined temperature of the soaking temperature + 70 ° C. or more and less than 1180 ° C. We propose a method characterized by rapid heating at a heating rate of min.

この方法によれば、0.1質量%以上のSiを含有する高Cr鋼材の場合にあっても、後述する通り、スケールの剥離性を飛躍的に改善し、残留スケールに起因する上記微細表面疵を大幅に減少することが可能となり、これによって表面性状が極めて優れた冷圧用鋼材を製造することができる。   According to this method, even in the case of a high Cr steel material containing 0.1% by mass or more of Si, as described later, the releasability of the scale is dramatically improved, and the fine surface resulting from the residual scale. It is possible to greatly reduce wrinkles, and thereby it is possible to produce a cold-pressing steel material with extremely excellent surface properties.

以下に、本発明の急速加熱制御における条件につきその特定した理由について説明する。図3は、Fe-0.45%Si標準鋼を対象とし、1050℃の水蒸気濃度20%、酸素濃度1%含有雰囲気下で10分間処理(本発明の均熱雰囲気制御に相当)した後、この鋼を1140℃に至るまで種々の昇温速度で急速加熱処理したサンプル(形状:φ10mm×12mm)について、各昇温速度と残留スケール面積率の関係を図示したものである。図の縦軸の残留スケール面積率は、上記加熱処理後のサンプルを圧縮率50%で圧縮し、その側面に残留付着したスケールを画像処理にて白黒に2値化して算出した。そして、スケールの剥離性の評価はこうしたラボ実験による残留スケール面積率と実機における実際のスケール剥離性との相関から、この残留スケール面積率が50%と未満の場合を合格とした。図3から明らかなように、急速加熱制御における昇温速度が20℃min.以上になると残留スケール面積率は急激に合格ラインを超えて減少しており、Siが0.45%と非常に高い鋼成分でもスケールの剥離性が飛躍的に改善されていることが分かる。   Below, the specified reason is demonstrated about the conditions in the rapid heating control of this invention. FIG. 3 is directed to an Fe-0.45% Si standard steel, treated for 10 minutes in an atmosphere containing a water vapor concentration of 20% at 1050 ° C. and an oxygen concentration of 1% (corresponding to the soaking atmosphere control of the present invention), The relationship between each heating rate and the residual scale area ratio is illustrated for samples (shape: φ10 mm × 12 mm) in which this steel is rapidly heated at various heating rates up to 1140 ° C. The residual scale area ratio on the vertical axis in the figure was calculated by compressing the sample after the heat treatment at a compression ratio of 50% and binarizing the scale adhered to the side surface into black and white by image processing. The evaluation of the peelability of the scale was accepted when the residual scale area ratio was less than 50% based on the correlation between the residual scale area ratio in the laboratory experiment and the actual scale peelability in the actual machine. As is apparent from FIG. 3, the rate of temperature increase in the rapid heating control is 20 ° C. min. When it becomes above, the residual scale area rate is rapidly decreasing beyond the pass line, and it can be seen that the peelability of the scale is dramatically improved even with a steel component having a very high Si content of 0.45%.

次に、図4は、同じFe-0.45%Si標準鋼を対象とし、同様に1050℃の水蒸気濃度20%、酸素濃度1%含有雰囲気下で10分間処理(本発明の均熱雰囲気制御に相当)した後、今度は昇温速度を25℃min.で種々の到達温度まで急速加熱した同形状のサンプルについて各到達温度と残留スケール面積率の関係を同じく図示したものである。図4から、急速加熱制御における到達温度が1120℃(均熱温度1050℃+70℃)以上で且つ1180℃未満
の範囲で残留スケール面積率は合格ラインを超えて減少している事実が明瞭に知れ、Siが0.45%と非常に高い鋼成分でもスケールの剥離性がやはり飛躍的に改善されていることが判明する。
Next, FIG. 4 shows the same Fe-0.45% Si standard steel, and is similarly treated for 10 minutes in an atmosphere containing a water vapor concentration of 20% and an oxygen concentration of 1% at 1050 ° C. (soaking atmosphere control of the present invention). This time, the temperature increase rate is 25 ° C. min. The relationship between each ultimate temperature and the residual scale area ratio is also illustrated for the samples having the same shape rapidly heated to various ultimate temperatures. From FIG. 4, it is clear that the residual scale area ratio decreases beyond the pass line when the temperature reached in the rapid heating control is 1120 ° C. (soaking temperature 1050 ° C. + 70 ° C.) or more and less than 1180 ° C. It is known that the peelability of the scale is dramatically improved even with a steel component having a very high Si content of 0.45%.

