JP5314277B2 - Bathtub with non-contact power supply function - Google Patents

Bathtub with non-contact power supply function Download PDF

Info

Publication number
JP5314277B2
JP5314277B2 JP2007332887A JP2007332887A JP5314277B2 JP 5314277 B2 JP5314277 B2 JP 5314277B2 JP 2007332887 A JP2007332887 A JP 2007332887A JP 2007332887 A JP2007332887 A JP 2007332887A JP 5314277 B2 JP5314277 B2 JP 5314277B2
Authority
JP
Japan
Prior art keywords
contact power
contact
unit
power feeding
bathtub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007332887A
Other languages
Japanese (ja)
Other versions
JP2009159684A (en
Inventor
一史 大木
政博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007332887A priority Critical patent/JP5314277B2/en
Publication of JP2009159684A publication Critical patent/JP2009159684A/en
Application granted granted Critical
Publication of JP5314277B2 publication Critical patent/JP5314277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bathtubs, Showers, And Their Attachments (AREA)

Description

本発明は、非接触給電機能付き浴槽に関するものである。   The present invention relates to a bathtub with a non-contact power feeding function.

従来、非接触給電機能付きの浴槽があり、浴槽に設置した複数の非接触給電部から浴槽内のマッサージ器具や照明器具等の電気機器に非接触で給電して、ユーザは感電の危険性もなく、電気機器を浴槽内で使用することができる(例えば、特許文献1参照)。
特開2004−254805号公報
Conventionally, there is a bathtub with a non-contact power supply function, and power is supplied from a plurality of non-contact power supply units installed in the bathtub to an electric device such as a massage device or a lighting device in the bathtub in a non-contact manner. In addition, an electric device can be used in a bathtub (for example, see Patent Document 1).
JP 2004-254805 A

上記先行文献では、非接触給電部からの電力の供給動作は、非接触受電部を具備した機器本体が浴槽容器の所定位置に設置されたことを検知して駆動されるようになっており、機器本体が浴槽容器の所定位置に設置されていない場合は、非接触給電部は駆動されないとの記載はある。しかし、給電先の電気機器が設置されている非接触給電部と、給電先の電気機器が設置されていない非接触給電部とを区別する具体的な構成は開示されておらず、上記構成の実現は困難であった。   In the above-mentioned prior art, the power supply operation from the non-contact power supply unit is driven by detecting that the device main body equipped with the non-contact power reception unit is installed at a predetermined position of the bathtub container, There is a description that the non-contact power feeding unit is not driven when the device main body is not installed at a predetermined position of the bathtub container. However, a specific configuration for distinguishing between a non-contact power supply unit in which a power supply destination electrical device is installed and a non-contact power supply unit in which a power supply destination electrical device is not installed is not disclosed. Realization was difficult.

本発明は、上記事由に鑑みてなされたものであり、その目的は、複数の非接触給電部のうち給電先の電気機器が設置されている非接触給電部を検出して不要な電力消費を抑制し、省エネルギー化を図ることができる浴槽を提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to detect unnecessary power consumption by detecting a non-contact power feeding unit in which a power supply destination electrical device is installed among a plurality of non-contact power feeding units. The object is to provide a bathtub that can be suppressed and save energy.

請求項1の発明は、底壁および側壁の一面側に湯水を貯留する浴槽容器と、浴槽容器の底壁または側壁の内部、あるいは浴槽容器の底壁または側壁の他面側に配置されて、高周波磁界を発生する複数の非接触給電部とを備え、当該非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で受電した電力を負荷へ供給する非接触受電部を、浴槽容器の底壁または側壁の一面側において非接触給電部に対向する位置に配置した非接触給電機能付き浴槽であって、前記複数の非接触給電部のうち1つのみを駆動する検出可能期間を、駆動する非接触給電部を順次切り換えて一定時間毎に発生させ、検出可能期間において駆動中の非接触給電部から受電側をみたインピーダンスを測定し、当該測定したインピーダンスに基づいて当該非接触給電部に非接触受電部が対向して配置されているか否かを判断することによって、各非接触給電部に非接触受電部が対向して配置されたか否かを検出する駆動対象検出手段と、非接触受電部が対向して配置された非接触給電部のみを駆動する駆動手段と、非接触給電部と非接触受電部とに各々設けられた磁石間に発生する吸引力によって、浴槽容器の底壁または側壁の一面側において非接触給電部に対向する位置に非接触受電部を着脱自在に取り付ける取付手段とを備え、非接触受電部を浴槽容器の底壁または側壁の一面上で移動させると、磁石の吸引力によって、非接触給電部が非接触受電部に引っ張られて、浴槽容器の底壁または側壁の内部、あるいは浴槽容器の底壁または側壁の他面側を同方向に移動することを特徴とする。 Invention of Claim 1 is arrange | positioned in the bathtub wall which stores hot water on the one surface side of a bottom wall and a side wall, the inside of the bottom wall or side wall of a bathtub container, or the other surface side of the bottom wall or side wall of a bathtub container, A non-contact power supply unit that generates a high-frequency magnetic field, and that supplies power received from the non-contact power supply unit in a non-contact manner to the load using electromagnetic induction caused by the high-frequency magnetic field generated by the non-contact power supply unit The power receiving unit is a bathtub with a non-contact power feeding function in which the power receiving unit is disposed at a position facing the non-contact power feeding unit on one side of the bottom wall or side wall of the bathtub container, and drives only one of the plurality of non-contact power feeding units The non-contact power feeding unit to be driven is sequentially switched and generated every fixed time, and the impedance viewed from the non-contact power feeding unit being driven in the detectable period is measured and the measured impedance is Therefore, it is determined whether or not the non-contact power receiving unit is disposed to face each non-contact power feeding unit by determining whether or not the non-contact power receiving unit is disposed to face the non-contact power feeding unit. Attraction generated between magnets provided in the drive target detection unit, the driving unit that drives only the non-contact power feeding unit arranged so that the non-contact power receiving unit faces each other, and the non-contact power feeding unit and the non-contact power receiving unit Mounting means for detachably attaching the non-contact power receiving unit to a position facing the non-contact power feeding unit on one surface side of the bottom wall or side wall of the bathtub container by force, the non-contact power receiving unit being attached to the bottom wall or side wall of the bathtub container When it is moved on one side, the non-contact power feeding part is pulled by the non-contact power receiving part by the magnetic attraction force, and the inside of the bottom wall or side wall of the bathtub container or the other side of the bottom wall or side wall of the bathtub container the Japanese to move in the same direction To.

この発明によれば、非接触給電部に非接触受電部が対向して配置されているか否かを確実に検出することができ、全ての非接触給電部を常時駆動するのではなく、非接触受電部が対向して配置されている非接触給電部のみを駆動するので、不必要な電力を消費することなく、省エネルギー化を図ることができる。また、ユーザは使用する負荷に応じて適切な位置に非接触受電部を設置することができ、優れた使い勝手を得ることができる。また、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。また、ユーザは、使用する負荷の種類や使い方等によって給電ポイントの変更を容易に行うことができる。 According to the present invention, it is possible to reliably detect whether or not the non-contact power receiving unit is disposed so as to face the non-contact power feeding unit. Since only the non-contact power feeding unit disposed with the power receiving unit facing each other is driven, energy saving can be achieved without consuming unnecessary power. Further, the user can install the non-contact power receiving unit at an appropriate position according to the load to be used, and can obtain excellent usability. Further, it is not necessary to separately provide mounting means such as screws and locking means, and the configuration can be simplified and the mounting work can be simplified. In addition, the user can easily change the power feeding point depending on the type of load to be used and how to use it.

請求項2の発明は、請求項1において、前記駆動手段は、前記駆動対象検出手段の検出結果に基づいて、前記非接触受電部が対向して配置された前記非接触給電部を定格出力で駆動し、前記非接触受電部が対向して配置されていない前記非接触給電部を停止させることを特徴とする。According to a second aspect of the present invention, in the first aspect, the driving unit is configured to output, at a rated output, the non-contact power feeding unit in which the non-contact power receiving unit is disposed facing the non-contact power receiving unit based on a detection result of the driving target detection unit. It drives, The said non-contact electric power feeding part which the said non-contact electric power receiving part is arrange | positioned facing is stopped, It is characterized by the above-mentioned.

以上説明したように、本発明では、複数の非接触給電部のうち給電先の電気機器が設置されている非接触給電部を検出して不要な電力消費を抑制し、省エネルギー化を図ることができるという効果がある。また、ユーザは使用する負荷に応じて適切な位置に非接触受電部を設置することができ、優れた使い勝手を得ることができる。また、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。また、ユーザは、使用する負荷の種類や使い方等によって給電ポイントの変更を容易に行うことができる。 As described above, according to the present invention, it is possible to detect a non-contact power supply unit in which a power supply destination electrical device is installed among a plurality of non-contact power supply units, suppress unnecessary power consumption, and save energy. There is an effect that can be done. Further, the user can install the non-contact power receiving unit at an appropriate position according to the load to be used, and can obtain excellent usability. Further, it is not necessary to separately provide mounting means such as screws and locking means, and the configuration can be simplified and the mounting work can be simplified. In addition, the user can easily change the power feeding point depending on the type of load to be used and how to use it.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態の浴槽は非接触給電機能を具備し、従来のコンセントのような接触式のアウトレットに、電気機器(負荷)に直接設けた接触子(導体)または接続線を介して設けた接触子が直接接触することによって行われる電気機器への電力供給の代わりに、非接触で電気機器へ電力供給を行うものである。
(Embodiment 1)
The bathtub of this embodiment has a non-contact power supply function, and is provided on a contact outlet such as a conventional outlet via a contact (conductor) provided directly on an electric device (load) or a connection line. Instead of supplying electric power to an electric device performed by direct contact, electric power is supplied to the electric device in a non-contact manner.

なお、本実施形態においては、建屋H内の配電系統を直流配電系統で構成しており、最初にこの配電システムの概略について図8を用いて説明する。   In the present embodiment, the power distribution system in the building H is constituted by a DC power distribution system. First, an outline of this power distribution system will be described with reference to FIG.

以下に説明する実施形態は、本発明を適用する建物として戸建て住宅の家屋を想定して説明するが、本発明の技術思想を集合住宅に適用することを妨げるものではない。建屋Hには、図8に示すように、直流電力を出力する直流電力供給部101と、直流電力により駆動される電気機器である直流機器U’とが設けられ、直流電力供給部101の出力端部に接続した直流供給線路Wdcを通して直流機器U’に直流電力が供給される。直流電力供給部101と直流機器U’との間には、直流供給線路Wdcに流れる電流を監視し、異常を検知したときに直流給電線路Wdc上で直流電力供給部101から直流機器U’への給電を制限ないし遮断する直流ブレーカ114が設けられる。   The embodiments described below are described assuming a detached house as a building to which the present invention is applied, but this does not preclude the application of the technical idea of the present invention to an apartment house. As shown in FIG. 8, the building H is provided with a DC power supply unit 101 that outputs DC power and a DC device U ′ that is an electric device driven by the DC power. DC power is supplied to the DC device U ′ through the DC supply line Wdc connected to the end. A current flowing through the DC supply line Wdc is monitored between the DC power supply unit 101 and the DC device U ′, and when an abnormality is detected, the DC power supply unit 101 to the DC device U ′ is detected on the DC power supply line Wdc. A DC breaker 114 is provided to limit or cut off the power supply.

直流供給線路Wdcは、直流電力の給電路であるとともに通信路としても兼用されており、高周波の搬送波を用いてデータを伝送する通信信号を直流電圧に重畳することにより直流供給線路Wdcに接続された機器間での通信を可能にしている。この技術は、交流電力を供給する電力線において交流電圧に通信信号を重畳させる電力線搬送技術と類似した技術である。   The DC supply line Wdc is used as both a DC power supply path and a communication path, and is connected to the DC supply line Wdc by superimposing a communication signal for transmitting data on a DC voltage using a high-frequency carrier wave. Enables communication between devices. This technique is similar to a power line carrier technique in which a communication signal is superimposed on an AC voltage in a power line that supplies AC power.

直流供給線路Wdcは、直流電力供給部101を介して宅内サーバ116に接続される。宅内サーバ116は、宅内の通信網(以下、「宅内網」という)を構築する主装置であり、宅内網において直流機器U’が構築するサブシステムなどと通信を行う。   The DC supply line Wdc is connected to the home server 116 via the DC power supply unit 101. The home server 116 is a main device that constructs a home communication network (hereinafter referred to as “home network”), and communicates with a subsystem or the like constructed by the DC device U ′ in the home network.

図示例では、サブシステムとして、パーソナルコンピュータ、無線アクセスポイント、ルータ、IP電話機のような情報系の直流機器U’からなる情報機器システムK101、照明器具のような照明系の直流機器U’からなる照明システムK102,K105、来客対応や侵入者の監視などを行う直流機器U’からなるインターホンシステムK103、火災感知器のような警報系の直流機器U’からなる住警器システムK104などがある。各サブシステムは、自立分散システムを構成しており、サブシステム単独でも動作が可能になっている。   In the illustrated example, the subsystem includes an information equipment system K101 including an information system DC equipment U ′ such as a personal computer, a wireless access point, a router, and an IP telephone, and an illumination system DC equipment U ′ such as a lighting fixture. There are lighting systems K102 and K105, an intercom system K103 composed of a DC device U ′ for handling visitors and monitoring intruders, a residential alarm system K104 composed of an alarm DC device U ′ such as a fire detector, and the like. Each subsystem constitutes a self-supporting distributed system, and can operate even with the subsystem alone.

上述した直流ブレーカ114は、サブシステムに関連付けて設けられており、図示例では、情報機器システムK101、照明システムK102およびインターホンシステムK103、住警器システムK104、照明システムK105に関連付けて4個の直流ブレーカ114を設けている。1台の直流ブレーカ114に複数個のサブシステムを関連付ける場合には、サブシステムごとに直流供給線路Wdcの系統を分割する接続ボックス121が設けられる。図示例においては、照明システムK102とインターホンシステムK103との間に接続ボックス121が設けられている。   The above-described DC breaker 114 is provided in association with a subsystem. In the illustrated example, four DCs are associated with the information equipment system K101, the lighting system K102 and the intercom system K103, the house alarm system K104, and the lighting system K105. A breaker 114 is provided. When a plurality of subsystems are associated with one DC breaker 114, a connection box 121 for dividing the system of the DC supply line Wdc is provided for each subsystem. In the illustrated example, a connection box 121 is provided between the illumination system K102 and the intercom system K103.

情報機器システムK101としては、壁コンセントあるいは床コンセントの形態で建屋Hに先行配置(建屋Hの建築時に施工)される直流コンセント131に接続される直流機器U’からなる情報機器システムK101が設けられる。   As the information equipment system K101, there is provided an information equipment system K101 composed of a DC equipment U ′ connected to a DC outlet 131 arranged in advance in the building H in the form of a wall outlet or a floor outlet (constructed during construction of the building H). .

照明システムK102、K105としては、建屋Hに先行配置される照明器具(直流機器U’)からなる照明システムK102と、天井に先行配置される引掛シーリング132に接続する照明器具(直流機器U’)からなる照明システムK105とが設けられる。引掛シーリング132には、建屋Hの内装施工時に施工業者が照明器具を取り付けるか、または家人自身が照明器具を取り付ける。   As the lighting systems K102 and K105, the lighting system K102 including a lighting fixture (DC device U ′) arranged in advance in the building H and the lighting fixture (DC device U ′) connected to the hook ceiling 132 arranged in advance on the ceiling. And an illumination system K105. At the time of interior construction of the building H, the contractor attaches the lighting fixture to the hook ceiling 132, or the resident himself attaches the lighting fixture.

照明システムK102を構成する直流機器U’である照明器具に対する制御の指示は、赤外線リモコン装置を用いて与えるほか、直流供給線路Wdcに接続されたスイッチ141から通信信号を用いて与えることができる。すなわち、スイッチ141は直流機器U’とともに通信の機能を有している。また、スイッチ141の操作によらず、宅内網の別の直流機器U’あるいは宅内サーバ116から通信信号により制御の指示がなされることもある。照明器具への指示には、点灯、消灯、調光、点滅点灯などがある。   In addition to using an infrared remote control device, a control instruction for the lighting apparatus that is the DC device U ′ constituting the lighting system K102 can be given using a communication signal from the switch 141 connected to the DC supply line Wdc. That is, the switch 141 has a communication function together with the DC device U ′. In addition, a control instruction may be given by a communication signal from another DC device U 'in the home network or the home server 116 regardless of the operation of the switch 141. The instructions to the lighting fixture include lighting, extinguishing, dimming, and blinking lighting.

上述した直流コンセント131、引掛シーリング132には、任意の直流機器U’を接続することができ、接続された直流機器U’に直流電力を出力するから、以下では直流コンセント131、引掛シーリング132を区別する必要がない場合には「直流アウトレット」と呼ぶ。   Arbitrary DC equipment U ′ can be connected to the DC outlet 131 and the hooking ceiling 132 described above, and since DC power is output to the connected DC equipment U ′, the DC outlet 131 and the hooking ceiling 132 will be described below. When it is not necessary to distinguish, it is called a “DC outlet”.

これらの直流アウトレットは、直流機器U’に直接設けた接触子(図示しないプラグの栓刃や導体片等)または接続線を介して設けた接触子が差し込まれる差込式の接続口が器体に開口し、接続口に差し込まれた接触子に直接接触する接触子受けが器体に保持された構造を有しており、接触式で給電を行う。直流アウトレットに接続された直流機器U’が通信機能を有する場合には、直流供給線路Wdcを通して通信信号を伝送することが可能になる。直流機器U’だけではなく直流アウトレットにも通信機能が設けられている。   These DC outlets have a contact (such as a plug blade or conductor piece of a plug (not shown)) directly provided on the DC device U ′ or a plug-in connection port into which a contact provided via a connection line is inserted. The contact holder that directly contacts the contact inserted into the connection port is held by the container, and power is supplied in a contact manner. When the DC device U 'connected to the DC outlet has a communication function, a communication signal can be transmitted through the DC supply line Wdc. A communication function is provided not only in the DC device U 'but also in the DC outlet.

宅内サーバ116は、宅内網に接続されるだけではなく、インターネットを構築する広域網NTに接続される接続口を有している。宅内サーバ116が広域網NTに接続されている場合には、広域網NTに接続されたコンピュータサーバであるセンタサーバ200によるサービスを享受することができる。   The home server 116 not only is connected to the home network, but also has a connection port connected to the wide area network NT that constructs the Internet. When the in-home server 116 is connected to the wide area network NT, it is possible to receive services from the center server 200 that is a computer server connected to the wide area network NT.

センタサーバ200が提供するサービスには、広域網NTを通して宅内網に接続された機器(主として直流機器U’であるが通信機能を有した他の機器も含む)の監視や制御を可能にするサービスがある。このサービスにより、パーソナルコンピュータ、インターネットTV、移動体電話機などのブラウザ機能を備える通信端末(図示せず)を用いて宅内網に接続された機器の監視や制御が可能になる。   The service provided by the center server 200 is a service that enables monitoring and control of equipment (mainly DC equipment U ′ including other equipment having a communication function) connected to the home network through the wide area network NT. There is. This service makes it possible to monitor and control devices connected to the home network using a communication terminal (not shown) having a browser function such as a personal computer, Internet TV, or mobile phone.

宅内サーバ116は、広域網NTに接続されたセンタサーバ200との間の通信と、宅内網に接続された機器との間の通信との両方の機能を備え、宅内網の機器に関する識別情報(ここでは、IPアドレスを用いるものとする)の取得の機能を備える。   The in-home server 116 has both functions of communication with the center server 200 connected to the wide area network NT and communication with equipment connected to the home network, and identification information about equipment in the home network ( Here, it is assumed that an IP address is used).

宅内サーバ116は、センタサーバ200との通信機能を用いることにより、広域網NTに接続された通信端末からセンタサーバ200を通して宅内の機器の監視や制御を可能にする。センタサーバ200は、宅内の機器と広域網NT上の通信端末とを仲介する。   The home server 116 enables monitoring and control of home devices through the center server 200 from a communication terminal connected to the wide area network NT by using a communication function with the center server 200. The center server 200 mediates between home devices and communication terminals on the wide area network NT.

通信端末から宅内の機器の監視や制御を行う場合は、監視や制御の要求をセンタサーバ200に記憶させ、宅内の機器は定期的に片方向のポーリング通信を行うことにより、通信端末からの監視や制御の要求を受信する。この動作により、通信端末から宅内の機器の監視や制御が可能になる。   When monitoring and controlling home devices from a communication terminal, monitoring and control requests are stored in the center server 200, and the home device periodically performs one-way polling communication to monitor from the communication terminal. And receive control requests. With this operation, it is possible to monitor and control devices in the house from the communication terminal.

また、宅内の機器において火災検知など通信端末に通知すべきイベントが生じたときには、宅内の機器からセンタサーバ200に通知し、センタサーバ200から通信端末に対して電子メールによる通知を行う。   Further, when an event that should be notified to the communication terminal, such as a fire detection, occurs in the home device, the home device notifies the center server 200, and the center server 200 notifies the communication terminal by e-mail.

宅内サーバ116における宅内網との通信機能のうち重要な機能は、宅内網を構成する機器の検出と管理である。宅内サーバ116では、UPnP(Universal Plug and Play)を応用して宅内網に接続された機器を自動的に検出する。宅内サーバ116はブラウザ機能を有する表示器117を備え、検出した機器の一覧を表示器117に表示する。この表示器117はタッチパネル式もしくは操作部が付設された構成を有し、表示器117の画面に表示された選択肢から所望の内容を選択する操作が可能になっている。したがって、宅内サーバ116の利用者(施工業者あるいは家人)は、表示器117の画面上で機器の監視ないし制御が可能になる。表示器117は宅内サーバ116とは分離して設けてもよい。   An important function among the communication functions with the home network in the home server 116 is the detection and management of the devices constituting the home network. The home server 116 automatically detects devices connected to the home network by applying UPnP (Universal Plug and Play). The home server 116 includes a display device 117 having a browser function, and displays a list of detected devices on the display device 117. The display device 117 has a configuration with a touch panel type or an operation unit, and can perform an operation of selecting desired contents from options displayed on the screen of the display device 117. Therefore, the user (contractor or householder) of the home server 116 can monitor or control the device on the screen of the display device 117. The display device 117 may be provided separately from the home server 116.

宅内サーバ116では、機器の接続に関する情報を管理しており、宅内網に接続された機器の種類や機能とアドレスとを把握する。したがって、宅内網の機器を連動動作させることができる。機器の接続に関する情報は上述のように自動的に検出されるが、機器を連動動作させるには、機器自身が保有する属性により自動的に関係付けを行うほか、宅内サーバ116にパーソナルコンピュータのような情報端末を接続し、情報端末のブラウザ機能を利用して機器の関係付けを行うこともできる。   The in-home server 116 manages information related to device connection, and grasps the type, function, and address of the device connected to the home network. Accordingly, the devices in the home network can be operated in conjunction with each other. Information on the connection of the device is automatically detected as described above. In order to operate the device in an interlocking manner, the device itself is automatically associated with the attribute held by the device itself, and the home server 116 is configured as a personal computer. It is also possible to connect various information terminals and use the browser function of the information terminals to associate devices.

機器の連動動作の関係は各機器がそれぞれ保持する。したがって、機器は宅内サーバ116を通すことなく連動動作することができる。各機器について、連動動作の関係付けを行うことにより、たとえば、機器であるスイッチの操作により、機器である照明器具の点灯あるいは消灯の動作を行うことが可能になる。また、連動動作の関係付けはサブシステム内で行うことが多いが、サブシステムを超える関係付けも可能である。   Each device holds the relationship of the interlocking operation of the devices. Therefore, the device can operate in an interlocked manner without passing through the home server 116. By associating the linked operations for each device, for example, by operating a switch that is a device, it is possible to turn on or off the lighting fixture that is the device. In many cases, the association of the interlocking operations is performed within the subsystem, but the association beyond the subsystem is also possible.

ところで、直流電力供給部101は、基本的には、商用電源のように宅外から供給される交流電源ACの電力変換により直流電力を生成する。図示する構成では、交流電源ACは、分電盤110に内器として取り付けられた主幹ブレーカ111を通して、スイッチング電源を含むAC/DCコンバータ112に入力される。AC/DCコンバータ112から出力される直流電力は、協調制御部113を通して各直流ブレーカ114に接続される。   By the way, the DC power supply unit 101 basically generates DC power by power conversion of an AC power supply AC supplied from outside the house like a commercial power supply. In the configuration shown in the figure, the AC power source AC is input to an AC / DC converter 112 including a switching power source through a main circuit breaker 111 attached to the distribution board 110 as an internal unit. The DC power output from the AC / DC converter 112 is connected to each DC breaker 114 through the cooperative control unit 113.

直流電力供給部101には、交流電源ACから電力が供給されない期間(たとえば、商用電源ACの停電期間)に備えて二次電池162が設けられている。また、直流電力を生成する太陽電池161や燃料電池163を併用することも可能になっている。交流電源ACから直流電力を生成するAC/DCコンバータ112を備える主電源に対して、太陽電池161や二次電池162や燃料電池163は分散電源になる。なお、図示例において、太陽電池161、二次電池162、燃料電池163は出力電圧を制御する回路部を含み、二次電池162は放電だけではなく充電を制御する回路部も含んでいる。   The DC power supply unit 101 is provided with a secondary battery 162 in preparation for a period in which power is not supplied from the AC power supply AC (for example, a power failure period of the commercial power supply AC). It is also possible to use a solar cell 161 or a fuel cell 163 that generates DC power. The solar battery 161, the secondary battery 162, and the fuel battery 163 are distributed power supplies with respect to the main power supply including the AC / DC converter 112 that generates DC power from the AC power supply AC. In the illustrated example, the solar cell 161, the secondary battery 162, and the fuel cell 163 include a circuit unit that controls the output voltage, and the secondary battery 162 includes a circuit unit that controls charging as well as discharging.

分散電源のうち太陽電池161や燃料電池163は必ずしも設けなくてもよいが、二次電池162は設けるのが望ましい。二次電池162は主電源や他の分散電源により適時充電され、二次電池162の放電は、交流電源ACから電力が供給されない期間だけではなく必要に応じて適時に行われる。二次電池162の充放電や主電源と分散電源との協調は、協調制御部113により行われる。すなわち、協調制御部113は、直流電力供給部101を構成する主電源および分散電源から直流機器U’への電力の配分を制御する直流電力制御部として機能する。なお、太陽電池161、二次電池162、燃料電池163の出力を交流電力に変換し、AC/DCコンバータ112の入力電力として用いる構成を採用してもよい。   Of the distributed power sources, the solar cell 161 and the fuel cell 163 are not necessarily provided, but the secondary battery 162 is preferably provided. The secondary battery 162 is charged in a timely manner by a main power source or other distributed power source, and the secondary battery 162 is discharged not only in a period in which power is not supplied from the AC power source AC but also in a timely manner as necessary. The coordination control unit 113 performs charge / discharge of the secondary battery 162 and coordination between the main power source and the distributed power source. That is, the cooperative control unit 113 functions as a DC power control unit that controls the distribution of power from the main power supply and the distributed power supply configuring the DC power supply unit 101 to the DC equipment U ′. Note that a configuration may be adopted in which the outputs of the solar cell 161, the secondary battery 162, and the fuel cell 163 are converted into AC power and used as input power of the AC / DC converter 112.

直流機器U’の駆動電圧は機器に応じた複数種類の電圧から選択されるから、協調制御部113にDC/DCコンバータを設け、主電源および分散電源から得られる直流電圧を必要な電圧に変換するのが望ましい。通常は、1系統のサブシステム(もしくは1台の直流ブレーカ114に接続された直流機器U’)に対して1種類の電圧が供給されるが、1系統のサブシステムに対して3線以上を用いて複数種類の電圧を供給するように構成してもよい。あるいはまた、直流供給線路Wdcを2線式とし、線間に印加する電圧を時間経過に伴って変化させる構成を採用することも可能である。DC/DCコンバータは、直流ブレーカと同様に複数に分散して設けてもよい。   Since the driving voltage of the DC device U ′ is selected from a plurality of types of voltages depending on the device, a DC / DC converter is provided in the cooperative control unit 113 to convert the DC voltage obtained from the main power source and the distributed power source into the necessary voltage. It is desirable to do. Normally, one type of voltage is supplied to one subsystem (or DC equipment U ′ connected to one DC breaker 114), but three or more wires are supplied to one subsystem. A plurality of types of voltages may be used. Alternatively, it is possible to adopt a configuration in which the DC supply line Wdc is of a two-wire type and the voltage applied between the lines is changed with time. The DC / DC converter may be provided in a plurality of dispersed manners like the DC breaker.

上述の構成例では、AC/DCコンバータ112を1個だけ図示しているが、複数個のAC/DCコンバータ112を並設することが可能であり、複数個のAC/DCコンバータ112を設けるときには、負荷の大きさに応じて運転するAC/DCコンバータ112の台数を増減させるのが望ましい。   In the above configuration example, only one AC / DC converter 112 is illustrated, but a plurality of AC / DC converters 112 can be arranged in parallel, and when a plurality of AC / DC converters 112 are provided. It is desirable to increase or decrease the number of AC / DC converters 112 that are operated according to the magnitude of the load.

上述したAC/DCコンバータ112、協調制御部113、直流ブレーカ114、太陽電池161、二次電池162、燃料電池163には通信機能が設けられており、主電源および分散電源や直流機器U’を含む負荷の状態に対処する連携動作を行うことを可能にしている。この通信に用いる通信信号は、直流機器U’に用いる通信信号と同様に直流電圧に重畳する形式で伝送する。   The AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, the solar cell 161, the secondary battery 162, and the fuel cell 163 described above are provided with a communication function, and the main power source, the distributed power source, and the DC device U ′ are connected. It is possible to perform a cooperative operation to deal with the load status including it. The communication signal used for this communication is transmitted in the form of being superimposed on the DC voltage in the same manner as the communication signal used for the DC device U '.

上述の例では主幹ブレーカ111から出力された交流電力をAC/DCコンバータ112により直流電力に変換するために、AC/DCコンバータ112を分電盤110内に配置しているが、主幹ブレーカ111の出力側において分電盤110内に設けた分岐ブレーカ(図示せず)で交流供給線路を複数系統に分岐し、各系統の交流供給線路にAC/DCコンバータを設けて系統ごとに直流電力に変換する構成を採用してもよい。   In the above example, the AC / DC converter 112 is arranged in the distribution board 110 in order to convert the AC power output from the main breaker 111 into DC power by the AC / DC converter 112. On the output side, a branch breaker (not shown) provided in the distribution board 110 branches the AC supply line into a plurality of systems, and an AC / DC converter is provided on the AC supply line of each system to convert it into DC power for each system. You may employ | adopt the structure to do.

この場合、建屋Hの各階や各部屋を単位としてAC/DCコンバータを設けることができるから、AC/DCコンバータを系統別に管理することができ、しかも、直流電力を利用する直流機器U’との間の直流供給線路Wdcの距離が小さくなるから、直流供給線路Wdcでの電圧降下による電力損失を低減させることができる。また、主幹ブレーカ111および分岐ブレーカを分電盤110に収納し、AC/DCコンバータ112と協調制御部113と直流ブレーカ114と宅内サーバ116とを分電盤110とは別の盤に収納してもよい。   In this case, since the AC / DC converter can be provided for each floor or room of the building H, the AC / DC converter can be managed for each system, and the DC device U ′ using DC power can be managed. Since the distance of the direct current supply line Wdc is reduced, the power loss due to the voltage drop in the direct current supply line Wdc can be reduced. Also, the main breaker 111 and the branch breaker are housed in the distribution board 110, and the AC / DC converter 112, the cooperative control unit 113, the DC breaker 114, and the home server 116 are housed in a separate board from the distribution board 110. Also good.

本実施形態の非接触機能付き浴槽1では、上記配電システムにおいて直流機器へ直流電力を供給する直流配電系統に非接触給電システムを適用しており、その外観を図1に示す。浴槽1は、平長矩形状の底壁2の四周から側壁3を立ち上げて底壁2と側壁3で囲まれる槽部4を形成した浴槽容器1aを備える。この浴槽容器1aは、1つの長辺と1つの短辺とを浴室R1の側面Pに沿って設置されている。   In the bathtub 1 with a non-contact function of the present embodiment, the non-contact power supply system is applied to a DC power distribution system that supplies DC power to DC devices in the above power distribution system, and the appearance is shown in FIG. The bathtub 1 includes a bathtub container 1 a in which a side wall 3 is raised from four rounds of a flat rectangular bottom wall 2 to form a tank portion 4 surrounded by the bottom wall 2 and the side wall 3. This bathtub container 1a is installed along the side surface P of bathroom R1 with one long side and one short side.

図2に示すように、浴槽容器1aの側壁3および底壁2は中空に形成され、側壁3および底壁2内には複数の非接触給電部10が納装されており、浴室R1の側面P内を配設された直流供給線路Wdcが側壁3および底壁2内に導入されて各非接触給電部10に接続し、各非接触給電部10へ直流電力が供給される。   As shown in FIG. 2, the side wall 3 and the bottom wall 2 of the bathtub container 1 a are formed hollow, and a plurality of non-contact power feeding units 10 are mounted in the side wall 3 and the bottom wall 2, and the side surface of the bathroom R <b> 1. A DC supply line Wdc disposed in P is introduced into the side wall 3 and the bottom wall 2 and connected to each non-contact power feeding unit 10, and DC power is supplied to each non-contact power feeding unit 10.

さらに、浴槽容器1aの側壁3の外面上に複数の非接触給電部10を組み込んだ給電シートXを敷設する。給電シートXは、樹脂製のシート材50の側壁3側の面から導出された接続部51と、シート材50内に配設されて接続部51に接続した配電路52と、シート材50内に配設されて配電路52に接続した複数の非接触給電部10とで構成される。接続部51は側壁3内の直流供給線路Wdcに接続しており、接続部51および配電路52を介して各非接触給電部10へ直流電力が供給される。   Furthermore, the electric power feeding sheet | seat X incorporating the some non-contact electric power feeding part 10 is laid on the outer surface of the side wall 3 of the bathtub container 1a. The power supply sheet X includes a connection portion 51 led out from the side wall 3 side surface of the resin sheet material 50, a distribution path 52 disposed in the sheet material 50 and connected to the connection portion 51, and the sheet material 50. And a plurality of non-contact power feeding units 10 connected to the power distribution path 52. The connecting portion 51 is connected to the DC supply line Wdc in the side wall 3, and DC power is supplied to each non-contact power feeding portion 10 through the connecting portion 51 and the distribution path 52.

各非接触給電部10は、非接触式のアウトレットを構成しており、この非接触給電部10は、図3に示すように、上記直流供給線路Wdcを介して供給される直流電力を高周波電力に変換する高周波電力発生回路11と、高周波電力発生回路11から高周波電力を供給されることによって高周波磁界を発生する一次コイルL1とで構成される。また、浴槽容器1aの側壁3および底壁2の内面(槽部4を構成する面)において非接触給電部10に対向する箇所に給電ポイントを示す印が施され、浴室R1内のユーザは視覚的に給電ポイントを認識できる。なお、図3では側壁3での配置を例示している。   Each non-contact power supply unit 10 constitutes a non-contact type outlet, and as shown in FIG. 3, the non-contact power supply unit 10 converts DC power supplied via the DC supply line Wdc to high-frequency power. The high-frequency power generation circuit 11 for converting to a high-frequency power generation circuit 11 and a primary coil L1 that generates a high-frequency magnetic field when high-frequency power is supplied from the high-frequency power generation circuit 11. Moreover, the mark which shows a power feeding point is given to the location which opposes the non-contact electric power feeding part 10 in the inner surface (surface which comprises the tank part 4) of the side wall 3 and the bottom wall 2 of the bathtub container 1a, and the user in bathroom R1 is visual The power supply point can be recognized. FIG. 3 illustrates the arrangement on the side wall 3.

高周波電力発生回路11は、内部に具備したスイッチング素子(図示なし)を高周波数でスイッチングさせることで直流電圧を高周波電圧に変換し、当該高周波電圧を一次コイルL1の両端に印加して一次コイルL1に高周波電流を供給し、一次コイルL1は、高周波電流によって高周波磁界を発生する。なお、スイッチング素子を用いて直流電圧を高周波電圧に変換する回路構成については周知であり、説明は省略する。   The high frequency power generation circuit 11 converts a DC voltage into a high frequency voltage by switching an internal switching element (not shown) at a high frequency, and applies the high frequency voltage to both ends of the primary coil L1 to apply the high frequency voltage to the primary coil L1. A high frequency current is supplied to the primary coil L1, and the primary coil L1 generates a high frequency magnetic field by the high frequency current. Note that a circuit configuration for converting a DC voltage into a high-frequency voltage using a switching element is well known, and a description thereof will be omitted.

そして、通信機能付きのスピーカモジュールやLED照明器具や泡発生器やマッサージ器具等の各直流機器Uは、図3に示すように、非接触給電システムに用いる非接触受電部20と、各直流機器の機能部21(例えば、スピーカ機能、照明機能、泡発生機能、マッサージ振動機能等)とを備えている。なお、直流機器Uは、非接触受電部20を単体で形成し、機能部21を備える機器本体に電源コードCDを介して動作電源を供給する構成や、非接触受電部20と機能部21とを一体に組み込んだ構成のいずれでもよい。非接触受電部20を単体で形成した場合、機器本体は非接触給電部10の位置に関わらず任意に配置できる。   And each DC apparatus U, such as a speaker module with a communication function, an LED lighting apparatus, a bubble generator, and a massage apparatus, as shown in FIG. 3, the non-contact electric power receiving part 20 used for a non-contact electric power feeding system, and each DC apparatus Functional unit 21 (for example, a speaker function, an illumination function, a bubble generation function, a massage vibration function, etc.). Note that the DC device U has a configuration in which the non-contact power receiving unit 20 is formed as a single unit and operating power is supplied to the device body including the functional unit 21 via the power cord CD, or the non-contact power receiving unit 20 and the functional unit 21. Any of the configurations in which is integrally incorporated may be used. When the non-contact power receiving unit 20 is formed as a single unit, the device body can be arbitrarily arranged regardless of the position of the non-contact power feeding unit 10.

非接触受電部20は、浴槽容器1aの側壁3および底壁2の内面において各非接触給電部10に対向する各位置(給電ポイント)に配置される。この非接触受電部20は、非接触給電部10の一次コイルL1に電磁気的に結合して、非接触給電部10が発生した高周波磁界が鎖交すると電磁誘導によって二次電圧が誘起する二次コイルL2と、二次コイルL2の両端に発生した二次電圧を全波整流する整流部DBと、整流部DBの正側の整流出力に直列接続されたインダクタLaと、インダクタLaを介した整流電圧を平滑する平滑コンデンサCaとで構成され、平滑コンデンサCaの両端電圧が機能部21に供給されて、機能部21の動作電源となる。また、平滑コンデンサCaの出力にシリーズレギュレータまたはチョッパ回路を設けて定電圧機能を付加してもよい。さらに、図3に破線で示すように、二次コイルL2に並列に共振コンデンサC2を接続して、一次コイルL1からの受電能力を向上させてもよい。   The non-contact power receiving unit 20 is disposed at each position (power feeding point) facing each non-contact power feeding unit 10 on the inner surface of the side wall 3 and the bottom wall 2 of the bathtub container 1a. The non-contact power receiving unit 20 is electromagnetically coupled to the primary coil L1 of the non-contact power feeding unit 10 and a secondary voltage is induced by electromagnetic induction when the high frequency magnetic field generated by the non-contact power feeding unit 10 is linked. A coil L2, a rectifier DB for full-wave rectification of the secondary voltage generated at both ends of the secondary coil L2, an inductor La connected in series to the rectified output on the positive side of the rectifier DB, and rectification via the inductor La A smoothing capacitor Ca that smoothes the voltage is supplied. The voltage across the smoothing capacitor Ca is supplied to the function unit 21 and serves as an operating power source for the function unit 21. Further, a constant voltage function may be added by providing a series regulator or chopper circuit at the output of the smoothing capacitor Ca. Furthermore, as indicated by a broken line in FIG. 3, a resonance capacitor C2 may be connected in parallel to the secondary coil L2 to improve the power receiving capability from the primary coil L1.

なお、上述の非接触給電部10、非接触受電部20、機能部21、直流機器Uは、防水構造を有している。   In addition, the above-mentioned non-contact electric power feeding part 10, the non-contact electric power receiving part 20, the function part 21, and the direct current | flow apparatus U have a waterproof structure.

そして、本実施形態では、浴槽容器1aの側壁3および底壁2の内面に、非接触受電部20、および非接触受電部20を具備した直流機器Uを着脱自在に取り付ける取付手段を備えている。   And in this embodiment, the attachment means which attaches | detaches the direct-current apparatus U which comprised the non-contact power receiving part 20 and the non-contact power receiving part 20 to the inner surface of the side wall 3 and the bottom wall 2 of the bathtub container 1a is provided. .

この取付手段は、図4(a),(b)に示すように、非接触給電部10に設けた磁石M1a,M1bと、非接触受電部20に設けた磁石M2a,M2bとで構成される。非接触給電部10に設けた磁石M1a,M1bは略L型に各々形成され、一辺がS極、他辺がN極に各々着磁されており、磁石M1a,M1bの互いに異極となる端面同士を対向させて形成される矩形枠の内側に非接触給電部10を取り付ける。また、非接触受電部20に設けた磁石M2a,M2bは略L型に各々形成され、一辺がS極、他辺がN極に各々着磁されており、磁石M2a,M2bの互いに異極となる端面同士を対向させて形成される矩形枠の内側に非接触受電部20を取り付ける。   As shown in FIGS. 4A and 4B, the attachment means includes magnets M1a and M1b provided in the non-contact power feeding unit 10 and magnets M2a and M2b provided in the non-contact power receiving unit 20. . The magnets M1a and M1b provided in the non-contact power feeding unit 10 are each formed in a substantially L shape, one side is magnetized to the S pole and the other side is magnetized to the N pole, and the end surfaces of the magnets M1a and M1b that are different from each other The non-contact power feeding unit 10 is attached to the inside of a rectangular frame formed so as to face each other. Further, the magnets M2a and M2b provided in the non-contact power receiving unit 20 are each formed in a substantially L shape, and one side is magnetized to an S pole and the other side is an N pole, and the magnets M2a and M2b are different from each other. The non-contact power receiving unit 20 is attached to the inside of a rectangular frame formed by facing the end faces.

したがって、非接触給電部10と非接触受電部20とが浴槽容器1aの側壁3および底壁2の内面を介して互いに対向したときに、磁石M1a,M1bと磁石M2a,M2bとの各異極同士が互いに対向すれば、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による吸引力が発生して、非接触受電部20は、非接触給電部10に対向して正しい取付方向で設置される。取り付け方向が例えば90度ずれた場合には、磁石M1a,M1bと磁石M2a,M2bとの各同極同士が対向し、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による反発力が発生して、給電ポイント上で非接触受電部20を非接触給電部10に対向して設置することはできない。これは、一次コイルL1および二次コイルL2の各コア形状に起因して互いの電磁気的な結合が最大となる取付方向があることから、非接触受電部20を必ず正しい取付方向に設置させるためであり、上述の正しい取付方向とは、一次コイルL1と二次コイルL2との電磁気的な結合度が最も高くなる方向のことである。このときの磁気による吸引力は、非接触受電部20を組み込んだ各直流機器Uや非接触受電部20単体を、浴槽容器1aの側壁3および底壁2に取付可能な力を発生する。   Accordingly, when the non-contact power feeding unit 10 and the non-contact power receiving unit 20 face each other via the side wall 3 and the inner surface of the bottom wall 2 of the bathtub container 1a, the different polarities of the magnets M1a and M1b and the magnets M2a and M2b If they face each other, a magnetic attractive force is generated between the magnets M1a, M1b and the magnets M2a, M2b, and the non-contact power receiving unit 20 is installed in the correct mounting direction so as to face the non-contact power feeding unit 10. Is done. For example, when the mounting direction is shifted by 90 degrees, the same polarity of the magnets M1a, M1b and the magnets M2a, M2b face each other, and a magnetic repulsive force is generated between the magnets M1a, M1b and the magnets M2a, M2b. Thus, the non-contact power receiving unit 20 cannot be installed facing the non-contact power feeding unit 10 on the power feeding point. This is because there is a mounting direction in which the mutual electromagnetic coupling is maximized due to the respective core shapes of the primary coil L1 and the secondary coil L2, so that the non-contact power receiving unit 20 is always installed in the correct mounting direction. The correct mounting direction described above is the direction in which the degree of electromagnetic coupling between the primary coil L1 and the secondary coil L2 is the highest. At this time, the magnetic attractive force generates a force capable of attaching each DC device U incorporating the non-contact power receiving unit 20 and the non-contact power receiving unit 20 alone to the side wall 3 and the bottom wall 2 of the bathtub container 1a.

したがってユーザは、非接触受電部20を具備した直流機器Uや非接触受電部20単体を浴槽容器1aの側壁3および底壁2上に近付ければ、上記磁気による吸引力によって、非接触受電部20が非接触給電部10に対向して正しく取り付けられる。そして、非接触給電部10が発生する高周波磁界による電磁誘導によって、非接触受電部20は非接触給電部10から非接触で受電し、直流機器Uの機能部21へ動作電源を供給する。   Therefore, if the user brings the DC device U including the non-contact power receiving unit 20 or the non-contact power receiving unit 20 alone close to the side wall 3 and the bottom wall 2 of the bathtub container 1a, the non-contact power receiving unit is generated by the magnetic attraction force. 20 is correctly attached facing the non-contact power feeding unit 10. Then, the non-contact power receiving unit 20 receives power from the non-contact power feeding unit 10 in a non-contact manner by electromagnetic induction by a high-frequency magnetic field generated by the non-contact power feeding unit 10 and supplies operating power to the functional unit 21 of the DC device U.

而して、磁気による吸着力を用いて直流機器Uの非接触受電部20を、浴槽容器1aの側壁3内の非接触給電部10に対向して取り付けるので、ねじや係止手段等の取付手段を別途設ける必要がなく、構成の簡略化、取付作業の簡易化を図ることができる。また、面ファスナ、吸盤等の取付手段によって、直流機器Uや非接触受電部20単体を浴槽容器1aの側壁3および底壁2の内面に取り付ける構成でもよく、さらにはこれらの取付手段を上記磁石を用いた取付手段と併用してもよい。   Thus, since the non-contact power receiving unit 20 of the DC device U is mounted opposite to the non-contact power feeding unit 10 in the side wall 3 of the bathtub container 1a by using magnetic attraction force, mounting of screws, locking means, etc. There is no need to provide a separate means, and the configuration can be simplified and the mounting operation can be simplified. Further, the DC device U or the non-contact power receiving unit 20 alone may be attached to the inner surface of the side wall 3 and the bottom wall 2 of the bathtub container 1a by attaching means such as a hook-and-loop fastener, a suction cup, and the like. You may use together with the attachment means using.

また、非接触給電部10内の一次コイルL1と非接触受電部20の二次コイルL2との相対位置および設置環境や、一次コイルL1が発生する高周波磁界の周波数および大きさおよび範囲や、磁石M1a,M1bおよび磁石M2a,M2bからなる取付手段の構成は、規格によって統一されている。すなわち、上記非接触給電部10が発生する高周波磁界は、所定の規格に基づく所定周波数、所定強度の磁界が所定範囲内に発生するものであり、浴槽容器1aに非接触給電部10を設置する位置も所定の規格によって決められており、また上記非接触受電部20を浴槽容器1aの側壁3および底壁2の内面に設置する際に、非接触給電部10との相対位置(距離、方向等)も所定の規格で決められている。したがって、非接触受電部20が非接触給電部10から受電する電力は規定の範囲内に収まり、機能部21の構成を簡略化することができる(例えば、動作可能入力範囲を狭く設計できる等)。   Further, the relative position and installation environment of the primary coil L1 in the non-contact power feeding unit 10 and the secondary coil L2 of the non-contact power receiving unit 20, the frequency, size and range of the high-frequency magnetic field generated by the primary coil L1, magnets The structure of the attaching means comprising M1a, M1b and magnets M2a, M2b is standardized according to the standard. That is, the high-frequency magnetic field generated by the non-contact power feeding unit 10 is a magnetic field having a predetermined frequency and a predetermined intensity based on a predetermined standard within a predetermined range, and the non-contact power feeding unit 10 is installed in the bathtub container 1a. The position is also determined by a predetermined standard, and when the non-contact power receiving unit 20 is installed on the inner surface of the side wall 3 and the bottom wall 2 of the bathtub container 1a, the relative position (distance, direction) to the non-contact power feeding unit 10 is determined. Etc.) is also determined by a predetermined standard. Therefore, the power received by the non-contact power receiving unit 20 from the non-contact power feeding unit 10 is within a specified range, and the configuration of the functional unit 21 can be simplified (for example, the operable input range can be designed to be narrow). .

そして、非接触給電部10は、浴槽容器1aの側壁3内の複数箇所に各々組み込まれており、上記各部の規格化と併せて、ユーザは使用する直流機器Uに応じて適切な位置に直流機器Uを容易に設置することができ、優れた使い勝手を得ることができる。   And the non-contact electric power feeding part 10 is each incorporated in the several location in the side wall 3 of the bathtub container 1a, and a user is direct-current-directed to an appropriate position according to the direct current | flow apparatus U to be used in combination with the normalization of said each part. The device U can be easily installed, and excellent usability can be obtained.

次に、本実施形態では、複数の非接触給電部10を浴槽容器1aに配置しているが、全ての非接触給電部10を常時駆動するのではなく、非接触受電部20が対向して配置されている非接触給電部10のみを駆動する構成を備えており、図5を用いて以下説明する。   Next, in this embodiment, although the some non-contact electric power feeding part 10 is arrange | positioned in the bathtub container 1a, not all the non-contact electric power feeding parts 10 are driven constantly, but the non-contact electric power receiving part 20 faces. A configuration for driving only the arranged non-contact power feeding unit 10 is provided, which will be described below with reference to FIG.

まず、予め決められた所定の数の非接触給電部10を1つのブロックBとし(図5では4つの非接触給電部10a〜10dでブロックBを構成する)、非接触給電部10a〜10dには、リレー31a〜31dの各接点311を介して直流供給線路Wdcから直流電力が各々供給される。そして、リレー31a〜31dの各リレーコイル312は、制御電源Vccとグランドレベルとの間にトランジスタ32a〜32dの各コレクタ−エミッタを介して接続されており、トランジスタ32a〜32dの各ベースはコントローラ40の出力部に接続されている。   First, a predetermined number of non-contact power supply units 10 are defined as one block B (in FIG. 5, four non-contact power supply units 10a to 10d constitute block B). Are supplied with DC power from the DC supply line Wdc via the respective contacts 311 of the relays 31a to 31d. The relay coils 312 of the relays 31a to 31d are connected between the control power source Vcc and the ground level via the collectors and emitters of the transistors 32a to 32d, and the bases of the transistors 32a to 32d are connected to the controller 40. Connected to the output.

コントローラ40は、トランジスタ32a〜32dの各ベースへの出力を個別に制御して、トランジスタ32a〜32dを各々オン・オフさせており、オンしたトランジスタ32(32a〜32d)にリレーコイル312を接続したリレー31(31a〜31d)は接点311がオンし、対応する非接触給電部10(10a〜10d)に直流電力が供給され、当該非接触給電部10が駆動される。   The controller 40 individually controls the outputs of the transistors 32a to 32d to turn on and off the transistors 32a to 32d, and connects the relay coil 312 to the turned-on transistors 32 (32a to 32d). In the relay 31 (31a to 31d), the contact 311 is turned on, DC power is supplied to the corresponding non-contact power supply unit 10 (10a to 10d), and the non-contact power supply unit 10 is driven.

そして、上記リレー31a〜31d、トランジスタ32a〜32d、コントローラ40で駆動制御部Aを構成し、駆動制御部Aは、非接触給電部10a〜10dに非接触受電部20が対向して配置されたか否かを検出する駆動対象検出手段と、非接触受電部20が対向して配置された非接触給電部10の一次コイルL1に定格電流を供給して高周波磁界を発生させる駆動手段とを形成している。なお、この駆動制御部Aは、浴槽容器1a内に配置される。   The relays 31a to 31d, the transistors 32a to 32d, and the controller 40 constitute the drive control unit A. In the drive control unit A, the non-contact power reception unit 20 is disposed so as to face the non-contact power supply units 10a to 10d. Driving object detecting means for detecting whether or not, and driving means for generating a high-frequency magnetic field by supplying a rated current to the primary coil L1 of the non-contact power feeding section 10 disposed so as to face the non-contact power receiving section 20 are formed. ing. In addition, this drive control part A is arrange | positioned in the bathtub container 1a.

まず、コントローラ40は、4つのトランジスタ32a〜32dのうち1つのみをオンさせる期間を、通常の給電動作中に一定時間毎に生成することで、4つの非接触給電部10a〜10dのうち1つのみを駆動して他を停止させる検出可能期間を、駆動する非接触給電部10を順次切り換えて一定時間毎に発生させる。すなわち、非接触給電部10aのみが駆動する検出可能期間T1 → 非接触給電部10bのみが駆動する検出可能期間T2 → 非接触給電部10cのみが駆動する検出可能期間T3 → 非接触給電部10dのみが駆動する検出可能期間T4を順次、通常の給電動作中に一定時間毎に発生させ、この動作を繰り返す。   First, the controller 40 generates a period during which only one of the four transistors 32a to 32d is turned on at regular intervals during a normal power feeding operation, so that one of the four non-contact power feeding units 10a to 10d. A detectable period in which only one is driven and the others are stopped is generated at regular intervals by sequentially switching the non-contact power feeding unit 10 to be driven. That is, a detectable period T1 in which only the non-contact power supply unit 10a is driven → a detectable period T2 in which only the non-contact power supply unit 10b is driven → a detectable period T3 in which only the non-contact power supply unit 10c is driven → only the non-contact power supply unit 10d Detectable periods T4 during which are driven are sequentially generated at regular intervals during normal power feeding operation, and this operation is repeated.

そして、コントローラ40の入力部は、非接触給電部10a〜10dの各一次コイルL1の両端間に接続しており(図3参照)、検出可能期間T1〜T4においてコントローラ40は非接触給電部10a〜10dから受電側を見たインピーダンス(以降、受電側インピーダンスと称す)を各々測定する。この受電側インピーダンスは、非接触給電部10に対向して非接触受電部20が設置されていない場合と、非接触給電部10に対向して非接触受電部20が設置された場合とでは互いに異なる値となり、コントローラ40は、受電側インピーダンスが通常値(非接触受電部20が設置されていない場合の受電側インピーダンス)から所定値(非接触受電部20が設置された場合の受電側インピーダンス)に変化した場合に非接触受電部20が設置されたと判断する。非接触受電部20の設置前と設置後の受電側インピーダンスの変化パターンは、一次コイルL1および二次コイルL2の各設定(自己インダクタンス、相互インダクタンス等)や、非接触受電部20および機能部21の回路構成によって、予め所定のパターンで変化するように設計されており、例えば、非接触給電部10に対向して金属板や磁性体等が配置された場合には、受電側インピーダンスの変化パターンが上記所定のパターンとは異なるため、コントローラ40は当該非接触給電部10を駆動しない。   And the input part of the controller 40 is connected between the both ends of each primary coil L1 of non-contact electric power feeding part 10a-10d (refer FIG. 3), and the controller 40 is non-contact electric power feeding part 10a in the detectable period T1-T4. -10d, the impedance of the power reception side (hereinafter referred to as power reception side impedance) is measured. The power receiving side impedance is different between the case where the non-contact power receiving unit 20 is not installed facing the non-contact power feeding unit 10 and the case where the non-contact power receiving unit 20 is installed facing the non-contact power feeding unit 10. The controller 40 has different values, and the controller 40 has a normal value (power-receiving-side impedance when the non-contact power-receiving unit 20 is not installed) to a predetermined value (power-receiving-side impedance when the non-contact power-receiving unit 20 is installed). It is determined that the non-contact power receiving unit 20 has been installed when the change is made. The change pattern of the power-receiving-side impedance before and after installation of the non-contact power receiving unit 20 includes each setting of the primary coil L1 and the secondary coil L2 (self-inductance, mutual inductance, etc.), the non-contact power receiving unit 20 and the functional unit 21. For example, when a metal plate, a magnetic body, or the like is arranged facing the non-contact power feeding unit 10, the power receiving side impedance change pattern is designed so as to change in a predetermined pattern. Is different from the predetermined pattern, the controller 40 does not drive the non-contact power feeding unit 10.

このように、コントローラ40は、通常の給電動作中に一定時間毎に発生する検出可能期間T1〜T4において、各非接触給電部10に対向して非接触受電部20が設置されているか否かを順次判断することができ、検出可能期間T1〜T4以外では、非接触受電部20が対向して設置されている全ての非接触給電部10を駆動して、非接触受電部20への通常の給電動作を行う。   In this manner, the controller 40 determines whether or not the non-contact power receiving unit 20 is installed facing each non-contact power feeding unit 10 in the detectable periods T1 to T4 that occur at regular intervals during a normal power feeding operation. The non-contact power receiving unit 20 is driven to drive all the non-contact power feeding units 10 opposed to each other, and the normal to the non-contact power receiving unit 20 except for the detectable periods T1 to T4. The power feeding operation is performed.

つまり、コントローラ40は図6に示すフローチャートのように、まず4つのトランジスタ32a〜32dのうちいずれか1つのみをオンさせ(S1)、対応する1つの非接触給電部10を駆動して、当該非接触給電部10からみた受電側インピーダンスを測定し(S2)、当該非接触給電部10に対向して非接触受電部20が設置されているか否かを、測定した受電側インピーダンスに基づいて判断する(S3)。そして、この判断結果に基づいて当該非接触給電部10の出力調整を行い、非接触受電部20が設置されている場合には当該非接触給電部10の駆動状態を継続して定格出力にし、非接触受電部20が設置されていない場合にはステップS1でオンしたトランジスタ32をオフさせて、当該非接触給電部10を駆動停止して出力を零にする(S4)。以降、非接触受電部20が対向して設置されている全ての非接触給電部10を駆動する通常給電を行い(S5)、一定時間の経過後(S6)に4つのトランジスタ32a〜32dのうち次の1つをオンさせて(S7)、上記処理S2〜S7を繰り返す。   That is, as shown in the flowchart of FIG. 6, the controller 40 first turns on only one of the four transistors 32 a to 32 d (S 1), drives the corresponding non-contact power feeding unit 10, and The power receiving side impedance viewed from the non-contact power feeding unit 10 is measured (S2), and whether or not the non-contact power receiving unit 20 is installed facing the non-contact power feeding unit 10 is determined based on the measured power receiving side impedance. (S3). And based on this determination result, the output of the non-contact power feeding unit 10 is adjusted, and when the non-contact power receiving unit 20 is installed, the driving state of the non-contact power feeding unit 10 is continuously set to the rated output, If the non-contact power receiving unit 20 is not installed, the transistor 32 that was turned on in step S1 is turned off to stop driving the non-contact power feeding unit 10 and make the output zero (S4). Thereafter, normal power feeding is performed to drive all the non-contact power feeding units 10 that are installed so that the non-contact power receiving unit 20 is opposed to each other (S5), and after a certain period of time (S6), among the four transistors 32a to 32d The next one is turned on (S7), and the above steps S2 to S7 are repeated.

また、検出可能期間T1〜T4においては、非接触給電部10a〜10dのうち1つのみを駆動し、他の非接触給電部10を停止させるため、他の非接触給電部10に対向して設置された非接触受電部20には、通常の給電動作中に一定時間毎に受電不可能な期間が生じる。そこで、非接触受電部20の平滑コンデンサCaは、この検出可能期間T1〜T4においても機能部21へ給電可能な容量に設定されており、この受電不可能期間における給電動作を補償している。   In addition, in the detectable period T1 to T4, only one of the non-contact power supply units 10a to 10d is driven and the other non-contact power supply unit 10 is stopped. The non-contact power receiving unit 20 installed has a period during which the power cannot be received at regular intervals during a normal power feeding operation. Therefore, the smoothing capacitor Ca of the non-contact power receiving unit 20 is set to a capacity capable of supplying power to the functional unit 21 in the detectable periods T1 to T4, and compensates for the power supply operation in the non-power receiving period.

このように、全ての非接触給電部10を常時駆動するのではなく、非接触受電部20が対向して配置されている非接触給電部10のみを駆動するので、不要な電力消費を抑制して省エネルギー化を図ることができる。   In this way, not all the non-contact power supply units 10 are driven all the time, but only the non-contact power supply unit 10 disposed so that the non-contact power reception unit 20 is opposed to each other is driven, thereby suppressing unnecessary power consumption. Energy saving.

(実施形態2)
本実施形態の浴槽1は、実施形態1と略同様の構成を備えるが、各非接触給電部10を、浴槽容器1aの側壁3および底壁2内を移動自在に構成した点が異なる。なお、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 2)
Although the bathtub 1 of this embodiment is provided with the structure substantially the same as Embodiment 1, the point which comprised each non-contact electric power feeding part 10 so that the inside of the side wall 3 and the bottom wall 2 of the bathtub container 1a was movable was different. In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted.

まず、図4(a),(b)に示すように、非接触給電部10に設けた磁石M1a,M1bと非接触受電部20に設けた磁石M2a,M2bとの各異極同士が、浴槽容器1aの側壁3および底壁2を介して互いに対向し、磁石M1a,M1bと磁石M2a,M2bとの間に磁気による吸引力が発生して、非接触受電部20は非接触給電部10に対向して取り付けられる。   First, as shown in FIGS. 4A and 4B, the magnets M1a and M1b provided in the non-contact power feeding unit 10 and the magnets M2a and M2b provided in the non-contact power receiving unit 20 are different from each other. The container 1a faces each other via the side wall 3 and the bottom wall 2, and magnetic attraction force is generated between the magnets M1a and M1b and the magnets M2a and M2b, so that the non-contact power receiving unit 20 is connected to the non-contact power feeding unit 10 Mounted opposite.

そして、図7に示すように、非接触受電部20を、側壁3または底壁2上で移動させると(図7では側壁3上での移動を例示する)、非接触給電部10の磁石M1a,M1bと非接触受電部20の磁石M2a,M2bとの間の吸引力によって、非接触給電部10も非接触受電部20に引っ張られて、側壁3または底壁2上を同方向に移動し、給電状態を維持できる。   As shown in FIG. 7, when the non-contact power receiving unit 20 is moved on the side wall 3 or the bottom wall 2 (in FIG. 7, movement on the side wall 3 is illustrated), the magnet M <b> 1 a of the non-contact power feeding unit 10. , M1b and the magnets M2a and M2b of the non-contact power receiving unit 20 cause the non-contact power feeding unit 10 to be pulled by the non-contact power receiving unit 20 and move on the side wall 3 or the bottom wall 2 in the same direction. The power supply state can be maintained.

また、非接触給電部10の裏面、および非接触受電部20の裏面に車輪(図示なし)を各々設ければ、上記移動を容易に行うことができる。   Moreover, if a wheel (not shown) is provided on the back surface of the non-contact power supply unit 10 and the back surface of the non-contact power reception unit 20, the above movement can be easily performed.

而して、ユーザは、使用する直流機器Uの種類や使い方等によって給電ポイントの変更を容易に行うことができる。   Thus, the user can easily change the feeding point according to the type and usage of the DC device U to be used.

なお、上記実施形態1,2では、図8に示す配電システムにおいて直流配電系統に非接触給電システムを適用しているが、図示しない交流配電系統に各実施形態と同様の非接触給電システムを適用してもよい。この場合、非接触給電部10の入力段に商用電源を整流する整流手段を設け、非接触受電部20の出力段にインバータ装置等のDC/AC変換装置を設ける。   In the first and second embodiments, the non-contact power feeding system is applied to the DC distribution system in the power distribution system shown in FIG. 8, but the same non-contact power feeding system as that of each embodiment is applied to the AC distribution system (not shown). May be. In this case, a rectifying means for rectifying the commercial power supply is provided at the input stage of the non-contact power supply unit 10, and a DC / AC conversion device such as an inverter device is provided at the output stage of the non-contact power reception unit 20.

実施形態1の非接触給電機能付き浴槽の外観を示す図である。It is a figure which shows the external appearance of the bathtub with a non-contact electric power feeding function of Embodiment 1. FIG. 同上の非接触給電システムの側面断面を示す図である。It is a figure which shows the side surface cross section of a non-contact electric power feeding system same as the above. 同上の非接触給電システムの構成を示す図である。It is a figure which shows the structure of the non-contact electric power feeding system same as the above. (a)は同上の非接触給電部が具備する磁石の配置、(b)は非接触受電部が具備する磁石の配置を各々示す図である。(A) is a figure which shows arrangement | positioning of the magnet which the non-contact electric power feeding part same as the above comprises, (b) is a figure which respectively shows arrangement | positioning of the magnet which a non-contact electric power receiving part comprises. 同上の非接触給電部を駆動する駆動制御部の構成を示す図である。It is a figure which shows the structure of the drive control part which drives the non-contact electric power feeding part same as the above. 同上の駆動制御部の動作フローチャートを示す図である。It is a figure which shows the operation | movement flowchart of a drive control part same as the above. 実施形態2の非接触給電機能付き浴槽における非接触給電システムの構成を示す図である。It is a figure which shows the structure of the non-contact electric power feeding system in the bathtub with a non-contact electric power feeding function of Embodiment 2. FIG. 配電システムの全体構成を示す図である。It is a figure which shows the whole structure of a power distribution system.

1 非接触給電機能付き浴槽
1a 浴槽容器
2 底壁
3 側壁
10 非接触給電部
20 非接触受電部
21 機能部
X 給電シート
A 駆動制御部
U 直流機器
Wdc 直流供給線路
DESCRIPTION OF SYMBOLS 1 Bathtub with non-contact electric power feeding function 1a Bathtub container 2 Bottom wall 3 Side wall 10 Non-contact electric power feeding part 20 Non-contact electric power receiving part 21 Functional part X Power supply sheet A Drive control part U DC apparatus Wdc DC supply line

Claims (2)

底壁および側壁の一面側に湯水を貯留する浴槽容器と、浴槽容器の底壁または側壁の内部、あるいは浴槽容器の底壁または側壁の他面側に配置されて、高周波磁界を発生する複数の非接触給電部とを備え、当該非接触給電部が発生する高周波磁界による電磁誘導を利用して非接触給電部から非接触で受電した電力を負荷へ供給する非接触受電部を、浴槽容器の底壁または側壁の一面側において非接触給電部に対向する位置に配置した非接触給電機能付き浴槽であって、
前記複数の非接触給電部のうち1つのみを駆動する検出可能期間を、駆動する非接触給電部を順次切り換えて一定時間毎に発生させ、検出可能期間において駆動中の非接触給電部から受電側をみたインピーダンスを測定し、当該測定したインピーダンスに基づいて当該非接触給電部に非接触受電部が対向して配置されているか否かを判断することによって、各非接触給電部に非接触受電部が対向して配置されたか否かを検出する駆動対象検出手段と、
非接触受電部が対向して配置された非接触給電部のみを駆動する駆動手段と
非接触給電部と非接触受電部とに各々設けられた磁石間に発生する吸引力によって、浴槽容器の底壁または側壁の一面側において非接触給電部に対向する位置に非接触受電部を着脱自在に取り付ける取付手段とを備え、
非接触受電部を浴槽容器の底壁または側壁の一面上で移動させると、磁石の吸引力によって、非接触給電部が非接触受電部に引っ張られて、浴槽容器の底壁または側壁の内部、あるいは浴槽容器の底壁または側壁の他面側を同方向に移動する
ことを特徴とする非接触給電機能付き浴槽。
A bathtub container that stores hot water on one side of the bottom wall and the side wall, and a plurality of components that are disposed on the bottom wall or side wall of the bathtub container or on the other side of the bottom wall or side wall of the bathtub container and generate a high-frequency magnetic field. A non-contact power receiving unit that supplies electric power received in a non-contact manner from the non-contact power supply unit to the load using electromagnetic induction by a high-frequency magnetic field generated by the non-contact power supply unit. A bathtub with a non-contact power feeding function disposed at a position facing the non-contact power feeding unit on one side of the bottom wall or side wall,
A detectable period for driving only one of the plurality of non-contact power supply units is generated at regular intervals by sequentially switching the non-contact power supply unit to be driven, and power is received from the non-contact power supply unit being driven in the detectable period. The non-contact power receiving unit receives non-contact power reception by measuring whether the non-contact power receiving unit is disposed opposite to the non-contact power feeding unit based on the measured impedance. Driving object detection means for detecting whether the parts are arranged facing each other;
A driving means for driving only the non-contact power feeding unit disposed so that the non-contact power receiving unit is opposed to the power source ;
The non-contact power receiving unit is attached to and detached from the non-contact power supply unit and the non-contact power reception unit at a position facing the non-contact power supply unit on one side of the bottom wall or side wall of the bathtub container by the attractive force generated between the magnets provided in each Mounting means for free attachment,
When the non-contact power receiving unit is moved on one surface of the bottom wall or side wall of the bathtub container, the non-contact power feeding unit is pulled to the non-contact power receiving unit by the magnetic attraction force, and the inside of the bottom wall or side wall of the bathtub container, Or the other surface side of the bottom wall or side wall of a bathtub container moves to the same direction, The bathtub with a non-contact electric power feeding function characterized by the above-mentioned.
前記駆動手段は、前記駆動対象検出手段の検出結果に基づいて、前記非接触受電部が対向して配置された前記非接触給電部を定格出力で駆動し、前記非接触受電部が対向して配置されていない前記非接触給電部を停止させることを特徴とする請求項1記載の非接触給電機能付き浴槽 The driving unit drives the non-contact power feeding unit arranged with the non-contact power receiving unit facing the rated power based on a detection result of the driving target detection unit, and the non-contact power receiving unit The said non-contact electric power feeding part which is not arrange | positioned is stopped, The bathtub with a non-contact electric power feeding function of Claim 1 characterized by the above-mentioned .
JP2007332887A 2007-12-25 2007-12-25 Bathtub with non-contact power supply function Active JP5314277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332887A JP5314277B2 (en) 2007-12-25 2007-12-25 Bathtub with non-contact power supply function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332887A JP5314277B2 (en) 2007-12-25 2007-12-25 Bathtub with non-contact power supply function

Publications (2)

Publication Number Publication Date
JP2009159684A JP2009159684A (en) 2009-07-16
JP5314277B2 true JP5314277B2 (en) 2013-10-16

Family

ID=40963087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332887A Active JP5314277B2 (en) 2007-12-25 2007-12-25 Bathtub with non-contact power supply function

Country Status (1)

Country Link
JP (1) JP5314277B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147513A (en) * 2010-01-19 2011-08-04 Panasonic Electric Works Co Ltd Furniture with non-contact power supplying function
US9853478B2 (en) * 2010-07-28 2017-12-26 Qualcomm Incorporated Low power detection of wireless power devices
TWI479766B (en) * 2011-08-04 2015-04-01 Fu Da Tong Technology Co Ltd Electronic charging structure of electronic device
JP6394433B2 (en) * 2015-02-24 2018-09-26 株式会社デンソー Non-contact power feeding device
JP7003221B2 (en) * 2018-03-22 2022-01-20 マクセル株式会社 Contactless power transmission and reception system
JP7463797B2 (en) * 2020-03-25 2024-04-09 Toto株式会社 Bathroom Equipment System
IT202100008960A1 (en) * 2021-04-09 2022-10-09 Fabrizio Rognone RELAXING ENERGIZING REVITALIZING BATHTUB

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237890A (en) * 1995-02-28 1996-09-13 Fuji Electric Co Ltd Non-contact power feeding device for automobile
JP2003224937A (en) * 2002-01-25 2003-08-08 Sony Corp Method and apparatus for power supply, method and apparatus for receiving power supply, power supply system, recording medium, and program
JP2004254805A (en) * 2003-02-25 2004-09-16 Noritz Corp Electrical equipment for bathroom
JP4128170B2 (en) * 2004-11-02 2008-07-30 シャープ株式会社 Power supply system and power supply service using the same

Also Published As

Publication number Publication date
JP2009159684A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5314278B2 (en) Contactless power supply system
JP2009159675A (en) Noncontact power feed panel
JP4858429B2 (en) Wash basin
JP2009159683A (en) Building with noncontact power feed function, and noncontact power feed outlet
JP5314277B2 (en) Bathtub with non-contact power supply function
US11114895B2 (en) Pinless power coupling
US20150214752A1 (en) Wireless power outlet
US10068701B2 (en) Adjustable inductive power transmission platform
JP2009159686A (en) Noncontact power feed adaptor
US9912100B2 (en) Low voltage buss system
US20130015714A1 (en) Smart Power Portal
JP2010040389A (en) Wiring device, and feeding system using wiring device
JP5255268B2 (en) Contactless power supply adapter
JP5754750B2 (en) Wireless sensor terminal
JP2011254229A (en) Plug receptacle, power supply tap, and home energy management system
JP4956409B2 (en) LED lighting fixtures
JP2011078267A (en) Dc power supply system
JP2009165250A (en) Dc power distribution system
JP2009159653A (en) Dc power distribution system
JP2009153338A (en) Dc power distribution system
JP2009165251A (en) Dc distribution system
JP4966180B2 (en) Power distribution system
JP2009177924A (en) Power supply system and outlet used therefor
CN215955619U (en) Multi-application-scene wireless power supply socket
KR102644824B1 (en) System for lighting of LED employing method of controlling network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121205

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250