JP5314528B2 - Packaging materials and methods of use - Google Patents

Packaging materials and methods of use Download PDF

Info

Publication number
JP5314528B2
JP5314528B2 JP2009175245A JP2009175245A JP5314528B2 JP 5314528 B2 JP5314528 B2 JP 5314528B2 JP 2009175245 A JP2009175245 A JP 2009175245A JP 2009175245 A JP2009175245 A JP 2009175245A JP 5314528 B2 JP5314528 B2 JP 5314528B2
Authority
JP
Japan
Prior art keywords
temperature
packaging material
package
water vapor
packaged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009175245A
Other languages
Japanese (ja)
Other versions
JP2011025977A (en
Inventor
典弘 高尾
Original Assignee
旭化成ホームプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ホームプロダクツ株式会社 filed Critical 旭化成ホームプロダクツ株式会社
Priority to JP2009175245A priority Critical patent/JP5314528B2/en
Publication of JP2011025977A publication Critical patent/JP2011025977A/en
Application granted granted Critical
Publication of JP5314528B2 publication Critical patent/JP5314528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new, unique and excellently versatile packaging material or the like capable of storing not only an object to be packaged with a little water content but also the object to be packaged containing a large amount of water content and a liquid component, for a long period at a high quality, and capable of suppressing an excessive deterioration of quality of a package, the object to be packaged in the package and the packaging material even when temperature and humidity in the package are changed. <P>SOLUTION: The packaging material is formed by molding a resin composition containing a thermoplastic resin, and includes at least one moisture transmission controlling layer having a transition region where an increase in water vapor transmission amount W<SB>VTR</SB>from a reference temperature T<SB>S</SB>(&deg;C) to a temperature T<SB>S</SB>+10(&deg;C) of 2-100 times of an increase in water vapor transmission amount W<SB>VTR</SB>from T<SB>S</SB>-10(&deg;C) to the reference temperature T<SB>S</SB>(&deg;C), in a plot-chart of temperature (&deg;C)-water vapor transmission amount W<SB>VTR</SB>(g/(m<SP>2</SP>h)) measured under a moisture condition of 60%RH based on JIS L1099 A-2 method, and having a reference temperature T<SB>S</SB>(&deg;C) in the range of 0-100&deg;C. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、温度によって水蒸気透過量が劇的に変化する包装材、及び、その使用方法に関する。   The present invention relates to a packaging material whose water vapor transmission amount changes dramatically depending on temperature, and a method of using the same.

従来、樹脂フィルムや樹脂成形体等の包装材が広く用いられている。この種の包装材においては、一般に、被包装物を外界から遮断する性能、すなわち高い密閉性が要求され、これにより、水分や液状成分等の包装外への滲出防止、塵埃や異物等の包装内への侵入防止、さらには外気中のバクテリアや細菌等の病原体等の包装内への侵入による感染防止等が実現されている。また、多量の水分や液状成分を含有する被包装物を包装した包装体を室温近傍〜冷蔵庫等の低温環境下で長期間保存するような場合には、経時的に水分が失われて被包装物が乾燥することを防止すべく、気密性にも優れる、より具体的には水蒸気透過量の小さな包装材が用いられている。   Conventionally, packaging materials such as resin films and resin molded bodies have been widely used. In general, this type of packaging material is required to have the ability to block the package from the outside, that is, high sealing performance, thereby preventing the moisture and liquid components from oozing out of the package, and packaging of dust and foreign matters. Prevention of intrusion into the inside and prevention of infection due to invasion of pathogens such as bacteria and bacteria in the outside air have been realized. In addition, when storing a package containing a package containing a large amount of moisture and liquid components for a long period of time in a low temperature environment such as a room temperature to a refrigerator, the package loses moisture over time. In order to prevent the product from drying, a packaging material that is excellent in airtightness and more specifically has a small water vapor transmission amount is used.

一方、包装材の水蒸気透過量が過度に小さいと、高温の被包装物を包装したり、外部から被包装物又は包装体を加熱したりする等、包装体内で被包装物から水蒸気が大量に発生した際に、体積膨張により包装体が変形したり、場合によっては包装材が破損したり、これに伴い被包装物が飛散して外部環境を汚染し得る。また、発生した水蒸気が包装材内面に凝集・結露し、それが被包装物表面に再吸収或いは部分的に滞留する等して、部位によって水分量を大きく異ならしめ、その結果、被包装物の品質劣化を生じさせ得る。さらに、水分量の部分的な増加は細菌等の増殖を促進させ得るので、長期保存が困難となったり、その保存条件が制約されたりする等の不都合を招く。   On the other hand, if the amount of water vapor permeated through the packaging material is excessively small, a large amount of water vapor is generated from the package in the package, such as packaging a high-temperature package or heating the package or package from the outside. When this occurs, the package may be deformed by volume expansion, the packaging material may be damaged in some cases, and the packaged material may be scattered and contaminate the external environment. Also, the water vapor generated condenses and condenses on the inner surface of the packaging material, and it reabsorbs or partially stays on the surface of the package, causing the water content to vary greatly depending on the site. It can cause quality degradation. Furthermore, since a partial increase in the amount of water can promote the growth of bacteria and the like, it causes inconveniences such as difficulty in long-term storage and restrictions on the storage conditions.

そのため、水蒸気透過量を増大させるべく、包装材として用いる樹脂フィルムに数mm程度の孔を多数形成する試みが為されていたが、このようにすると密閉性が損なわれるので、現状では、かかる試みは、高い密閉性が要求されない一部の用途において実施されているに過ぎない。   For this reason, attempts have been made to form a large number of holes of several millimeters in the resin film used as a packaging material in order to increase the amount of water vapor permeation. Is only implemented in some applications where high sealability is not required.

一方、特許文献1においては、透過性基材の少なくとも片側に水蒸気透過度が500〜4000g・30μm/(m2・24h、40℃・90%RH)の熱可塑性樹脂被膜を有するパン包装用積層フィルムが提案されている。そして、かかるパン包装用積層フィルムによれば、密閉性を過度に損なうことなく、水蒸気透過性の熱可塑性樹脂被膜を介して内部水蒸気を適度に放出し得るので、異物の進入を抑制しつつ内部水蒸気を放出して包装体内部の結露や包装体の変形を抑制できる、と記載されている。 On the other hand, in Patent Document 1, a laminate for bread packaging having a thermoplastic resin film having a water vapor permeability of 500 to 4000 g · 30 μm / (m 2 · 24 h, 40 ° C. · 90% RH) on at least one side of the permeable substrate. A film has been proposed. And, according to the laminated film for bread packaging, internal water vapor can be appropriately released through the water vapor permeable thermoplastic resin film without excessively impairing the sealing performance, so that the inside of the foreign material can be suppressed while preventing the entry of foreign matter. It is described that water vapor can be released to suppress condensation inside the package and deformation of the package.

また、特許文献2においては、繊維布帛の少なくとも片面にウレタン系高分子フィルムが積層されてなり、該ウレタン系高分子フィルムのガラス転移点温度は0〜60℃の範囲内であり、且つ、該ポリウレタン系高分子の重量平均分子量は15000以上であることを特徴とする透湿性防水布帛が提案されている。そして、かかる透湿性防水布帛は、外気温度によって水蒸気透過量が変動するので、これを用いて衣類を作成すれば、外気温度に拘らず、身体を快適な環境におくことができる、と記載されている。   In Patent Document 2, a urethane polymer film is laminated on at least one surface of the fiber fabric, the glass transition temperature of the urethane polymer film is in the range of 0 to 60 ° C., and A moisture-permeable waterproof fabric characterized in that the weight-average molecular weight of the polyurethane polymer is 15000 or more has been proposed. And since such a moisture-permeable waterproof fabric changes the amount of water vapor permeation depending on the outside air temperature, it is stated that if clothing is made using this, the body can be placed in a comfortable environment regardless of the outside air temperature. ing.

他方、特許文献3においては、アルミニウム箔と紙を積層した食品包装材が提案されている。そして、かかる食品包装材は、結露した水滴等を紙に吸収させることにより、包装体内の食品の水分量のばらつきによる水分斑等の発生や食品の食味の低下を抑制することができる、と記載されている。   On the other hand, in patent document 3, the food packaging material which laminated | stacked aluminum foil and paper is proposed. And, such a food packaging material can suppress the occurrence of moisture spots due to variation in the moisture content of the food in the package and the deterioration of the taste of the food by absorbing condensed water droplets etc. on the paper. Has been.

特開2002−370320号公報JP 2002-370320 A 特許第3074335号公報Japanese Patent No. 3074335 特許第2882591号公報Japanese Patent No. 2882591

しかしながら、特許文献1に記載の積層フィルムは、パンの包装用途に特化したものであり、水蒸気透過性が比較的に高いので、これを用いて多量の水分や液状成分を含有する被包装物を包装すると、保存環境や期間によっては包装体内の水蒸気が徐々に放出して被包装物が乾燥し、被包装物の品質劣化を生じさせ得るという問題があった。   However, the laminated film described in Patent Document 1 is specialized for bread packaging applications, and has a relatively high water vapor permeability, so that it can be used for packaging containing a large amount of moisture and liquid components. When packaging is carried out, depending on the storage environment and period, there is a problem in that water vapor in the package is gradually released, the packaged product is dried, and the quality of the packaged product can be deteriorated.

また、特許文献2に記載の透湿性防水布帛は、衣料用途を指向したものであり、以下の理由により、多量の水分や液状成分を含有する被包装物の包装用途に転用することができなかった。すなわち、かかる透湿性防水布帛は、低透湿領域であっても約100〜1000g/(m2・h)程度の透湿量を呈する結果を実施例にて示していることからも明らかなように、水蒸気透過性が比較的に高いので、これを多量の水分や液状成分を含有する被包装物の包装に用いると、保存環境や期間によっては包装体内の水蒸気が徐々に放出して被包装物が乾燥し、被包装物の品質劣化を生じさせ得るという問題があった。その上さらに、特許文献2に記載の透湿性防水布帛は剛性が高いため、フィルム状に成形した場合には包装される被包装物への追従性・密着性が乏しいという問題があり、一方、容器状に成形した場合には強度不足で容器形状を維持できないという問題があった。また、特許文献2に記載の透湿性防水布帛は、透明性が低く視認性に劣り、包装される被包装物の状態を外部から確認することが困難であるという問題があった。さらに、特許文献2に記載の透湿性防水布帛は、表面平滑性に劣り、しかも、布帛表面の空隙内に被包装物が侵入し易いので、布帛表面に付着した被包装物の剥離性が悪いという問題があった。 In addition, the moisture-permeable waterproof fabric described in Patent Document 2 is intended for apparel use, and cannot be diverted to the use for packaging a packaged object containing a large amount of water or liquid components for the following reasons. It was. That is, it is apparent from the examples that the moisture permeable waterproof fabric exhibits a moisture permeability of about 100 to 1000 g / (m 2 · h) even in a low moisture permeable region. In addition, since the water vapor permeability is relatively high, if this is used to wrap a package containing a large amount of moisture or liquid components, depending on the storage environment and period, the water vapor in the package will gradually be released and the package will be wrapped. There was a problem that the product could be dried and the quality of the packaged product could be deteriorated. Furthermore, since the moisture-permeable waterproof fabric described in Patent Document 2 has high rigidity, when formed into a film, there is a problem that followability and adhesion to a packaged object to be packaged are poor, When molded into a container, there is a problem that the container shape cannot be maintained due to insufficient strength. Further, the moisture-permeable waterproof fabric described in Patent Document 2 has a problem that transparency is low and visibility is poor, and it is difficult to confirm the state of the packaged object to be packaged from the outside. Furthermore, the moisture-permeable waterproof fabric described in Patent Document 2 is inferior in surface smoothness, and the packaged material easily enters the voids on the fabric surface, so that the packaged material attached to the fabric surface has poor peelability. There was a problem.

一方、特許文献3に記載の食品包装材は、水分の吸収量を高めるために紙層を有するため、比較的に剛性が高く、種々の包装用途に適した柔軟性を有しておらず、また、水分を含有した紙層が細菌等によって腐敗して被包装物を汚染したりし得るので、汎用性に劣るという問題があった。とりわけ、紙層が被包装物と接し得る包装形態の場合は、紙層が被包装物から水分や液状成分を過剰に吸収し得るという欠点もある。しかも、繰り返し使用した場合、強度や紙層の吸湿性が大きく変動し易く、性能安定性が乏しいという問題もあった。さらに、特許文献3に記載の食品包装材は、透明性が低く視認性に劣り、被包装物の状態を包装体の外部から確認することが困難であるという問題があった。   On the other hand, since the food packaging material described in Patent Document 3 has a paper layer to increase the amount of moisture absorbed, it has relatively high rigidity and does not have flexibility suitable for various packaging applications. Moreover, since the paper layer containing moisture may be spoiled by bacteria or the like and contaminate the package, there is a problem that the versatility is poor. In particular, in the case of a packaging form in which the paper layer can come into contact with the packaged object, there is a disadvantage that the paper layer can excessively absorb moisture and liquid components from the packaged object. In addition, when used repeatedly, the strength and the hygroscopicity of the paper layer are likely to fluctuate greatly, resulting in poor performance stability. Furthermore, the food packaging material described in Patent Document 3 has a problem that transparency is low and visibility is poor, and it is difficult to confirm the state of the packaged object from the outside of the package.

本発明は、かかる課題を鑑みてなされたものであり、その目的は、含水量の少ない被包装物のみならず多量の水分や液状成分を含有する被包装物をも長期間に亘って高品位に保存することが可能であり、しかも、温度や包装体内の湿度が変化しても、包装体、包装体内の被包装物及び包装材の過度の品質劣化を抑制し得る、新規且つユニークで汎用性に優れる包装材、及び、その好適な使用方法を提供することにある。   The present invention has been made in view of such problems, and its purpose is to provide not only a packaged product having a low water content but also a packaged product containing a large amount of moisture and liquid components over a long period of time. New, unique and versatile, which can suppress excessive quality deterioration of the package, the packaged material in the package and the packaging material even if the temperature and humidity in the package change. It is providing the packaging material which is excellent in property, and its suitable usage method.

本発明者等は、鋭意研究を行った結果、温度による水蒸気透過量の変化が特定の挙動を示す透湿制御層を少なくとも一層備える包装材を用いることで、上記課題が解決されることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above problem can be solved by using a packaging material including at least one moisture permeation control layer in which the change in the amount of water vapor permeation due to temperature exhibits a specific behavior. The present invention has been completed.

すなわち、本発明は、以下、(1)〜(5)を提供する。
(1)熱可塑性樹脂を含む樹脂組成物を成形してなり、JIS L1099 A−2法に準拠して60%RHの湿度条件下で測定した温度(℃)−水蒸気透過量WVTR(g/(m2・h))のプロットチャートにおいて、基準温度TS(℃)からTS+10(℃)の水蒸気透過量WVTRの増加量がTS−10℃(℃)から基準温度TS(℃)の水蒸気透過量WVTRの増加量の2倍以上100倍以下となる遷移領域を有し、且つ、該基準温度Ts(℃)が0℃以上100℃以下の範囲にある、透湿制御層を少なくとも一層備えることを特徴とする、
包装材。
That is, the present invention provides (1) to (5) below.
(1) Temperature (° C.)-Water vapor transmission rate W VTR (g / g) obtained by molding a resin composition containing a thermoplastic resin and measured under a humidity condition of 60% RH in accordance with the JIS L1099 A-2 method. In the plot chart of (m 2 · h)), the increase in the water vapor transmission rate W VTR from the reference temperature T S (° C.) to T S +10 (° C.) is changed from T S −10 ° C. (° C.) to the reference temperature T S ( Moisture transition control having a transition region that is 2 to 100 times the increase in the water vapor permeation amount W VTR of [° C.] and the reference temperature Ts (° C.) is in the range of 0 ° C. to 100 ° C. Comprising at least one layer,
Packaging material.

(2)上記(1)記載の包装材を用いて、前記基準温度TS以下の温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TSより高い温度領域T2まで加熱する工程と、
を少なくとも有する、包装材の使用方法。
(2) Using the packaging material according to (1) above, a step of packaging an article to be packaged at a temperature equal to or lower than the reference temperature T S ;
Heating the obtained package or the article to be packaged in the obtained package to a temperature region T 2 higher than the reference temperature T S ;
A method of using a packaging material having at least

(3)上記(1)記載の包装材を用いて、前記基準温度TSより高い温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TS以下の温度領域T1まで冷却する工程と、
を少なくとも有する、包装材の使用方法。
(3) Using the packaging material according to (1) above, a step of packaging an article to be packaged having a temperature higher than the reference temperature T S ;
Cooling the obtained package or the article to be packaged in the obtained package to a temperature region T 1 equal to or lower than the reference temperature T S ;
A method of using a packaging material having at least

(4)上記(1)記載の包装材を用いて、前記基準温度TS以下の温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TSより高い温度領域T2まで加熱した後に前記基準温度TS以下の温度領域T1まで冷却する操作を少なくとも1回以上実施する工程と、
を少なくとも有する、包装材の使用方法。
(4) Using the packaging material described in (1) above, a step of packaging an article to be packaged at a temperature equal to or lower than the reference temperature T S ;
At least an operation of cooling the resulting package or obtained the material to be packaged in the packaging body in to said reference temperature T S below the temperature region T 1 after heating to the reference temperature T S higher than the temperature range T 2 A step of performing at least once;
A method of using a packaging material having at least

(5)上記(1)記載の包装材を用いて、前記温度領域TSより高い温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TS以下の温度領域T1まで冷却した後に前記基準温度TSより高い温度領域T2まで加熱する操作を少なくとも1回以上実施する工程と、
を少なくとも有する、包装材の使用方法。
(5) Using the packaging material according to (1) above, a step of packaging an article to be packaged having a temperature higher than the temperature region T S ;
At least an operation of heating the resulting package or obtained the material to be packaged in the packaging body in to said reference temperature T a temperature higher than the S region T 2 after cooling to the reference temperature T S below the temperature region T 1 A step of performing at least once;
A method of using a packaging material having at least

本発明によれば、含水量の少ない被包装物のみならず多量の水分や液状成分を含有する被包装物をも長期間に亘って高品位に保存することが可能な、新規且つユニークで汎用性に優れる包装材が実現される。そして、かかる包装材によれば、温度や包装体内の湿度が変化しても、包装体、包装体内の被包装物及び包装材の過度の品質劣化を抑制することができ、その結果、被包装物及びこれを包装した包装体の商品価値の減少を長期に亘って抑制できる。   According to the present invention, a novel, unique and general-purpose product capable of preserving not only a packaged product having a low water content but also a packaged product containing a large amount of moisture and liquid components over a long period of time. A packaging material with excellent properties is realized. And even if temperature and the humidity in a package change according to this packaging material, the excessive quality degradation of a package, the to-be-packaged object in a package, and a packaging material can be suppressed, As a result, Decrease in the commercial value of a product and a packaged body in which the product is packaged can be suppressed for a long time.

すなわち、本発明の包装材は、遷移領域S未満すなわち比較的に低温環境下では水蒸気透過量が小さく水蒸気バリア性に優れる。したがって、これを用いて被包装物を包装することで、低温環境下で長期保存する際の経時的な水分の減少が十分に抑制される。しかも、本発明の包装材は、遷移領域S以上すなわち比較的に高温環境下では水蒸気透過量が大きく透湿性に優れる。したがって、これを用いて被包装物を包装した際に包装体内で水蒸気が多量に発生しても、体積膨張による包装体の変形や包装材の破損及びこれに伴う被包装物の飛散、包装材内面への結露や被包装物の水分量のばらつきの発生等が抑制される。よって、本発明の包装材を用いることで、長期間に亘って被包装物を高品位保存したり、包装体をそのまま加熱冷却に供することが可能となる。その上さらに、本発明の包装材は、従来に比して、優れた成形性、優れた透明性(視認性)、及び、優れた表面平滑性をも具備し得るので、フィルムや成形体等の種々の形態を採用したり、商品表示等における意匠性を高めたりすることができる。   That is, the packaging material of the present invention is less than the transition region S, that is, in a relatively low temperature environment, has a small water vapor transmission amount and excellent water vapor barrier properties. Therefore, by using this to package an item to be packaged, a decrease in moisture over time when stored for a long time in a low temperature environment is sufficiently suppressed. Moreover, the packaging material of the present invention has a large water vapor transmission amount and excellent moisture permeability in the transition region S or more, that is, in a relatively high temperature environment. Therefore, even if a large amount of water vapor is generated in the package when the package is packaged using this, deformation of the package due to volume expansion, breakage of the package, and accompanying scattering of the package, packaging material Condensation on the inner surface and variation in the moisture content of the package are suppressed. Therefore, by using the packaging material of the present invention, it becomes possible to preserve a packaged article with high quality over a long period of time or to directly subject the package to heating and cooling. Furthermore, since the packaging material of the present invention can also have excellent moldability, excellent transparency (visibility), and excellent surface smoothness as compared with the prior art, films, molded articles, etc. It is possible to adopt various forms of the above, and to improve the designability in product display and the like.

包装材の水蒸気透過量の温度依存性を説明するためのグラフである。It is a graph for demonstrating the temperature dependence of the water vapor transmission rate of a packaging material.

以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されるものではない。   Embodiments of the present invention will be described below. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.

本実施形態の包装材は、熱可塑性樹脂を含む樹脂組成物を成形してなる透湿制御層を少なくとも一層備えるものであり、この透湿制御層が、JIS L1099 A−2法に準拠して60%RHの湿度条件下で測定した温度(℃)−水蒸気透過量WVTR(g/(m2・h))のプロットチャートにおいて、基準温度TS(℃)からTS+10(℃)の水蒸気透過量WVTRの増加量がTS−10℃(℃)から基準温度TS(℃)の水蒸気透過量WVTRの増加量の2倍以上100倍以下となる遷移領域Sを有し、且つ、該基準温度TS(℃)が0℃以上100℃以下の範囲にあることを特徴とする。 The packaging material of this embodiment is provided with at least one moisture permeation control layer formed by molding a resin composition containing a thermoplastic resin, and this moisture permeation control layer conforms to JIS L1099 A-2 method. In a plot chart of temperature (° C.)-Water vapor transmission rate W VTR (g / (m 2 · h)) measured under a humidity condition of 60% RH, from the reference temperature T S (° C.) to T S +10 (° C.) has a transition region S the increased amount of water vapor permeation amount W VTR is T S -10 ℃ (℃) reference temperature T S (° C.) 100 times 2-fold increase of the water vapor permeation amount W VTR follows from The reference temperature T S (° C.) is in the range of 0 ° C. or more and 100 ° C. or less.

本明細書において、水蒸気透過量WVTRは、JIS L1099 A−2法に準拠して測定されるものを意味し、特に記載のない限り、60%RHの湿度条件下で測定される値を意味する。なお、本実施形態の包装材は、水蒸気透過量が温度依存性を示すものであるため、水蒸気透過量WVTRの測定は、試験毎に温度を種々に設定して行なう必要があり、好ましくは10℃毎、より好ましくは5℃毎に行う。 In this specification, the water vapor transmission amount W VTR means a value measured in accordance with JIS L1099 A-2 method, and means a value measured under a humidity condition of 60% RH unless otherwise specified. To do. In addition, since the water vapor transmission amount shows temperature dependence in the packaging material of the present embodiment, the measurement of the water vapor transmission amount W VTR needs to be performed with various temperatures set for each test, preferably It is carried out every 10 ° C., more preferably every 5 ° C.

また、本明細書において、包装材とは、被包装物の保存、移動、加工、保護、加熱、冷却等を目的として、被包装物を包装するために用いられるものを意味する。包装材の形態は、特に限定されず、目的に応じて任意の形態を採用することができ、例えば、フィルム状、シート状、袋状、蓋付容器や箱などの成形品等を採り得る。さらに、本明細書において、包装体とは、被包装物が包装材で包装された状態のものを意味する。なお、被包装物には食品が含まれる。ここで、食品とは、すべての飲食物を意味し、食材、生鮮食品、加工食品、機能性食品、特定保健用食品の他、調味用材料や食品添加物等を含む概念である。   Moreover, in this specification, a packaging material means what is used in order to package a to-be-packaged object in order to preserve | save, move, process, protect, heat, cool, etc. of a to-be-packaged object. The form of the packaging material is not particularly limited, and an arbitrary form can be adopted depending on the purpose. For example, a film shape, a sheet shape, a bag shape, a molded product such as a lidded container or a box can be taken. Furthermore, in this specification, a package means the thing of the state by which the to-be packaged object was packaged with the packaging material. In addition, food is contained in the packaged goods. Here, food means all foods and drinks, and is a concept including ingredients, fresh foods, processed foods, functional foods, foods for specified health use, seasoning materials, food additives, and the like.

透湿制御層は、基準温度TSを基準として高温領域側と低温領域側とで水蒸気透過量WVTRが劇的に変化する遷移領域Sを有し、この遷移領域S(基準温度TS)の前後で水蒸気透過量WVTRが特異的に増大(減少)する点に特徴がある。かかる遷移領域Sは、基準温度TS(℃)からTS+10(℃)までの水蒸気透過量WVTRの増加量と、TS−10℃(℃)から基準温度TS(℃)までの水蒸気透過量WVTRの増加量と、を比較することにより判別される。 Moisture permeation control layer has a reference temperature T S transition region S water vapor permeation amount W VTR varies dramatically between the high-temperature region side and the low-temperature region side as a reference, this transition region S (reference temperature T S) Is characterized in that the water vapor transmission amount W VTR increases (decreases) specifically before and after. The transition region S includes an increase in the water vapor transmission rate W VTR from the reference temperature T S (° C.) to T S +10 (° C.), and from the T S −10 ° C. (° C.) to the reference temperature T S (° C.). This is determined by comparing the increase in the water vapor transmission amount W VTR .

通常、0℃以上100℃以下の範囲では水分は液体と気体の平衡状態となっており、この範囲において前述した食品等の被包装物の乾燥や包装体内の結露等の問題が生じる。したがって、基準温度TSは、0℃以上100℃以下の範囲内に設定する必要があり、好ましくは0℃以上80℃以下の範囲内、より好ましくは10℃以上60℃以下の範囲内である。基準温度TSが100℃を超えるような場合及び基準温度TSが0℃以下である場合には、実用的な包装環境及び保存環境の温度範囲内における水蒸気透過量WVTRの変動幅が小さく、当該温度範囲内において放湿効果と乾燥抑制効果の双方の機能を両立することができないので、本実施形態の包装材として適当ではない。なお、(長期)保存時の被包装物の保存温度は保存環境温度近傍に収束し、また、その保存環境温度近傍での保存時間が大きな割合を占めることになる。したがって、長期保存時の乾燥抑制効果を重視した設計とするには、基準温度TSを当該包装する被包装物毎に推奨される(長期)保存環境温度より若干高い温度に設定することが好ましい。一方、包装体または包装体内の被包装物を開封前に電子レンジやオーブンその他の加温手段或いは加湿加温手段にて温める場合が想定される等、放湿効果を重視した設計とするには、基準温度TSを当該被包装物の加温温度より若干低い温度に設定することが好ましい。 In general, in the range of 0 ° C. or more and 100 ° C. or less, the moisture is in an equilibrium state between the liquid and the gas, and problems such as the drying of the articles to be packaged such as food and the dew condensation in the package occur in this range. Therefore, the reference temperature T S needs to be set in the range of 0 ° C. or higher and 100 ° C. or lower, preferably in the range of 0 ° C. or higher and 80 ° C. or lower, more preferably in the range of 10 ° C. or higher and 60 ° C. or lower. . When the reference temperature T S exceeds 100 ° C. and the reference temperature T S is 0 ° C. or less, the fluctuation range of the water vapor transmission amount W VTR within the temperature range of the practical packaging environment and storage environment is small. Since the functions of both the moisture release effect and the drying suppression effect cannot be compatible within the temperature range, it is not suitable as the packaging material of this embodiment. In addition, the storage temperature of the packaged goods during (long-term) storage converges near the storage environment temperature, and the storage time near the storage environment temperature occupies a large proportion. Therefore, in order to design with an emphasis on the drying suppression effect during long-term storage, it is preferable to set the reference temperature T S to a temperature slightly higher than the recommended (long-term) storage environment temperature for each packaged object to be packaged. . On the other hand, to make a design that emphasizes the moisture release effect, such as when heating the package or the packaged item in the package with a microwave oven, other heating means or humidifying warming means before opening the reference temperature T S is preferably set to a temperature slightly lower than the heating temperature of the objects to be packaged.

一方、基準温度TS(℃)からTS+10(℃)までの水蒸気透過量WVTRの増加量は、TS−10℃(℃)から基準温度TS(℃)までの水蒸気透過量WVTRの増加量の2倍以上100倍以下であることが必要であり、好ましくは2倍以上50倍以下、より好ましくは3倍以上20倍以下である。このように水蒸気透過量WVTRが基準温度TSを境として急激に変化することにより、基準温度TSより低温側では優れた水蒸気バリア性が、基準温度TSより高温側では優れた水蒸気透過性が発揮され、放湿効果と乾燥抑制効果の双方の機能が両立する。かかる水蒸気透過量WVTRの増加量の差が100倍を超えると、基準温度TSより高い温度における水蒸気透過量WVTRが大きすぎて被包装物の乾燥抑制効果が不十分となり、また、2倍未満では変動幅が小さいので放湿効果と乾燥抑制効果の双方の機能を両立することができない。 On the other hand, the increase in the water vapor transmission rate W VTR from the reference temperature T S (° C.) to T S +10 (° C.) is the water vapor transmission rate W from T S −10 ° C. (° C.) to the reference temperature T S (° C.). It must be 2 to 100 times the increase in VTR , preferably 2 to 50 times, more preferably 3 to 20 times. By thus water vapor permeation amount W VTR changes suddenly as a boundary the reference temperature T S, excellent water vapor barrier properties at low temperature side than the reference temperature T S is an excellent water vapor transmission at a high temperature side than the reference temperature T S And both functions of moisture release effect and drying suppression effect are compatible. If the difference in the increase amount of the water vapor transmission amount W VTR exceeds 100 times, the water vapor transmission amount W VTR at a temperature higher than the reference temperature T S is too large, and the drying suppression effect of the package becomes insufficient. If it is less than double, the fluctuation range is small, so that both functions of the moisture release effect and the drying suppression effect cannot be achieved.

なお、遷移領域S未満の温度における透湿制御層の水蒸気透過量WVTR(g/(m2・h))は、0より大きく50以下であることが好ましく、より好ましくは1以上30以下、さらに好ましくは5以上20以下である。遷移領域S未満の温度におけるWVTRが50(g/(m2・h))を超えると、含水量の過度の変動を許容できない被包装物を包装する場合に、水蒸気バリア性が不十分で被包装物の乾燥抑制効果が効果的に発揮されず、比較的に低温環境下でも被包装物の水分が迅速に失われて包装材として求められる機能を十分に果たすことができない場合がある。 The water vapor transmission amount W VTR (g / (m 2 · h)) of the moisture permeation control layer at a temperature lower than the transition region S is preferably greater than 0 and 50 or less, more preferably 1 or more and 30 or less. More preferably, it is 5 or more and 20 or less. If the W VTR at a temperature lower than the transition region S exceeds 50 (g / (m 2 · h)), the water vapor barrier property is insufficient when packaging a package that cannot allow excessive variation in water content. In some cases, the effect of suppressing the drying of the package is not effectively exhibited, and even in a relatively low temperature environment, the moisture of the package is lost rapidly and the function required as a packaging material cannot be sufficiently achieved.

透湿制御層は、遷移領域Sを境として水蒸気透過量WVTR(g/(m2・h))が劇的に変化するという、特異的な挙動を示す。言い換えれば、透湿制御層は、基準温度TSの直前まで優れた乾燥抑制効果を発揮して水蒸気バリア層として機能する一方、基準温度TSを超えるにしたがい急激に放湿効果が出現して水蒸気透過膜として機能する。この特性により、本実施形態の包装材が食品等の被包装物の包装に最適化された透湿制御効果を発揮する理由は、以下のように説明できる。 The moisture permeation control layer exhibits a specific behavior in which the water vapor transmission amount W VTR (g / (m 2 · h)) changes dramatically with the transition region S as a boundary. In other words, the moisture permeation control layer functions as a water vapor barrier layer by exhibiting an excellent drying suppression effect until just before the reference temperature T S , while the moisture release effect suddenly appears as the reference temperature T S is exceeded. Functions as a water vapor permeable membrane. The reason why the packaging material of the present embodiment exhibits the moisture permeation control effect optimized for the packaging of an object to be packaged such as food can be explained as follows.

図1は、JIS L1099 A−2法に準拠して60%RHの湿度条件下で測定した温度(℃)−水蒸気透過量WVTR(g/(m2・h))のプロットチャートである。上記従来の包装材の水蒸気透過性は、図中、点線a又は点線cの挙動を示す。点線aで示すもの、例えば、不織布や紙等から形成されるポーラスな包装材である場合、基準温度TSより高温領域において十分な水蒸気透過量を有するため、高温下で水蒸気が包装体内に充満して包装体が膨張したり包装材の内面に結露が発生したりする等の問題は生じ難いものの、基準温度TS未満の温度領域においても水蒸気透過量が大きいため長期保存した際に被包装物が乾燥したり、被包装物が食品の場合には食品本来の風味や食感が損なわれたり、異物が混入したりする等の問題が生じ易い。また、点線cで示すもの、例えば、市販されているポリエチレン製の食品包装用ラップやポリプロピレン製の包装容器等である場合、基準温度TS未満の温度における水蒸気透過性が低く水蒸気バリア性に優れるので長期保存した際に被包装物が乾燥したり異物が混入したりする等の問題は生じ難いものの、基準温度TS以上の温度領域においても水蒸気透過量が小さいため被包装物が加温される等した際に発生した水蒸気を包装内から外界へ十分に放出できず、包装体が膨張したり、包装材が伸長したり、包装材が破損したり、包装材の内面に結露が発生したりする等の問題を避け難く、包装体の肥大による取扱性の低下、内部高温蒸気の噴出による安全性の低下等を引き起こし得る。表1に、上記従来の代表的な包装材の水蒸気透過量WVTR(g/(m2・h))の挙動例を具体的に示す。 FIG. 1 is a plot chart of temperature (° C.) − Water vapor transmission rate W VTR (g / (m 2 · h)) measured under a humidity condition of 60% RH in accordance with JIS L1099 A-2 method. The water vapor permeability of the conventional packaging material shows the behavior of dotted line a or dotted line c in the figure. In the case of a porous packaging material formed of a dotted line a, for example, a nonwoven fabric or paper, it has a sufficient amount of water vapor permeation in a region higher than the reference temperature T S , so that water vapor is filled in the package at a high temperature. Although it is unlikely to cause problems such as expansion of the package or condensation on the inner surface of the packaging material, the water vapor permeation amount is large even in the temperature range below the reference temperature T S, so that it is packaged when stored for a long time. When the product is dried, or the packaged product is a food, the original flavor and texture of the food are impaired, and foreign matters are likely to be mixed. Moreover, when it is what is shown by the dotted line c, for example, the commercially available food packaging wrap made of polyethylene, the packaging container made of polypropylene, etc., the water vapor permeability at the temperature below the reference temperature T S is low and the water vapor barrier property is excellent. Therefore, it is difficult to cause problems such as drying of the package or mixing of foreign substances when stored for a long time, but the package is heated because the amount of water vapor transmission is small even in the temperature range above the reference temperature T S. The water vapor generated during the process cannot be fully released from the inside of the package to the outside world, and the package body expands, the packaging material expands, the packaging material breaks, or condensation forms on the inner surface of the packaging material. It may be difficult to avoid problems such as deteriorating, and may cause deterioration of handling property due to enlargement of the package, reduction of safety due to ejection of internal high-temperature steam, and the like. Table 1 specifically shows an example of the behavior of the water vapor transmission amount W VTR (g / (m 2 · h)) of the above-described typical representative packaging material.

Figure 0005314528
注1)0℃以上100℃以下の範囲内に水蒸気透過量WVTRが飛躍的に増大する特異点を有さず、遷移領域Sが存在しない。このような挙動を示す包装材を用いて中心温度80℃のおにぎりを包装した後に20℃にて8時間保管した場合、乾燥が生じ食味が損なわれ易く、そればかりか、異物が混入し易い。このような挙動を呈する包装材は、例えば、コットンリンターの再生セルロースをスパンボンド法により10〜50g/m2の坪量の不織布を形成することにより得ることができる。
注2)0℃以上100℃以下の範囲内に水蒸気透過量WVTRが飛躍的に増大する特異点を有さず、遷移領域Sが存在しない。このような挙動を示す包装材を用いて中心温度80℃のおにぎりを包装した後に20℃にて8時間保管した場合、包装材の内面に結露が発生して食味が損なわれ易い。このような挙動を呈する包装材は、例えば、軟質ポリ塩化ビニル樹脂等を融点以上で熱溶融して広幅のスリットから押し出して約5〜50μm程度の厚みに製膜することにより得ることができる。
Figure 0005314528
Note 1) There is no singular point where the water vapor transmission rate W VTR dramatically increases within the range of 0 ° C. or higher and 100 ° C. or lower, and the transition region S does not exist. When packaging a rice ball with a central temperature of 80 ° C. using a packaging material exhibiting such behavior and storing it at 20 ° C. for 8 hours, drying tends to occur and the taste is likely to be impaired, as well as foreign matters are likely to be mixed. A packaging material exhibiting such a behavior can be obtained, for example, by forming a nonwoven fabric having a basis weight of 10 to 50 g / m 2 by using a spunbond method of regenerated cellulose of cotton linter.
Note 2) There is no singular point where the water vapor transmission rate W VTR dramatically increases in the range of 0 ° C. or higher and 100 ° C. or lower, and the transition region S does not exist. When a rice ball with a central temperature of 80 ° C. is packaged using a packaging material exhibiting such a behavior and then stored at 20 ° C. for 8 hours, condensation is likely to occur on the inner surface of the packaging material, and the taste tends to be impaired. A packaging material exhibiting such behavior can be obtained, for example, by thermally melting a soft polyvinyl chloride resin or the like at a melting point or higher and extruding it from a wide slit to form a film having a thickness of about 5 to 50 μm.

一方、本実施形態の包装材の水蒸気透過性は、図中、実線bの挙動を示す。上述した通り、本実施形態の包装材は、基準温度TS以下の温度領域において水蒸気透過量が十分に小さいので、包装体内から外界への放湿が抑制され、その結果、被包装物の乾燥が抑制される。このとき、基準温度TS以下の温度領域では包装体内の湿度は高められ得るが、比較的に低温環境下なので水蒸気の発生量自体が相対的に少なく、たとえ凝結した水滴が発生しても食味や衛生面への影響はまったくないか無視できる程度に軽微である。一方、上述した通り、本実施形態の包装材は、基準温度TS近辺から温度が上がるにしたがい水蒸気透過量が著しく増大し、発生する水蒸気を速やかに放出し得るほどの水蒸気透過性を示す。そのため、包装材の内面に結露が発生し難くなるとともに、結露によって生じた水滴による被包装物への悪影響や包装体の膨張等が抑制される。表2に、本実施形態の包装材の水蒸気透過量WVTR(g/(m2・h))の挙動例を具体的に示す。 On the other hand, the water vapor permeability of the packaging material of this embodiment shows the behavior of the solid line b in the figure. As described above, the packaging material of the present embodiment has a sufficiently small amount of water vapor permeation in a temperature range equal to or lower than the reference temperature T S , so that moisture release from the package body to the outside is suppressed, and as a result, the package is dried. Is suppressed. At this time, the humidity in the package can be increased in the temperature range below the reference temperature T S, but the amount of water vapor generated is relatively small because it is in a relatively low temperature environment, and even if condensed water droplets are generated, the taste is good. There is no impact on hygiene and is negligible. On the other hand, as described above, the packaging material of the present embodiment has a water vapor permeability that increases the amount of water vapor as the temperature rises from the vicinity of the reference temperature T S , and can quickly release the generated water vapor. For this reason, it is difficult for condensation to occur on the inner surface of the packaging material, and adverse effects on the packaged object due to water droplets generated by the condensation and expansion of the package are suppressed. Table 2 specifically shows a behavior example of the water vapor transmission amount W VTR (g / (m 2 · h)) of the packaging material of the present embodiment.

Figure 0005314528
注3)50〜70℃に遷移領域Sが存在し、基準温度TSが60℃に存在する。このような挙動を示す包装材を用いて中心温度80℃のおにぎりを包装した後に20℃にて8時間保管した場合、結露の発生、被包装物の乾燥、食味の悪化、異物の混入は生じ難い。また、上記従来の不織布等の包装材に比して、視認性(透明性)、形状追従性、剥離性、繰り返し使用の耐久性にも優れる。このような挙動を呈する包装材は、例えば、スチレン・ブタジエン共重合高分子(旭化成ケミカルズ株式会社製樹脂、商品名「アスマー」)を、融点以上で熱溶融して広幅のスリットから押し出して約5〜50μm程度の厚みに製膜することにより得ることができる。
注4)25〜45℃に遷移領域Sが存在し、基準温度TSが35℃に存在する。このような挙動を示す包装材を用いて中心温度80℃のおにぎりを包装した後に20℃にて8時間保管した場合、結露の発生、被包装物の乾燥、食味の悪化、異物の混入は生じ難い。また、上記従来の不織布等の包装材に比して、視認性(透明性)、形状追従性、剥離性、繰り返し使用の耐久性にも優れる。このような挙動を呈する包装材は、例えば、4,4’−ジフェニルメタンジイソシアネートとポリプロピレングリコールを共重合させて得たウレタンプレポリマーをエチレングリコールと反応させて得られるウレタン系高分子を、融点以上で熱溶融して広幅のスリットから押し出して約5〜50μm程度の厚みに製膜することにより得ることができる。
Figure 0005314528
Note 3) The transition region S exists at 50 to 70 ° C., and the reference temperature T S exists at 60 ° C. When packaging rice balls with a central temperature of 80 ° C using a packaging material exhibiting such behavior and storing them at 20 ° C for 8 hours, condensation will occur, the package will dry, the taste will deteriorate, and foreign matter will be mixed in. hard. Moreover, it is excellent in visibility (transparency), shape followability, peelability, and durability for repeated use as compared with the conventional packaging materials such as nonwoven fabrics. The packaging material exhibiting such a behavior is, for example, about 5 by extruding a styrene / butadiene copolymer polymer (resin made by Asahi Kasei Chemicals Co., Ltd., trade name “Asmer”) above the melting point and extruding it from a wide slit. It can be obtained by forming a film to a thickness of about ˜50 μm.
Note 4) The transition region S exists at 25 to 45 ° C., and the reference temperature T S exists at 35 ° C. When packaging rice balls with a central temperature of 80 ° C using a packaging material exhibiting such behavior and storing them at 20 ° C for 8 hours, condensation will occur, the package will dry, the taste will deteriorate, and foreign matter will be mixed in. hard. Moreover, it is excellent in visibility (transparency), shape followability, peelability, and durability for repeated use as compared with the conventional packaging materials such as nonwoven fabrics. The packaging material exhibiting such behavior is, for example, a urethane polymer obtained by reacting a urethane prepolymer obtained by copolymerizing 4,4′-diphenylmethane diisocyanate and polypropylene glycol with ethylene glycol at a melting point or higher. It can be obtained by heat melting and extruding from a wide slit to form a film having a thickness of about 5 to 50 μm.

本実施形態の包装材の透湿制御層は、熱可塑性樹脂を含む樹脂組成物を成形することで得ることができる。より具体的には、ガラス転移温度、融点、結晶性、分子量、分子鎖長、立体構造、分子間隙、極性、親水性等が異なる複数成分を重合或いは配合してなる熱可塑性樹脂を用い、このような熱可塑性樹脂を含む樹脂組成物を成形することで、上記の範囲内に水蒸気透過性(水蒸気透過量の温度依存性)が制御された透湿制御層を簡易に得ることができる。   The moisture permeation control layer of the packaging material of this embodiment can be obtained by molding a resin composition containing a thermoplastic resin. More specifically, using a thermoplastic resin obtained by polymerizing or blending a plurality of components having different glass transition temperatures, melting points, crystallinity, molecular weight, molecular chain length, steric structure, molecular gap, polarity, hydrophilicity, etc. By molding a resin composition containing such a thermoplastic resin, a moisture permeation control layer in which water vapor permeability (temperature dependence of water vapor transmission amount) is controlled within the above range can be easily obtained.

透湿制御層を構成する熱可塑性樹脂の具体例としては、特に限定されないが、例えば、2種以上のモノマーからなる共重合体(好ましくは、ブロック共重合体又はグラフト共重合体)、1種以上のプレポリマーと1種以上のモノマーからなる重合体(好ましくは、ブロック共重合体又はグラフト共重合体)、2種以上のポリマーのポリマーブレンド(物理的ブレンド、化学的ブレンド、ポリマーアロイを含む)、及び、2種以上のポリマーのポリマーコンプレックス等が挙げられる。透湿制御層の水蒸気透過性が上記の範囲内に調整される理由は、種々の要因が絡み合うため一義的に述べることは不可能であるが、主として、透湿制御層が、熱可塑性樹脂を構成する複数成分の化学的性質、物理的性質、熱的性質に起因して、例えば、部分的に結晶構造と非晶構造を有する等、ソフトユニット(ソフトセグメント)及びハードユニット(ハードセグメント)で不均一に構築されていることによるものと推定される。そのため、例示したものの如く、透湿制御層の形成時に、ソフトユニット及びハードユニットを容易に構築し得る熱可塑性樹脂を用いることが好ましい。   Although it does not specifically limit as a specific example of the thermoplastic resin which comprises a moisture-permeable control layer, For example, the copolymer (preferably a block copolymer or a graft copolymer) which consists of 2 or more types of monomers, 1 type Polymers comprising the above prepolymers and one or more monomers (preferably block copolymers or graft copolymers), polymer blends of two or more polymers (including physical blends, chemical blends, polymer alloys) And a polymer complex of two or more kinds of polymers. The reason why the water vapor permeability of the moisture permeation control layer is adjusted within the above range cannot be unambiguously described because various factors are intertwined. However, the moisture permeation control layer is mainly composed of a thermoplastic resin. Due to the chemical properties, physical properties, and thermal properties of the multiple components that comprise, for example, partially having a crystalline structure and an amorphous structure, soft units (soft segments) and hard units (hard segments) This is presumably due to non-uniform construction. Therefore, as illustrated, it is preferable to use a thermoplastic resin capable of easily constructing the soft unit and the hard unit when forming the moisture permeation control layer.

透湿制御層の水蒸気透過性(水蒸気透過量、水蒸気透過量の温度依存性、基準温度TS)の制御方法は、特に限定されず、任意の方法を採用することができる。例えば、熱可塑性樹脂を構成する各成分のガラス転移温度や融点、結晶性、分子量、分子鎖長、立体構造、分子間隙、極性、親水性等の他、複数成分の配合比率、成形時の溶融或いは冷却の条件(温度、時間、プロセス管理等)、成形時のフィルムやシートの厚み、成形体厚み等を適宜調整することで、透湿制御層の水蒸気透過性を制御することができる。 A method for controlling the water vapor permeability (water vapor transmission amount, temperature dependency of water vapor transmission amount, reference temperature T S ) of the moisture permeation control layer is not particularly limited, and any method can be adopted. For example, glass transition temperature, melting point, crystallinity, molecular weight, molecular chain length, three-dimensional structure, molecular gap, polarity, hydrophilicity, etc. of each component constituting the thermoplastic resin, blending ratio of multiple components, melting during molding Alternatively, the water vapor permeability of the moisture permeation control layer can be controlled by appropriately adjusting the cooling conditions (temperature, time, process management, etc.), the thickness of the film or sheet during molding, the thickness of the molded body, and the like.

例えば、ガラス転移温度の違いを利用してTSを決定するような場合では、水蒸気透過量の制御は以下のように説明できると推測される。すなわち、通常、ソフトユニットは、ハードユニットに比してガラス転移点が低く、ガラス転移温度以上では分子のミクロブラウン運動が活発化して分子間隙が増大し、水蒸気透過量が著しく増大する。一方、同温度において、ハードユニットの物理特性には殆ど変化がなく剛性や形状を維持することが可能である。したがって、これらが不均一に存在している透湿制御層は、ソフトユニットのガラス転移温度以上の高温環境下において、包装材として求められる形状や剛性をハードユニットの特性により維持すると同時に、水蒸気透過量の著しい増大をソフトユニットの特性により引き起こすことが可能である。一般的には、ハードユニットの配合割合が高くなるほど全体としてのガラス転移温度は高くなり、ハードユニットを構成する成分やソフトユニットを構成する成分の分子量が大きいほどガラス転移温度は低くなり、それぞれ成分の立体的な剛直性が増大するほどガラス転移点は高くなる。そして、それぞれの成分の親水性が増大すると水蒸気透過量は増大し、ソフトユニットのミクロブラウン運動の活性が高いほど水蒸気透過量の増大幅が大きくなる傾向にある。したがって、熱可塑性樹脂を構成する各成分の組み合せや配合割合を調整することで、透湿制御層の水蒸気透過性を精密に制御することが可能である。 For example, in the case where T S is determined using the difference in glass transition temperature, it is presumed that the control of the water vapor transmission amount can be explained as follows. That is, normally, the soft unit has a glass transition point lower than that of the hard unit, and above the glass transition temperature, the micro-Brownian motion of the molecule is activated, the molecular gap is increased, and the water vapor transmission rate is remarkably increased. On the other hand, at the same temperature, there is almost no change in the physical characteristics of the hard unit, and the rigidity and shape can be maintained. Therefore, the moisture permeation control layer in which these are present in a non-uniform manner maintains the shape and rigidity required as a packaging material due to the characteristics of the hard unit in a high temperature environment higher than the glass transition temperature of the soft unit, while at the same time A significant increase in quantity can be caused by the properties of the soft unit. In general, the higher the blending ratio of the hard unit, the higher the glass transition temperature as a whole, and the higher the molecular weight of the components constituting the hard unit and the soft unit, the lower the glass transition temperature. As the three-dimensional rigidity increases, the glass transition point becomes higher. As the hydrophilicity of each component increases, the amount of water vapor transmission increases, and as the activity of the soft brown of the soft unit increases, the amount of increase in the amount of water vapor transmission tends to increase. Therefore, it is possible to precisely control the water vapor permeability of the moisture permeation control layer by adjusting the combination and blending ratio of each component constituting the thermoplastic resin.

2種以上のモノマーからなる共重合体の具体例としては、特に限定されないが、例えば、スチレン系アロイであるスチレン−ブタジエン共重合体が挙げられる。この場合、例えば、120℃程度の高温下で溶融しそれ以下の温度においては形状や剛性に大きな変化が殆ど生じないポリスチレンをハードユニットとして採用し、60〜80℃程度で結晶が溶融して水蒸気透過性が著しく増加する結晶性ポリブタジエンをソフトユニットとして採用することで、温度による水蒸気透過量の変化が特定の挙動を示す本実施形態の透湿制御層を実現することができる。かかるスチレン−ブタジエン共重合体においては、例えば、ポリスチレンと結晶性ポリブタジエンとの配合比率を変更することにより、基準温度TS前後の水蒸気透過量WVTRの変動量を任意に調整することができる。 Although it does not specifically limit as a specific example of the copolymer which consists of 2 or more types of monomers, For example, the styrene-butadiene copolymer which is a styrene-type alloy is mentioned. In this case, for example, polystyrene is used as a hard unit that melts at a high temperature of about 120 ° C. and hardly changes in shape and rigidity at a temperature lower than that. By adopting the crystalline polybutadiene whose permeability is remarkably increased as a soft unit, it is possible to realize the moisture permeation control layer of the present embodiment in which a change in the amount of water vapor permeation due to temperature exhibits a specific behavior. In such a styrene-butadiene copolymer, for example, by changing the blending ratio of polystyrene and crystalline polybutadiene, the fluctuation amount of the water vapor transmission amount W VTR around the reference temperature T S can be arbitrarily adjusted.

1種以上のプレポリマーと1種以上のモノマーからなる重合体の具体例としては、特に限定されないが、例えば、一般式OCNR1NCOで表わされるポリイソシアネートとHOR2OHで表わされるジオールとを共重合させて得られるウレタンプレポリマーを、HOR3OHで表わされる鎖延長剤と反応させて得られるウレタン系高分子OCN[(R1NHCOOR2OCONH)m(R1NHCOOR3OCONH)nl1NCO[但し、m、n及びlは正の整数を表わし、特に1〜16であることが好ましい]が挙げられる。かかるポリウレタン系高分子は、分子レベルで完全な均一状態にはならず、ジオールの非結晶ユニットからなるソフトセグメントと、鎖延長剤及びポリイソシアネートからなるハードセグメントとで不均一に構成されていると考えられ、そのガラス転移温度と水蒸気透過特性は、R1、R2、R3の剛直性、分子量、立体構造、極性、親水性等の他、m及びnの数等によって変動し得る。すなわち、R2、R3の分子量が大きくなるほどガラス転移温度が低くなり、R1、R2、R3の剛直性が増すほどガラス転移温度が高くなる傾向にある。また、R1、R2、R3の親水性が高いほど水蒸気透過量が増大し、R3の分子鎖長が長いなどミクロブラウン運動の活性が高い場合にはガラス転移温度における水蒸気透過量の増大幅が大きくなる傾向にある。したがって、かかるポリウレタン系高分子においては、これらを考慮して組み合わせることで、基準温度TSや基準温度TS前後の水蒸気透過量WVTRの変動量を精密に調整することができ、これにより、温度による水蒸気透過量の変化が特定の挙動を示す本実施形態の透湿制御層を実現することができる。 Specific examples of the polymer composed of one or more prepolymers and one or more monomers are not particularly limited. For example, a polyisocyanate represented by the general formula OCNR 1 NCO and a diol represented by HOR 2 OH are co-polymerized. Urethane polymer OCN [(R 1 NHCOOR 2 OCONH) m (R 1 NHCOOR 3 OCONH) n ] l R obtained by reacting a urethane prepolymer obtained by polymerization with a chain extender represented by HOR 3 OH 1 NCO [wherein m, n and l represent a positive integer, particularly preferably 1 to 16]. Such a polyurethane-based polymer does not become a completely uniform state at the molecular level, and is composed of a soft segment composed of a non-crystalline diol unit and a hard segment composed of a chain extender and a polyisocyanate. It is conceivable that the glass transition temperature and the water vapor transmission characteristics may vary depending on the rigidity of R 1 , R 2 , R 3 , molecular weight, steric structure, polarity, hydrophilicity, etc., as well as the number of m and n. That is, the glass transition temperature becomes lower as the molecular weight of R 2, R 3 is increased, in R 1, R 2, a glass transition temperature higher rigidity of the R 3 increases increases tendency. In addition, the higher the hydrophilicity of R 1 , R 2 , and R 3 , the greater the amount of water vapor transmission, and the higher the activity of micro Brownian motion, such as the longer molecular chain length of R 3 , the water vapor transmission amount at the glass transition temperature. The range of increase tends to increase. Therefore, in such a polyurethane polymer, by combining these in consideration, the fluctuation amount of the water vapor transmission amount W VTR around the reference temperature T S and the reference temperature T S can be precisely adjusted. It is possible to realize the moisture permeation control layer of this embodiment in which the change in the amount of water vapor permeation due to temperature exhibits a specific behavior.

ポリイソシアネートの具体例としては、特に限定されないが、例えば、末端にイソシアネート基を2つ以上有するもの、より具体的には、2,4−トルエンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、カルボジイミド変性の4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、プレポリマー型のポリイソシアネート等が挙げられる。これらは、一種単独で或いは二種以上を混合して用いることができる。   Although it does not specifically limit as a specific example of polyisocyanate, For example, what has two or more isocyanate groups at the terminal, More specifically, 2, 4- toluene diisocyanate, 4,4'- diphenylmethane diisocyanate, carbodiimide modification | denaturation 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, prepolymer type polyisocyanate, and the like. These can be used individually by 1 type or in mixture of 2 or more types.

ジオールの具体例としては、特に限定されないが、例えば、分子中にヒドロキシル基を2個以上有するもの、より具体的には、ポリプロピレングリコール、1,4−ブタングリコールアジペート、ポリテトラメチレングリコール、ビスフェノールA+プロピレンオキサイドなどといったポリエーテルポリオール、ポリエステルポリオール及びこれらを重合させたポリエーテルポリエステルポリオール等が挙げられる。これらは、一種単独で或いは二種以上を混合して用いることができる。   Although it does not specifically limit as a specific example of diol, For example, what has two or more hydroxyl groups in a molecule | numerator, More specifically, polypropylene glycol, 1, 4- butane glycol adipate, polytetramethylene glycol, bisphenol A + Examples include polyether polyols such as propylene oxide, polyester polyols, and polyether polyester polyols obtained by polymerizing these. These can be used individually by 1 type or in mixture of 2 or more types.

鎖延長剤の具体例としては、特に限定されないが、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタングリコール、ビス(2−ハイドロキシエチル)ハイドロキノン、ビスフェノールA+エチレンオキサイド、ビスフェノールA+プロピレンオキサイド等が挙げられる。これらは、一種単独で或いは二種以上を混合して用いることができる。   Specific examples of the chain extender are not particularly limited. For example, ethylene glycol, diethylene glycol, propylene glycol, 1,4-butane glycol, bis (2-hydroxyethyl) hydroquinone, bisphenol A + ethylene oxide, bisphenol A + propylene oxide, and the like. Is mentioned. These can be used individually by 1 type or in mixture of 2 or more types.

2種以上のポリマーのポリマーブレンド及び2種以上のポリマーのポリマーコンプレックスの具体例としては、特に限定されないが、例えば、スチレン系、オレフィン系、エステル系、アミド系、カーボネート系のポリマーブレンド、ポリマーアロイ又はポリマーコンプレックスが挙げられ、より具体的には、例えば、ポリアミド・ポリプロピレン、ポリアミド・エラストマー、ポリカーボネート・ポリスチレン、ポリカーボネート・ポリプロピレン、ポリカーボネート・ポリブチレンテレフタレート、ポリカーボネート・ポリエチレンテレフタレート、変性ポリフェニレンエーテル、ABS・ポリオレフィン及びこれらの組み合わせ等が挙げられる。これらは、一種単独で或いは二種以上を混合して用いることができる。   Specific examples of the polymer blend of two or more polymers and the polymer complex of two or more polymers are not particularly limited. For example, styrene-based, olefin-based, ester-based, amide-based, carbonate-based polymer blends, polymer alloys More specifically, for example, polyamide / polypropylene, polyamide / elastomer, polycarbonate / polystyrene, polycarbonate / polypropylene, polycarbonate / polybutylene terephthalate, polycarbonate / polyethylene terephthalate, modified polyphenylene ether, ABS / polyolefin and These combinations and the like can be mentioned. These can be used individually by 1 type or in mixture of 2 or more types.

上記の他に、結晶・非結晶部位を有する素材として、例えば、結晶性ポリ塩化ビニル部位及び非結晶ポリ塩化ビニル部位を有するポリ塩化ビニルが挙げられる。この場合、結晶性ポリ塩化ビニル部位がハードユニットとして、また非結晶ポリ塩化ビニル部位がソフトユニットとして機能し、ソフトユニットのミクロブラウン運動が温度に依存して増減することで水蒸気透過量が増減すると考えられる。同様の効果を発揮する素材として、例えば、ビスコース、トランスイソプレン、ポリノルボルネン、ポリブタジエンゴム等が挙げられる。   In addition to the above, examples of the material having a crystalline / non-crystalline part include a polyvinyl chloride part having a crystalline polyvinyl chloride part and an amorphous polyvinyl chloride part. In this case, the crystalline polyvinyl chloride part functions as a hard unit, and the amorphous polyvinyl chloride part functions as a soft unit. Conceivable. Examples of a material that exhibits the same effect include viscose, transisoprene, polynorbornene, and polybutadiene rubber.

熱可塑性樹脂を含む樹脂組成物は、必要に応じて、他の成分を含んでいてもよい。他の成分としては、特に限定されず、公知の添加剤、例えば、界面活性剤、酸化防止剤、熱安定剤、難燃剤、内部離型剤、アンチブロッキング剤、帯電防止剤、可塑剤、滑剤、紫外線吸収剤、赤外線吸収剤、顔料、各種溶媒等が挙げられる。   The resin composition containing a thermoplastic resin may contain other components as necessary. Other components are not particularly limited and are known additives such as surfactants, antioxidants, heat stabilizers, flame retardants, internal mold release agents, antiblocking agents, antistatic agents, plasticizers, lubricants. , Ultraviolet absorbers, infrared absorbers, pigments, various solvents and the like.

熱可塑性樹脂を含む樹脂組成物から透湿制御層を成形するにあたっては、公知の熱可塑性樹脂の製膜・成形方法等を用いることができる。具体的には、例えば、溶液キャスト成形法、Tダイ法、切削法、インフレーション法、射出成形法、ブロー成形法、圧空成形法、真空成形法、発泡成形法等が挙げられるが、これらに特に限定されない。   In molding a moisture permeation control layer from a resin composition containing a thermoplastic resin, a known thermoplastic resin film forming / molding method or the like can be used. Specific examples include a solution cast molding method, a T-die method, a cutting method, an inflation method, an injection molding method, a blow molding method, a pressure forming method, a vacuum molding method, a foam molding method, and the like. It is not limited.

透湿制御層の厚みは、特に限定されず、要求される水蒸気透過性に応じて、適宜設定される。通常、透湿制御層の厚みが増すほど、水蒸気透過性が低下する傾向にある一方、透湿制御層の厚みが薄いほど、水蒸気透過性が増大する傾向にあり、また、視認性(透明性)や形状追従性が高められる傾向にある。   The thickness of the moisture permeation control layer is not particularly limited, and is appropriately set according to the required water vapor permeability. In general, as the thickness of the moisture permeation control layer increases, the water vapor permeability tends to decrease. On the other hand, as the moisture permeation control layer decreases, the water vapor permeability tends to increase. ) And shape followability tend to be improved.

包装材は、上述した透湿制御層単独の構成であっても、フィルム状又はシート状に成形した透湿制御層の片面若しくは両面に他の機能層を部分的或いは全面に設置した構成であっても、透湿制御層中に他の機能層が含まれる構成であっても、透湿制御層が他の機能層と一体化した構成であってもよい。   Even if the packaging material has the above-described configuration of the moisture permeation control layer alone, it has a configuration in which another functional layer is partially or entirely provided on one or both sides of the moisture permeation control layer formed into a film or sheet. Alternatively, the moisture permeation control layer may be configured to include another functional layer, or the moisture permeation control layer may be integrated with the other functional layer.

機能層の具体例としては、特に限定されないが、例えば、シリコーン樹脂、フッ素樹脂、高吸水性樹脂、天然ゴムや合成ゴム等のエラストマー等の他、天然繊維、合成繊維又は半合成繊維等を用いた不織布や織布、紙等が挙げられる。かかる機能層との積層構成を採用することで、粘着性、滑り性、吸水性、吸油性、剥離性、密着性等の機能を付与する或いは向上することができ、これにより、用途に応じた高機能な包装材としての利用価値が高められる。   Specific examples of the functional layer are not particularly limited. For example, in addition to silicone resins, fluororesins, superabsorbent resins, elastomers such as natural rubber and synthetic rubber, natural fibers, synthetic fibers or semi-synthetic fibers are used. Nonwoven fabric, woven fabric, paper, etc. By adopting a laminated structure with such a functional layer, it is possible to impart or improve functions such as adhesiveness, slipperiness, water absorption, oil absorption, releasability, adhesion, etc. The utility value as a highly functional packaging material is increased.

機能層は、0〜100℃の温度領域全般に亘り、水蒸気透過量WVTR(g/(m2・h))が透湿制御層よりも常に大きいものが好ましい。機能層の水蒸気透過量WVTR(g/(m2・h))が透湿制御層より小さい場合は包装材全体の水蒸気透過量WVTR(g/(m2・h))が機能層に支配され得るので、透湿制御層の透湿制御効果を十分に発揮し得なくなる場合がある。また、機能層は、吸湿性が乏しいものであることが好ましい。機能層の吸湿性が高いと使用時における透湿性の調整が困難になるので、透湿制御層の透湿制御効果を十分に発揮し得なくなる場合がある。 The functional layer preferably has a water vapor transmission amount W VTR (g / (m 2 · h)) that is always larger than that of the moisture permeation control layer over the entire temperature range of 0 to 100 ° C. Water vapor permeability of W VTR of the functional layer (g / (m 2 · h )) water vapor permeability of the entire wrapper is less than moisture permeable control layer W VTR (g / (m 2 · h)) is functional layer Since it can be controlled, the moisture permeation control effect of the moisture permeation control layer may not be sufficiently exhibited. Moreover, it is preferable that a functional layer is a thing with poor hygroscopicity. If the hygroscopicity of the functional layer is high, it is difficult to adjust the moisture permeability at the time of use, and thus the moisture permeability control effect of the moisture permeability control layer may not be sufficiently exhibited.

包装材は、布帛を含有しないことが望ましい。包装材が布帛を含むと、布帛が不透明なため包装体内の被包装物を外部から視認し難くなるので、包装体内の被包装物を確認するためには解包する必要がある等、不都合が生じ得る。また、布帛を含む包装材がフィルム状又はシート状である場合には、布帛の持つ厚みと剛性によってフィルム又はシートの成形時或いは成形後の取り扱い時の柔軟性や形状追従性が損なわれ、生産性、取扱性及び汎用性が低下する傾向にある。その一方、布帛を含む包装材が容器形状の成形体である場合には、布帛の柔軟性によって成形体の成形時或いは成形後の取り扱い時の形状維持が困難となり易く、生産性、形状安定性及び寸法安定性が低下する傾向にある。さらに布帛は表面に凹凸を有し平滑性が乏しく剥離性に劣るので、包装時或いは保存時に包装体内の被包装物が布帛の表面の空隙に侵入する等の不都合が生じ得る。また、布帛を構成する繊維が脱落して被包装物に混入し得るので、包装材としての用途が制限され得る。   It is desirable that the packaging material does not contain a fabric. If the packaging material includes a fabric, the fabric is opaque and it is difficult to visually recognize the packaged item in the package from the outside. Can occur. In addition, when the packaging material containing the fabric is in the form of a film or sheet, the thickness and rigidity of the fabric impairs flexibility and shape following at the time of molding or handling of the film or sheet, resulting in production. , Handling properties and versatility tend to decrease. On the other hand, when the packaging material containing the fabric is a container-shaped molded body, the flexibility of the fabric makes it difficult to maintain the shape when the molded body is molded or when it is handled after molding, resulting in productivity and shape stability. And dimensional stability tends to be lowered. Furthermore, since the fabric has irregularities on the surface and is poor in smoothness and inferior in peelability, problems such as invasion of an article to be packaged in the package into a void on the surface of the fabric may occur during packaging or storage. Moreover, since the fiber which comprises a cloth may drop | omit and mix in a to-be-packaged object, the use as a packaging material may be restrict | limited.

機能層の形成方法は、特に限定されないが、例えば、シート状に別途成形した機能層を接着剤や熱によってラミネートしてフィルム状又はシート状に成形した透湿制御層に積層又は一体化する方法、溶融した機能層をフィルム状又はシート状に成形した透湿制御層に直接押し出して製膜しながら積層又は一体化する方法、別途溶液に溶解させた機能層を透湿制御層に塗布或いは噴霧する等した後に乾燥して積層又は一体化する方法、共押出或いは蒸着等によって機能層を透湿制御層に積層又は一体化するする方法等が挙げられる。   The method of forming the functional layer is not particularly limited. For example, a method of laminating or integrating a functional layer separately formed into a sheet shape with an adhesive or heat and laminating or integrating the moisture permeability control layer formed into a film shape or a sheet shape , A method of laminating or integrating a molten functional layer directly onto a moisture permeation control layer formed into a film or sheet and forming a film, or applying or spraying a functional layer separately dissolved in a solution to the moisture permeation control layer Examples thereof include a method of drying and then laminating or integrating, and a method of laminating or integrating the functional layer on the moisture permeation control layer by coextrusion or vapor deposition.

以上、詳述した通り、本実施形態の包装材は、パンのような含水量の少ない被包装物のみならず多量の水分や液状成分を含有する被包装物をも長期間に亘って高品位保存することが可能であり、例えば、炊いたり蒸したり発酵した米や穀物を含有する食品を包装する包装材として好適に用いることができる。例えば、おにぎりは、通常、60〜90℃程度の高温状態で成形され、その風味を維持するため一定時間放熱させた後に包装され、包装体のまま保存され或いは搬送されることが多いが、本実施形態の包装材は、比較的に高温時の放湿効果と比較的に低温時の乾燥抑制効果の双方の機能を両立しているので、これを用いることにより、放熱するプロセスを省略して包装することができる。したがって、本実施形態の包装材を用いることにより、プロセス裕度が飛躍的に高められ、その結果、生産性及び経済性が高められる。   As described above in detail, the packaging material of the present embodiment is not only a packaged product having a low water content such as bread, but also a packaged product containing a large amount of moisture and liquid components over a long period of time. For example, it can be suitably used as a packaging material for packaging foods containing cooked, steamed or fermented rice or grains. For example, rice balls are usually molded at a high temperature of about 60 to 90 ° C., and after being radiated for a certain period of time in order to maintain the flavor, the rice balls are often stored and transported as they are. Since the packaging material of the embodiment has both functions of a moisture release effect at a relatively high temperature and a drying suppression effect at a relatively low temperature, the process of radiating heat can be omitted by using this. Can be packaged. Therefore, by using the packaging material of the present embodiment, the process tolerance is dramatically increased, and as a result, productivity and economy are improved.

以下、本実施形態の包装材の好ましい使用方法について詳述する。
好ましい第1の使用方法は、本実施形態の包装材を用いて基準温度TS以下の温度の被包装物を包装し、得られた包装体又は得られた包装体中の被包装物を基準温度TSより高い温度領域T2まで加熱する方法である。このような使用方法の具体例としては、特に限定されないが、例えば、室温の食材を包装後に電子レンジ等の調理器等で加熱する場合、冷凍された食品を包装後に調理器等で加熱するか室温下に放置する等して解凍する場合、濡れた布帛を包装後に加熱して蒸しタオルを作る場合、等が挙げられる。なお、包装体の解包は、温度領域T1及び温度領域T2のいずれでも行うことができる。
Hereinafter, the preferable usage method of the packaging material of this embodiment is explained in full detail.
A preferred first method of use is to wrap a packaged object having a temperature equal to or lower than the reference temperature T S using the packaging material of the present embodiment, and use the obtained packaged body or the packaged object in the obtained packaged body as a reference. This is a method of heating to a temperature region T 2 higher than the temperature T S. A specific example of such a method of use is not particularly limited. For example, in the case where a food at room temperature is heated in a cooker such as a microwave oven after packaging, is the frozen food heated in a cooker after packaging? In case of thawing by leaving at room temperature or the like, in case of heating a wet cloth after packaging and making a steamed towel, etc. are mentioned. The unpacking of the package can be performed in either the temperature region T 1 or the temperature region T 2 .

好ましい第2の使用方法は、本実施形態の包装材を用いて基準温度TSより高い温度の被包装物を包装し、得られた包装体又は得られた包装体中の被包装物を基準温度TS以下の温度領域T1まで冷却する方法である。このような使用方法の具体例としては、特に限定されないが、例えば、加熱調理直後の食品を包装した後に冷蔵庫又は冷凍庫内で保存する場合、高温の液状体又はゲル状体を包装した後に室温環境下に放置したり室温環境下で移動させたりする場合、等が挙げられる。なお、包装体の解包は、温度領域T1及び温度領域T2のいずれでも行うことができる。 A preferred second method of use is to wrap a package object having a temperature higher than the reference temperature T S using the packaging material of the present embodiment, and to reference the obtained package object or the package object in the obtained package object. This is a method of cooling to a temperature region T 1 below the temperature T S. A specific example of such a method of use is not particularly limited. For example, when the food immediately after cooking is packaged and stored in a refrigerator or freezer, a room temperature environment is obtained after packaging a high temperature liquid or gel. In the case of leaving it down or moving it in a room temperature environment, and the like. The unpacking of the package can be performed in either the temperature region T 1 or the temperature region T 2 .

好ましい第3の使用方法は、本実施形態の包装材を用いて、基準温度TS以下の温度の被包装物を包装し、得られた包装体又は得られた包装体中の被包装物を基準温度TSより高い温度領域T2まで加熱した後に基準温度TS以下の温度領域T1まで冷却する操作を少なくとも1回以上実施する方法である。包装材内面に結露が生じていると加熱時に局所的な加熱斑が発生し易く、また、破損により伸長した或いは孔が形成した包装材を用いると目的とする高品位保存が実行し難くなる等の理由により、このように包装体が温度領域T1と温度領域T2を繰り返し経験する場合において、放湿効果と乾燥抑制効果の双方の機能を両立した本実施形態の包装材の優位性が顕著となる。このような使用方法の具体例としては、特に限定されないが、例えば、食材を包装後に一旦加熱し、さらに低温食材と混合して下拵えをする等の目的で再冷却する場合、濡れた布帛を包装後に加熱して殺菌消毒し、さらに衛生的な含水布帛として用いる或いは冷たいオシボリを提供する等の目的で再冷却する場合、等が挙げられる。なお、包装体の解包は、温度領域T1及び温度領域T2のいずれでも行うことができる。 A preferred third usage method is to use the packaging material of the present embodiment to wrap a packaged material having a temperature equal to or lower than the reference temperature T S , and to obtain the packaged product or the packaged product in the obtained packaged product. the operation of cooling to a temperature region T 1 below the reference temperature T S after heating to the reference temperature T S higher than the temperature range T 2 is a method of performing at least once. If dew condensation occurs on the inner surface of the packaging material, local heating spots are likely to occur during heating, and the intended high-quality preservation becomes difficult to perform when using a packaging material that has been elongated due to breakage or formed with holes, etc. For this reason, when the packaging body repeatedly experiences the temperature region T 1 and the temperature region T 2 as described above, the packaging material of the present embodiment having both functions of a moisture release effect and a drying suppression effect is superior. Become prominent. Specific examples of such a method of use are not particularly limited. For example, when a food is once heated after packaging and then recooled for the purpose of preparation by mixing with a low temperature food, packaging a wet fabric is performed. In the case of later heating and sterilizing and disinfecting, and further re-cooling for the purpose of using as a hygienic water-containing fabric or providing a cold spring, etc. The unpacking of the package can be performed in either the temperature region T 1 or the temperature region T 2 .

好ましい第4の使用方法は、本実施形態の包装材を用いて、温度領域TSより高い温度の被包装物を包装し、得られた包装体又は得られた包装体中の被包装物を基準温度TS以下の温度領域T1まで冷却した後に基準温度TSより高い温度領域T2まで加熱する操作を少なくとも1回以上実施する方法である。包装材内面に結露が生じていると加熱時に局所的な加熱斑が発生し易く、また、破損により伸長した或いは孔が形成した包装材を用いると目的とする高品位保存が実行し難くなる等の理由により、このように包装体が温度領域T1と温度領域T2を繰り返し経験する場合において、放湿効果と乾燥抑制効果の双方の機能を両立した本実施形態の包装材の優位性が顕著となる。このような使用方法の具体例としては、特に限定されないが、例えば、加熱調理直後の食品を包装した後に冷蔵庫内で保存し、さらに食事前に再度加熱する場合、等が挙げられる。なお、包装体の解包は、温度領域T1及び温度領域T2のいずれでも行うことができる。 A preferred fourth method of using the packaging material of the present embodiment is to package a packaged material having a temperature higher than the temperature region T S , and obtain the packaged product or the packaged product in the obtained packaged product. the operation of heating after cooling to the reference temperature T S below the temperature region T 1 to the reference temperature T a temperature higher than the S region T 2 is a method of performing at least once. If dew condensation occurs on the inner surface of the packaging material, local heating spots are likely to occur during heating, and the intended high-quality preservation becomes difficult to perform when using a packaging material that has been elongated due to breakage or formed with holes, etc. For this reason, when the packaging body repeatedly experiences the temperature region T 1 and the temperature region T 2 as described above, the packaging material of the present embodiment having both functions of a moisture release effect and a drying suppression effect is superior. Become prominent. Although it does not specifically limit as a specific example of such a usage method, For example, when packaging the food immediately after heat cooking, it preserve | saves in a refrigerator, and also heats before a meal etc. are mentioned. The unpacking of the package can be performed in either the temperature region T 1 or the temperature region T 2 .

以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これらに制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited to these.

[実施例1]
スチレン・ブタジエン共重合高分子(旭化成ケミカルズ株式会社製樹脂、商品名「アスマー」)を、融点以上で熱溶融してTダイ法によりシートを作成した後、真空圧空成形法により1mmの厚みで15cm角の包装容器とした。この容器においては、60℃を基準温度TS(℃)とする遷移領域Sが確認され、60〜70℃の範囲における水蒸気透過量WVTRの増加量が50〜60℃の範囲における水蒸気透過量WVTRの増加量の約8倍を示した。
[Example 1]
A styrene-butadiene copolymer polymer (resin made by Asahi Kasei Chemicals Co., Ltd., trade name “Asmer”) is melted at a temperature equal to or higher than the melting point to form a sheet by a T-die method, and then 15 cm in thickness of 1 mm by vacuum / pressure forming. A square packaging container was obtained. In this container, a transition region S having a reference temperature T S (° C.) of 60 ° C. is confirmed, and the amount of water vapor transmission W VTR in the range of 60 to 70 ° C. is the amount of water vapor transmission in the range of 50 to 60 ° C. The increase in W VTR was about 8 times.

[実施例2]
ジイソシアネート成分である4,4'−ジフェニルメタンジイソシアネートと長鎖ジオール成分であるポリプロピレングリコールを共重合させてウレタンプレポリマーを得、このウレタンプレポリマーを鎖延長剤であるエチレングリコールと反応させて得られるウレタン系高分子(ガラス転移点Tg=35℃)を、融点以上で熱溶融して広幅のスリットから押し出して30μmの厚みに製膜して包装用フィルムとした。このフィルムにおいては、30〜35℃を基準温度TS(℃)とする遷移領域Sが確認された。
[Example 2]
Urethane obtained by copolymerizing 4,4'-diphenylmethane diisocyanate, which is a diisocyanate component, and polypropylene glycol, which is a long chain diol component, to obtain a urethane prepolymer, and reacting this urethane prepolymer with ethylene glycol, which is a chain extender. A high molecular weight polymer (glass transition point Tg = 35 ° C.) was thermally melted at a melting point or higher and extruded from a wide slit to form a film having a thickness of 30 μm to obtain a packaging film. In this film, a transition region S having a reference temperature T S (° C.) of 30 to 35 ° C. was confirmed.

[比較例1]
比較例1の包装材として、市販されているポリエチレン樹脂製の食品包装用ラップ(シーアイ化成株式会社製、商品名「NEWローズラップ」)を用いた。このフィルムは、0〜100℃の温度範囲において、基準温度TS及び遷移領域Sを有さず、水蒸気透過量WVTRが常に50(g/(m2・h))を下回っていた。
[Comparative Example 1]
As a packaging material of Comparative Example 1, a commercially available food packaging wrap made of polyethylene resin (trade name “NEW Rose wrap”, manufactured by CI Kasei Co., Ltd.) was used. This film did not have the reference temperature T S and the transition region S in the temperature range of 0 to 100 ° C., and the water vapor transmission amount W VTR was always lower than 50 (g / (m 2 · h)).

[比較例2]
比較例2の包装材として、スパンボンド法により30g/m2の坪量に形成したコットンリンターの再生セルロース繊維製不織布を用いた。この不織布は、0〜100℃の温度範囲において、基準温度TS及び遷移領域Sを有さず、水蒸気透過量WVTRが常に50(g/(m2・h))を上回っていた。
[Comparative Example 2]
As the packaging material of Comparative Example 2, a non-woven fabric made of regenerated cellulose fibers of cotton linter formed to a basis weight of 30 g / m 2 by the spunbond method was used. This nonwoven fabric did not have the reference temperature T S and the transition region S in the temperature range of 0 to 100 ° C., and the water vapor transmission amount W VTR always exceeded 50 (g / (m 2 · h)).

表3に、実施例及び比較例の包装材の水蒸気透過量WVTRを示す。 Table 3 shows the water vapor permeation amount W VTR of the packaging materials of Examples and Comparative Examples.

Figure 0005314528
Figure 0005314528

(性能評価1)
実施例1の包装材の基準温度TS以下の温度である15℃の含水したタオルを包装した後、電子レンジにて2分間加熱して約80℃に温めた。包装体及び被包装物の観察結果と評価結果を、表4に示す。
(Performance evaluation 1)
After packaging a 15 ° C. water-containing towel having a temperature equal to or lower than the reference temperature T S of the packaging material of Example 1, it was heated to about 80 ° C. in a microwave oven for 2 minutes. Table 4 shows the observation results and evaluation results of the package and the package.

Figure 0005314528
Figure 0005314528

(性能評価2)
実施例2の包装材の基準温度TSより高い温度である中心温度80℃のおにぎりを包装した後、室温にて12時間保管した。包装体及び被包装物の観察結果と評価結果を、表5に示す。
(Performance evaluation 2)
After packaging a rice ball with a center temperature of 80 ° C., which is higher than the reference temperature T S of the packaging material of Example 2, it was stored at room temperature for 12 hours. Table 5 shows the observation results and evaluation results of the package and the package.

Figure 0005314528
Figure 0005314528

(性能評価3)
実施例2の包装材の基準温度TS以下の温度である室温(20℃)にて哺乳瓶を包装し、殺菌を目的に電子レンジにて5分間加熱して約100℃とした後、室温にて8時間保管した。包装体及び被包装物の観察結果と評価結果を、表6に示す。
(Performance evaluation 3)
The baby bottle is packaged at room temperature (20 ° C.), which is equal to or lower than the reference temperature T S of the packaging material of Example 2, and heated to about 100 ° C. for 5 minutes in a microwave oven for the purpose of sterilization. Stored for 8 hours. Table 6 shows the observation results and evaluation results of the package and the package.

Figure 0005314528
Figure 0005314528

(性能評価4)
実施例1の包装材の基準温度TSより高い温度である100℃に加熱された調理直後の饅頭を包装し、冷蔵庫内にて8時間保管した後、電子レンジにて2分間加熱して約80℃まで温度を上昇させた。包装体及び被包装物の観察結果と評価結果を、表7に示す。
(Performance evaluation 4)
The bun just after cooking heated to 100 ° C., which is higher than the reference temperature T S of the packaging material of Example 1, is packaged, stored in the refrigerator for 8 hours, and then heated in a microwave oven for 2 minutes. The temperature was raised to 80 ° C. Table 7 shows the observation results and evaluation results of the package and the packaged objects.

Figure 0005314528
Figure 0005314528

ここで、上記性能評価における各々の評価基準は、以下の通りとした。
[1]結露の発生
試験後に解包し被包装物を取り除いた後、包装材の内面に付着した水滴の重量を測定し、2g/m2以下であるものを「結露なし」、2g/m2を超えるものを「結露あり」と評価した。
[2]被包装物の乾燥
試験前後の被包装物の表層部を1cm2角に5箇所サンプリングし、赤外線水分計(株式会社ケット化学研究所製 FD−240)にて測定された水分量の平均値を比較して、試験前後における減少率が20%以下であれば「乾燥なし」、20%を超える場合には「乾燥」と評価した。
[3]異物混入の有無
試験前後の被包装物の表面を目視にて観察し、塵埃や包装材の脱落、付着などの有無を評価した。
[4]食味
試験後の被包装物を実際に食し、部分的な乾燥やふやけなどの食感についてまったくないものを5〜ひどく多いものを1として官能的に5段階で採点し、パネラー10人の平均評価が4以上のものを◎、2.5以上のものを○、2.5に満たないものを×と評価した。
[5]水分斑
試験後の被包装物の表層部を1cm2角に5箇所サンプリングし、赤外線水分計(株式会社ケット化学研究所製 FD−240)にて測定された水分量のばらつきが、平均値の±20%以内にある場合を「水分斑なし」、20%を超えて分布している場合を「水分斑あり」と評価した。
[6]異臭
試験後の被包装物について腐敗臭や変臭などの有無を官能的に評価し、パネラー10人中8人以上が異臭なしと判断したものを「異臭なし」、7人以下であった場合を「異臭あり」と評価した。
[7]開封のしやすさ
試験後に解包する際に食品に密着してはがれにくいなどの問題の有無について官能評価を行い、10人中9人以上が問題ないと判断したものを◎、6人以上8人以下が問題ないと判断したものを○、問題ないと判断した人数が5人以下の場合は×と評価した。
[8]包装材の変形
加熱中の包装体を外部から目視にて観察し、包装体の形状の変化の有無を評価した。
[9]包装材の破壊
試験後の包装材を目視にて確認し、孔や亀裂、溶解、破れなどの有無を評価した。
[10]水蒸気の噴出し
加熱中の包装体を外部から目視にて観察し、包装体からの水蒸気の流出が激しいものについて、試験後の包装材の破壊の有無を観察し、破壊のあったものについて「水蒸気の噴出しあり」と評価した。
Here, each evaluation standard in the performance evaluation was as follows.
[1] Condensation After unpacking and removing the package after the test, the weight of water droplets adhering to the inner surface of the packaging material is measured, and if it is 2 g / m 2 or less, “no condensation” is 2 g / m Those exceeding 2 were rated as “condensation”.
[2] Drying of packaged object The surface layer of the packaged object before and after the test was sampled at 5 locations in a 1 cm 2 square, and the moisture content measured with an infrared moisture meter (FD-240 manufactured by Kett Chemical Laboratory Co., Ltd.) was measured. The average values were compared, and when the decrease rate before and after the test was 20% or less, “no drying” was evaluated, and when the decrease rate exceeded 20%, “drying” was evaluated.
[3] Presence / absence of foreign matter The surface of the object to be packaged before and after the test was visually observed, and the presence / absence of dust, packaging material, and the like was evaluated.
[4] Taste Tens of panelists who ate the packaged food after the test and scored in five stages sensuously with 5 as the one that had no texture such as partial dryness or wisdom, etc. The average evaluation of 4 or more was evaluated as ◎, 2.5 or more as ○, and less than 2.5 as ×.
[5] Moisture spots The surface layer of the package after the test was sampled at 5 locations in a 1 cm 2 square, and the variation in the moisture content measured with an infrared moisture meter (FD-240 manufactured by Kett Chemical Laboratory Co., Ltd.) was an average. The case where the value was within ± 20% of the value was evaluated as “no water spots”, and the case where it was distributed over 20% was evaluated as “water spots”.
[6] Offensive odor Sensory evaluation of the wrapping after testing and the presence or absence of spoiled odor or foul odor. Eight out of 10 panelists judged that there was no off-flavor. When it was, it was evaluated as “abnormal odor”.
[7] Ease of opening Sensory evaluation was conducted for the presence or absence of problems such as being difficult to peel off when closely unpacked after unpacking after testing. When the number of people judged to be no problem was evaluated as ○, and when the number of people judged as no problem was 5 or less, it was evaluated as ×.
[8] Deformation of packaging material The package during heating was visually observed from the outside, and the presence or absence of a change in the shape of the package was evaluated.
[9] Destruction of packaging material The packaging material after the test was visually confirmed, and the presence or absence of holes, cracks, dissolution, and tearing was evaluated.
[10] Spout of water vapor The packaging body being heated was visually observed from the outside, and for those with a severe outflow of water vapor from the packaging body, the presence or absence of destruction of the packaging material after the test was observed, and there was destruction. The thing was evaluated as “with water vapor spout”.

表4〜表7から明らかなように、実施例に示される包装材においては高温下で水蒸気透過性が向上することによる結露の抑制効果や包装体内部の圧力低下効果、包装材の破壊抑制効果などの特徴と、低温下での水蒸気透過性の低下による高バリア性、変形抑制効果等を同時に優れて備えられており、高含水の内容物を包装して温度変化を与えるような包装用途に優れた効果を発揮することがわかる。   As is clear from Tables 4 to 7, in the packaging materials shown in the examples, the effect of suppressing condensation due to the improvement of water vapor permeability at high temperatures, the effect of reducing the pressure inside the package, and the effect of suppressing destruction of the packaging material. And other features such as high barrier properties due to a decrease in water vapor permeability at low temperatures, and a deformation-inhibiting effect. It turns out that the outstanding effect is demonstrated.

本発明の包装材は、比較的に高温時の放湿効果と比較的に低温時の乾燥抑制効果の双方の機能を両立しており、含水量の少ない被包装物のみならず多量の水分や液状成分を含有する被包装物をも長期間に亘って高品位保存したり、包装体をそのまま加熱冷却に供することが可能なので、種々の被包装物の保存、移動、加工、保護、加熱、冷却に用いる素材として、広く且つ有効に利用可能であり、特に、多量の水分や液状成分を含有する被包装物、例えば、食品の包装用途において、広く且つ格別に有効に利用可能である。   The packaging material of the present invention has both functions of a moisture releasing effect at a relatively high temperature and a drying inhibiting effect at a relatively low temperature, and not only a packaged product having a low water content but also a large amount of moisture and Since the package containing liquid components can be stored in high quality for a long period of time, or the package can be subjected to heating and cooling as it is, storage, movement, processing, protection, heating, As a material used for cooling, it can be used widely and effectively. In particular, it can be used widely and particularly effectively in a packaged product containing a large amount of water and liquid components, for example, food packaging.

Claims (5)

熱可塑性樹脂を含む樹脂組成物を成形してなり、JIS L1099 A−2法に準拠して60%RHの湿度条件下で測定した温度(℃)−水蒸気透過量WVTR(g/(m2・h))のプロットチャートにおいて、基準温度TS(℃)からTS+10(℃)の水蒸気透過量WVTRの増加量がTS−10℃(℃)から基準温度TS(℃)の水蒸気透過量WVTRの増加量の2倍以上100倍以下となる遷移領域を有し、且つ、該基準温度Ts(℃)が0℃以上100℃以下の範囲にある、透湿制御層を少なくとも一層備えることを特徴とする、
包装材。
A temperature (° C.)-Water vapor transmission rate W VTR (g / (m 2 ) obtained by molding a resin composition containing a thermoplastic resin and measured under a humidity condition of 60% RH in accordance with JIS L1099 A-2 method. In the plot chart of h)), the increase in water vapor transmission rate W VTR from the reference temperature T S (° C.) to T S +10 (° C.) is from T S −10 ° C. (° C.) to the reference temperature T S (° C.). At least a moisture permeation control layer having a transition region that is 2 to 100 times the increase in water vapor transmission rate W VTR and that has a reference temperature Ts (° C.) in the range of 0 ° C. to 100 ° C. It is characterized by having one more layer,
Packaging material.
請求項1記載の包装材を用いて、前記基準温度TS以下の温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TSより高い温度領域T2まで加熱する工程と、
を少なくとも有する、包装材の使用方法。
Using the packaging material according to claim 1, a step of packaging an article to be packaged at a temperature equal to or lower than the reference temperature T S ;
Heating the obtained package or the article to be packaged in the obtained package to a temperature region T 2 higher than the reference temperature T S ;
A method of using a packaging material having at least
請求項1記載の包装材を用いて、前記基準温度TSより高い温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TS以下の温度領域T1まで冷却する工程と、
を少なくとも有する、包装材の使用方法。
Using the packaging material according to claim 1 to package a packaged object having a temperature higher than the reference temperature T S ;
Cooling the obtained package or the article to be packaged in the obtained package to a temperature region T 1 equal to or lower than the reference temperature T S ;
A method of using a packaging material having at least
請求項1記載の包装材を用いて、前記基準温度TS以下の温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TSより高い温度領域T2まで加熱した後に前記基準温度TS以下の温度領域T1まで冷却する操作を少なくとも1回以上実施する工程と、
を少なくとも有する、包装材の使用方法。
Using the packaging material according to claim 1, a step of packaging an article to be packaged at a temperature equal to or lower than the reference temperature T S ;
At least an operation of cooling the resulting package or obtained the material to be packaged in the packaging body in to said reference temperature T S below the temperature region T 1 after heating to the reference temperature T S higher than the temperature range T 2 A step of performing at least once;
A method of using a packaging material having at least
請求項1記載の包装材を用いて、前記温度領域TSより高い温度の被包装物を包装する工程と、
得られた包装体又は得られた包装体中の前記被包装物を前記基準温度TS以下の温度領域T1まで冷却した後に前記基準温度TSより高い温度領域T2まで加熱する操作を少なくとも1回以上実施する工程と、
を少なくとも有する、包装材の使用方法。
Using the packaging material according to claim 1, packaging a packaged object having a temperature higher than the temperature region T S ;
At least an operation of heating the resulting package or obtained the material to be packaged in the packaging body in to said reference temperature T a temperature higher than the S region T 2 after cooling to the reference temperature T S below the temperature region T 1 A step of performing at least once;
A method of using a packaging material having at least
JP2009175245A 2009-07-28 2009-07-28 Packaging materials and methods of use Active JP5314528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175245A JP5314528B2 (en) 2009-07-28 2009-07-28 Packaging materials and methods of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175245A JP5314528B2 (en) 2009-07-28 2009-07-28 Packaging materials and methods of use

Publications (2)

Publication Number Publication Date
JP2011025977A JP2011025977A (en) 2011-02-10
JP5314528B2 true JP5314528B2 (en) 2013-10-16

Family

ID=43635219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175245A Active JP5314528B2 (en) 2009-07-28 2009-07-28 Packaging materials and methods of use

Country Status (1)

Country Link
JP (1) JP5314528B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057810B2 (en) * 2013-03-29 2017-01-11 三井化学東セロ株式会社 Volume resistivity measurement method
JP2019006425A (en) * 2017-06-21 2019-01-17 旭化成株式会社 Package of garden stuff, storage device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582742B2 (en) * 1992-03-17 1997-02-19 鐘紡株式会社 Fabric whose moisture permeability is controlled by temperature
JPH08164590A (en) * 1994-12-13 1996-06-25 Matsushita Refrig Co Ltd Moisture permeating film for storing vegetable and vegetable storing container

Also Published As

Publication number Publication date
JP2011025977A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
US20080256822A1 (en) Container for freeze-drying
KR101249120B1 (en) Highly breathable biodegradable films
EP2141191B1 (en) Composite Package
JP5314528B2 (en) Packaging materials and methods of use
US20170043930A1 (en) Foam tray for food packaging and method for manufacturing the same
JP5314527B2 (en) Food packaging material and rice ball packaging material
JP4802693B2 (en) Packaging film and package
JP2008173012A (en) Strawberry-containing package
JP6762433B2 (en) Antibacterial material and freshness preservation material
JP4338715B2 (en) Adhesive heat-resistant wrap film
KR101451670B1 (en) Antimicrobial and antifungal sheet
WO2019088199A1 (en) Antibacterial material and freshness keeping material
EP3189953B1 (en) Method and apparatus for coating products and coated products
JP7082153B2 (en) Fruit and vegetable freshness preservation film for automatic packaging and fruit and vegetable freshness preservation packaging bag
JP2002001890A (en) Multilayered adherent heat-resistant wrapping film
JP2019006426A (en) Package of garden stuff, storage device and storage method
JP4412771B2 (en) Multi-layer adhesive heat-resistant wrap film
EP4357135A1 (en) Biodegradable laminate and method for manufacturing same
JP6816584B2 (en) Releasable laminated film and packaging
JP2021160723A5 (en)
Lee et al. Effect of polyhydric alcohols on the mechanical and thermal properties, porosities, and air permeabilities of polyurethane‐blended films
CN107499706B (en) Degradable aliphatic polyester or packaging product of medical product thereof and packaging method
JP2021062874A (en) Packaging film for condensation water attachment
JP2002097287A (en) Water vapor permeable film
JP2022119289A (en) Freshness retaining film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350