このような、昇温速度並びに到達温度を上記特定の範囲とした急速加熱制御を行うことによって、鋼表面に濃化、密着しやすいファイアライトがサブスケール形成される場合においてもスケールの剥離性が顕著に改善できるメカニズムについては必ずしも明確ではないが、上記実験をもとに図5の模式図を用いて説明する。図5の左端の図は前述の均熱雰囲気制御により1100℃未満(1050℃)で加熱炉から抽出した際の鋼の表面状態を示すが成長したサブスケールの内側(鋼の側)には外方酸化層に取り込まれずに濃化したファイアライト層が鋼に密着して残存している。一方、1100℃未満(1050℃)で均熱雰囲気制御した後さらに前記昇温速度(20℃min.以上)並びに到達温度(1120℃〜1180℃未満)の範囲を満たす条件により急速加熱制御を行って加熱炉より抽出した場合は、図5の中央の図のように残存するファイアライト層は破壊、分断され、鋼表面から剥がれ易い状態となり、この結果、スケールの剥離性は格段に向上する。しかし、加熱時の昇温速度や到達温度が本発明の条件より低い場合はファイアライト層が破壊、分断されず、スケールの剥離性は悪くなる。また、到達温度が高く外れた場合、つまり1180℃以上の高温まで加熱した場合には、図5の右端の図のように一旦破壊、分断されたファイアライト層が液相化してしまい、これが再び変形した層状となって鋼表面に密着する現象が起き、スケールの剥離性が悪化することになるのである。   By performing such rapid heating control in which the rate of temperature rise and the temperature reached are within the above specific range, the scale peelability can be achieved even when a sub-scale is formed on the steel surface that tends to concentrate and adhere closely. The mechanism that can be remarkably improved is not necessarily clear, but will be described with reference to the schematic diagram of FIG. The leftmost figure in FIG. 5 shows the surface condition of the steel when extracted from the heating furnace at less than 1100 ° C. (1050 ° C.) by the above-mentioned soaking atmosphere control, but it is outside on the inner side (steel side) of the grown subscale. A firelight layer concentrated without being taken into the oxidization layer remains in close contact with the steel. On the other hand, after controlling the soaking atmosphere at less than 1100 ° C. (1050 ° C.), rapid heating control is performed under conditions that satisfy the range of the temperature increase rate (20 ° C. min. Or more) and the ultimate temperature (1120 ° C. to less than 1180 ° C.). When extracted from the heating furnace, the remaining firelite layer is broken and divided as shown in the center of FIG. 5 and is easily peeled off from the steel surface. As a result, the peelability of the scale is greatly improved. However, when the rate of temperature rise and the temperature reached during heating are lower than the conditions of the present invention, the firelight layer is not broken or divided, and the scale peelability is deteriorated. In addition, when the temperature reached is high, that is, when heated to a high temperature of 1180 ° C. or higher, the firelight layer once broken and divided as shown in the rightmost diagram of FIG. The phenomenon of forming a deformed layer and closely adhering to the steel surface occurs, and the peelability of the scale deteriorates.

よって、これらの実験結果並びにその考察を根拠に、特に高いSi含有量の高Cr鋼材を対象として本発明にかかる加熱炉内での均熱雰囲気制御に引き続き実施される急速加熱制御においては昇温速度としては20℃/min.以上、到達温度としては均熱温度+70℃以上で且つ1180℃未満の範囲で行うことを好ましい条件として選定した。なお、Si含有量が0.1%未満の高Cr鋼材においても急速加熱制御を併用することができ、本方法が高いSi含有量の場合にのみに限定されないことは言うまでもない。また、昇温速度の上限について特に規定はしないが、急速にしすぎると鋼材中の温度分布が不均一になる(鋼材内部で低温、鋼材表面で高温)ことを考慮すると100℃/min.以下とすることが望ましいと言える。   Therefore, on the basis of these experimental results and considerations thereof, the temperature is increased in the rapid heating control that is carried out following the soaking atmosphere control in the heating furnace according to the present invention especially for high Cr steel materials having a high Si content. The speed was selected to be 20 ° C./min. Or higher, and the ultimate temperature was selected to be a soaking temperature of + 70 ° C. or higher and less than 1180 ° C. Needless to say, rapid heating control can be used in combination with a high Cr steel material having a Si content of less than 0.1%, and the present method is not limited to a high Si content. In addition, the upper limit of the heating rate is not particularly specified, but considering that the temperature distribution in the steel material becomes non-uniform if it is too rapid (low temperature inside the steel material and high temperature on the steel surface), it is 100 ° C / min. It can be said that it is desirable.

また、この加熱炉内での急速加熱制御を終えた後の鋼ビレットは、速やかに炉外に抽出することが肝要である。好ましくは急速加熱制御終了後、15秒以内に抽出すべきである。これは15秒以上急速加熱後の高温状態を保持することで、せっかく破壊したサブスケールの下層に新たなサブスケールが形成されてしまうためである。   In addition, it is important that the steel billet after the rapid heating control in the heating furnace is quickly extracted outside the furnace. Preferably, it should be extracted within 15 seconds after the end of the rapid heating control. This is because a new subscale is formed in the lower layer of the subscale that has been destroyed by maintaining the high temperature state after rapid heating for 15 seconds or more.

(実施例2群)
実施例α
前述の実施例1群のところで説明した表2に示すF鋼(Fe-3.94%Cr-0.02%C-0.50%Si-3.005Mn-0.003%S-0.022Al%-0.003%Ca鋼)のビレットを対象とし、表4に示す実施例No.34の条件(均熱温度:1005℃、炉内の水蒸気濃度:35vol.%、炉内の酸素分圧:2.9、水蒸気濃度/酸素濃度比率:12)により加熱炉内で均熱雰囲気処理を15分間施した後、炉外に抽出したサンプル(A)と、同じF鋼にビレットについて同じ均熱雰囲気処理を15分間施した後、さらに同雰囲気で加熱炉内の出口側において昇温速度30℃/min.で1125℃に到達するまで4分間の急速加熱処理を施し、直ちに(15秒以内)炉外に抽出したサンプル(B)の鋼材についてその表面疵を調査した。なお、両サンプルは加熱炉抽出後は常法(加熱炉抽出→高圧水デスケーリング→粗圧延→仕上げ圧延→巻き線機→ステルモアコンベア上で冷却→タブ入り)で直径10mmの線材になるまで圧延し、巻き取ったコイルの上部、中部、下部からそれぞれ5個ずつ線材片をサンプリングした。表面疵の調査に当たっては、これら各線材片を樹脂埋め加工し、線材断面の表面を光学顕微鏡で観察し、0.01mm以上0.020mm未満の押し込み疵を計数した。この調査の結果、合計15断面の0.01mm以上0.020mm未満の疵の総数は、サンプル(A)が57個、サンプル(B)が16個であった。なお、サンプル(A)、(B)共に0.020mm以上の疵は発見されなかった。
(Example 2 group)
Example α
F steel (Fe-3.94% Cr-0.02% C-0.50% Si-3.005Mn-0.003% S-0.022Al shown in Table 2 described in Example 1 group) % -0.003% Ca steel), the billet of Example No. Soaking atmosphere treatment in a heating furnace under the conditions of 34 (soaking temperature: 1005 ° C., steam concentration in the furnace: 35 vol.%, Oxygen partial pressure in the furnace: 2.9, steam concentration / oxygen concentration ratio: 12) For 15 minutes, and the sample (A) extracted outside the furnace and the same F steel were subjected to the same soaking atmosphere treatment for the billet for 15 minutes, and then the heating rate at the outlet side in the heating furnace in the same atmosphere 30 ° C./min. The surface flaws of the steel material of the sample (B) immediately subjected to rapid heating treatment for 4 minutes until reaching 1125 ° C. and immediately extracted (within 15 seconds) were investigated. Both samples are extracted after heating furnace until they become wire rods with a diameter of 10 mm by conventional method (heating furnace extraction → high pressure water descaling → rough rolling → finish rolling → winding machine → cooling on stealmore conveyor → tabbed) Five pieces of wire were sampled from the upper, middle and lower portions of the rolled and wound coil. In investigating surface wrinkles, each of these wire pieces was resin-embedded, the surface of the wire cross section was observed with an optical microscope, and indentation wrinkles of 0.01 mm or more and less than 0.020 mm were counted. As a result of this investigation, the total number of scissors of 0.01 mm or more and less than 0.020 mm in a total of 15 cross sections was 57 for sample (A) and 16 for sample (B). In addition, no wrinkles of 0.020 mm or more were found in both samples (A) and (B).

実施例β
表2に示すI鋼(Fe-1.03%Cr-0.37%C-0.21%Si-0.08Mn-0.2Mo-0.020%S-0.020Al%-0.002%Ca鋼)のビレットを対象とし、表4に示す実施例No.36の条件(均熱温度:1071℃、炉内の水蒸気濃度:30vol.%、炉内の酸素分圧:2.7、水蒸気濃度/酸素濃度比率:11)により加熱炉内で均熱雰囲気処理を15分間施した後、炉外に抽出したサンプル(C)と、同じG鋼のビレットについて同じ均熱雰囲気処理を15分間施した後、さらに同雰囲気で加熱炉内の出口側において昇温速度20℃/min.で1152℃に到達するまで3分間の急速加熱処理を施し、直ちに(15秒以内)炉外に抽出したサンプル(D)の鋼材についてその表面疵を調査した。加熱炉抽出後の圧延などの製造条件、サンプリングの条件、疵の評価の条件などは前実施例αと同じとした。この調査の結果、合計15断面の0.01mm以上の疵の総数は、サンプル(C)が26個、サンプル(D)が3個であった。なお、サンプル(C)、(D)共に 0.02mm以上の疵は発見されなかった。
Example β
Steel I shown in Table 2 (Fe-1.03% Cr-0.37% C-0.21% Si-0.08Mn-0.2Mo-0.020% S-0.020Al% -0.002% Example No. 5 shown in Table 4 for billets of (Ca steel). Soaking atmosphere treatment in heating furnace under 36 conditions (soaking temperature: 1071 ° C., steam concentration in furnace: 30 vol.%, Oxygen partial pressure in furnace: 2.7, steam concentration / oxygen concentration ratio: 11) Is applied to the sample (C) extracted outside the furnace and the same G steel billet is subjected to the same soaking atmosphere treatment for 15 minutes, and the temperature rise rate is further increased at the outlet side in the heating furnace in the same atmosphere. 20 ° C./min. Then, a rapid heating treatment was performed for 3 minutes until reaching 1152 ° C., and the surface flaw of the steel material of the sample (D) immediately extracted (within 15 seconds) was investigated. Manufacturing conditions such as rolling after extraction from the heating furnace, sampling conditions, evaluation conditions for soot, and the like were the same as in the previous example α. As a result of this investigation, the total number of ridges of 0.01 mm or more in a total of 15 sections was 26 for sample (C) and 3 for sample (D). In addition, no wrinkles of 0.02 mm or more were found in both samples (C) and (D).

上記実施例α及び実施例βの結果から実証されるように、本発明にかかる加加熱炉内における均熱雰囲気制御と急速加熱制御を組み合わせて実施することにより、Siが0.1質量%以上の高い含有量の高Cr鋼材においてスケール剥離性が顕著に改善され、0.02mm未満の微細な表面疵をも大幅に減少させるという、均熱雰囲気制御の単独実施にくらべ、さらに表面品質の優れた高Cr鋼材製品を提供できる。   As demonstrated from the results of Example α and Example β, Si is 0.1% by mass or more by combining the soaking atmosphere control and the rapid heating control in the heating furnace according to the present invention. Compared with the single implementation of soaking atmosphere control, the scale peelability is remarkably improved in the high Cr steel material with a high content, and the fine surface flaws of less than 0.02 mm are greatly reduced. High Cr steel products can be provided.

Claims (3)

Cr:0.2〜4.0質量%を含有する鋼のビレットを燃焼雰囲気加熱炉で加熱、均熱保持したのち、加熱炉外に抽出して熱間圧延する方法において、鋼中のCr濃度をX質量%として、加熱炉内の水蒸気濃度が(4.47X+17.1)vol.%以上であり、かつ、水蒸気濃度と加熱炉内の酸素濃度(vol.%)との比が10以上に調整された雰囲気中において、1100℃未満の温度下で、10分以上均熱保持することを特徴とするデスケーリング性のよい高Cr含有冷圧用鋼材の製法。   In a method in which a billet of steel containing Cr: 0.2 to 4.0% by mass is heated in a combustion atmosphere heating furnace and kept soaked, and then extracted outside the heating furnace and hot-rolled, the Cr concentration in the steel Is X mass%, and the water vapor concentration in the heating furnace is (4.47X + 17.1) vol. In an atmosphere in which the ratio of the water vapor concentration and the oxygen concentration (vol.%) In the heating furnace is adjusted to 10 or more, and soaking is maintained for 10 minutes or more at a temperature of less than 1100 ° C. A method for producing a high Cr-containing steel material for cold pressure with good descaling characteristics. 前記鋼が、さらにSi:0.1〜0.5質量%を含有し、前記均熱保持後、さらに該均熱温度+70℃以上で且つ1180℃未満の温度に至るまで20℃/min.以上の昇温速度で急速加熱することを特徴とする請求項1に記載のデスケーリング性のよい高Cr含有冷圧用鋼材の製法。   The steel further contains Si: 0.1 to 0.5% by mass, and after the soaking, the soaking temperature is + 70 ° C. or higher and reaches a temperature of less than 1180 ° C. at 20 ° C./min. The method for producing a steel material for high Cr content cold pressure with good descaling property according to claim 1, wherein rapid heating is performed at the above temperature rising rate. 前記鋼がさらにC:0.02〜0.6質量%、Si:0.1〜0.5質量%、Mn:0.02〜3.0質量%、S<0.03質量%、Al<0.05質量%およびCa<0.003質量%を含有することを特徴とする請求項1または2に記載のデスケーリング性のよい高Cr含有冷圧用鋼材の製法。   The steel is further C: 0.02-0.6% by mass, Si: 0.1-0.5% by mass, Mn: 0.02-3.0% by mass, S <0.03% by mass, Al < It contains 0.05 mass% and Ca <0.003 mass%, The manufacturing method of the steel material for high Cr content cold pressure with good descaling property of Claim 1 or 2 characterized by the above-mentioned.
JP2009009141A 2008-04-16 2009-01-19 Manufacturing method of high Cr content steel with good descalability Expired - Fee Related JP5320084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009141A JP5320084B2 (en) 2008-04-16 2009-01-19 Manufacturing method of high Cr content steel with good descalability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008107041 2008-04-16
JP2008107041 2008-04-16
JP2009009141A JP5320084B2 (en) 2008-04-16 2009-01-19 Manufacturing method of high Cr content steel with good descalability

Publications (2)

Publication Number Publication Date
JP2009275285A JP2009275285A (en) 2009-11-26
JP5320084B2 true JP5320084B2 (en) 2013-10-23

Family

ID=41440983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009141A Expired - Fee Related JP5320084B2 (en) 2008-04-16 2009-01-19 Manufacturing method of high Cr content steel with good descalability

Country Status (1)

Country Link
JP (1) JP5320084B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491968B2 (en) * 2010-05-28 2014-05-14 株式会社神戸製鋼所 Steel bar manufacturing method
JP5666999B2 (en) * 2011-06-24 2015-02-12 株式会社神戸製鋼所 Steel bar manufacturing method
JP2014141716A (en) * 2013-01-24 2014-08-07 Kobe Steel Ltd Steel wire material excellent in mechanical descaling property and manufacturing method of steel wire
JP6234871B2 (en) * 2014-04-04 2017-11-22 株式会社神戸製鋼所 Manufacturing method for steel with less surface flaws
CN116397167A (en) * 2023-04-03 2023-07-07 安阳钢铁集团有限责任公司 Cold-rolled steel strip for measuring tape and production method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147011B2 (en) * 2001-07-23 2008-09-10 株式会社神戸製鋼所 Manufacturing method of steel bars with less surface defects due to scale
JP3851534B2 (en) * 2001-10-10 2006-11-29 株式会社神戸製鋼所 Method for producing steel material with excellent surface properties
RU2313409C2 (en) * 2003-05-22 2007-12-27 Сумитомо Метал Индастриз, Лтд. Iron-chrome blank and method for producing it
JP4546408B2 (en) * 2006-02-28 2010-09-15 株式会社神戸製鋼所 Manufacturing method of strip with excellent surface properties

Also Published As

Publication number Publication date
JP2009275285A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP6542249B2 (en) Ferritic stainless steel sheet, steel pipe and method for manufacturing the same
JP4369416B2 (en) Spring steel wire rod with excellent pickling performance
JP5320084B2 (en) Manufacturing method of high Cr content steel with good descalability
JP4369415B2 (en) Spring steel wire rod with excellent pickling performance
JP2010235995A (en) Niobium-added ferritic stainless cool-rolled steel sheet excellent in workability and manufacturability and method for manufacturing the same
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
JP2010235994A (en) Ferritic cold-rolled stainless steel sheet having excellent workability and method for manufacturing the same
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
CN102644031B (en) Hot rolling container steel without punctiform surface defect and manufacturing method thereof
JP5457852B2 (en) Method for producing Si-containing steel sheet
JP5343035B2 (en) High Si content steel sheet with excellent surface properties and method for producing the same
JP5324963B2 (en) Method for producing Cr-containing strip steel
JP5128401B2 (en) Method for producing Cr-containing strip with excellent scale peelability
JP5144390B2 (en) Method for producing Cr-containing steel with excellent scale peelability
JP5491968B2 (en) Steel bar manufacturing method
JP5666999B2 (en) Steel bar manufacturing method
JP5443050B2 (en) Method for producing Cr-containing strip steel
CN113811625B (en) Resistance welded steel pipe for hollow stabilizer
JP4502889B2 (en) Soft magnetic steel material excellent in cold forgeability, cutting workability and AC magnetic characteristics, soft magnetic steel parts excellent in AC magnetic characteristics, and method for producing the same
JP5064934B2 (en) Method for producing Si and Cr-containing strips with excellent scale peelability
JP5128366B2 (en) Method for producing Si-containing hot-rolled steel sheet having excellent surface properties
JP5324964B2 (en) Method for producing Cr-containing strip steel
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP7448874B1 (en) steel bar
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Ref document number: 5320084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees