JP5314204B2 - Light measuring device - Google Patents

Light measuring device Download PDF

Info

Publication number
JP5314204B2
JP5314204B2 JP2013043341A JP2013043341A JP5314204B2 JP 5314204 B2 JP5314204 B2 JP 5314204B2 JP 2013043341 A JP2013043341 A JP 2013043341A JP 2013043341 A JP2013043341 A JP 2013043341A JP 5314204 B2 JP5314204 B2 JP 5314204B2
Authority
JP
Japan
Prior art keywords
light
guide member
light guide
recess
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013043341A
Other languages
Japanese (ja)
Other versions
JP2013108994A (en
Inventor
卓治 片岡
平良 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2013043341A priority Critical patent/JP5314204B2/en
Publication of JP2013108994A publication Critical patent/JP2013108994A/en
Application granted granted Critical
Publication of JP5314204B2 publication Critical patent/JP5314204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光測定装置に関する。 The present invention relates to an optical measurement device.

従来、マイクロプレートのウェルに照射光(励起光)を照射する技術としては、特許文献1〜3に記載の技術が知られている。特許文献1の場合、照射光は、マイクロプレートの裏面から、マイクロプレートのウェルの深さ方向に対して平行に、当該ウェルに照射される。マイクロプレートのウェルには、培養液、蛍光指示薬及び評価化合物等の溶液と細胞等の測定対象物とが注入される。 Conventionally, as a technique for irradiating irradiation light (excitation light) to a well of a microplate, techniques described in Patent Documents 1 to 3 are known. In the case of Patent Document 1, the irradiation light is irradiated from the back surface of the microplate to the well in parallel to the depth direction of the well of the microplate. A well such as a culture solution, a fluorescent indicator, and an evaluation compound and a measurement object such as a cell are injected into the well of the microplate.

特開2007−108146号公報JP 2007-108146 A 特開平10−197449号公報JP-A-10-197449 特開平10−281994号公報JP-A-10-281994

特許文献1に記載の照射光の照射方法において、照射光は、ウェルの深さ方向に対して平行に当該ウェルに照射されるので、測定対象物だけでなく溶液にも多量に照射される場合がある。この場合、溶液からの背景光ノイズが比較的大きくなる。そこで、本発明は、マイクロプレートからの背景光ノイズを低減可能な光測定装置を提供することを目的とする。 In the irradiation method of irradiation light described in Patent Document 1, since irradiation light is irradiated to the well in parallel with the depth direction of the well, not only a measurement object but also a solution is irradiated in a large amount There is. In this case, background light noise from the solution becomes relatively large. Accordingly, an object of the present invention is to provide an optical measurement device that can reduce background light noise from a microplate.

本発明の光測定装置は、測定対象物を収容するための複数のウェルが設けられたマイクロプレートからの光を測定する光測定装置であって、複数の凹部が形成されたた主面と、主面と対向する裏面と、主面と裏面との間の側面とを有する導光部材と、導光部材の側面から導光部材に照射光を入射する光源と、導光部材の裏面からの測定光を検出する検出器と、を備え、導光部材は、主面がマイクロプレートに対向するように配置され、凹部の底面は平坦である、ことを特徴とする。 The light measurement device of the present invention is a light measurement device that measures light from a microplate provided with a plurality of wells for containing a measurement object, and a main surface on which a plurality of recesses are formed, A light guide member having a back surface opposed to the main surface, a side surface between the main surface and the back surface, a light source that enters the light guide member from the side surface of the light guide member, and a light source from the back surface of the light guide member And a detector for detecting measurement light, wherein the light guide member is disposed such that a main surface thereof faces the microplate, and a bottom surface of the recess is flat.

本発明の光測定装置によれば、照射光は、凹部の側面において屈折及び反射されて凹部の開口から出射されるので、ウェルの深さ方向に対して傾きをもってウェルに照射される。このため、培養液、蛍光指示薬及び評価化合物等の溶液に照射される照射光が比較的少ない。よって、溶液に照射光が照射されることにより生じるマイクロプレートからの背景光ノイズを低減可能である。 According to the light measurement apparatus of the present invention, the irradiation light is refracted and reflected on the side surface of the recess and is emitted from the opening of the recess, so that the well is irradiated with an inclination with respect to the depth direction of the well. For this reason, there is comparatively little irradiation light irradiated to solutions, such as a culture solution, a fluorescent indicator, and an evaluation compound. Therefore, it is possible to reduce background light noise from the microplate that is generated by irradiating the solution with irradiation light.

本発明の光測定装置においては、凹部は円柱形状の窪みである、ことが好ましい。この場合、凹部の側面に角がないので、凹部の内部にランダムな光の散乱を誘発し易い。したがって、マイクロプレートの各ウェルに対する照射光の照射ムラを低減することができる。 In the optical measurement device of the present invention, it is preferable that the recess is a cylindrical recess. In this case, since there is no corner on the side surface of the recess, random light scattering is easily induced inside the recess. Therefore, irradiation unevenness of irradiation light to each well of the microplate can be reduced.

本発明の光測定装置においては、凹部の底面は平坦である。この場合、凹部の底面が平坦であるので、導光部材に入射して凹部の底面に到達する照射光の一部は、凹部の底面において全反射される。このため、ウェルの深さ方向に対して平行な照射光の入射が低減される。 In the optical measurement device of the present invention, the bottom surface of the recess is flat. In this case, since the bottom surface of the recess is flat, a part of the irradiation light that enters the light guide member and reaches the bottom surface of the recess is totally reflected on the bottom surface of the recess. For this reason, incidence of irradiation light parallel to the depth direction of the well is reduced.

本発明の光測定装置においては、凹部の底面は鏡面加工されている、ことが好ましい。この場合、凹部の底面が鏡面加工されているので、導光部材に入射して凹部の底面に到達する照射光の大部分は、凹部の底面において全反射される。このため、ウェルの深さ方向に対して平行な照射光の入射を一層低減可能である。 In the optical measurement device of the present invention, it is preferable that the bottom surface of the recess is mirror-finished. In this case, since the bottom surface of the recess is mirror-finished, most of the irradiation light that enters the light guide member and reaches the bottom surface of the recess is totally reflected on the bottom surface of the recess. For this reason, it is possible to further reduce the incidence of irradiation light parallel to the depth direction of the well.

本発明の光測定装置においては、複数の光源と、フィルタと、フレームとを有する光源装置をさらに備え、光源は、導光部材の側面に沿って配列されフレームにより保持されており、フィルタは、導光部材の側面と光源との間に配置されている、ことが好ましい。本発明の光測定装置においては、光源は、互いに異なる波長の光を出射する2種のLEDを含む、ことが好ましい。本発明の光測定装置においては、光源は、導光部材の側面のうち、凹部の底面と導光部材の裏面との間の領域に対応する部分から照射光を入射する、ことが好ましい。本発明の光測定装置においては、凹部は角柱形状の窪みである、ことが好ましい。本発明の光測定装置においては、凹部は断面が台形状の窪みである、ことが好ましい。 The light measurement device of the present invention further includes a light source device having a plurality of light sources, a filter, and a frame, and the light sources are arranged along the side surface of the light guide member and held by the frame. It is preferable that the light guide member is disposed between the side surface and the light source. In the light measurement device of the present invention, the light source preferably includes two types of LEDs that emit light having different wavelengths. In the light measurement device of the present invention, it is preferable that the light source enters the irradiation light from a portion corresponding to a region between the bottom surface of the concave portion and the back surface of the light guide member among the side surfaces of the light guide member. In the light measurement device of the present invention, the recess is preferably a prismatic recess. In the optical measurement device of the present invention, the recess is preferably a depression having a trapezoidal cross section.

本発明によれば、マイクロプレートからの背景光ノイズを低減可能な光測定装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the optical measuring apparatus which can reduce the background light noise from a microplate can be provided.

本実施形態に係る光測定装置の断面構成を表す図である。It is a figure showing the cross-sectional structure of the optical measurement apparatus which concerns on this embodiment. 図1に示されたマイクロプレートを説明するための図である。It is a figure for demonstrating the microplate shown by FIG. 図1に示された光照射装置を説明するための図である。It is a figure for demonstrating the light irradiation apparatus shown by FIG. 図1に示された光照射装置を説明するための図である。It is a figure for demonstrating the light irradiation apparatus shown by FIG. 図1に示されたマイクロプレートのウェルと導光部材の凹部との関係を表す図である。It is a figure showing the relationship between the well of the microplate shown by FIG. 1, and the recessed part of a light guide member. 図1に示された光照射装置を説明するための図である。It is a figure for demonstrating the light irradiation apparatus shown by FIG. 図1に示された光照射装置を説明するための図である。It is a figure for demonstrating the light irradiation apparatus shown by FIG. 図1に示された光照射装置を説明するための図である。It is a figure for demonstrating the light irradiation apparatus shown by FIG. 図1に示されたマイクロプレート及び導光部材における照射光の光路を表す図である。It is a figure showing the optical path of the irradiation light in the microplate and light guide member which were shown by FIG. 図1に示されたマイクロプレートに保持された測定対象物及び溶液からの測定光(蛍光)を測定した結果を表す図である。It is a figure showing the result of having measured the measurement light (fluorescence) from the measuring object and solution which were hold | maintained at the microplate shown by FIG.

以下、図面を参照して、本発明に係る好適な実施形態について詳細に説明する。なお、図面の説明において、可能な場合には、同一要素には同一符号を付し、重複する説明を省略する。図1は、本実施形態に係る光測定装置の断面構成を模式的に表す図である。図1に示されるように、光測定装置10は、マイクロプレート20と、マイクロプレートストッカー30,40と、運搬ベルト50と、光照射装置60と、励起光カットフィルタ70と、検出器80と、を備える。また、光照射装置60は、導光部材61と光源装置62とを含む。光測定装置10は、マイクロプレート20に保持された測定対象物に対して照射光(励起光)を照射することにより、測定対象物から発せられる測定光(蛍光)を検出する装置である。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description of the drawings, if possible, the same elements are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is a diagram schematically illustrating a cross-sectional configuration of the light measurement apparatus according to the present embodiment. As shown in FIG. 1, the light measurement device 10 includes a microplate 20, microplate stockers 30 and 40, a transport belt 50, a light irradiation device 60, an excitation light cut filter 70, a detector 80, Is provided. The light irradiation device 60 includes a light guide member 61 and a light source device 62. The light measurement device 10 is a device that detects measurement light (fluorescence) emitted from a measurement target by irradiating the measurement target held on the microplate 20 with irradiation light (excitation light).

図2(a)は、マイクロプレート20の平面図であり、図2(b)は、図2(a)のI−I線に沿ってとられたマイクロプレート20の断面構成を表す図である。図2(a)及び図2(b)に示されるように、マイクロプレート20は、円柱形状の窪みのウェル21を複数個(例えば96個)有する。マイクロプレート20の主面22には、これら複数のウェル21の開口が、例えば、8列12行に配列されている。また、複数のウェル21のそれぞれには、細胞等の測定対象物Aと培養液、蛍光指示薬及び評価化合物等の溶液Bとがそれぞれ注入されて保持される。測定対象物Aは、ウェル21の底部に沈殿する。なお、マイクロプレート20のウェルは円柱形状の窪みのウェル21に限らない。例えば、マイクロプレート20のウェルは、図2(c)に示されるように角柱形状の窪みのウェル21aであってもよい。 2A is a plan view of the microplate 20, and FIG. 2B is a diagram illustrating a cross-sectional configuration of the microplate 20 taken along the line II in FIG. 2A. . As shown in FIGS. 2A and 2B, the microplate 20 has a plurality (eg, 96) of wells 21 having a cylindrical shape. In the main surface 22 of the microplate 20, the openings of the plurality of wells 21 are arranged in, for example, 8 columns and 12 rows. In addition, a measuring object A such as a cell and a solution B such as a culture solution, a fluorescent indicator, and an evaluation compound are injected and held in each of the plurality of wells 21. The measurement object A is deposited on the bottom of the well 21. The well of the microplate 20 is not limited to the hollow well 21 having a cylindrical shape. For example, the well of the microplate 20 may be a prism-shaped well 21a as shown in FIG.

再び図1を参照して説明する。マイクロプレートストッカー30は、測定前のマイクロプレート20を格納する。また、マイクロプレートストッカー40は、測定後のマイクロプレート20を格納する。運搬ベルト50は、マイクロプレートストッカー30から所定の測定位置(光照射装置60と向き合う位置)まで測定前のマイクロプレート20を運搬する。さらに、運搬ベルト50は、この所定の測定位置からマイクロプレートストッカー40まで測定後のマイクロプレート20を運搬する。 A description will be given with reference to FIG. 1 again. The microplate stocker 30 stores the microplate 20 before measurement. The microplate stocker 40 stores the microplate 20 after measurement. The transport belt 50 transports the microplate 20 before measurement from the microplate stocker 30 to a predetermined measurement position (position facing the light irradiation device 60). Further, the transport belt 50 transports the measured microplate 20 from the predetermined measurement position to the microplate stocker 40.

光照射装置60は、導光部材61と、光源装置62と、を含む。導光部材61は、例えば、石英ガラスで構成されている。光源装置62は、導光部材61の側面61bから照射光を入射する。光照射装置60は、マイクロプレート20の裏面23側からウェル21に対して照射光を照射する。ここで、光測定装置10は、光照射装置60を裏面23に垂直な方向(マイクロプレート20のウェル21の深さ方向)に移動するための機構を有している(不図示)。なお、光照射装置60は、導光部材61の主面61aとマイクロプレート20の裏面23とが所定の間隔(例えば5mm程度)を有するように配置されて固定されていてもよい。この場合、マクロプレート20は光照射装置60に衝突することなく所定の測定位置に運搬される。 The light irradiation device 60 includes a light guide member 61 and a light source device 62. The light guide member 61 is made of, for example, quartz glass. The light source device 62 makes irradiation light incident from the side surface 61 b of the light guide member 61. The light irradiation device 60 irradiates the well 21 with irradiation light from the back surface 23 side of the microplate 20. Here, the light measurement device 10 has a mechanism for moving the light irradiation device 60 in a direction perpendicular to the back surface 23 (the depth direction of the well 21 of the microplate 20) (not shown). In addition, the light irradiation apparatus 60 may be arrange | positioned and fixed so that the main surface 61a of the light guide member 61 and the back surface 23 of the microplate 20 may have predetermined spacing (for example, about 5 mm). In this case, the macro plate 20 is transported to a predetermined measurement position without colliding with the light irradiation device 60.

励起光カットフィルタ70は、照射光の透過を阻止し、測定対象物A等からの測定光を透過する。検出器80は、マイクロプレート20の裏面23側に配置され、励起光カットフィルタ70を透過した測定光を結像するための光学系(不図示)と、結像された像を撮像するための2次元CCDカメラ等の光検出装置を有しており、測定対象物A等からの測定光を検出する。なお、検出器80は、マイクロプレート20の主面22側に配置することも可能である。この場合、検出器80は、例えば、マイクロプレート20の各ウェル21に対してそれぞれ配置された複数の光電子増倍管、もしくはマイクロプレート20の複数のウェル21を撮像可能な2次元撮像装置とすることができる。また、検出器80に光電子増倍管を用いた場合、マイクロプレート20の主面22側の上方において光電子増倍管を移動させ、各ウェル21からの測定光を検出することができる。 The excitation light cut filter 70 blocks the transmission of the irradiation light and transmits the measurement light from the measurement object A or the like. The detector 80 is disposed on the back surface 23 side of the microplate 20, and an optical system (not shown) for imaging the measurement light that has passed through the excitation light cut filter 70 and an image for imaging the formed image It has a light detection device such as a two-dimensional CCD camera, and detects measurement light from the measurement object A or the like. The detector 80 can also be disposed on the main surface 22 side of the microplate 20. In this case, the detector 80 is, for example, a plurality of photomultiplier tubes arranged for each well 21 of the microplate 20 or a two-dimensional imaging device capable of imaging the plurality of wells 21 of the microplate 20. be able to. When a photomultiplier tube is used for the detector 80, the photomultiplier tube can be moved above the main surface 22 side of the microplate 20 to detect the measurement light from each well 21.

続いて、光照射装置60について詳細に説明する。図3(a)は図3(b)のII―II線に沿ってとられた光照射装置60の断面構成を表す図である。図3(b)は光照射装置60の平面図である。図3(a)及び図3(b)に示されるように、光照射装置60の導光部材61は、主面61aと、この主面61aに略直交し互いに対向する二つの側面61bと、主面61aに略直交し互いに対向する二つの側面61cと、を有する。また、導光部材61は、主面61aに2次元的に配列されて設けられた複数の凹部61eを有する。凹部61eは、導光部材61の主面61aに開口を有する円柱形状の窪みであり、光出射面61aと略平行で平坦な底面61fを含む。この底面61fは鏡面加工されている。 Next, the light irradiation device 60 will be described in detail. FIG. 3A is a diagram illustrating a cross-sectional configuration of the light irradiation device 60 taken along the line II-II in FIG. FIG. 3B is a plan view of the light irradiation device 60. 3A and 3B, the light guide member 61 of the light irradiation device 60 includes a main surface 61a, and two side surfaces 61b that are substantially orthogonal to the main surface 61a and face each other. And two side surfaces 61c substantially orthogonal to the main surface 61a and facing each other. The light guide member 61 has a plurality of recesses 61e provided in a two-dimensional array on the main surface 61a. The recess 61e is a cylindrical recess having an opening in the main surface 61a of the light guide member 61, and includes a flat bottom surface 61f that is substantially parallel to the light emitting surface 61a. The bottom surface 61f is mirror-finished.

導光部材61の側面61bには、光源装置62が配置されている。光源装置62は、フレーム62aと、光源としてのLED62bと、フィルタ62cと、を含む。LED62bは、導光部材61の側面61bに沿って複数配列されてフレーム62aにより保持されている。これら複数のLED62bは、導光部材61の側面61bからフィルタ62cを介して導光部材61に指向性を有する照射光を入射する。フィルタ62cは、特定の波長帯域の光のみを透過するショートパスフィルタやバンドパスフィルタ等であり、LED62bから出射される光から、測定に適した波長の照射光のみを透過する。このように、LED62bとフィルタ62cとを組み合わせることにより、より測定に適した波長の光を導光部材61へ入射させることができるので、測定精度を高めることができる。 A light source device 62 is disposed on the side surface 61 b of the light guide member 61. The light source device 62 includes a frame 62a, an LED 62b as a light source, and a filter 62c. A plurality of LEDs 62b are arranged along the side surface 61b of the light guide member 61 and are held by the frame 62a. The plurality of LEDs 62b make incident light having directivity incident on the light guide member 61 from the side surface 61b of the light guide member 61 through the filter 62c. The filter 62c is a short-pass filter, a band-pass filter, or the like that transmits only light in a specific wavelength band, and transmits only irradiation light having a wavelength suitable for measurement from the light emitted from the LED 62b. In this manner, by combining the LED 62b and the filter 62c, light having a wavelength more suitable for measurement can be incident on the light guide member 61, so that measurement accuracy can be improved.

なお、導光部材61の各凹部は円柱形状の窪みの凹部61eに限らず、図3(c)に示されるように角柱形状の窪みの凹部61gであってもよい。さらに、導光部材61の各凹部(凹部61eや凹部61g)は、図4(a)及び図4(b)に示されるように断面(図3(b)のII―II線に沿ってとられた断面)が台形状の窪みであってもよい。この場合、導光部材61の各凹部(凹部61eや凹部61g)の側面と主面61aとの成す角φは、鋭角であることが望ましいが、90度〜120度程度の鈍角であってもよい。また、図4(c)に示されるように、凹部61eが複数設けられた角柱状の光ファイバ61iを複数配列することにより導光部材61を形成することもできる。以上説明した導光部材61は、図1に示されるように、ウェル21の底面と、凹部61eの開口とが対向するように配置可能である。なお、導光部材61の各凹部(凹部61eや凹部61g)の深さは、2mm程度であることが好ましい。 In addition, each recessed part of the light guide member 61 is not limited to the recessed part 61e having a cylindrical shape, and may be a recessed part 61g having a prismatic shape as shown in FIG. Further, each concave portion (the concave portion 61e and the concave portion 61g) of the light guide member 61 has a cross section (along the line II-II in FIG. 3B) as shown in FIGS. 4A and 4B. A trapezoidal depression may be used. In this case, the angle φ formed between the side surface of each concave portion (the concave portion 61e and the concave portion 61g) of the light guide member 61 and the main surface 61a is preferably an acute angle, but may be an obtuse angle of about 90 to 120 degrees. Good. As shown in FIG. 4C, the light guide member 61 can also be formed by arranging a plurality of prismatic optical fibers 61i provided with a plurality of recesses 61e. The light guide member 61 described above can be arranged so that the bottom surface of the well 21 and the opening of the recess 61e face each other as shown in FIG. In addition, it is preferable that the depth of each recessed part (the recessed part 61e and the recessed part 61g) of the light guide member 61 is about 2 mm.

図5は、複数のウェル21に対する複数の凹部61eの配置パターンのバリエーションを模式的に表す図である。図5(a)に示されるように、各凹部61eは各ウェル21と一対一に対応するように設けられることが好ましいが、図5(b)に示されるように、複数の凹部61eが一つのウェル21に対応するように設けられてもよい。また、各凹部61eは、図5(c)に示されるように、各ウェル21と一対一に対応し、且つ、ウェル21よりも幅広に設けられてもよい。さらに、各凹部61eは、図5(d)に示されるように、一つのウェル21に複数の凹部61eが対応し、且つ、主面61aの上方から見て、各凹部61eの一部がウェル21に重ならないように(そして、各凹部61eの残りの部分がウェル21に重なるように)設けられてもよい。 FIG. 5 is a diagram schematically showing a variation in the arrangement pattern of the plurality of recesses 61 e for the plurality of wells 21. As shown in FIG. 5A, each recess 61e is preferably provided so as to correspond to each well 21 on a one-to-one basis. However, as shown in FIG. It may be provided so as to correspond to one well 21. In addition, as shown in FIG. 5C, each recess 61 e may correspond to each well 21 on a one-to-one basis and may be provided wider than the well 21. Further, as shown in FIG. 5D, each recess 61e corresponds to a plurality of recesses 61e corresponding to one well 21, and a part of each recess 61e is a well when viewed from above the main surface 61a. 21 (and so that the remaining portion of each recess 61 e overlaps the well 21).

光源装置62の光源としては、互いに異なる波長の光を出射する2種のLEDを用いることができる。この場合、図6(a)に示されるように、導光部材61の側面61bに沿ってLED62bを複数配列し、導光部材61の他の側面61cに沿って、LED62bとは異なる波長の光を出射するLED62dを複数配列する。これにより、光源装置62は、互いに異なる2種の波長の照射光を導光部材61に入射することができる。LED62bと導光部材61との間にはフィルタ62cが配置され、LED62dと導光部材61との間には、フィルタ62cとは異なる波長の光を透過するショートパスフィルタやバンドパスフィルタ等のフィルタ62eが配置される。よって、フィルタ62eは、LED62dから出射される光から、測定に適した波長の照射光のみを透過することができる。また、図6(b)に示されるように、導光部材61の側面61b及び側面61cに沿って、LED62bとLED62dとを交互に配列することも可能である。このとき、LED62b及びLED62dと導光部材61との間には、フィルタ62c及びフィルタ62eが交互に配置される。 As the light source of the light source device 62, two types of LEDs that emit light having different wavelengths can be used. In this case, as shown in FIG. 6A, a plurality of LEDs 62b are arranged along the side surface 61b of the light guide member 61, and light having a wavelength different from that of the LED 62b is formed along the other side surface 61c of the light guide member 61. A plurality of LEDs 62d that emit light are arranged. Thereby, the light source device 62 can enter the light guide member 61 with irradiation light having two different wavelengths. A filter 62c is disposed between the LED 62b and the light guide member 61, and a filter such as a short pass filter or a band pass filter that transmits light having a wavelength different from that of the filter 62c is provided between the LED 62d and the light guide member 61. 62e is arranged. Therefore, the filter 62e can transmit only irradiation light having a wavelength suitable for measurement from the light emitted from the LED 62d. Further, as shown in FIG. 6B, the LEDs 62 b and the LEDs 62 d can be alternately arranged along the side surface 61 b and the side surface 61 c of the light guide member 61. At this time, the filters 62 c and 62 e are alternately arranged between the LEDs 62 b and 62 d and the light guide member 61.

なお、光源装置62の光源は、LEDに限らない。光源装置62の光源としては、例えば、図7(a)に示されるように、キセノンランプ62f等の白色光源を用いることができる。この場合、キセノンランプ62fは、波長切替装置62g及び光ファイバ62hを介して、指向性を有する所定の波長の照射光を導光部材61の側面61bから導光部材61に入射する。これにより、LEDでは実現できない波長の光を照射光として用いることができる。このとき、光源としてのキセノンランプ62f自体は、図7(a)に示されるように、導光部材61の側面61bに配置されなくてもよい。また、図7(b)に示されるように、光源装置62の光源として指向性を有さない光を出射する所定の光源62kを用い、この光源62kとフィルタ62mとの間に、コリメータレンズ62nを配置してもよい。このコリメータレンズ62nは、図7(c)に示されるように、導光部材61の側面61bに導光部材61と一体的に設けることも可能である。フィルタ62mは、光源62kにより出射される光から、測定に適した波長の照射光のみを透過する。 The light source of the light source device 62 is not limited to the LED. As the light source of the light source device 62, for example, a white light source such as a xenon lamp 62f can be used as shown in FIG. In this case, the xenon lamp 62f enters the light guide member 61 from the side surface 61b of the light guide member 61 through the wavelength switching device 62g and the optical fiber 62h. Thereby, the light of the wavelength which is not realizable with LED can be used as irradiation light. At this time, the xenon lamp 62f itself as the light source may not be disposed on the side surface 61b of the light guide member 61 as shown in FIG. Further, as shown in FIG. 7B, a predetermined light source 62k that emits light having no directivity is used as a light source of the light source device 62, and a collimator lens 62n is interposed between the light source 62k and the filter 62m. May be arranged. The collimator lens 62n can be provided integrally with the light guide member 61 on the side surface 61b of the light guide member 61, as shown in FIG. The filter 62m transmits only irradiation light having a wavelength suitable for measurement from the light emitted from the light source 62k.

図8は、導光部材61に入射する照射光の範囲を表す図である。図8(a)に示されるように、側面61bのうち、凹部61eの裏面61fと導光部材61の底面61hとの間の領域に対応する部分から照射光を入射することが好ましいが、図8(b)に示されるように、側面61bの全面から照射光を入射してもよい。 FIG. 8 is a diagram illustrating a range of irradiation light incident on the light guide member 61. As shown in FIG. 8A, it is preferable that the irradiation light is incident from the portion corresponding to the region between the back surface 61f of the recess 61e and the bottom surface 61h of the light guide member 61 in the side surface 61b. As shown in FIG. 8B, the irradiation light may be incident from the entire side surface 61b.

以上説明したように、光照射装置60においては、主面61aに複数の凹部61eが形成された導光部材61に対して、導光部材61の側面61bから指向性を有する照射光が入射される。導光部材61に入射した照射光の一部は、図9(a)中の破線L1によって示される光路を進行し、凹部61eの底面61f、導光部材61の裏面61h及び主面61aにおいて全反射される。このため、ウェル21の深さ方向に進行する照射光が凹部61e内に入射することを抑制できる。また、導光部材61に入射する照射光の一部は、図9(a)中の一点鎖線L2によって示される光路を進行し、凹部61eの側面から凹部61e内に入射する。この照射光は、導光部材61と凹部61e内の空気との屈折率差から、光出射面61aと平行な方向に向けて屈折し、各ウェル21に照射される。これにより、ウェル21に入射する照射光は、ウェル21の深さ方向に対して傾きをもつ。したがって、図9(b)に示されるように、溶液Bに照射される照射光が比較的少なくなる。よって、溶液Bに照射光が照射されることにより生じる背景光ノイズを低減できる。これに対し、図9(c)は、従来の方法によって、ウェル21の深さ方向にウェル21に照射光を照射した場合の照射光の光路を表す図である。図9(c)に示されるように、従来の方法によれば、測定対象物Aに加えて溶液Bにも多くの照射光が照射されるので、背景光ノイズが比較的大きくなる。 As described above, in the light irradiation device 60, directional irradiation light is incident from the side surface 61b of the light guide member 61 on the light guide member 61 in which the plurality of recesses 61e are formed on the main surface 61a. The A part of the irradiation light incident on the light guide member 61 travels on the optical path indicated by the broken line L1 in FIG. Reflected. For this reason, it can suppress that the irradiation light which progresses in the depth direction of the well 21 enters into the recessed part 61e. Further, part of the irradiation light incident on the light guide member 61 travels along the optical path indicated by the alternate long and short dash line L2 in FIG. 9A and enters the recess 61e from the side surface of the recess 61e. The irradiation light is refracted in a direction parallel to the light emitting surface 61a due to a difference in refractive index between the light guide member 61 and the air in the recess 61e, and is irradiated to each well 21. Thereby, the irradiation light incident on the well 21 is inclined with respect to the depth direction of the well 21. Therefore, as shown in FIG. 9B, the irradiation light applied to the solution B is relatively small. Therefore, it is possible to reduce background light noise that occurs when the solution B is irradiated with the irradiation light. On the other hand, FIG. 9C is a diagram showing the optical path of the irradiation light when the irradiation light is irradiated to the well 21 in the depth direction of the well 21 by the conventional method. As shown in FIG. 9C, according to the conventional method, a large amount of irradiation light is irradiated not only on the measurement object A but also on the solution B, so that the background light noise becomes relatively large.

図10は、測定対象物A等からの測定光としての蛍光を測定した結果を表す図である。横軸は各ウェル21に注入された細胞(測定対象物A)の数を表しており、縦軸は蛍光検出比率を表している。各ウェル21に注入される細胞は、蛍光染色色素によって染色されたものである。破線L3によって表された測定結果は、マイクロプレート20の各ウェル21に細胞と蛍光溶液(溶液B:FITC)とを注入した後に、ウェル21の深さ方向に対して平行な照射光をウェル21に照射することによって細胞から発せられる蛍光を測定する従来の方法により得られた結果である。一点鎖線L4によって表された測定結果は、マイクロプレート20の各ウェル21に細胞と蛍光溶液とを注入した後に、光照射装置60を用いて各ウェル21に照射光を照射することによって細胞から発せられた蛍光を測定した結果である。この測定において、導光部材60の各凹部61eの深さは、4mmである。二点鎖線L5によって表された測定結果は、マイクロプレート20の各ウェル21に細胞と蛍光溶液とを注入した後に、光照射装置60を用いて各ウェル21に照射光を照射することによって細胞から発せられた蛍光を測定した結果である。この測定において、光照射装置60の導光部材61の各凹部61eの深さは、1mmである。実線L6によって表された測定結果は、マイクロプレート20の各ウェル21に細胞のみを注入した後に、各ウェル21に照射光を照射することによって細胞から発せられた蛍光を測定した結果である。したがって、図10においては、実線L6によって表された結果に近いほど、蛍光溶液からの背景光ノイズが低減された結果となっている。図10に示された測定結果によれば、一点鎖線L4及び二点鎖線L5によって表された、光照射装置6を用いて照射光を照射した場合の測定結果は、破線L3によって表された従来の照射光の照射方法による測定結果に比べて、実線L6によって表された測定結果に近いことがわかる。したがって、光照射装置60によれば、背景光ノイズが低減されていることがわかる。 FIG. 10 is a diagram illustrating a result of measuring fluorescence as measurement light from the measurement object A or the like. The horizontal axis represents the number of cells (measuring object A) injected into each well 21, and the vertical axis represents the fluorescence detection ratio. Cells injected into each well 21 are stained with a fluorescent dye. The measurement result represented by the broken line L3 shows that after injecting cells and a fluorescent solution (solution B: FITC) into each well 21 of the microplate 20, irradiation light parallel to the depth direction of the well 21 is applied to the well 21. It is the result obtained by the conventional method which measures the fluorescence emitted from a cell by irradiating. The measurement result represented by the alternate long and short dash line L4 is emitted from the cells by injecting the cells 21 and the fluorescent solution into each well 21 of the microplate 20 and then irradiating each well 21 with irradiation light using the light irradiation device 60. It is the result of measuring the obtained fluorescence. In this measurement, the depth of each recess 61e of the light guide member 60 is 4 mm. The measurement result represented by the two-dot chain line L5 is obtained by injecting cells and a fluorescent solution into each well 21 of the microplate 20 and then irradiating each well 21 with irradiation light using the light irradiation device 60. It is the result of measuring the emitted fluorescence. In this measurement, the depth of each recess 61e of the light guide member 61 of the light irradiation device 60 is 1 mm. The measurement result represented by the solid line L6 is a result of measuring fluorescence emitted from the cells by irradiating each well 21 with irradiation light after injecting only the cells into each well 21 of the microplate 20. Accordingly, in FIG. 10, the background light noise from the fluorescent solution is reduced as the result is closer to the result represented by the solid line L6. According to the measurement result shown in FIG. 10, the measurement result when the irradiation light is irradiated using the light irradiation device 6 represented by the one-dot chain line L4 and the two-dot chain line L5 is the conventional one represented by the broken line L3. It can be seen that it is closer to the measurement result represented by the solid line L6 than the measurement result by the irradiation method of the irradiation light. Therefore, according to the light irradiation apparatus 60, it turns out that background light noise is reduced.

10…光測定装置、20…マイクロプレート、21,21a…ウェル、22,61a…主面、23,61h…裏面、30,40…マイクロプレートストッカー、50…運搬ベルト、60…光照射装置、61…導光部材、61b,61c…側面、61e,61g…凹部、61f…底面、62…光源装置、62a…フレーム、62b,62d…LED、62c,62e,62m…フィルタ、62f…キセノンランプ、62g…波長切替装置、61i,62h…光ファイバ、62k…光源、62n…コリメータレンズ、70…励起光カットフィルタ、80…検出器。 DESCRIPTION OF SYMBOLS 10 ... Light measuring device, 20 ... Microplate, 21, 21a ... Well, 22, 61a ... Main surface, 23, 61h ... Back surface, 30, 40 ... Microplate stocker, 50 ... Transport belt, 60 ... Light irradiation device, 61 ... light guide member, 61b, 61c ... side face, 61e, 61g ... concave part, 61f ... bottom face, 62 ... light source device, 62a ... frame, 62b, 62d ... LED, 62c, 62e, 62m ... filter, 62f ... xenon lamp, 62g ... wavelength switching device, 61i, 62h ... optical fiber, 62k ... light source, 62n ... collimator lens, 70 ... excitation light cut filter, 80 ... detector.

Claims (8)

測定対象物を収容するための複数のウェルが設けられたマイクロプレートからの光を測定する光測定装置であって、
複数の凹部が形成されたた主面と、前記主面と対向する裏面と、前記主面と前記裏面との間の側面とを有する導光部材と、
前記導光部材の前記側面から前記導光部材に照射光を入射する光源と、
前記導光部材の前記裏面からの測定光を検出する検出器と、を備え、
前記導光部材は、前記主面が前記マイクロプレートに対向するように配置され、
前記凹部の底面は平坦である、
ことを特徴とする光測定装置。
A light measurement device for measuring light from a microplate provided with a plurality of wells for containing a measurement object,
A light guide member having a main surface on which a plurality of recesses are formed, a back surface facing the main surface, and a side surface between the main surface and the back surface;
A light source that makes irradiation light incident on the light guide member from the side surface of the light guide member;
A detector for detecting measurement light from the back surface of the light guide member,
The light guide member is disposed such that the main surface faces the microplate,
The bottom surface of the recess is flat;
An optical measuring device characterized by that.
複数の前記光源と、フィルタと、フレームとを有する光源装置をさらに備え、
前記光源は、前記導光部材の前記側面に沿って配列され前記フレームにより保持されており、
前記フィルタは、前記導光部材の前記側面と前記光源との間に配置されている、
ことを特徴とする請求項1に記載の光測定装置。
A light source device including a plurality of the light sources, a filter, and a frame;
The light source is arranged along the side surface of the light guide member and held by the frame,
The filter is disposed between the side surface of the light guide member and the light source.
The optical measurement apparatus according to claim 1.
前記光源は、互いに異なる波長の光を出射する2種のLEDを含む、
ことを特徴とする請求項2に記載の光測定装置。
The light source includes two types of LEDs that emit light of different wavelengths.
The optical measurement apparatus according to claim 2, wherein
前記光源は、前記導光部材の前記側面のうち、前記凹部の前記底面と前記導光部材の前記裏面との間の領域に対応する部分から前記照射光を入射する、
ことを特徴とする請求項1〜3のいずれか一項に記載の光測定装置。
The light source enters the irradiation light from a portion corresponding to a region between the bottom surface of the concave portion and the back surface of the light guide member among the side surfaces of the light guide member.
The optical measurement device according to claim 1, wherein
前記凹部の底面は鏡面加工されている、
ことを特徴とする請求項1〜4のいずれか一項に記載の光測定装置。
The bottom surface of the recess is mirror-finished,
The optical measurement device according to claim 1, wherein
前記凹部は円柱形状の窪みである、
ことを特徴とする請求項1〜5のいずれか一項に記載の光測定装置。
The recess is a cylindrical recess.
The optical measurement device according to claim 1, wherein
前記凹部は角柱形状の窪みである、
ことを特徴とする請求項1〜5のいずれか一項に記載の光測定装置。
The recess is a prismatic recess.
The optical measurement device according to claim 1, wherein
前記凹部は断面が台形状の窪みである、
ことを特徴とする請求項1〜5のいずれか一項に記載の光測定装置。
The recess is a depression having a trapezoidal cross section.
The optical measurement device according to claim 1, wherein
JP2013043341A 2013-03-05 2013-03-05 Light measuring device Active JP5314204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043341A JP5314204B2 (en) 2013-03-05 2013-03-05 Light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013043341A JP5314204B2 (en) 2013-03-05 2013-03-05 Light measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009076595A Division JP5219898B2 (en) 2009-03-26 2009-03-26 Light irradiation device and light measurement device

Publications (2)

Publication Number Publication Date
JP2013108994A JP2013108994A (en) 2013-06-06
JP5314204B2 true JP5314204B2 (en) 2013-10-16

Family

ID=48705853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013043341A Active JP5314204B2 (en) 2013-03-05 2013-03-05 Light measuring device

Country Status (1)

Country Link
JP (1) JP5314204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009467A1 (en) * 2014-07-14 2016-01-21 株式会社日立ハイテクノロジーズ Multichannel analysis device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139418A (en) * 2000-11-01 2002-05-17 Nikon Corp Microwell plate and fluorescence detector with the same
JP2003287493A (en) * 2002-03-27 2003-10-10 Fuji Photo Film Co Ltd Measuring apparatus
CN100538331C (en) * 2003-12-08 2009-09-09 欧姆龙株式会社 Light analytical equipment and light analyzer spare
JP2005274355A (en) * 2004-03-25 2005-10-06 Fuji Photo Film Co Ltd Fluorescence image acquisition device

Also Published As

Publication number Publication date
JP2013108994A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5219899B2 (en) Light irradiation device and light measurement device
JP5219898B2 (en) Light irradiation device and light measurement device
KR100605062B1 (en) Image detector for bank notes
JP5695935B2 (en) Infrared analyzer
CN106053402B (en) Detection device for sample
WO2010109939A1 (en) Light irradiation device and light measurement device
KR102161058B1 (en) Optical detection apparatus and method of compensating detection error
CN106537116B (en) Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
CN103364374A (en) An apparatus and a method for inspecting a graphene board
ES2575531T3 (en) Optoelectronic sensor
JP5314204B2 (en) Light measuring device
US11009457B2 (en) Microplate reader
JP5314205B2 (en) Light measuring device
US20120313008A1 (en) Fluorescent detector
JP2019194571A (en) Curved surface shape inspection apparatus
US9164038B2 (en) Fluorescence light detection device and fluorescence light detection method
JP6389977B1 (en) Defect inspection equipment
US8208133B2 (en) Banknote verification device
JP4598554B2 (en) Photodetector
JP2011226801A (en) Infrared analyzer
JP4813294B2 (en) Optical inspection device
JP2012225858A (en) Inspection device for light-emitting device
JP2019128169A (en) Optical transmission body, appearance inspection device, and appearance inspection method
JP2004355263A (en) Image detector for paper currency
JPH06333127A (en) Fluorescent light detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150