JP5315572B2 - Flavonoid production method - Google Patents

Flavonoid production method Download PDF

Info

Publication number
JP5315572B2
JP5315572B2 JP2007224850A JP2007224850A JP5315572B2 JP 5315572 B2 JP5315572 B2 JP 5315572B2 JP 2007224850 A JP2007224850 A JP 2007224850A JP 2007224850 A JP2007224850 A JP 2007224850A JP 5315572 B2 JP5315572 B2 JP 5315572B2
Authority
JP
Japan
Prior art keywords
following formula
represented
compound
group
confirmed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007224850A
Other languages
Japanese (ja)
Other versions
JP2009057306A (en
Inventor
緑 荒井
未奈 佐藤
正己 石橋
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2007224850A priority Critical patent/JP5315572B2/en
Publication of JP2009057306A publication Critical patent/JP2009057306A/en
Application granted granted Critical
Publication of JP5315572B2 publication Critical patent/JP5315572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、フラボノイドの製造方法に関する。   The present invention relates to a method for producing flavonoids.

フラボノイドは、多くの植物や食品に含有される化合物で、抗腫瘍効果、抗菌効果、抗炎症効果、抗酸化活性(活性酸素(フリーラジカル)消去作用)を示すことが知られており、この性質により例えば抗がん剤、抗菌剤、抗炎症剤、健康食品として応用が期待されている。すでに多くの健康食品が販売されており有用なものである。   Flavonoids are compounds found in many plants and foods, and are known to exhibit antitumor, antibacterial, anti-inflammatory, and antioxidant activities (reactive oxygen (free radical) scavenging action). For example, application is expected as an anticancer agent, an antibacterial agent, an anti-inflammatory agent, and a health food. Many health foods have already been sold and are useful.

ところで、フラボノイドを製造する従来の技術として、例えば下記非特許文献1及び2に記載の技術がある。下記非特許文献1及び2には、出発物質からフラボノイドを一段階の反応で製造するいわゆるワンポットにより製造する技術が記載されている。   By the way, as a prior art which manufactures a flavonoid, there exist the technique of the following nonpatent literature 1 and 2, for example. Non-Patent Documents 1 and 2 below describe a technique for producing a flavonoid from a starting material by so-called one-pot production in a one-step reaction.

Chawala,H.M.,Sharma,S.K.、“ A novel one−pot synthesis of 3−benzal−2,3−dihydro−4H−1−benzopyran−4−ones”、Indian J.Chem.1987、26B、1075−1077.Chawala, H .; M.M. , Sharma, S .; K. "A novel one-pot synthesis of 3-benzal-2, 3-dihydro-4H-1-benzopyran-4-ones", Indian J. et al. Chem. 1987, 26B, 1075-1077. Dhara M.G.,Mallik U. K.,Mallik A.K.、“Alkali−catalysed condensation of flavanones and aromatic aldehydes:Synthesis of E−3−arylideneflavanones and related compounds”、Indian J.Chem.1996、35B,1214−1217.Dhara M.D. G. , Mallik U., et al. K. , Mallik A .; K. “Alkali-catalyzed condensation of flavones and aromatic aldehydes: Synthesis of E-3-arylidene flavones and related compounds”, Indian J. et al. Chem. 1996, 35B, 1214-1217.

確かに、上記特許文献1及び2に記載の技術によると、フラボノイドをいわゆるワンポットで製造することができる。しかしながら、上記特許文献1には低から中程度の収率という問題があり、製造するフラボノイドのバリエーションに制限が加わってしまっている。また、生理活性化合物として期待されるN含有へテロ環置換基のワンポット製造法はこれまで報告されていない。さらに、2,3に2重結合を有する、すなわち内部オレフィンのフラボノイド;flavanoneのワンポット製造法は報告されていない。なお、N含有へテロ環置換フラボノイドの生理活性として、女性ホルモンを合成する生体内酵素アロマターゼの阻害活性が報告されている。(Pouget C.,Fagnere C.,Basly J.P.,Habrioux G.,Chulia A.J.、“New Aromatase Inhibitors.Synthesis and inhibitory activity of pyridinyl−substituted flavanone derivatives”,Bioog.Med. Chem.Lett.2002,12,1059−1061.)   Certainly, according to the techniques described in Patent Documents 1 and 2, flavonoids can be produced in a so-called one-pot. However, the above-mentioned Patent Document 1 has a problem of low to moderate yield, which limits the variation of flavonoids to be produced. In addition, no one-pot production method for N-containing heterocyclic substituents expected as physiologically active compounds has been reported so far. Furthermore, there is no report of a one-pot production method for flavonoids having a double bond at 2, 3; In addition, the inhibitory activity of the in vivo enzyme aromatase that synthesizes female hormones has been reported as the physiological activity of N-containing heterocycle-substituted flavonoids. (Pouget C., Fagnore C., Basly J.P., Habrioux G., Chulia A.J., “New Aromatase Inhibitors. Synthesis and Inhibitory Activity.” 2002, 12, 1059-1061.)

そこで、本発明は、上記を鑑みより豊富な種類のフラボノイドの製造が可能な製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method which can manufacture a more abundant kind of flavonoid in view of the above.

本発明者らは、上記課題について鋭意検討を行っていたところ、フラボノイドの製造方法において、アルデヒドとピリジン誘導体との間の反応時間に着目し、これらを時間差を設けて加えることで、2位及び3位それぞれにおいて異なる置換基を有するフラボノイドを製造することができる点に想到し、本発明を完成させるに至った。   The inventors of the present invention have been diligently studying the above problems, and in the flavonoid production method, paying attention to the reaction time between the aldehyde and the pyridine derivative and adding them with a time difference, the second position and The inventors have conceived that flavonoids having different substituents at each of the 3-positions can be produced, and the present invention has been completed.

即ち、本発明の一手段に係るフラボノイドの製造方法は、塩基の存在下においてケトンと芳香族アルデヒドを反応させ、その後、ピリジン誘導体を加えることとする。   That is, in the method for producing a flavonoid according to one means of the present invention, a ketone and an aromatic aldehyde are reacted in the presence of a base, and then a pyridine derivative is added.

なお本手段において、限定されるわけではないが、ケトンは、下記式(1)で示されるものであることは好ましい一態様である。
In this means, although it is not limited, it is a preferable embodiment that the ketone is represented by the following formula (1).

なお上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、R2は化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。 In the above formula, R 1 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen. May be different.

また本手段において、限定されるわけではないが、芳香族アルデヒドは、下記式(2)又は(3)で示されるものであることも好ましい一態様である。
Moreover, in this means, although not necessarily limited, it is also a preferable aspect that the aromatic aldehyde is represented by the following formula (2) or (3).

なお上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、R2は化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。

なお上記式において、R及びRは、水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンの少なくともいずれかであり、R及びRはそれぞれ化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。
In the above formula, R 2 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, or a halogen, and R2 may be plural in the compound, and when there are plural, they are the same. May be different.

In the above formula, R 2 and R 3 are at least one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and halogen, and there may be a plurality of R 2 and R 3 in the compound. If there are multiple, they may be the same or different.

