JP5316854B2 - String string structure - Google Patents

String string structure Download PDF

Info

Publication number
JP5316854B2
JP5316854B2 JP2008266535A JP2008266535A JP5316854B2 JP 5316854 B2 JP5316854 B2 JP 5316854B2 JP 2008266535 A JP2008266535 A JP 2008266535A JP 2008266535 A JP2008266535 A JP 2008266535A JP 5316854 B2 JP5316854 B2 JP 5316854B2
Authority
JP
Japan
Prior art keywords
additional
spring
vibration
bundle
mass damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008266535A
Other languages
Japanese (ja)
Other versions
JP2010095889A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2008266535A priority Critical patent/JP5316854B2/en
Publication of JP2010095889A publication Critical patent/JP2010095889A/en
Application granted granted Critical
Publication of JP5316854B2 publication Critical patent/JP5316854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective and proper suspended beam structure, improving the resonance characteristics of a suspended beam. <P>SOLUTION: An additional vibration system 8 for improving the resonance characteristics is installed on the suspended beam 4 comprising a top chord 1, a bottom chord 2, and a strut 3. The additional vibration system 8 includes an inertial mass damper 5, an additional spring 6, and an additional attenuator 7. The inertial mass damper 5 is installed parallel to the strut 3, the additional spring 6 is installed in series with the inertial mass damper 5, and the additional attenuator 7 is installed parallel to the inertial mass damper 5 or the additional spring 6. The natural frequency of the additional vibration system 8 is synchronized with the natural frequency of the suspended beam serving as a main vibration system. A spring 9 is desirably installed in series with the strut 3. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は上弦材と下弦材と束材とにより構成される張弦梁構造に関する。   The present invention relates to a stringed beam structure composed of an upper chord member, a lower chord member, and a bundle member.

大スパン架構を構成する構造形式の1つに張弦梁構造がある。これは、梁本体としての上弦材(圧縮材)の下部に下弦材としてケーブル(引張材)を架設し、それら上弦材と下弦材とを束材を介して一体化したもので、トラス構造よりも小さな断面でローコストに大スパンを実現できることから、たとえば大規模なドーム構造物の屋根架構として実用化されている。
しかし、従来一般の張弦梁構造は鉛直剛性が小さく、たとえば30mスパン程度の屋上広場や歩道施設に適用するとその固有振動数が約2Hzになり、歩行時の振動障害が生じやすいという問題がある。長期応力に対する撓みはキャンバー(むくり)で対応できるが、振動問題に対しては構造減衰が小さいため対応が困難であった。
One of the structural types that constitute a large span frame is a stringed beam structure. This is a cable (tensile material) constructed as a lower chord material under the upper chord material (compressed material) as the beam body, and these upper chord material and lower chord material are integrated via a bundle material. Since it can realize a large span at a low cost with a small cross section, it has been put to practical use as a roof frame for a large-scale dome structure, for example.
However, the conventional stringed beam structure has a small vertical rigidity, and when applied to a rooftop plaza or a sidewalk facility with a span of about 30 m, for example, its natural frequency becomes about 2 Hz, and there is a problem that vibration disturbance during walking is likely to occur. Deflection against long-term stress can be dealt with by camber, but it has been difficult to deal with vibration problems due to small structural damping.

張弦梁構造における鉛直振動を抑制するための手法として、例えば特許文献1に示されているようなTMD(Tuned Mass Damper)を設置することが考えられる。
また、特許文献2には、本体梁に対して付加梁を設置してそれらの間に回転慣性質量ダンパーを介装することにより、小質量の回転錘により得られる大きな回転慣性質量を付加質量として利用してTMDとして機能させる構成の振動低減機構が提案されている。
さらに、特許文献3には、歩道橋等の大スパン構造に対する制振対策として補助質量をトグル機構によって増幅させるシステムについての記載がある。
特開昭63−156171号公報 特開2008−115552号公報 国際公開2005/116481号
As a technique for suppressing the vertical vibration in the stringed beam structure, for example, it is conceivable to install a TMD (Tuned Mass Damper) as shown in Patent Document 1.
In addition, in Patent Document 2, an additional beam is installed on the main beam, and a rotary inertia mass damper is interposed between them. A vibration reduction mechanism that is configured to function as a TMD has been proposed.
Furthermore, Patent Document 3 describes a system that amplifies auxiliary mass by a toggle mechanism as a vibration suppression measure for a large span structure such as a footbridge.
JP-A 63-156171 JP 2008-115552 A International Publication No. 2005/116481

特許文献1に示されるような従来一般のTMDを張弦梁を対象とする振動減衰機構として利用する場合、大きな応答低減効果を得るためにはスパン中央部に大きな付加質量を設ける必要があり、これによって生じる曲げ応力増加やTMD装置のコストを考慮すると現実的ではない。
特許文献2に示されるような回転慣性質量ダンパーによる振動低減機構は実際の付加質量を軽減できるが、実質的に梁を二重(ダブル)に設ける必要があるので、そのために躯体全体が複雑化してしまうし、付加梁の設置スペースを確保するために通常は階高を大きくしなければならないから一般的な建物には適用し難い。
特許文献3には、回転慣性質量ダンパーではなく付加質量をもつトグル機構による変形増幅についての理論が記載されているに過ぎず、それを実際の梁に組み込む場合の具体的な構成についての開示はなく、TMDとしての同調条件も示されておらず、直ちに実用化し得るものでもない。
When a conventional general TMD as shown in Patent Document 1 is used as a vibration damping mechanism for a stringed beam, it is necessary to provide a large additional mass at the center of the span in order to obtain a large response reduction effect. It is not realistic considering the increase in bending stress and the cost of the TMD device.
Although the vibration reduction mechanism using the rotary inertia mass damper as shown in Patent Document 2 can reduce the actual additional mass, it is necessary to substantially provide double beams, which complicates the entire housing. In order to secure the installation space for the additional beam, it is usually difficult to apply it to general buildings because the floor height must be increased.
Patent Document 3 only describes the theory of deformation amplification by a toggle mechanism having an additional mass, not a rotary inertia mass damper, and the disclosure of a specific configuration when incorporating it into an actual beam is disclosed. In addition, the tuning condition as TMD is not shown, and it cannot be put into practical use immediately.

上記事情に鑑み、本発明は主構造としての張弦梁の共振特性を改善し得る有効適切な張弦梁構造を提供すること目的としている。   In view of the above circumstances, an object of the present invention is to provide an effective and appropriate stringed beam structure capable of improving the resonance characteristics of the stringed beam as the main structure.

本発明は上弦材と下弦材と束材とにより構成される張弦梁に対して、該張弦梁の共振特性を改善するための付加振動系を設置してなる張弦梁構造であって、前記付加振動系を慣性質量ダンパーと付加バネと付加減衰により構成して、前記慣性質量ダンパーと前記付加バネを前記上弦材と前記下弦材との間に配して、前記慣性質量ダンパーを前記束材と並列に設置し、前記付加バネを該慣性質量ダンパーと直列に設置し、前記束材の剛性に基づいて前記付加減衰を前記慣性質量ダンパーまたは前記付加バネと並列に設置し、前記付加振動系の固有振動数を主振動系としての前記張弦梁の固有振動数に同調させてなることを特徴とする。本発明においては前記束材に直列にバネを設置することが好適である。 The present invention provides a stringed beam structure in which an additional vibration system for improving the resonance characteristics of the stringed beam is installed on a stringed beam composed of an upper string material, a lower string material, and a bundle material. An inertia mass damper, an additional spring, and an additional damping are used, and the inertia mass damper and the additional spring are arranged between the upper chord material and the lower chord material, and the inertia mass damper is installed in parallel with the bundle material. The additional spring is installed in series with the inertial mass damper, and the additional damping is installed in parallel with the inertial mass damper or the additional spring based on the rigidity of the bundle material, and the natural frequency of the additional vibration system Is tuned to the natural frequency of the stringed beam as the main vibration system. In the present invention, it is preferable to install a spring in series with the bundle.

本発明によれば、主構造としての張弦梁に対して、慣性質量効果を利用した付加振動系を付加し、その付加振動系の固有振動数を束材の剛性を考慮してそれに基づいて適切に設定することにより、その付加振動系がTMD機構として機能して主構造に対する優れた制振効果が得られ、したがってローコストに大スパンを構築できる張弦梁本来のメリットを損なうことなくその共振特性を大幅に改善することができる。
特に、慣性質量ダンパーと付加バネを直列した付加振動系によりTMD機構を構成するので、小質量の回転錘によって大きな付加質量効果が得られるとともに、付加バネを調節することで下弦材の剛性によらず広範な振動数に同調させることができる。
According to the present invention, an additional vibration system using the inertial mass effect is added to the stringed beam as the main structure, and the natural frequency of the additional vibration system is appropriately determined based on the rigidity of the bundle material. By setting it, the additional vibration system functions as a TMD mechanism and an excellent damping effect on the main structure can be obtained, so that the resonance characteristics can be greatly improved without impairing the original merit of a stringed beam that can build a large span at low cost Can be improved.
In particular, since the TMD mechanism is configured by an additional vibration system in which an inertia mass damper and an additional spring are connected in series, a large additional mass effect can be obtained by a small mass of the rotating weight, and by adjusting the additional spring, the rigidity of the lower chord material can be obtained. It can be tuned to a wide range of frequencies.

図1に本発明の実施形態である張弦梁構造の概要を示す。符号1は上弦材、2は下弦材、3は束材であり、これらにより主構造(主振動系)としての張弦梁4が構成されている。
本例における上弦材1はH形鋼からなり、これは多少のむくりを設けても良いが全長にわたってほぼ水平に架設すれば良く、従来一般の張弦梁のようにアーチ形状とする必要はない。
下弦材2としてはロッド(丸鋼)または平鋼を使用し、その両端を上弦材1の両端に対してピン接合して全長にわたって下に凸の折れ線形状(図1(a)では扁平V状)に架設し、その折れ点位置に束材3を配置する。なお、図1(c)に示すように折れ点を2個所(ないしそれ以上の複数個所)として、それぞれの折れ点位置に束材3を設置しても良い。
束材3は鋼管等の鋼材からなるものであるが、図示しているようにこの束材3に直列にバネ9(たとえば皿バネ)を介装しても良く、その場合は束材3とバネ9との合成バネ剛性を束材3の剛性k0として評価する(バネ9を設けない場合には束材3自体の剛性をk0とする)。
FIG. 1 shows an outline of a stringed beam structure according to an embodiment of the present invention. Reference numeral 1 is an upper chord member, 2 is a lower chord member, and 3 is a bundle member. These constitute a stringed beam 4 as a main structure (main vibration system).
The upper chord material 1 in this example is made of H-shaped steel, which may be provided with some peeling, but it is sufficient to lay it almost horizontally over the entire length, and it is not necessary to have an arch shape like a conventional stringed beam.
A rod (round steel) or a flat steel is used as the lower chord material 2 and both ends thereof are pin-bonded to both ends of the upper chord material 1 so as to protrude downward along the entire length (in FIG. 1A, a flat V shape). ) And the bundle 3 is arranged at the position of the break point. In addition, as shown in FIG.1 (c), you may install the bundling material 3 in each fold point position by making two fold points (or more than that).
The bundle member 3 is made of a steel material such as a steel pipe. However, as shown in the drawing, a spring 9 (for example, a disc spring) may be interposed in series with the bundle member 3. The combined spring stiffness with the spring 9 is evaluated as the stiffness k 0 of the bundle 3 (when the spring 9 is not provided, the stiffness of the bundle 3 itself is set to k 0 ).

本発明では上記の張弦梁4に対して、慣性質量ダンパー5、付加バネ6、付加減衰7からなる付加振動系8を付加して、慣性質量ダンパー5と付加バネ6を上弦材1と下弦材2との間に配し、その付加振動系8を主振動系としての張弦梁4に対するTMD機構として機能させるものである。なお、(c)に示すように複数の束材3を有する場合にはそれぞれの束材3の位置に付加振動系8を設置することを原則とするが、一部を省略(たとえば3個所ある場合には中央を省略)することもできる
慣性質量ダンパー5としては特許文献2に示されているようなボールねじ機構によって回転錘(フライホイール)を回転させる形式のものが好適に採用可能であり、それを束材3と並列に設置する。
付加バネ6は慣性質量ダンパー5と直列に設置する。
付加減衰7としてはオイルダンパーや粘性ダンパー等の粘性減衰または摩擦減衰を使用し、これを図示例のように慣性質量ダンパー5と並列に設置するか、あるいは付加バネ6と並列に設置するか、もしくはその双方に設置すれば良い。
In the present invention, an additional vibration system 8 including an inertia mass damper 5, an additional spring 6 and an additional damping 7 is added to the tension string beam 4, and the inertia mass damper 5 and the additional spring 6 are connected to the upper chord material 1 and the lower chord material 2. disposed between, is intended to function the additional vibration system 8 as TMD mechanism for Zhang Tsuruhari 4 as a main vibration system. In addition, as shown in (c), when a plurality of bundle members 3 are provided, the additional vibration system 8 is basically installed at the position of each bundle member 3, but a part is omitted (for example, there are three places). In the case, the center of the inertial mass damper 5 can be suitably adopted as a type in which a rotating weight (flywheel) is rotated by a ball screw mechanism as shown in Patent Document 2. It is installed in parallel with the bundle 3.
The additional spring 6 is installed in series with the inertia mass damper 5.
As the additional damping 7, viscous damping or friction damping such as an oil damper or a viscous damper is used, which is installed in parallel with the inertia mass damper 5 as shown in the figure, or in parallel with the additional spring 6, Or it should just install in both.

そして、慣性質量ダンパー5と付加バネ6と付加減衰7からなる付加振動系8の固有振動数f0を、束材3の剛性を考慮してそれに基づいて適切に設定することにより、上弦材1と下弦材2と束材3からなる主構造(主振動系)としての張弦梁4の固有振動数f1に同調させる。
すなわち、図2に示すように、上弦材1の剛性k1、下弦材2の剛性k2、束材3の剛性k0(上述のように束材3にバネ9を直列に設置した場合にはそれらの合成バネ剛性をk0とする)、張弦梁4を含む床梁の有効質量m、慣性質量ダンパー5による慣性質量ψ0、付加減衰7の減衰係数c0(単に付加減衰c0という)、付加バネの剛性k00(単に付加バネk00という)とし、慣性質量ダンパー5の上下端に逆向きの静的荷重Pが作用したときの上下端間の鉛直変位δ(上弦材の変位δ1+下弦材の変位δ2)とした場合、同調条件より次式の関係を満足するように各諸元を設定する。
Then, by appropriately setting the natural frequency f 0 of the additional vibration system 8 including the inertia mass damper 5, the additional spring 6, and the additional damping 7 in consideration of the rigidity of the bundle member 3, the upper chord material 1 And the natural frequency f 1 of the stringed beam 4 as the main structure (main vibration system) composed of the lower chord member 2 and the bundle member 3 is tuned.
That is, as shown in FIG. 2, the rigidity k 1 of upper chord member 1, the stiffness k 2 of the lower chord member 2, the case of installing the spring 9 in series with the stiffness k 0 (as described above Tabazai 3 Tabazai 3 Is the composite spring rigidity k 0 ), the effective mass m of the floor beam including the stringed beam 4, the inertia mass ψ 0 by the inertia mass damper 5, and the damping coefficient c 0 of the additional damping 7 (simply referred to as additional damping c 0 ). , the stiffness k of the additional spring 00 (referred to simply as additional spring k 00), the vertical displacement [delta] (the upper chord member displacement between upper and lower ends when the static load P in the opposite direction to the upper and lower ends of the inertial mass damper 5 acts [delta] In the case of 1 + displacement of lower chord material δ 2 ), various specifications are set so as to satisfy the relationship of the following equation based on the tuning conditions.

Figure 0005316854
Figure 0005316854

なお、上弦材1の剛性k1が下弦材2の剛性k2よりも充分に小さい場合や、さらに束材3の剛性k0よりも充分に小さい場合には、上式における ψ0/m は次式のいずれかで近似しても良い(具体的な演算過程については図2参照)。 In the case, rigidity k 1 of the top chord member 1 is sufficiently smaller than the rigidity k 2 of the lower chord member 2, when the more sufficiently smaller than the rigidity k 0 of Tabazai 3, [psi 0 / m in the above formula is You may approximate by either of the following formula | equation (refer FIG. 2 for a concrete calculation process).

Figure 0005316854
Figure 0005316854

Figure 0005316854
Figure 0005316854

上記構造では、全ての要素を組み立てた後に束材3を伸張させることにより、下弦材2にプレストレス(引張力)を導入でき、それにより通常の張弦梁と同様に下弦材2が束材3を介して上弦材1を押し上げるように作用するとともに、下弦材2が撓んだり振動時に座屈したりすることを防止できる。束材3には、長期応力として、下弦材2の引張力に釣り合う圧縮力が作用する。
そして、本発明では、そのような張弦梁4に対して慣性質量ダンパー5と付加バネ6を直列配置した付加振動系8を付加したことにより、その付加振動系8がTMD機構として機能する制振構造となる。
この場合、慣性質量ダンパー5に内蔵される回転錘(フライホイール)の実際の質量はそれにより得られる慣性質量ψ0の数百分の一以下と軽量で済むから、大きな付加質量を必要とする通常のTMD機構を設置する場合のように主構造としての張弦梁4に対して大きな負荷がかかることはない。
また、常時の鉛直荷重(自重)に対しては、束材3から上弦材1に上向きの力が作用するので、鉛直方向撓みが大幅に抑制された張弦梁構造となり、上弦材1だけの場合と比較すると桁違いに撓みが小さくなる。
In the above structure, by stretching the bundle material 3 after assembling all the elements, prestress (tensile force) can be introduced into the lower chord material 2, so that the lower chord material 2 attaches the bundle material 3 in the same manner as a normal chord beam. Thus, the upper chord material 1 can be pushed up, and the lower chord material 2 can be prevented from being bent or buckled during vibration. A compressive force that balances the tensile force of the lower chord material 2 acts on the bundle material 3 as long-term stress.
In the present invention, an additional vibration system 8 in which an inertial mass damper 5 and an additional spring 6 are arranged in series is added to such a stringed beam 4, so that the additional vibration system 8 functions as a TMD mechanism. It becomes.
In this case, the actual mass of the rotary weight (flywheel) built in the inertial mass damper 5 can be as light as one hundredth or less of the inertial mass ψ 0 obtained thereby, and thus a large additional mass is required. As in the case of installing a normal TMD mechanism, a large load is not applied to the stringed beam 4 as the main structure.
Moreover, since an upward force is applied from the bundle material 3 to the upper chord material 1 for a normal vertical load (self-weight), a stringed beam structure in which vertical deflection is greatly suppressed, and only the upper chord material 1 is used. In comparison, the deflection is reduced by an order of magnitude.

なお、下弦材3の剛性k2が大きい場合、上式中の P/δ には付加バネk00と束材3の剛性k0が大きく寄与するから、それらの合成バネ剛性と慣性質量ψ0により付加振動系8が構成される。つまり、慣性質量ダンパー5と付加バネ6を直列に設置することで、下弦材2の剛性が大きくてもTMDとして有効に機能する構造となる。
この点に関し、特許文献3に示されるような構造では、下弦材の剛性が大きいとTMDのような同調質量ダンパー制振効果が得られないが、本発明によれば上記のように付加バネk00や束材剛性k0を調整することで任意の振動数に同調させることが可能である。
When the rigidity k 2 of the lower chord member 3 is large, the additional spring k 00 and the rigidity k 0 of the bundle member 3 contribute greatly to P / δ in the above equation, so that the combined spring rigidity and inertia mass ψ 0 Thus, the additional vibration system 8 is configured. That is, by installing the inertial mass damper 5 and the additional spring 6 in series, even if the rigidity of the lower chord material 2 is large, the structure effectively functions as TMD.
In this regard, in the structure shown in Patent Document 3, if the rigidity of the lower chord material is large, the tuning mass damper damping effect as in TMD cannot be obtained. However, according to the present invention, as described above, the additional spring k it is possible to tune to any frequency by adjusting the 00 and Tabazai stiffness k 0.

「設計例」
本発明の張弦梁構造の具体的な設計例とその性能について説明する。
スパン30mの張弦梁4を対象とする。床荷重(質量)は構造体を含め1.1tonf/m2とする。張弦梁4の支配幅(間隔)は5.0mとし、慣性質量ダンパー5は中央1個所に設置するものとする。
等価な振動モデルにおいて、構造体有効質量m=1.1×5.0×30/2=82.5ton、
上弦材1となるH形鋼床梁は、H-900×300×16×28を使用し、断面積A0=240cm2、断面二次モーメントI=404000cm4
床スラブと合成効果による割増を考慮して、A=610cm2、J=570000cm4
構造床梁の長期鉛直撓みは中央部で48.5cmより、k1=1.7tonf/cm=1.7MN/m、
下弦材2(斜材)はFB-30×230の平鋼を2枚使用し、ライズ(高低差)を300cmとすると、k2=14.6tonf/cm=14.3MN/m=8.4k1
束材3としてP-216.3φ×8.2を使用し、A=53.6cm2、軸剛性k=375tonf/cm=368MN/m、束材3の端部にバネ9(皿バネ)を設置し、その合成バネ剛性k0=18MN/m=10.6k1とする。
慣性質量ダンパー5と直列に設置する付加バネ6はバネ剛性k00=3.6MN/m=2.1k1とする。
`` Design example ''
A specific design example and performance of the stringed beam structure of the present invention will be described.
The target is a string string 4 with a span of 30m. The floor load (mass) is 1.1tonf / m 2 including the structure. The control width (interval) of the stringed beam 4 is 5.0 m, and the inertia mass damper 5 is installed at one central position.
In an equivalent vibration model, effective mass of structure m = 1.1 × 5.0 × 30/2 = 82.5 ton,
The H-shaped steel floor beam used as the upper chord material 1 uses H-900 × 300 × 16 × 28, the cross-sectional area A 0 = 240 cm 2 , the cross-sectional secondary moment I = 404000 cm 4 ,
A = 610cm 2 , J = 570000cm 4 , considering the extra due to floor slabs and synthetic effects
Long vertical deflection of the structural floor beams than 48.5cm in the central portion, k 1 = 1.7tonf / cm = 1.7MN / m,
Lower chord material 2 (diagonal material) uses two FB-30 × 230 flat steel plates, and assuming a rise (height difference) of 300 cm, k 2 = 14.6 tons / cm = 14.3 MN / m = 8.4 k 1 ,
P-216.3φ × 8.2 is used as bundle material 3, A = 53.6cm 2 , shaft rigidity k = 375tonf / cm = 368MN / m, spring 9 (disc spring) is installed at the end of bundle material 3, The composite spring stiffness k 0 = 18MN / m = 10.6k 1
The additional spring 6 installed in series with the inertial mass damper 5 has a spring stiffness k 00 = 3.6 MN / m = 2.1 k 1 .

以上の諸元から慣性質量を求めるとψ0=0.31m=26ton、
構造床梁の1次固有振動数はf1=1.72Hz、固有角振動数はω0=2πf1=10.8rad/sec、
付加振動系8の減衰は1次振動数でh=0.15として、c0=2hω0ψ0=84kN・sec/m=86kgf/kine、構造床梁の構造減衰は1次に対してh=0.01とする。
When the inertial mass is obtained from the above specifications, ψ 0 = 0.31 m = 26 ton,
The primary natural frequency of the structural floor beam is f 1 = 1.72 Hz, the natural angular frequency is ω 0 = 2πf 1 = 10.8 rad / sec,
The damping of the additional vibration system 8 is the primary frequency h = 0.15, c 0 = 2hω 0 ψ 0 = 84 kN · sec / m = 86 kgf / kine, and the structural damping of the structural floor beam is h = 0.01 with respect to the primary And

上記設計例を振動モデルとして梁中央部の変位(振幅)応答倍率を求めた結果を図3(a)に示す。縦軸の応答倍率は張弦梁4の中央に加振力が静的に作用したときの撓みに対する比であり、横軸は1次固有振動数f1に対する加振入力振動数fの比を示す。
「制振あり」が上記設計例の場合であり、それとの比較のために、慣性質量ダンパー5を省略したものを「制振なし・束材+皿バネ」とし、さらにバネ(皿バネ)9も省略して束材3を上弦材1中央部で連結したもの(このときの固有振動数は2.18Hzとなる)を「制振なし・束材のみ」として併せて示す。
図3(a)に示されるように、本発明(制振あり)によれば共振点近傍での応答を90%も低減できる。また、束材3をバネ9を使用せず直接上下弦材に接合した場合(制振なし・束材のみ)は張弦梁の剛性がやや増加し変位振幅がその分だけ低減するが、共振点がやや高振動数側にシフトするだけで大きな応答低減効果は期待できない。
FIG. 3A shows the result of obtaining the displacement (amplitude) response magnification at the center of the beam using the above design example as a vibration model. Response magnification of the vertical axis is the ratio deflection when force pressing the center of the Chotsuruhari 4 acts statically, the horizontal axis represents the ratio of the input frequency f excitation to the primary natural frequency f 1.
“With vibration suppression” is the case of the above design example, and for comparison with that, the material with the inertia mass damper 5 omitted is “without vibration suppression / bundling material + disc spring”, and a spring (disc spring) 9 Also, the bundle member 3 connected at the central portion of the upper chord member 1 (the natural frequency at this time is 2.18 Hz) is also shown as “no vibration suppression, only bundle member”.
As shown in FIG. 3A, according to the present invention (with vibration suppression), the response near the resonance point can be reduced by 90%. In addition, when the bundle member 3 is directly joined to the upper and lower chord members without using the spring 9 (no vibration control, only the bundle member), the rigidity of the stringed beam is slightly increased and the displacement amplitude is reduced by that amount. A large response reduction effect cannot be expected just by shifting to a slightly higher frequency.

なお、張弦梁4の剛性のうち上弦材1と下弦材2の寄与は k1:k2=1:8.4 であり、下弦材2のトラス効果により張弦梁4の鉛直剛性が大幅に増大していることがわかる。常時鉛直荷重における撓みを効果的に低減するためには下弦材2による剛性寄与が不可欠であるが、束材3の剛性を大きくすると束材3両端間の相対変位が小さくなり「相対変形を利用してエネルギー吸収する制振機構」を組み込めなくなってしまう。一方、束材3の剛性を小さくしてそれにダンパーを並列すれば制振機構となるが、制振効果を上げるために下弦材2の効きを大幅に低下させることになり、張弦梁4の撓みが増大して長期荷重に対して構造部材としての合理的な性能を確保できなくなってしまう。
そこで、上記設計例のように束材3に直列するバネ9(特に皿バネが好適である)を設置して、張弦梁4としての性能を確保しつつ束材3の鉛直剛性をやや低下させたうえで、これに「慣性質量ダンパーと付加バネを直列したTMD機構」を並列配置する制振機構とすれば、そのTMD機構を主構造に同調させることにより慣性質量ダンパー5の振幅は束材3に直列に設置したバネ9の振幅が拡大されたものとなり、下弦材2の剛性が大きくてもこの制振機構で効果的に振動エネルギーを吸収して応答低減できるものとなる。
In addition, the contribution of the upper chord material 1 and the lower chord material 2 in the rigidity of the string member 4 is k 1 : k 2 = 1: 8.4, and the vertical rigidity of the string member 4 is greatly increased by the truss effect of the lower string member 2. I understand. In order to effectively reduce the deflection under normal vertical loads, the contribution of rigidity by the lower chord material 2 is indispensable. However, increasing the rigidity of the bundle material 3 reduces the relative displacement between both ends of the bundle material 3, and “uses relative deformation. Then, it will not be possible to incorporate a "damping mechanism that absorbs energy". On the other hand, if the rigidity of the bundle material 3 is reduced and a damper is arranged in parallel to it, a vibration damping mechanism is obtained. However, in order to increase the vibration damping effect, the effectiveness of the lower chord material 2 is greatly reduced, and the bending of the string string beam 4 is reduced. As a result, it becomes impossible to secure a reasonable performance as a structural member against a long-term load.
Therefore, as in the above design example, a spring 9 (in particular, a disc spring is suitable) in series with the bundle member 3 is installed, and the vertical rigidity of the bundle member 3 is slightly lowered while ensuring the performance as the stringed beam 4. In addition, if the vibration damping mechanism in which the “TMD mechanism in which an inertial mass damper and an additional spring are connected in series” is arranged in parallel to this, the amplitude of the inertial mass damper 5 is adjusted to the bundle 3 by synchronizing the TMD mechanism with the main structure. The amplitude of the spring 9 installed in series is enlarged, and even if the lower chord member 2 has a large rigidity, the vibration damping mechanism can effectively absorb vibration energy and reduce the response.

なお、束材3にバネ9を設置することによって張弦梁としての剛性がやや低下して撓みが増大するが、これに対してはキャンバー(むくり)で容易に対応できる。
また、バネ9を含めた束材3の鉛直剛性k0は下弦材2の鉛直剛性k2の0.5〜5倍が好適である。k0が小さくなると下弦材2の効きが低下して上弦材1のみの性能に近づき、張弦梁4としての鉛直剛性が低下してしまう。一方、k0がもっと大きくなると張弦梁としての鉛直剛性は増加するものの、ダンパー部分の変形が小さくなって制振機構で吸収するエネルギーが減り、応答低減効果が小さくなってしまう。したがってk0を上記の範囲で適切な値に設定することが肝要といえる。
いずれにしても、本発明では一般的なTMDよりも大きな慣性質量を付与できるため、構造諸元の変動に鈍感な特性を持っており、剛性や床荷重の変動に対して再調整の必要がないという利点がある。
In addition, by installing the spring 9 on the bundle member 3, the rigidity as the stringed beam is slightly lowered and the bending is increased, but this can be easily coped with by a camber.
The vertical stiffness k 0 of the bundle member 3 including the spring 9 is preferably 0.5 to 5 times the vertical stiffness k 2 of the lower chord member 2. When k 0 becomes smaller, the effectiveness of the lower chord material 2 is lowered, approaching the performance of the upper chord material 1 alone, and the vertical rigidity as the stringed beam 4 is lowered. On the other hand, when k 0 is further increased, the vertical rigidity of the stringed beam is increased, but the deformation of the damper portion is reduced, the energy absorbed by the vibration damping mechanism is reduced, and the response reduction effect is reduced. Therefore, it can be said that it is important to set k 0 to an appropriate value within the above range.
In any case, in the present invention, an inertial mass larger than that of a general TMD can be imparted, so that it has a characteristic insensitive to changes in the structural specifications, and it is necessary to readjust the changes in rigidity and floor load. There is no advantage.

以上の検討は床上からの加振に対する応答であったが、本発明は地震時の上下動も大幅な応答低減が可能となり、その場合の解析結果(張弦梁両端から上下動加振したときのスパン中央部での応答倍率)を図3(b)に示す。縦軸の応答倍率は、両端の加振振幅に対するスパン中央の変位振幅を示す。
床上からの加振モデルで同調させているため、地震入力に対してはわずかに同調がずれているが、床上加振の場合と同様に「制振なし」の場合と比較して共振点近傍で89%もの大幅な応答低減できることがわかる。
Although the above examination was a response to vibration from the floor, the present invention can greatly reduce the vertical movement during an earthquake, and the analysis results in that case (span when vertical vibration is applied from both ends of the string string beam) The response magnification at the center is shown in FIG. The response magnification on the vertical axis indicates the displacement amplitude at the center of the span with respect to the excitation amplitude at both ends.
Because it is synchronized with the excitation model from above the floor, it is slightly out of synchronization with the seismic input, but in the vicinity of the resonance point compared to the case of “no vibration suppression” as in the case of excitation on the floor It can be seen that the response can be significantly reduced by 89%.

「時刻例応答解析による検討」
上記設計例の振動モデルに対して1人歩行時の加振入力を与えた時の応答を検討する。検討用の入力波形を図4に示す。これは(a)に示すように加振力が約30kgf=300Nであり、そのフーリエスペクトルは(b)に示すように2Hz近傍が大きく卓越しているものである。
図5に上記加振入力を与えた場合の梁中央の応答変位を示す。本発明の制振により最大応答変位が100μから88μへと0.88倍に低減し、10秒以降の後揺れが急峻に収束することが分かる。
図6に梁中央の応答加速度を示す。本発明の制振により最大応答加速度が2.1galから1.7galへと0.82倍に低減し、10秒以降の後揺れが急峻に収束するが、制振しないと揺れがなかなか収束しないことが分かる。
"Examination by time example response analysis"
The response when the vibration input of one person walking is given to the vibration model of the above design example will be examined. The input waveform for examination is shown in FIG. As shown in (a), the excitation force is about 30 kgf = 300 N, and its Fourier spectrum is largely outstanding in the vicinity of 2 Hz as shown in (b).
FIG. 5 shows the response displacement at the center of the beam when the excitation input is given. It can be seen that the maximum response displacement is reduced by 0.88 times from 100 μ to 88 μ by the vibration suppression of the present invention, and the post-swing after 10 seconds converges sharply.
FIG. 6 shows the response acceleration at the center of the beam. It can be seen that the maximum response acceleration is reduced 0.82 times from 2.1 gal to 1.7 gal by the vibration suppression of the present invention, and the post-shake after 10 seconds converges sharply, but the vibration does not converge easily without vibration suppression.

上記の場合よりも少し早く歩き、歩調が1割増加(1秒あたりの歩数が増加)した場合を想定して、加振波形の時間間隔を1割短くしてさらに検討を行う。
図7にその場合の加振入力波形を示す。
図8に梁中央の応答変位を示す。「制振なし・束材のみ」の場合に共振状態となるが、「制振なし・束材+皿バネ」と「制振あり(本発明)」は1次固有振動数がずれているので共振状態とはならない。制振により最大応答変位が279μから52μへと0.19倍に低減し、10秒以降の後揺れが急峻に収束することが分かる。
図9に梁中央の応答加速度を示す。本発明の制振により最大応答加速度が5.2galから1.4galへと0.28倍に低減し、10秒以降の後揺れが急峻に収束するが、制振しないと揺れがなかなか収束しないことが分かる。
Assuming a case where the user walks a little faster than the above case and the pace increases by 10% (the number of steps per second increases), the time interval of the excitation waveform is shortened by 10% for further examination.
FIG. 7 shows the excitation input waveform in that case.
FIG. 8 shows the response displacement at the center of the beam. Resonance occurs in the case of “no vibration suppression / bundling material only”, but “no vibration suppression / bundling material + disc spring” and “with vibration suppression (invention)” have different primary natural frequencies. It does not become a resonance state. It can be seen that the maximum response displacement is reduced by 0.19 times from 279μ to 52μ due to vibration suppression, and the post-swing after 10 seconds converges sharply.
FIG. 9 shows the response acceleration at the center of the beam. The maximum response acceleration is reduced 0.28 times from 5.2 gal to 1.4 gal by the vibration suppression of the present invention, and the after shake after 10 seconds converges sharply. However, it can be seen that the vibration does not converge easily without vibration suppression.

逆に、少し遅く歩き、歩調が1割減少(1秒あたりの歩数が減少)した場合を想定して、加振波形の時間間隔を1割長くしてさらに検討を行う。
図10にその場合の加振入力波形を示す。
図11に梁中央の応答変位を示す。「制振なし・束材+皿バネ」に共振状態となるが、「制振なし・束材のみ」の場合には1次固有振動数がずれているので共振状態とはならない。「制振なし・束材+皿バネ」と「制振あり(本発明)」を比較すると、固有振動数がほぼ同じながら制振による最大応答変位が523μから102μへと0.19倍に低減し、11秒以降の後揺れが急峻に収束することが分かる。
図12に梁中央の応答加速度を示す。本発明の制振により最大応答加速度が6.4galから2.1galへと0.33倍に低減し、11秒以降の後揺れが急峻に収束するが、制振しないと揺れがなかなか収束しないことが分かる。
On the other hand, assuming a case where the user walks a little later and the pace decreases by 10% (the number of steps per second decreases), the time interval of the excitation waveform is increased by 10% and further examination is performed.
FIG. 10 shows an excitation input waveform in that case.
FIG. 11 shows the response displacement at the center of the beam. The resonance state is “no vibration suppression / bundle material + disc spring”, but in the case of “no vibration suppression / bundling material only”, the primary natural frequency is deviated, so the resonance state does not occur. Comparing “With no damping / bundle + disc spring” and “With damping (invention)”, the maximum response displacement due to damping is reduced by 0.19 times from 523μ to 102μ while the natural frequency is almost the same. It can be seen that the post shake after 11 seconds converges sharply.
FIG. 12 shows the response acceleration at the center of the beam. It can be seen that the maximum response acceleration is reduced 0.33 times from 6.4 gal to 2.1 gal by the vibration suppression of the present invention, and the post shake after 11 seconds converges sharply. However, the vibration does not converge easily without vibration suppression.

なお、日本建築学会の「建築物の振動に関する居住性能評価指針」にある鉛直振動に関する性能評価曲線にこの結果をプロットすると図13に示すようになり、制振により一般的な事務所ビルでの性能(V−70)を満足する程度に納まることが分かる。このように、本発明の制振機構を付加することで「加振振動数によらず、共振して過大な応答を生じることのない」張弦梁が実現できる。   When this result is plotted on the performance evaluation curve related to vertical vibration in the “Guideline for evaluating residential performance related to building vibration” of the Architectural Institute of Japan, the result is shown in FIG. It can be seen that the performance (V-70) is satisfied. Thus, by adding the vibration damping mechanism of the present invention, a stringed beam that does not resonate and cause an excessive response regardless of the vibration frequency can be realized.

次に、上記設計例の振動モデルに上下動加振入力(地震)を与えたときの応答を検討する。検討用の地震動として図14に示すようにやや長周期成分の多いHACHINOHEを梁両端から上下動入力する。そのフーリエスペクトルは(b)に示すように1〜4Hzのパワーが大きいものである。
図15に梁中央の応答変位を示す。「制振なし・束材のみ」「制振なし・束材+皿バネ」「制振あり(本発明)」の順に、最大応答変位が50mmから33mm、14mmへと大幅に低減する。また、制振により30秒以降の後揺れが急峻に収束すること、大きな振幅の継続時間も大幅に短縮されることが分かる。
図16に梁中央の応答加速度を示す。「制振なし・束材のみ」「制振なし・束材+皿バネ」「制振あり(本発明)」の順に、最大応答加速度が663galから400gal、217galへと大きく低減し、30秒以降の後揺れが急峻に収束すること、大きな加速度の継続時間が大幅に短縮されることがわかる。
なお、以上の解析は線形応答解析であり、その解析に用いた設計例の振動モデルは非線形部材を使用していないので応答は入力に比例したものとなり、したがって上記の加振入力が1/10以下の中小地震であっても効果的に応答低減できる。
Next, the response when the vertical motion excitation input (earthquake) is given to the vibration model of the above design example will be examined. As the seismic motion for examination, HACHINOHE with a little long-period component is input vertically from both ends of the beam as shown in FIG. The Fourier spectrum has a large power of 1 to 4 Hz as shown in (b).
FIG. 15 shows the response displacement at the center of the beam. The maximum response displacement is greatly reduced from 50mm to 33mm and 14mm in the order of "No vibration suppression / bundling material only", "No vibration suppression / bundling material + disc spring", and "Vibration suppression (present invention)". In addition, it can be seen that the post-shake after 30 seconds converges sharply due to vibration suppression, and the duration of the large amplitude is also greatly reduced.
FIG. 16 shows the response acceleration at the center of the beam. The maximum response acceleration is greatly reduced from 663 gal to 400 gal and 217 gal in the order of “No vibration suppression / bundling material only”, “No vibration suppression / bundle material + disc spring” and “Vibration suppression (invention)”, after 30 seconds It can be seen that the after-swing converges sharply and the duration of the large acceleration is greatly shortened.
The above analysis is a linear response analysis. Since the vibration model of the design example used for the analysis does not use a nonlinear member, the response is proportional to the input. Therefore, the above excitation input is 1/10 Response can be effectively reduced even in the following small and medium earthquakes.

本発明の効果を以下に列挙する。
(1)ローコストに大スパンを構築できる張弦梁のメリットを保持したまま、その共振特性を大幅に改善できる。
(2)束材にプレストレス(圧縮力)を与えることで従来の張弦梁と同じ応力分布となり、従来と同等の構造部材断面で張弦梁を構築できる。このため、付加振動系として付加する制振機構(TMD機構)以外の構造部材は従来コストと同等で済む。
(3)束材に直列にバネを設置することにより、下弦材の剛性が大きくてもこの制振機構で効果的に振動エネルギーを吸収して応答低減できる。この場合、長期鉛直撓みが従来よりやや増加するが、上記プレストレスによって梁にむくりを与えることで問題にならない。
(4)TMD機構を追加することで共振時の応答倍率を極めて小さくすることができ、加振振動数によらず過大な応答が生じない張弦梁となる。
(5)束材と並列に「慣性質量ダンパーと付加バネを直列したTMD機構」を設けるので、上弦材や下弦材の剛性の如何によらずTMD機構を同調させることができ、特に付加バネを調節することで広範な振動数に同調させることができる。したがって、上弦材および下弦材がどんな部材であってもTMDとして機能させることが可能になり、大きな応答低減効果が得られる。
The effects of the present invention are listed below.
(1) Resonance characteristics can be greatly improved while maintaining the merit of a stringed beam that can build a large span at low cost.
(2) By applying pre-stress (compressive force) to the bundle material, the stress distribution is the same as that of the conventional stringed beam, and the stringed beam can be constructed with the same structural member cross section as the conventional one. For this reason, structural members other than the vibration damping mechanism (TMD mechanism) added as the additional vibration system can be equivalent to the conventional cost.
(3) By installing a spring in series with the bundle material, even if the lower chord material has a large rigidity, this vibration damping mechanism can effectively absorb vibration energy and reduce the response. In this case, the long-term vertical deflection is slightly increased as compared with the conventional case, but there is no problem by peeling off the beam by the prestress.
(4) By adding a TMD mechanism, the response magnification at the time of resonance can be made extremely small, and a stringed beam that does not cause an excessive response regardless of the vibration frequency is obtained.
(5) Since a “TMD mechanism in which an inertial mass damper and an additional spring are connected in series” is provided in parallel with the bundle material, the TMD mechanism can be tuned regardless of the rigidity of the upper chord material and the lower chord material. It can be tuned to a wide range of frequencies by adjusting. Therefore, any member of the upper chord material and the lower chord material can be made to function as TMD, and a large response reduction effect can be obtained.

(6)従来のTMD機構と比較して小形軽量ながら大幅に応答低減できる機構である。特に回転慣性質量を利用することにより実際の回転錘(フライホイール)の質量の数百倍〜千倍以上の慣性質量が得られ、それが従来のTMDの付加質量と同じに機能することから、従来のTMDでは実現できなかった大きな付加質量効果を得ることができる。また、回転錘を増減(回転錘の回転慣性モーメントを調整)することで回転慣性質量を調整することもできる。
(7)従来のTMDでは付加質量を構造物の1〜3%程度しか与えることが現実的にできなかったが、本発明によれば回転慣性質量の利用により付加質量を構造物の10〜50%以上とすることも容易に実現できるので、風や交通振動のような小振幅だけでなく地震時の応答低減にも利用できる。
(8)設置後に構造体の剛性が変化したり、床荷重が変動したりした場合でも、再度同調作業しなくても応答低減効果を維持できる。したがって例えば高架橋に適用すれば、疲労特性を改善し、メンテナンス費用を縮減できる。
(9)張弦梁の構造部材断面を増大させても共振点が高振動数側に移動するだけだが、本発明によれば大きな減衰性能を付与できるので、断面を上げなくてもはるかに大きな応答低減が図れる。
(10)全てローコストな部品で構成できるので、大スパン床梁に対する従来の振動低減対策に比較してローコストでより大きな振動抑制ができ、コストパフォーマンスに優れた機構である。
(6) Compared with the conventional TMD mechanism, it is a mechanism that can significantly reduce the response while being small and lightweight. In particular, by utilizing the rotational inertial mass, an inertial mass that is several hundred to 1,000 times the mass of the actual rotary weight (flywheel) is obtained, and it functions in the same manner as the additional mass of the conventional TMD. A large additional mass effect that cannot be realized by conventional TMD can be obtained. The rotational inertial mass can also be adjusted by increasing or decreasing the rotational weight (adjusting the rotational moment of inertia of the rotational weight).
(7) In the conventional TMD, it was practically impossible to give an additional mass of only about 1 to 3% of the structure. However, according to the present invention, the additional mass is reduced to 10 to 50% of the structure by using the rotary inertia mass. % Can be easily realized, so it can be used not only for small amplitudes such as wind and traffic vibrations but also for reducing response during earthquakes.
(8) Even if the rigidity of the structure changes after installation or the floor load changes, the response reduction effect can be maintained without re-tuning. Therefore, for example, when applied to a high bridge, fatigue characteristics can be improved and maintenance costs can be reduced.
(9) Even if the cross-section of the structural member of the string string beam is increased, the resonance point only moves to the high frequency side, but according to the present invention, a large damping performance can be imparted, so a much greater response reduction can be achieved without increasing the cross-section. Can be planned.
(10) Since all parts can be constructed with low-cost parts, it is possible to suppress vibrations at a lower cost compared to conventional vibration reduction measures for large-span floor beams, and this mechanism has excellent cost performance.

(11)慣性質量ダンパーに作用する反力(負担力)は加振力より小さく、容易に対応できる。
(12)構造体にTMDを設置する場合にはこの重量が構造躯体への負荷となるが、本発明ではTMD機構の重量は従来のTMDより遙かに小さく、本体床梁に負荷とならない。
(13)インパクトダンパーと異なり、応答低減効果は振幅に依存しない。そのため、微振動から大振幅まで幅広く対応できる。
(14)下弦材は平鋼やロッドをそのまま使用できるので省スペースかつローコストであるし、下弦材には長期荷重(自重)により引張力が導入されるので座屈しない。
(15)共振問題を生じている既存床梁に本発明を適用すれば共振問題を解消できる。
(11) The reaction force (burden force) acting on the inertial mass damper is smaller than the excitation force and can be easily handled.
(12) When the TMD is installed in the structure, this weight becomes a load on the structure, but in the present invention, the weight of the TMD mechanism is much smaller than that of the conventional TMD and does not become a load on the main body floor beam.
(13) Unlike impact dampers, the response reduction effect does not depend on the amplitude. Therefore, it can deal with a wide range from micro vibration to large amplitude.
(14) Since the lower chord material can use flat steel or a rod as it is, it saves space and costs, and the lower chord material does not buckle because a tensile force is introduced by a long-term load (self-weight).
(15) The resonance problem can be solved by applying the present invention to an existing floor beam that has caused the resonance problem.

本発明の実施形態を示すもので、張弦梁構造を示す概略構成図である。1, showing an embodiment of the present invention, is a schematic configuration diagram showing a stringed beam structure. FIG. 同、付加振動系の同調についての説明図である。It is explanatory drawing about the tuning of an additional vibration system equally. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析に用いる加振入力波形を示す図である。It is a figure which shows the excitation input waveform used for a response analysis similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析に用いる加振入力波形を示す図である。It is a figure which shows the excitation input waveform used for a response analysis similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析に用いる加振入力波形を示す図である。It is a figure which shows the excitation input waveform used for a response analysis similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果による性能評価を示す図である。It is a figure which shows the performance evaluation by a response analysis result similarly. 同、応答解析に用いる加振入力波形を示す図である。It is a figure which shows the excitation input waveform used for a response analysis similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly.

符号の説明Explanation of symbols

1 上弦材
2 下弦材
3 束材
4 張弦梁(主構造、主振動系)
5 慣性質量ダンパー
6 付加バネ
7 付加減衰
8 付加振動系(TMD機構)
9 バネ(皿バネ)
1 Upper chord material 2 Lower chord material 3 Bundle material 4 Tension string beam (main structure, main vibration system)
5 Inertial mass damper 6 Additional spring 7 Additional damping 8 Additional vibration system (TMD mechanism)
9 Spring (disc spring)

Claims (2)

上弦材と下弦材と束材とにより構成される張弦梁に対して、該張弦梁の共振特性を改善するための付加振動系を設置してなる張弦梁構造であって、
前記付加振動系を慣性質量ダンパーと付加バネと付加減衰により構成して、前記慣性質量ダンパーと前記付加バネを前記上弦材と前記下弦材との間に配して、前記慣性質量ダンパーを前記束材と並列に設置し、前記付加バネを該慣性質量ダンパーと直列に設置し、前記付加減衰を前記慣性質量ダンパーまたは前記付加バネと並列に設置し、
前記束材の剛性に基づいて前記付加振動系の固有振動数を主振動系としての前記張弦梁の固有振動数に同調させてなることを特徴とする張弦梁構造。
A stringed beam structure in which an additional vibration system for improving the resonance characteristics of the stringed beam is installed on a stringed beam composed of an upper string material, a lower string material, and a bundle material,
The additional vibration system is configured by an inertial mass damper, an additional spring, and additional damping, the inertial mass damper and the additional spring are arranged between the upper chord material and the lower chord material, and the inertial mass damper is attached to the bundle. Installed in parallel with the material, installed the additional spring in series with the inertia mass damper, and installed the additional damping in parallel with the inertia mass damper or the additional spring,
A stringed beam structure characterized in that the natural frequency of the additional vibration system is synchronized with the natural frequency of the stringed beam as a main vibration system based on the rigidity of the bundle material .
請求項1記載の張弦梁構造であって、
前記束材に直列にバネを設置してなることを特徴とする張弦梁構造。
A stringed beam structure according to claim 1,
A stringed beam structure comprising a spring in series with the bundle.
JP2008266535A 2008-10-15 2008-10-15 String string structure Active JP5316854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266535A JP5316854B2 (en) 2008-10-15 2008-10-15 String string structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266535A JP5316854B2 (en) 2008-10-15 2008-10-15 String string structure

Publications (2)

Publication Number Publication Date
JP2010095889A JP2010095889A (en) 2010-04-30
JP5316854B2 true JP5316854B2 (en) 2013-10-16

Family

ID=42257761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266535A Active JP5316854B2 (en) 2008-10-15 2008-10-15 String string structure

Country Status (1)

Country Link
JP (1) JP5316854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316882B2 (en) * 2009-11-12 2013-10-16 清水建設株式会社 Beam vibration reduction mechanism
CN114934966B (en) * 2022-04-24 2023-03-10 上海交通大学 Base structure with unsteady negative-stiffness vibration absorber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112048A (en) * 1997-06-11 1999-01-06 Ohbayashi Corp Vibration control device for large-space structure consisting of single layer
JP3308212B2 (en) * 1998-05-29 2002-07-29 戸田建設株式会社 Floor vibration damping structure
JP5218805B2 (en) * 2006-11-01 2013-06-26 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP4593552B2 (en) * 2006-12-04 2010-12-08 三菱重工鉄構エンジニアリング株式会社 Vertical seismic isolation device

Also Published As

Publication number Publication date
JP2010095889A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5146757B2 (en) Beam vibration reduction mechanism
JP5570605B2 (en) Method and structure for dampening motion in a building
Abd-Elhamed et al. Simulation analysis of TMD controlled building subjected to far-and near-fault records considering soil-structure interaction
CA2524547A1 (en) Fork configuration dampers and method of using same
Motamedi et al. Study on mechanical characteristics of accordion metallic damper
Castellano et al. Progress of application, research and development, and design guidelines for shape memory alloy devices for cultural heritage structures in Italy
Won et al. Effects of the restrainer upon bridge motions under seismic excitations
JP5316854B2 (en) String string structure
Wu et al. Seismic behavior of glass fiber-reinforced polymer wall panels
JP3755886B1 (en) Bearing structure of fixed bearings in bridges and seismic reinforcement method for existing bridges
JPH01322061A (en) Earthquake isolating device
Guo et al. Seismic performance of the buckling-restrained brace central buckle for long-span suspension bridges
Rogers et al. Impact of diaphragm behavior on the seismic design of low-rise steel buildings
Massumi et al. A novel multi-objective structural system against earthquake and uncommon environmental loads
Tatemichi et al. A new approach to seismic isolation: possible application in space structures
Fiebig Reduction of vibrations of pedestrian bridges using tuned mass dampers (TMD)
Nawrotzki Tuned-mass systems for the dynamic upgrade of buildings and other structures
Lu Application of buckling-restrained braces in the seismic control of suspension bridges
Munshi et al. Displacement-based seismic design for coupled wall systems
Florakis et al. Seismic Base Absorber with a Novel Negative Stiffness Mechanism for the Horizontal Seismic Protection of Structures
JP5316882B2 (en) Beam vibration reduction mechanism
JP5252224B2 (en) Damping structure of tower structure
Endo et al. Analytical study on seismic performance evaluation of long-span suspension bridge steel tower
Nawrotzki Tuned-mass systems for the seismic retrofit of buildings
JPH10266620A (en) Vibration damping frame structure and construction method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Ref document number: 5316854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150