また本手段において、限定されるわけではないが、ピリジン誘導体は、下記式(4)又は(5)の少なくともいずれかであることは好ましい一態様である。
Moreover, in this means, although it is not limited, it is a preferable aspect that the pyridine derivative is at least one of the following formulas (4) and (5).

なお上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、Rは化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。
Note in the above formula, R 4 is hydrogen, an alkyl group, an alkoxy group, an alkenyl group, is either an alkynyl group, or a halogen, R 4 may be a plurality in a compound, a plurality of cases they the same Or different.

なお上記式において、R及びRは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、R及びRはそれぞれ化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。 In the above formula, R 4 and R 5 are any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen, and there may be a plurality of R 4 and R 5 in the compound. In some cases they may be the same or different.

以上、本発明によると、より豊富な種類のフラボノイドの製造が可能な製造方法となる。   As mentioned above, according to this invention, it becomes a manufacturing method which can manufacture a more abundant kind of flavonoid.

以下、本発明の実施の形態について、詳細に説明するが、本発明は多くの異なる態様による実施が可能であり、以下に示す実施形態、実施例の記載そのものに限定されるものでないことはいうまでもない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention can be implemented in many different modes and is not limited to the description of the embodiments and examples shown below. Not too long.

本実施形態に係るフラボノイドの製造方法は、塩基の存在下で、ケトンと芳香族アルデヒドとを反応させ、その後、ピリジン誘導体を加えることを特徴とする。   The method for producing a flavonoid according to this embodiment is characterized in that a ketone and an aromatic aldehyde are reacted in the presence of a base, and then a pyridine derivative is added.

本実施形態におけるケトンとアルデヒドの反応は、溶媒中において行われることが好ましい。この溶媒としては、限定されることはないが、たとえば水、アルコール、THF、CHCl等が好適である。なお溶媒がアルコールの場合、限定されるわけではないがメタノール、エタノール、イソプロパノール等が好適である。 The reaction between the ketone and the aldehyde in the present embodiment is preferably performed in a solvent. This solvent is not limited, but water, alcohol, THF, CH 2 Cl 2 and the like are preferable. When the solvent is alcohol, methanol, ethanol, isopropanol and the like are preferable although not limited.

また本実施形態において溶媒におけるケトンの濃度としては、溶媒の種類や出発物質のケトンの種類により適宜調整可能であり限定されるわけではないが、0.05 mol/l以上0.20 mol/l以下の範囲内にあることが好ましい。   In the present embodiment, the concentration of the ketone in the solvent can be appropriately adjusted depending on the type of the solvent and the type of the starting ketone, and is not limited, but is 0.05 mol / l or more and 0.20 mol / l. It is preferable to be within the following range.

また本実施形態において、まず反応させるケトンとアルデヒドの量の比は、限定されるわけではないが、ケトンを1モルとした場合アルデヒドは2モル以上10モル以下の範囲となっていることが好ましい。2モル以上とすることで反応を円滑に進行させることが可能となり、10モル以下とすることで副反応を押さえることが可能となるといった利点がある。   Further, in this embodiment, the ratio of the amount of ketone and aldehyde to be reacted is not limited, but when the ketone is 1 mole, the aldehyde is preferably in the range of 2 to 10 moles. . When the amount is 2 mol or more, the reaction can proceed smoothly, and when the amount is 10 mol or less, side reactions can be suppressed.

本実施形態に係る塩基は、限定されることなく様々なものを使用することができ、例えばKOH、NaOH、KCO、CsCOの少なくともいずれかを用いることは好ましい一態様である。また本実施形態において、ケトンとアルデヒドの反応において用いる塩基の濃度としては、溶媒の種類やケトン、アルデヒドの濃度により適宜調整可能であり限定されるわけではないが、ケトン1モルに対し5モル以上10モル以下であることが好ましい。5モル以上とすることで反応を円滑に進行させるといった利点を有し、10モル以下とすることで副反応を押さえるといった利点がある。 Various bases can be used as the base according to the present embodiment without limitation. For example, it is a preferable aspect to use at least one of KOH, NaOH, K 2 CO 3 , and Cs 2 CO 3. . In this embodiment, the concentration of the base used in the reaction between the ketone and the aldehyde can be appropriately adjusted depending on the type of the solvent, the concentration of the ketone and the aldehyde, and is not limited. It is preferable that it is 10 mol or less. By setting it as 5 mol or more, there exists an advantage that reaction advances smoothly, and there exists an advantage that a side reaction is suppressed by setting it as 10 mol or less.

また本実施形態において、反応時間としては、ケトン、アルデヒド、塩基、溶媒の種類などにより適宜調整可能であり限定されるわけではないが、始めのアルデヒドを加えた後は5時間以上26時間以下であることが好ましい。5時間以上とすることでケトンが消失し1段階目の目的であるカルコン誘導体が生成し、26時間以下とすることで2,3位に始めのアルデヒド由来の置換基が導入されたフラボノイドの生成を押さえるができる。   In the present embodiment, the reaction time can be appropriately adjusted depending on the type of ketone, aldehyde, base, solvent, etc., and is not limited. However, after the first aldehyde is added, the reaction time is 5 hours to 26 hours. Preferably there is. When it is 5 hours or longer, the ketone disappears and a chalcone derivative which is the objective of the first step is generated, and when it is 26 hours or less, the flavonoid in which the first aldehyde-derived substituent is introduced at positions 2 and 3 is generated. You can hold down.

また、本実施形態において、反応温度としては、ケトン、アルデヒド、塩基、溶媒の種類などにより適宜調整可能であり限定されるわけではないが、20℃以上50℃以下であることが好ましい。   In the present embodiment, the reaction temperature can be appropriately adjusted depending on the type of ketone, aldehyde, base, solvent, etc., and is not limited, but is preferably 20 ° C. or higher and 50 ° C. or lower.

また本実施形態においてケトンは、限定されるわけではないが、下記式(1)に示すものであることが好ましい。
Moreover, in this embodiment, although a ketone is not necessarily limited, What is shown to following formula (1) is preferable.

なお上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、Rは化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。 In the above formula, R 1 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, or a halogen, and there may be a plurality of R 1 in the compound, and when there are a plurality, R 1 is the same. Or different.

また、上記式の具体的な化合物の例として、限定されるわけではないが、下記に示す化合物であることは好ましい。
Moreover, although it does not necessarily limit as an example of the specific compound of the said formula, It is preferable that it is a compound shown below.

また、本実施形態において芳香族アルデヒドは、限定されるわけではないが、下記式(2)又は(3)の少なくともいずれかを含んでなることも好ましい。
Moreover, in this embodiment, although an aromatic aldehyde is not necessarily limited, It is also preferable to comprise at least any one of following formula (2) or (3).

なお上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、R2は化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。
In the above formula, R 2 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, or a halogen, and a plurality of R 2 may be present in the compound. May be different.

なお上記式において、R及びRは、水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンの少なくともいずれかであり、R及びRはそれぞれ化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。 In the above formula, R 2 and R 3 are at least one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen, and a plurality of R 2 and R 3 may be present in the compound. If there are multiple, they may be the same or different.

なお、上記式の具体的な例としては、限定されるわけではないが、例えば下記に示す化合物の少なくともいずれかであることは好ましい態様である。
In addition, although it does not necessarily limit as a specific example of the said formula, For example, it is a preferable aspect that it is at least one of the compounds shown below.

また本実施形態において、上記ケトンとアルデヒドとを反応させた後加えるピリジン誘導体の量は、限定されるわけではないが、ケトンの量を1モルとした場合、3モル以上10モル以下となっていることが好ましい。   In this embodiment, the amount of the pyridine derivative added after reacting the ketone with the aldehyde is not limited. However, when the amount of the ketone is 1 mol, the amount is 3 mol or more and 10 mol or less. Preferably it is.

また本実施形態において、上記ピリジン誘導体を加える工程は、ケトンやアルデヒドの種類等により調整可能であり、限定されるわけではないがケトンとアルデヒドを混合したときから5時間以上経過した後に加えることが好ましく、26時間経過する前に加えておくことが好ましい。5時間以上とすることでケトンが消失し1段階目の目的であるカルコン誘導体が生成し、26時間以下とすることで2,3位に始めのアルデヒド由来の置換基が導入されたフラボノイドの生成を押さえることとなる。   In this embodiment, the step of adding the pyridine derivative can be adjusted according to the type of ketone or aldehyde, and is not limited, but may be added after 5 hours or more have passed since the ketone and aldehyde were mixed. Preferably, it is added before 26 hours have passed. When it is 5 hours or longer, the ketone disappears and a chalcone derivative which is the objective of the first step is generated, and when it is 26 hours or less, the flavonoid in which the first aldehyde-derived substituent is introduced at positions 2 and 3 is generated. Will be held down.

また、本実施形態において、ピリジン誘導体を加えた後の反応における反応温度としては、限定されるわけではないが20℃以上50℃以下であることが好ましい。   In the present embodiment, the reaction temperature in the reaction after adding the pyridine derivative is not limited, but is preferably 20 ° C. or more and 50 ° C. or less.

またこのピリジン誘導体を加えた後の反応時間としては、限定されるわけではないが、2時間以上17時間内であることが好ましい。   The reaction time after adding this pyridine derivative is not limited, but is preferably 2 hours or more and 17 hours or less.

また本実施形態においてピリジン誘導体は、限定されるわけではないが、下記式(4)又は(5)の少なくともいずれかを含んでなることも好ましい。
Moreover, in this embodiment, although a pyridine derivative is not necessarily limited, it is also preferable to comprise at least one of following formula (4) or (5).

なお上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、Rは化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。
In the above formula, R 4 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, or a halogen, and there may be a plurality of R 4 in the compound, and when there are a plurality, R 4 is the same. Or different.

なお上記式において、R及びRは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、R及びRはそれぞれ化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。 In the above formula, R 4 and R 5 are any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen, and there may be a plurality of R 4 and R 5 in the compound. In some cases they may be the same or different.

なお上記式の具体的な化合物としては、限定されるわけではないが、例えば下記に示す化合物の少なくともいずれかであることが好ましい。
The specific compound of the above formula is not limited, but for example, it is preferably at least one of the following compounds.

本実施形態により得られるフラボノイドは、限定されるわけではないが、上記(1)乃至(5)の組み合わせを採用した場合、下記式(6)又は(7)に示されるフラボノイドとなる。

Although the flavonoid obtained by this embodiment is not necessarily limited, when the combination of said (1) thru | or (5) is employ | adopted, it becomes a flavonoid shown by following formula (6) or (7).

以上、本実施形態では、アルデヒドとピリジン誘導体とを時間差で加え、ピリジン誘導体のこれまで見いだされていなかったカルコン誘導体との反応性を利用し、従来に比べより工程が省略可能となり、いわゆるワンポットでさまざまなフラボノイドを製造できるといった効果を有する。ピリジンアルデヒド誘導体を利用することで、従来法と比べ飛躍的な反応時間の短縮が起こり、2,3位に異なる置換基を有するフラボノイドをワンポットで製造できる。さらにピリジン置換基を有するフラボノイドのワンポット製造法として初めてのものとなる。   As described above, in the present embodiment, the aldehyde and the pyridine derivative are added with a time difference, and the reactivity of the pyridine derivative with the chalcone derivative that has not been found so far can be used. It has an effect that various flavonoids can be produced. By using a pyridine aldehyde derivative, the reaction time is dramatically shortened compared to the conventional method, and flavonoids having different substituents at the 2- and 3-positions can be produced in one pot. Furthermore, this is the first one-pot production method for flavonoids having a pyridine substituent.

上記実施形態に係る発明について、実際に反応を行い、本発明の効果について確認した。以下に説明する。   About the invention which concerns on the said embodiment, reaction was actually performed and the effect of this invention was confirmed. This will be described below.

本実施例では、ケトン、アルデヒド及びピリジン誘導体について複数の組み合わせを検討し、そのそれぞれについてフラボノイドを実際に作成した。   In this example, a plurality of combinations of ketones, aldehydes, and pyridine derivatives were studied, and flavonoids were actually created for each of them.

(実施例1)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−1)で示すアルデヒド25.5mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で7.5時間反応させた。その後、下記式(4−1)で示すピリジン誘導体を60.0mg加え、40℃2時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、白色の粉末21.7mgを得た。
Example 1
In this example, 20 mg of a ketone represented by the following formula (1-1), 25.5 mg of an aldehyde represented by the following formula (2-1), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 7.5 hours. Thereafter, 60.0 mg of a pyridine derivative represented by the following formula (4-1) was added and reacted at 40 ° C. for 2 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 21.7 mg of white powder was obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−1)で示されるフラボノイドであることが確認でき、この結果、下記式(8−1)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は65%であることを確認した。   When the NMR spectrum of this obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-1), and as a result, the reaction represented by the following formula (8-1) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 65%.

(化合物のデータ)
IR(ATR):1630,1600,1444,1385,1362,1241,1180,1102,1002,920,795,765,721,697cm−1
H−NMR(400MHz,CDCl):δ
3.92(s,2H),5.17(s,2H),6.95(d,J=2.4Hz,1H),7.04(dd,J=4.4,1.7Hz,2H),7.08(dd,J=8.9,2.3Hz,1H),7.34−7.55(m,10H),8.17(d,J=8.8Hz,1H),8.43(dd,J= 4.4,1.7Hz,2H).
13C−NMR(500MHz,CDCl):δ177.2,163.2,163.0,157.8,149.7,149.3,135.6,132.8,130.6,128.74,128.66,128.40,128.38,127.5,127.4,123.5,118.7,116.9,115.3,101.1,70.5,30.8.
FAB−MS(M+1):420.
FAB−HRMS(M+1):calcd for C2822N 420.1600,found 420.1560.
(Compound data)
IR (ATR): 1630, 1600, 1444, 1385, 1362, 1241, 1180, 1102, 1002, 920, 795, 765, 721, 697 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ
3.92 (s, 2H), 5.17 (s, 2H), 6.95 (d, J = 2.4 Hz, 1H), 7.04 (dd, J = 4.4, 1.7 Hz, 2H) ), 7.08 (dd, J = 8.9, 2.3 Hz, 1H), 7.34-7.55 (m, 10H), 8.17 (d, J = 8.8 Hz, 1H), 8 .43 (dd, J = 4.4, 1.7 Hz, 2H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.2, 163.2, 163.0, 157.8, 149.7, 149.3, 135.6, 132.8, 130.6, 128.74 128.66, 128.40, 128.38, 127.5, 127.4, 123.5, 118.7, 116.9, 115.3, 101.1, 70.5, 30.8.
FAB-MS (M ++ 1): 420.
FAB-HRMS (M + +1) : calcd for C 28 H 22 O 3 N 420.1600, found 420.1560.

(実施例2)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−1)で示すアルデヒド25.5mgと、塩基CsCO156.4mgをエタノール0.5ml中に溶解し、40℃で7.5時間反応させた。その後、下記式(4−2)で示すピリジン誘導体を104.2mg加え、40℃2時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、白色のアモルファス状固体28.9mgを得た。
(Example 2)
In this example, 20 mg of a ketone represented by the following formula (1-1), 25.5 mg of an aldehyde represented by the following formula (2-1), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 7.5 hours. Thereafter, 104.2 mg of a pyridine derivative represented by the following formula (4-2) was added and reacted at 40 ° C. for 2 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 28.9 mg of white amorphous solids were obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−2)で示されるフラボノイドであることが確認でき、この結果、下記式(8−2)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は72%であることを確認した。   When the NMR spectrum of this obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-2), and as a result, a reaction represented by the following formula (8-2) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 72%.

(化合物のデータ)
IR(ATR):1609,1440,1381,1240,1170,1096,1021,695cm−1
H−NMR(400MHz,CDCl):δ3.90(s,2H),5.16(s,2H),6.94(d,J=2.4Hz,1H),7.08(dd,J=8.8,2.4Hz,1H),7.33−7.57(m,10H),7.61(t,J=1.8Hz,1H),8.16(d,J=9.0Hz,1H),8.18(d,J=2.0Hz,1H),8.45(d,J= 2.2Hz,1H).
13C−NMR(500MHz,CDCl):δ177.1,163.3,163.0,157.8,148.5,147.7,138.4,137.6,135.6,132.7,130.7,128.8,128.7,128.42,128.38,127.5,127.4,120.6,119.0,117.0,115.3,101.1,70.5,28.2.
FAB−MS(M+1):498.
FAB−HRMS(M+1):calcd for C2821NBr 498.0705,found 498.0710.
(Compound data)
IR (ATR): 1609, 1440, 1381, 1240, 1170, 1096, 1021, 695 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 3.90 (s, 2H), 5.16 (s, 2H), 6.94 (d, J = 2.4 Hz, 1H), 7.08 (dd, J = 8.8, 2.4 Hz, 1H), 7.33-7.57 (m, 10H), 7.61 (t, J = 1.8 Hz, 1H), 8.16 (d, J = 9) .0Hz, 1H), 8.18 (d, J = 2.0Hz, 1H), 8.45 (d, J = 2.2Hz, 1H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.1, 163.3, 163.0, 157.8, 148.5, 147.7, 138.4, 137.6, 135.6, 132.7 130.7, 128.8, 128.7, 128.42, 128.38, 127.5, 127.4, 120.6, 119.0, 117.0, 115.3, 101.1, 70 .5, 28.2.
FAB-MS (M ++ 1): 498.
FAB-HRMS (M + +1) : calcd for C 28 H 21 O 3 NBr 498.0705, found 498.0710.

また、本化合物に対し、HeLaがん細胞に対する細胞毒性を測定したところ、50mMにおいて11%の細胞毒性があることが確認できた。   Moreover, when the cytotoxicity with respect to a HeLa cancer cell was measured with respect to this compound, it has confirmed having 11% cytotoxicity in 50 mM.

(実施例3)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−2)で示すアルデヒド28.8mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で15時間反応させた。その後、下記式(4−3)で示すピリジン誘導体を104.2mg加え、40℃で9時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、白色のアモルファス状固体40.6mgを得た。
(Example 3)
In this example, 20 mg of a ketone represented by the following formula (1-1), 28.8 mg of an aldehyde represented by the following formula (2-2), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 15 hours. Thereafter, 104.2 mg of a pyridine derivative represented by the following formula (4-3) was added and reacted at 40 ° C. for 9 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and obtained 40.6 mg of white amorphous solids.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−3)で示されるフラボノイドであることが確認でき、この結果、下記式(8−3)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は99%であることを確認した。   When the NMR spectrum of this obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-3), and as a result, a reaction represented by the following formula (8-3) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 99%.

(化合物のデータ)
IR(ATR):1623,1600,1440,1379,1241,1174,778,736,696cm−1
H−NMR(400MHz,CDCl):δ2.36(s,3H),3.97(s,12H),5.18(s,2H),6.99(d,J=2.4Hz,1H),7.03(dd,J=4.9,0.5Hz,1H),7.10(dd,J=8.9,2.3Hz,1H),7.20(m,1H),7.23(s,1H),7.29−7.47(m,7H),8.17(d,J=8.8Hz,1H),8.35(d,J=4.9Hz,1H),8.66(d,J=0.5Hz,1H).
13C−NMR(500MHz,CDCl):δ177.2,163.6,163.3,157.9,151.5,148.5,148.3,138.6,135.6,132.5,131.5,128.73,128.68,128.58,128.4,127.5,127.4,125.2,123.9,122.9,117.4,116.7,115.3,101.1,70.5,31.9,21.4.
FAB−MS(M+1):512.
FAB−HRMS(M+1):calcd for C2923NBr 512.0861,found 512.0815.
(Compound data)
IR (ATR): 1623, 1600, 1440, 1379, 1241, 1174, 778, 736, 696 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 2.36 (s, 3H), 3.97 (s, 12H), 5.18 (s, 2H), 6.99 (d, J = 2.4 Hz, 1H), 7.03 (dd, J = 4.9, 0.5 Hz, 1H), 7.10 (dd, J = 8.9, 2.3 Hz, 1H), 7.20 (m, 1H), 7.23 (s, 1H), 7.29-7.47 (m, 7H), 8.17 (d, J = 8.8 Hz, 1H), 8.35 (d, J = 4.9 Hz, 1H) ), 8.66 (d, J = 0.5 Hz, 1H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.2, 163.6, 163.3, 157.9, 151.5, 148.5, 148.3, 138.6, 135.6, 132.5 131.5, 128.73, 128.68, 128.58, 128.4, 127.5, 127.4, 125.2, 123.9, 122.9, 117.4, 116.7, 115 .3, 101.1, 70.5, 31.9, 21.4.
FAB-MS (M ++ 1): 512.
FAB-HRMS (M + +1) : calcd for C 29 H 23 O 3 NBr 512.0861, found 512.0815.

また、本化合物に対し、HeLaがん細胞に対する細胞毒性を測定したところ、25μMにおいて15%の細胞毒性があることが確認できた。   Moreover, when the cytotoxicity with respect to a HeLa cancer cell was measured with respect to this compound, it has confirmed having 15% cytotoxicity in 25 micromol.

また、本化合物に対し、膵臓がんで異常亢進しているHedgehog/GLIシグナル伝達系における、GLIによる転写の阻害活性を、HaCaT細胞において、ルシフェラーゼレポーターアッセイにて測定したところ、50μMにおいて22%の阻害活性があることが確認できた。   In addition, the inhibition activity of transcription by GLI in the Hedgehog / GLI signal transduction system, which is abnormally enhanced in pancreatic cancer, was measured by luciferase reporter assay in HaCaT cells, and the inhibition was 22% at 50 μM. It was confirmed that there was activity.

(実施例4)
本化合物では、下記式(1−1)で示すケトン20mgと、下記式(2−3)で示すアルデヒド32.7mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で48時間反応させた。その後、下記式(4−4)で示すピリジン誘導体を67.8mg加え、40℃で2時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、黄色の固体30.5mgを得た。
Example 4
In this compound, 20 mg of a ketone represented by the following formula (1-1), 32.7 mg of an aldehyde represented by the following formula (2-3), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. The reaction was carried out at 40 ° C. for 48 hours. Thereafter, 67.8 mg of a pyridine derivative represented by the following formula (4-4) was added and reacted at 40 ° C. for 2 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 30.5 mg of yellow solid was obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(7−1)で示されるフラボノイドであることが確認でき、この結果、下記式(8−4)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は82%であることを確認した。   When the NMR spectrum of this obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (7-1), and as a result, a reaction represented by the following formula (8-4) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 82%.

(化合物のデータ)
IR(ATR):1666,1599,1573,1508,1440,1244,1161,1101,1007,793,735,696cm−1
H−NMR(400MHz,CDCl):δ2.46(s,3H),3.73(s,3H),5.06(d,J=11.7Hz,1H),5.07(d,J=11.5Hz,1H),6.49(d,J=2.2Hz,1H),6.62(dd,J=8.8,2.2Hz,1H),6.77(d,J=8.8Hz,2H),7.06(d,J=7.8Hz,1H),7.28(d,J=7.3Hz,1H),7.33−7.42(m,7H),7.59(t,J=7.8Hz,1H),7.79(d,J=1.0Hz,1H),7.91(d,J=8.8Hz,1H),8.01(s,1H).
13C−NMR(500MHz,CDCl):δ181.5,165.4,161.7,159.1,158.5,153.0,136.7,135.9,135.7,134.3,131.1,129.5,128.63,128.59,128.2,127.6,125.1,123.0,116.0,113.6,110.4,102.5,77.5,70.2,55.1,24.5.
FAB−MS(M+1):464.
FAB−HRMS(M+1):calcd for C3026N 464.1862,found 464.1834.
(Compound data)
IR (ATR): 1666, 1599, 1573, 1508, 1440, 1244, 1161, 1101, 1007, 793, 735, 696 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 2.46 (s, 3H), 3.73 (s, 3H), 5.06 (d, J = 11.7 Hz, 1H), 5.07 (d, J = 11.5 Hz, 1 H), 6.49 (d, J = 2.2 Hz, 1 H), 6.62 (dd, J = 8.8, 2.2 Hz, 1 H), 6.77 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 7.3 Hz, 1H), 7.33-7.42 (m, 7H) , 7.59 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 1.0 Hz, 1H), 7.91 (d, J = 8.8 Hz, 1H), 8.01 ( s, 1H).
13 C-NMR (500 MHz, CDCl 3 ): δ 181.5, 165.4, 161.7, 159.1, 158.5, 153.0, 136.7, 135.9, 135.7, 134.3 131.1, 129.5, 128.63, 128.59, 128.2, 127.6, 125.1, 123.0, 116.0, 113.6, 110.4, 102.5, 77 5, 70.2, 55.1, 24.5.
FAB-MS (M ++ 1): 464.
FAB-HRMS (M + +1) : calcd for C 30 H 26 O 4 N 464.1862, found 464.1834.

また、本化合物に対し、HeLaがん細胞に対する細胞毒性を測定したところ、25μMにおいて38%の細胞毒性があることが確認できた。   Moreover, when the cytotoxicity with respect to the HeLa cancer cell was measured with respect to this compound, it has confirmed that there was 38% cytotoxicity in 25 micromol.

また、本化合物に対し、膵臓がんで異常亢進しているHedgehog/GLIシグナル伝達系における、GLIによる転写の阻害活性を、HaCaT細胞において、ルシフェラーゼレポーターアッセイにて測定したところ、50μMにおいて61%の阻害活性があることが確認できた。   In addition, the inhibition activity of transcription by GLI in the Hedgehog / GLI signal transduction system that is abnormally enhanced in pancreatic cancer was measured by luciferase reporter assay in HaCaT cells. It was confirmed that there was activity.

(実施例5)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−4)で示すアルデヒド44.4mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で8時間反応させた。その後、下記式(4−2)で示すピリジン誘導体を104.2mg加え、40℃で5時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、黄色の固体32.8mgを得た。
(Example 5)
In this example, 20 mg of a ketone represented by the following formula (1-1), 44.4 mg of an aldehyde represented by the following formula (2-4), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 8 hours. Thereafter, 104.2 mg of a pyridine derivative represented by the following formula (4-2) was added and reacted at 40 ° C. for 5 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 32.8 mg of yellow solid was obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−4)で示されるフラボノイドであることが確認でき、この結果、下記式(8−5)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は71%であることを確認した。   When the obtained compound was measured for NMR spectrum, it was confirmed that it was a flavonoid represented by the following formula (6-4), and as a result, a reaction represented by the following formula (8-5) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 71%.

(化合物のデータ)
IR(ATR):1624,1609,1440,1379,1240,1172,1011,827,696cm−1
H−NMR(400MHz,CDCl):δ3.88(s,2H),5.17(s,2H),6.92(d,J=2.4Hz,1H),7.09(dd,J=8.9,2.3Hz,1H),7.34−7.45(m,7H),7.62(t,J=2.1Hz,1H),7.65(d,J=8.8Hz,2H),8.15(d,J=8.8Hz,1H),8.20(d,J=2.0Hz,1H),8.47(d,J=2.2Hz,1H).
13C−NMR(500MHz,CDCl):δ176.9,163.4,161.8,157.7,148.7,147.6,138.3,137.3,135.5,132.1,131.5,130.0,128.8,128.4,127.5,127.4,125.3,120.7,119.1,116.9,115.4,101.1,70.5,28.2.
FAB−MS(M+1):576.
FAB−HRMS(M+1):calcd for C2820NBr 575.9810,found 575.9827.
(Compound data)
IR (ATR): 1624, 1609, 1440, 1379, 1240, 1172, 1011, 827, 696 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 3.88 (s, 2H), 5.17 (s, 2H), 6.92 (d, J = 2.4 Hz, 1H), 7.09 (dd, J = 8.9, 2.3 Hz, 1H), 7.34-7.45 (m, 7H), 7.62 (t, J = 2.1 Hz, 1H), 7.65 (d, J = 8 .8 Hz, 2H), 8.15 (d, J = 8.8 Hz, 1H), 8.20 (d, J = 2.0 Hz, 1H), 8.47 (d, J = 2.2 Hz, 1H) .
13 C-NMR (500 MHz, CDCl 3 ): δ 176.9, 163.4, 161.8, 157.7, 148.7, 147.6, 138.3, 137.3, 135.5, 132.1 131.5, 130.0, 128.8, 128.4, 127.5, 127.4, 125.3, 120.7, 119.1, 116.9, 115.4, 101.1, 70 .5, 28.2.
FAB-MS (M ++ 1): 576.
FAB-HRMS (M + +1) : calcd for C 28 H 20 O 3 NBr 2 575.9810, found 575.9827.

(実施例6)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−5)で示すアルデヒド47.1mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で26時間反応させた。その後、下記式(4−3)で示すピリジン誘導体を104.2mg加え、40℃で3時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、白色の固体47mgを得た。
(Example 6)
In this example, 20 mg of a ketone represented by the following formula (1-1), 47.1 mg of an aldehyde represented by the following formula (2-5), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 26 hours. Thereafter, 104.2 mg of a pyridine derivative represented by the following formula (4-3) was added and reacted at 40 ° C. for 3 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 47 mg of white solids were obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−5)で示されるフラボノイドであることが確認でき、この結果、下記式(8−6)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は99%であることを確認した。   When the NMR spectrum of the obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-5), and as a result, a reaction represented by the following formula (8-6) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 99%.

(化合物のデータ)
IR(ATR):1633,1603,1582,1577,1497,1441,1378,1239,1175,1120,1096,999,831,779,724,686cm−1
H−NMR(400MHz,CDCl):δ3.66(s,6H),3.89(s,3H),3.99(s,2H),5.20(s,2H),6.59(s,2H),7.01(d,J=2.4Hz,1H),7.05(d,J=4.6Hz, 1H),7.12(dd,J=9.0,2.4Hz,1H),7.35−7.47(m,5H),8.19(d,J=9.0Hz,1H),8.39(d,J=5.1Hz,1H),8.67(s,1H).
13C−NMR(500MHz,CDCl):δ177.2,163.4,163.2,157.8,153.2,151.6,148.8,148.5,135.6,128.8,128.5,127.60,127.57,127.46,123.9,123.1, 117.0,116.7,115.4,105.5,101.2,70.6,61.0,55.9,32.4.
FAB−MS(M+1):588.
FAB−HRMS(M+1):calcd for C3127NBr 588.1022,found 588.1006.
(Compound data)
IR (ATR): 1633, 1603, 1582, 1577, 1497, 1441, 1378, 1239, 1175, 1120, 1096, 999, 831, 779, 724, 686 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 3.66 (s, 6H), 3.89 (s, 3H), 3.99 (s, 2H), 5.20 (s, 2H), 6.59 (S, 2H), 7.01 (d, J = 2.4 Hz, 1H), 7.05 (d, J = 4.6 Hz, 1H), 7.12 (dd, J = 9.0, 2. 4 Hz, 1H), 7.35-7.47 (m, 5H), 8.19 (d, J = 9.0 Hz, 1H), 8.39 (d, J = 5.1 Hz, 1H), 8. 67 (s, 1H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.2, 163.4, 163.2, 157.8, 153.2, 151.6, 148.8, 148.5, 135.6, 128.8 , 128.5, 127.60, 127.57, 127.46, 123.9, 123.1, 117.0, 116.7, 115.4, 105.5, 101.2, 70.6, 61 0.0, 55.9, 32.4.
FAB-MS (M ++ 1): 588.
FAB-HRMS (M + +1) : calcd for C 31 H 27 O 6 NBr 588.1022, found 588.1006.

(実施例7)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−2)で示すアルデヒド28.8mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で15時間反応させた。その後、下記式(5−1)で示すピリジン誘導体を88.0mg加え、40℃で4時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、黄色の液体(オイル)29.2mgを得た。
(Example 7)
In this example, 20 mg of a ketone represented by the following formula (1-1), 28.8 mg of an aldehyde represented by the following formula (2-2), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 15 hours. Thereafter, 88.0 mg of a pyridine derivative represented by the following formula (5-1) was added and reacted at 40 ° C. for 4 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 29.2 mg of yellow liquid (oil) was obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−6)で示されるフラボノイドであることが確認でき、この結果、下記式(8−7)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は75%であることを確認した。   When the NMR spectrum of the obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-6), and as a result, a reaction represented by the following formula (8-7) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 75%.

(化合物のデータ)
IR(ATR):1611,1570,1502,1440,1380,1239,1172,781,728,696cm−1
H−NMR(400MHz,CDCl):δ2.35(s,3H),4.24(s,2H),5.16(s,2H),6.97(d,J=2.4Hz,1H),7.05(d,J= 9.0,2.4Hz,1H),7.27−7.51(m,9H),7.62−7.65(m,3H),7.76(d,J=8.1Hz,1H),7.99(d,J=8.5Hz,1H),8.04(d,J=8.5Hz,1H),8.14(d,J=8.8Hz,1H).
13C−NMR(500MHz,CDCl):δ177.7,163.3,163.1,160.7,157.9,147.9,138.1,136.2,135.8,133.0,131.1,129.7,129.04,129.01,128.7,128.34,128.29,127.47,127.46,127.42,126.9,126.0,125.7,121.8,119.3,117.1,115.0,101.1,70.5,35.2,21.4.
FAB−MS(M+1):484.
FAB−HRMS(M+1):calcd for C3326N 484.1913,found 484.1891.
(Compound data)
IR (ATR): 1611, 1570, 1502, 1440, 1380, 1239, 1172, 781, 728, 696 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 2.35 (s, 3H), 4.24 (s, 2H), 5.16 (s, 2H), 6.97 (d, J = 2.4 Hz, 1H), 7.05 (d, J = 9.0, 2.4 Hz, 1H), 7.27-7.51 (m, 9H), 7.62-7.65 (m, 3H), 7. 76 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1 H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.7, 163.3, 163.1, 160.7, 157.9, 147.9, 138.1, 136.2, 135.8, 133.0 131.1, 129.7, 129.04, 129.01, 128.7, 128.34, 128.29, 127.47, 127.46, 127.42, 126.9, 126.0, 125 7, 121.8, 119.3, 117.1, 115.0, 101.1, 70.5, 35.2, 21.4.
FAB-MS (M ++ 1): 484.
FAB-HRMS (M + +1) : calcd for C 33 H 26 O 3 N 484.1913, found 484.1891.

(実施例8)
本実施例では、下記式(1−1)で示すケトン20mgと、下記式(2−6)で示すアルデヒド39.9mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で26時間反応させた。その後、下記式(4−5)で示すピリジン誘導体を60.0mg加え、40℃で7時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、白色の固体23.9mgを得た。
(Example 8)
In this example, 20 mg of a ketone represented by the following formula (1-1), 39.9 mg of an aldehyde represented by the following formula (2-6), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol. And reacted at 40 ° C. for 26 hours. Thereafter, 60.0 mg of a pyridine derivative represented by the following formula (4-5) was added and reacted at 40 ° C. for 7 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 23.9 mg of white solid was obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−7)で示されるフラボノイドであることが確認でき、この結果、下記式(8−8)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は62%であることを確認した。   When the NMR spectrum of this obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-7), and as a result, a reaction represented by the following formula (8-8) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 62%.

(化合物のデータ)
IR(ATR):1627,1594,1569,1440,1379,1245,1207,1156,1057,1025,822,736,696cm−1
H−NMR(400MHz,CDCl):δ3.74(s,6H),3.93(s,2H),5.16(s,2H),6.59(s,3H),6.93(d,J=2.2Hz,1H),7.07(dd,J=8.8,2.2Hz,1H),7.15(dd,J=7.9,4.8Hz,1H),7.34−7.45(m,5H),7.53(d,J=8.1Hz,1H),8.16(d,J=8.9Hz,1H),8.34(d,J=2.2Hz,1H),8.39(dd,J=4.5,1.0Hz,1H).
13C−NMR(500MHz,CDCl):δ177.3,163.2,162.6,160.9,157.8,149.7,147.4,135.9,135.8,135.6,134.5,128.7,128.4,127.4,123.3,119.4,117.0,115.2,106.5,102.6,101.1,70.5,55.5,28.6.
FAB−MS(M+1):480.
FAB−HRMS(M+1):calcd for C3026N 480.1811,found 480.1828.
(Compound data)
IR (ATR): 1627, 1594, 1569, 1440, 1379, 1245, 1207, 1156, 1057, 1025, 822, 736, 696 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 3.74 (s, 6H), 3.93 (s, 2H), 5.16 (s, 2H), 6.59 (s, 3H), 6.93 (D, J = 2.2 Hz, 1H), 7.07 (dd, J = 8.8, 2.2 Hz, 1H), 7.15 (dd, J = 7.9, 4.8 Hz, 1H), 7.34-7.45 (m, 5H), 7.53 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.9 Hz, 1H), 8.34 (d, J = 2.2 Hz, 1 H), 8.39 (dd, J = 4.5, 1.0 Hz, 1 H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.3, 163.2, 162.6, 160.9, 157.8, 149.7, 147.4, 135.9, 135.8, 135.6 134.5, 128.7, 128.4, 127.4, 123.3, 119.4, 117.0, 115.2, 106.5, 102.6, 101.1, 70.5, 55 .5,28.6.
FAB-MS (M ++ 1): 480.
FAB-HRMS (M + +1) : calcd for C 30 H 26 O 5 N 480.1811, found 480.1828.

また、本化合物に対し、HeLaがん細胞に対する細胞毒性を測定したところ、50μMにおいて51%の細胞毒性があることが確認できた。   Moreover, when the cytotoxicity with respect to the HeLa cancer cell was measured with respect to this compound, it has confirmed that it had 51% of cytotoxicity in 50 micromol.

また、本化合物に対し、膵臓がんで異常亢進しているHedgehog/GLIシグナル伝達系における、GLIによる転写の阻害活性を、HaCaT細胞において、ルシフェラーゼレポーターアッセイにて測定したところ、50μMにおいて64%の阻害活性があることが確認できた。   Moreover, when the inhibitory activity of transcription by GLI in the Hedgehog / GLI signal transduction system, which is abnormally enhanced in pancreatic cancer, was measured for this compound by luciferase reporter assay in HaCaT cells, the inhibition was 64% at 50 μM. It was confirmed that there was activity.

(実施例9)
本化合物では、下記式(1−1)で示すケトン20mgと、下記式(2−5)で示すアルデヒド47.1mgと、塩基CsCO 156.4mgをエタノール0.5ml中に溶解し、40℃で26時間反応させた。その後、下記式(4−6)で示すピリジン誘導体を77.9mg加え、40℃で16.5時間反応させた。その後、分液操作に続くシリカゲルカラムクロマトグラフィーにより精製し、白色のアモルファス状固体29.3mgを得た。
Example 9
In this compound, 20 mg of a ketone represented by the following formula (1-1), 47.1 mg of an aldehyde represented by the following formula (2-5), and 156.4 mg of a base Cs 2 CO 3 were dissolved in 0.5 ml of ethanol, The reaction was carried out at 40 ° C. for 26 hours. Thereafter, 77.9 mg of a pyridine derivative represented by the following formula (4-6) was added and reacted at 40 ° C. for 16.5 hours. Then, it refine | purified by the silica gel column chromatography following a liquid separation operation, and 29.3 mg of white amorphous solids were obtained.

この得られた化合物について、NMRスペクトルを測定したところ、下記式(6−8)で示されるフラボノイドであることが確認でき、この結果、下記式(8−9)で示される反応が起こっていることを確認した。なお、各種スペクトルのデータを下記に示す。また、本反応において、収率は68%であることを確認した。   When the NMR spectrum of the obtained compound was measured, it was confirmed that it was a flavonoid represented by the following formula (6-8), and as a result, a reaction represented by the following formula (8-9) occurred. It was confirmed. Various spectrum data are shown below. In this reaction, it was confirmed that the yield was 68%.

(化合物のデータ)
IR(ATR):1623,1610,1583,1498,1441,1172,1122,1000,697cm−1
H−NMR(400MHz,CDCl):δ3.75(s,6H),3.78(s,3H),3.91(s,3H),3.92(s,2H),5.17(s,2H),6.67(s,2H),6.96(d,J=2.2Hz,1H),7.06(d,J=3.2Hz,1H),7.08(dd,J=9.0,2.4Hz,1H),7.34−7.45(m,5H),7.96(s,1H),8.07(d,J=2.7Hz,1H),8.16(d,J=9.0Hz,1H).
13C−NMR(500MHz,CDCl):δ177.3,163.2,162.7,157.7,155.6,153.3,141.9,136.7,135.6,134.9,128.7,128.4,128.0,127.5,127.4,120.7,119.0,116.9,115.2,105.8,101.1,70.5,61.0,56.1,55.5,28.7
FAB−MS(M+1):540.
FAB−HRMS(M+1):calcd for C3230N 540.2022,found 540.2004.
(Compound data)
IR (ATR): 1623, 1610, 1583, 1498, 1441, 1172, 1122, 1000, 697 cm −1 .
1 H-NMR (400 MHz, CDCl 3 ): δ 3.75 (s, 6H), 3.78 (s, 3H), 3.91 (s, 3H), 3.92 (s, 2H), 5.17 (S, 2H), 6.67 (s, 2H), 6.96 (d, J = 2.2 Hz, 1H), 7.06 (d, J = 3.2 Hz, 1H), 7.08 (dd , J = 9.0, 2.4 Hz, 1H), 7.34-7.45 (m, 5H), 7.96 (s, 1H), 8.07 (d, J = 2.7 Hz, 1H) , 8.16 (d, J = 9.0 Hz, 1H).
13 C-NMR (500 MHz, CDCl 3 ): δ 177.3, 163.2, 162.7, 157.7, 155.6, 153.3, 141.9, 136.7, 135.6, 134.9 , 128.7, 128.4, 128.0, 127.5, 127.4, 120.7, 119.0, 116.9, 115.2, 105.8, 101.1, 70.5, 61 0.0, 56.1, 55.5, 28.7
FAB-MS (M ++ 1): 540.
FAB-HRMS (M + +1) : calcd for C 32 H 30 O 7 N 540.2022, found 540.2004.

また、本化合物に対し、HeLaがん細胞に対する細胞毒性を測定したところ、50mMにおいて56%の細胞毒性があることが確認できた。   Moreover, when the cytotoxicity with respect to a HeLa cancer cell was measured with respect to this compound, it has confirmed having 56% cytotoxicity in 50 mM.

また、本化合物に対し、膵臓がんで異常亢進しているHedgehog/GLIシグナル伝達系における、GLIによる転写の阻害活性を、HaCaT細胞において、ルシフェラーゼレポーターアッセイにて測定したところ、50μMにおいて52%の阻害活性があることが確認できた。   In addition, the inhibition activity of transcription by GLI in the Hedgehog / GLI signal transduction system that is abnormally enhanced in pancreatic cancer was measured for this compound by luciferase reporter assay in HaCaT cells. It was confirmed that there was activity.

Claims (5)

塩基の存在下において、
下記式(1)で示されるケトンと、下記式(2)又は(3)で示される芳香族アルデヒドを反応させてカルコン誘導体を生成し、その後、前記カルコン誘導体に下記式(4)又は(5)で示されるピリジン誘導体を加える工程を、ワンポットで行うフラボノイドを製造する方法。
(上記式においてRは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、Rは化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。)
(上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、Rは化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。)
(上記式において、R及びRは、水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンの少なくともいずれかであり、R及びRはそれぞれ化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。)
(上記式において、Rは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、Rは化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。)
(上記式において、R及びRは水素、アルキル基、アルコキシ基、アルケニル基、アルキニル基、又はハロゲンのいずれかであり、R及びRはそれぞれ化合物中において複数あってもよく、複数ある場合それらは同じであっても異なっていてもよい。)
In the presence of a base,
A ketone represented by the following formula (1) and an aromatic aldehyde represented by the following formula (2) or (3) are reacted to produce a chalcone derivative, and then the chalcone derivative is represented by the following formula (4) or (5 how the process of Ru added pyridine derivative represented to produce flavonoids performed in one pot with).
(In the above formula, R 1 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen, and a plurality of R 1 may be present in the compound, and when there are a plurality, R 1 is the same. May be different.)
(In the above formula, R 2 is any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen, and a plurality of R 2 may be present in the compound. Or different.)
(In the above formula, R 2 and R 3 are at least one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and halogen, and a plurality of R 2 and R 3 may be present in the compound. , If there are multiple, they may be the same or different.)
(In the above formula, R 4 is hydrogen, an alkyl group, an alkoxy group, an alkenyl group, is either an alkynyl group, or a halogen, R 4 may be a plurality in a compound, the same those when a plurality of Or different.)
(In the above formula, R 4 and R 5 are any one of hydrogen, an alkyl group, an alkoxy group, an alkenyl group, an alkynyl group, and a halogen, and there may be a plurality of R 4 and R 5 in the compound. In some cases they may be the same or different.)
前記ケトンは、下記式で示す化合物を含む請求項1記載のフラボノイドを製造する方法。
The method for producing a flavonoid according to claim 1, wherein the ketone contains a compound represented by the following formula.
前記芳香族アルデヒドは、下記式に示す化合物のうち少なくともいずれかを含む請求項1記載のフラボノイドを製造する方法。
The method for producing a flavonoid according to claim 1, wherein the aromatic aldehyde contains at least one of compounds represented by the following formula.
前記ピリジン誘導体は、下記式で示す化合物のうち少なくともいずれかを含む請求項1記載のフラボノイドを製造する方法。
The method for producing a flavonoid according to claim 1, wherein the pyridine derivative contains at least one of the compounds represented by the following formulae.
前記塩基は、KOH、NaOH、KCO、CsCOの少なくともいずれかである請求項1記載のフラボノイドの製造方法。
The method for producing a flavonoid according to claim 1, wherein the base is at least one of KOH, NaOH, K 2 CO 3 , and Cs 2 CO 3 .
JP2007224850A 2007-08-30 2007-08-30 Flavonoid production method Expired - Fee Related JP5315572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224850A JP5315572B2 (en) 2007-08-30 2007-08-30 Flavonoid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224850A JP5315572B2 (en) 2007-08-30 2007-08-30 Flavonoid production method

Publications (2)

Publication Number Publication Date
JP2009057306A JP2009057306A (en) 2009-03-19
JP5315572B2 true JP5315572B2 (en) 2013-10-16

Family

ID=40553382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224850A Expired - Fee Related JP5315572B2 (en) 2007-08-30 2007-08-30 Flavonoid production method

Country Status (1)

Country Link
JP (1) JP5315572B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014848A1 (en) * 2010-07-26 2012-02-02 国立大学法人 千葉大学 Flavoniod-derived hes-1 promoter inhibitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3431534A1 (en) * 1984-08-28 1986-03-13 Merck Patent Gmbh, 6100 Darmstadt FLAVANONE DERIVATIVES
JP2005350362A (en) * 2004-06-08 2005-12-22 Kyorin Pharmaceut Co Ltd Flavanone derivative as inducing agent or induction accelerator of hemoxygenase

Also Published As

Publication number Publication date
JP2009057306A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Singh et al. 1, 2, 3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation
Satyanarayana et al. Synthesis and antimicrobial activity of new Schiff bases containing coumarin moiety and their spectral characterization
JP5021549B2 (en) Composition for the treatment of cancer cells and method of synthesis thereof
CN105777593B (en) A kind of preparation method of the sulfone compound of β arone base substitution
Arfaie et al. Design, synthesis and biological evaluation of new (E)-and (Z)-1, 2, 3-triaryl-2-propen-1-ones as selective COX-2 inhibitors
CN101121711A (en) Pyrazolcarbazone derivatives and application thereof
WO2008092352A1 (en) Antitumor compounds and their preparation method
JP5091760B2 (en) Fullerene derivative and method for producing the same
JP5315572B2 (en) Flavonoid production method
Lanari et al. A solvent-free protocol for the synthesis of 3-formyl-2H-chromenes via domino oxa Michael/aldol reaction
WO2010122794A1 (en) Process for production of pyrazinecarboxylic acid derivative, and intermediate for the production
JPH03109384A (en) Production of (s)-4-hydroxymethyl-gamma-lactone
CN101041646B (en) Preparation method and usage for nitrogen-containing chalcone derivatives
CN101691353A (en) N-Boc-3,5-(E)-diarylidene-4-piperidone and application thereof in preparation of anti-tumor drugs
CN105085458A (en) Synthesis method of coumarin derivatives
Singh et al. Fabrication of silicon embedded isomeric chalcone linkers using [CuBr (PPh3) 3]
Brahmbhatt et al. Synthesis and antimicrobial screening of some 3-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] and 4-methyl-3-phenyl-6-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] coumarins
Marpna et al. Trifluoroacetic acid-mediated oxidative self-condensation of acetophenones in the presence of SeO2: A serendipitous approach for the synthesis of fused [1, 3] dioxolo [4, 5-d][1, 3] dioxoles
CN104447228A (en) Method for synthesizing trans-stilbene compound under assistance of microwave
Purna Chander Rao et al. Design, synthesis and anticancer evaluation of novel furan sulphonamide derivatives
CN108440503A (en) The preparation method of the disubstituted quinazoline medicinal compound of the parent nucleus containing triazole
KR101777249B1 (en) Novel triazole derivative with anti-inflammatory and anti-hyperglycemic activity and method for preparing the same
JP6242392B2 (en) Pyridine N-oxide and process for producing them
CN112824401B (en) Acrylic ketone derivative of N-acetyl gatifloxacin and preparation method and application thereof
RU2602501C1 (en) Method of producing 3-furylpropane-1-on

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees