JP5313181B2 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP5313181B2
JP5313181B2 JP2010014692A JP2010014692A JP5313181B2 JP 5313181 B2 JP5313181 B2 JP 5313181B2 JP 2010014692 A JP2010014692 A JP 2010014692A JP 2010014692 A JP2010014692 A JP 2010014692A JP 5313181 B2 JP5313181 B2 JP 5313181B2
Authority
JP
Japan
Prior art keywords
lens
viewing angle
light
light emitting
emitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010014692A
Other languages
Japanese (ja)
Other versions
JP2011154831A (en
Inventor
哲也 西
忠史 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010014692A priority Critical patent/JP5313181B2/en
Publication of JP2011154831A publication Critical patent/JP2011154831A/en
Application granted granted Critical
Publication of JP5313181B2 publication Critical patent/JP5313181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、発光部からから出射された光をレンズで集光して所定の照射領域を照明する照明装置に関する。   The present invention relates to an illumination device that illuminates a predetermined irradiation area by collecting light emitted from a light emitting unit with a lens.

従来から、発光ダイオード(LED)を発光部として有する照明装置がある。LEDを有する照明装置には、シーリングライトやベースライト等、発光部から出射された光を拡散して照明するもの、ダウンライトやスポットライト等、光を集光して照明するもの、景観照明や街路灯等、拡散と集光を併用して照明するもの等がある。図14(a)(b)(c)に示されるように、拡散と集光を併用した照明装置101は、発光部103と平面視で長方形のレンズ104とを有する。レンズ104の幅方向(短辺方向)では、発光部103から出射された光がレンズ104によって集光され、レンズ104の長手方向(長辺方向)では、発光部103から出射された光がレンズ104によって集光されずに拡散する。なお、同図では、光が集光される方向をx方向、光が拡散する方向をy方向、光軸131の方向をz方向としている(以下の図でも同様)。レンズ104の長手方向(y方向)が有限長の直線状であるので、図15に示されるように、照明装置101の配光特性は、拡散方向(y方向)の角度が狭い。   Conventionally, there is an illumination device having a light emitting diode (LED) as a light emitting unit. Lighting devices having LEDs include those that diffuse and illuminate light emitted from the light emitting part such as ceiling lights and base lights, those that condense and illuminate light such as downlights and spotlights, landscape lighting, There are street lights that illuminate using both diffusion and light collection. As shown in FIGS. 14A, 14B, and 14C, an illuminating device 101 that uses both diffusion and condensing includes a light emitting unit 103 and a rectangular lens 104 in plan view. In the width direction (short side direction) of the lens 104, the light emitted from the light emitting unit 103 is collected by the lens 104, and in the longitudinal direction (long side direction) of the lens 104, the light emitted from the light emitting unit 103 is The light is diffused without being condensed by 104. In the figure, the direction in which the light is collected is the x direction, the direction in which the light is diffused is the y direction, and the direction of the optical axis 131 is the z direction (the same applies to the following drawings). Since the longitudinal direction (y direction) of the lens 104 is linear with a finite length, as shown in FIG. 15, the light distribution characteristic of the illumination device 101 has a narrow angle in the diffusion direction (y direction).

拡散方向の角度を拡大した配光特性を有する照明装置として、図16(a)(b)(c)に示されるように、レンズ114の形状をyz平面において発光部103を中心とする半円弧状とした照明装置111がある。この照明装置111の配光特性は、図17に示されるように、拡散方向(y方向)の角度が比較的広い。しかしながら、上述したような照明装置111は、拡散方向における光軸131からの角度θ(以下、視野角という)が大きくなると、光度が低くなる。このような照明装置111は、景観照明器具に用いた場合、視野角が大きくなると照明装置111の点灯が見え難い。また、この照明装置111は、街路灯に用いた場合、照明装置111から距離が離れた場所では視野角が大きいので地面照度が低くなる。   As an illumination device having a light distribution characteristic in which the angle in the diffusion direction is enlarged, as shown in FIGS. 16A, 16B, and 16C, the shape of the lens 114 is a semicircle centered on the light emitting unit 103 on the yz plane. There is an illuminating device 111 having an arc shape. As shown in FIG. 17, the light distribution characteristic of the illumination device 111 has a relatively wide angle in the diffusion direction (y direction). However, the illumination device 111 as described above decreases in luminous intensity when the angle θ (hereinafter referred to as a viewing angle) from the optical axis 131 in the diffusion direction increases. When such an illuminating device 111 is used for a landscape illuminating device, it is difficult to see the lighting of the illuminating device 111 when the viewing angle increases. In addition, when the lighting device 111 is used for a street lamp, the illumination intensity on the ground is low because the viewing angle is large at a location far from the lighting device 111.

集光レンズと拡散レンズとを有し、視野角が大きい領域の光度を高くした照明光学系が知られている(例えば、特許文献1参照)。しかしながら、このような照明光学系を有する照明装置を景観照明器具に用いた場合、視野角が大きい領域では光度が高く、視野角が小さい領域では光度が低くなり、視野角によって光度が変化して美観が損なわれる。   An illumination optical system that includes a condensing lens and a diffusing lens and has a high luminous intensity in a region with a large viewing angle is known (for example, see Patent Document 1). However, when a lighting device having such an illumination optical system is used for a landscape lighting fixture, the luminous intensity is high in a region with a large viewing angle, the luminous intensity is low in a region with a small viewing angle, and the luminous intensity changes depending on the viewing angle. The beauty is impaired.

また、図18乃至図20示されるように、このような照明光学系を有する照明装置121を街路灯に用いた場合、照明装置121は、人Hの頭よりも高い位置に配置され、歩道や通路等に沿った方向(y方向)に長い照射領域に照明する。照明装置121を真下から見上げるたとき、視野角θは0であり、歩道等に沿って真下からy方向に離れるにつれて視野角θが大きくなる。照明装置121から照射面までの照射距離は、照射領域の遠端領域ほど遠い。また、視野角θが大きい(θ=θ3)照射面に対するビーム角αは、視野角θが小さい(θ=θ4)照射面に対するビーム角と比べ、同程度又はそれ以下である。このため、照射領域において、視野角θが大きい領域の集光方向(x方向)の幅W3が、視野角θが小さい領域の幅W4よりも広がってしまい、歩道等を一定の幅で照明することができない。   As shown in FIGS. 18 to 20, when the illumination device 121 having such an illumination optical system is used for a street lamp, the illumination device 121 is arranged at a position higher than the head of the person H, Illuminate the irradiation region that is long in the direction along the passage (y direction). When the illuminating device 121 is looked up from directly below, the viewing angle θ is 0, and the viewing angle θ increases as the distance from the bottom to the y direction increases along the sidewalk and the like. The irradiation distance from the illumination device 121 to the irradiation surface is farther from the far end region of the irradiation region. Further, the beam angle α with respect to the irradiation surface with a large viewing angle θ (θ = θ3) is comparable or less than the beam angle with respect to the irradiation surface with a small viewing angle θ (θ = θ4). For this reason, in the irradiation region, the width W3 in the light collecting direction (x direction) of the region with a large viewing angle θ is wider than the width W4 of the region with a small viewing angle θ, and illuminates a sidewalk or the like with a constant width. I can't.

特開2009−99493号公報JP 2009-99493 A

本発明は、上記問題を解決するものであり、照明装置において、視野角が大きくなるにつれて光度が低下することを防ぐことを目的とする。   The present invention solves the above-described problem, and an object of the present invention is to prevent the luminous intensity from decreasing as the viewing angle increases in an illumination device.

上記目的を達成するために請求項1の発明は、取付基板と、前記取付基板に取り付けられ、該取付基板と略直交する光軸を有する発光部と、前記発光部から出射された光を配光制御するレンズと、を備えた照明装置であって、前記レンズは、前記光軸を含む面での断面形状、及び、前記面を視点軸周りに任意の視野角だけ回転させた面での断面形状が連続的に変化する凸レンズ形状であり、かつ、該凸レンズ形状のレンズ径は前記視野角が大きくなるにつれて増加するものである。   In order to achieve the above object, the invention of claim 1 is provided with a mounting substrate, a light emitting portion attached to the mounting substrate and having an optical axis substantially orthogonal to the mounting substrate, and light emitted from the light emitting portion. A lens for controlling light, wherein the lens has a cross-sectional shape on a plane including the optical axis, and a plane obtained by rotating the plane around a viewpoint axis by an arbitrary viewing angle. The convex lens shape has a continuously changing cross-sectional shape, and the lens diameter of the convex lens shape increases as the viewing angle increases.

請求項2の発明は、請求項1に記載の照明装置において、前記視野角をθ、視野角θにおける前記凸レンズ形状のレンズ径をd(θ)、焦点距離をf(θ)、kを正の定数とすると、前記凸レンズ形状は、下記式を満たすものである。

Figure 0005313181
According to a second aspect of the present invention, in the illumination device according to the first aspect, the viewing angle is θ, the lens diameter of the convex lens shape at the viewing angle θ is d (θ), the focal length is f (θ), and k is positive. The above convex lens shape satisfies the following formula.
Figure 0005313181

請求項3の発明は、請求項1に記載の照明装置において、視野角が所定の角度より小さいとき、前記凸レンズ形状の焦点距離を前記発光部から前記レンズまでの距離と異ならせ、かつ、前記凸レンズ形状のレンズ径を所望の光束が得られるように設定したものである。   According to a third aspect of the present invention, in the illumination device according to the first aspect, when the viewing angle is smaller than a predetermined angle, the focal length of the convex lens shape is different from the distance from the light emitting unit to the lens, and the The lens diameter of the convex lens shape is set so that a desired light beam can be obtained.

請求項1の発明によれば、視野角が大きくなるにつれて発光部から出射される光の光度が低下しても、凸レンズ形状のレンズ径の増加によって光度低下が補償されるので、照明装置から出射される光の光度が低下することを防ぐことができる。   According to the first aspect of the present invention, even if the luminous intensity of the light emitted from the light emitting portion decreases as the viewing angle increases, the decrease in luminous intensity is compensated by the increase in the lens diameter of the convex lens shape. It is possible to prevent the brightness of the emitted light from decreasing.

請求項2の発明によれば、レンズに入射する光束が視野角によらず一定となるので、照明装置から出射される光の光度が視野角によらず一定となる。   According to the second aspect of the present invention, since the light beam incident on the lens is constant regardless of the viewing angle, the luminous intensity of the light emitted from the illumination device is constant regardless of the viewing angle.

請求項3の発明によれば、視野角が小さいときレンズによる集光作用が弱くなるので、照射領域において、視野角が小さい領域の集光方向の幅を広げ、視野角が大きい領域の幅との差を低減することができる。   According to the invention of claim 3, since the condensing action by the lens is weak when the viewing angle is small, the width of the condensing direction of the region with a small viewing angle is widened in the irradiation region, and the width of the region with a large viewing angle is Can be reduced.

本発明の第1の実施形態に係る照明装置の斜視図。The perspective view of the illuminating device which concerns on the 1st Embodiment of this invention. (a)は同照明装置におけるレンズの断面図、(b)は同レンズの別断面における断面図。(A) is sectional drawing of the lens in the illumination device, (b) is sectional drawing in another cross section of the lens. (a)は同レンズの平面図、(b)は同レンズの側面図、(c)は同レンズの正面図、(d)は同レンズの背面図。(A) is a plan view of the lens, (b) is a side view of the lens, (c) is a front view of the lens, and (d) is a rear view of the lens. (a)は上記照明装置における発光部の空間中の配光特性を表す図、(b)は同配光特性を平面視した図、(c)は同配光特性を別方向から平面視した図。(A) is the figure showing the light distribution characteristic in the space of the light emission part in the said illuminating device, (b) is the figure which planarly viewed the light distribution characteristic, (c) was planarly viewed from another direction. Figure. 同発光部の光度の角度依存性を示す図。The figure which shows the angle dependence of the luminous intensity of the light emission part. 上記レンズのある視野角における断面図。Sectional drawing in the viewing angle with the said lens. 上記照明装置の配光特性を表す図。The figure showing the light distribution characteristic of the said illuminating device. 本発明の第2の実施形態に係る照明装置における小さい視野角でのレンズの断面図。Sectional drawing of the lens in the small viewing angle in the illuminating device which concerns on the 2nd Embodiment of this invention. 同レンズの変形例における小さい視野角での断面図。Sectional drawing in a small viewing angle in the modification of the lens. 上記照明装置における大きい視野角でのレンズの断面図。Sectional drawing of the lens in the big viewing angle in the said illuminating device. 同照明装置の配光特性を示す図。The figure which shows the light distribution characteristic of the illuminating device. 同照明装置から照射される光のビーム角を説明する図。The figure explaining the beam angle of the light irradiated from the illumination device. 同照明装置を用いた街路灯の斜視図。The perspective view of the street lamp using the illumination device. (a)は従来の照明装置の斜視図、(b)は同照明装置の断面図、(c)は同照明装置の別断面における断面図。(A) is a perspective view of the conventional illuminating device, (b) is sectional drawing of the illuminating device, (c) is sectional drawing in another cross section of the illuminating device. 同照明装置の配光特性を表す図。The figure showing the light distribution characteristic of the illuminating device. (a)は従来の別の照明装置の斜視図、(b)は同照明装置の断面図、(c)は同照明装置の別断面における断面図。(A) is a perspective view of another conventional illumination device, (b) is a sectional view of the illumination device, and (c) is a sectional view of another illumination device. 同照明装置の配光特性を表す図。The figure showing the light distribution characteristic of the illuminating device. 従来のさらに別の照明装置用いた街路灯の斜視図。The perspective view of the street lamp using another conventional illuminating device. 同照明装置の配光特性を表す図。The figure showing the light distribution characteristic of the illuminating device. 同照明装置から照射される光のビーム角を説明する図。The figure explaining the beam angle of the light irradiated from the illumination device.

(第1の実施形態)
本発明の第1の実施形態に係る照明装置を図1乃至図7を参照して説明する。図1乃至図3(a)(b)(c)(d)に示されるように、本実施形態の照明装置1は、取付基板2と、取付基板2に取り付けられた発光部3と、レンズ4とを有する。発光部3は、取付基板と略直交する光軸31を有する。レンズ4は、発光部3から出射された光を配光制御する。このレンズ4は、光軸31を含む面S(0)での断面形状、及び、面S(0)を視点軸32周りに任意の視野角θだけ回転させた面S(θ)での断面形状が連続的に変化する凸レンズ形状41である。その凸レンズ形状41のレンズ径d(θ)は視野角θが大きくなるにつれて増加する。視点軸32は、光軸31に直交し、発光部3の発光面33に接する。図において、光軸31方向をz方向、視点軸32方向をx方向とし、それらに直交する方向をy方向とした。レンズ4は、光軸31及び視点軸32を含む面について面対称である。なお、照明装置1は発光部3より前方の空間(z>0)に光を出射するので、視野角θは90°を超えない。
(First embodiment)
A lighting apparatus according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 to 3A, 3B, 3C, and 3D, the illumination device 1 according to this embodiment includes a mounting substrate 2, a light emitting unit 3 mounted on the mounting substrate 2, and a lens. 4. The light emitting unit 3 has an optical axis 31 that is substantially orthogonal to the mounting substrate. The lens 4 controls the light distribution of the light emitted from the light emitting unit 3. This lens 4 has a cross-sectional shape at the surface S (0) including the optical axis 31 and a cross-section at the surface S (θ) obtained by rotating the surface S (0) about the viewpoint axis 32 by an arbitrary viewing angle θ. This is a convex lens shape 41 whose shape changes continuously. The lens diameter d (θ) of the convex lens shape 41 increases as the viewing angle θ increases. The viewpoint axis 32 is orthogonal to the optical axis 31 and is in contact with the light emitting surface 33 of the light emitting unit 3. In the figure, the direction of the optical axis 31 is the z direction, the direction of the viewpoint axis 32 is the x direction, and the direction orthogonal thereto is the y direction. The lens 4 is plane-symmetric with respect to a plane including the optical axis 31 and the viewpoint axis 32. In addition, since the illuminating device 1 radiates | emits light to the space (z> 0) ahead of the light emission part 3, viewing angle (theta) does not exceed 90 degrees.

取付基板2は、発光部3を取り付けるための基板であり、照明装置1外の電源に接続され、発光部3に電力を供給する。発光部3は、発光面33が完全拡散面で、かつ、高輝度な点に近い大きさで発光することが望ましく、例えば発光ダイオードから成る。有機ELは、完全拡散面で発光するが、発光部の面積が大きいので発光部3には適さない。   The attachment substrate 2 is a substrate for attaching the light emitting unit 3, is connected to a power source outside the lighting device 1, and supplies power to the light emitting unit 3. The light emitting unit 3 preferably emits light with a light emitting surface 33 having a completely diffusing surface and a size close to a high-luminance point, for example, a light emitting diode. The organic EL emits light on the completely diffusing surface, but is not suitable for the light emitting part 3 because the area of the light emitting part is large.

レンズ4は、アクリル、ポリカーボネート等のプラスチックや、一般的な光学ガラス等の透明材料を成形したものである。レンズ4の凸レンズ形状41は、片凸のものを図示したが、両凸であってもよい。レンズ4における光が入射する入射面42は、平面視(yz面)で発光部3の発光面33を中心とする半径Rの円弧形状とされる。レンズ4は、例えば、金型を用いて射出成形により作成される。   The lens 4 is formed by molding a plastic such as acrylic or polycarbonate, or a transparent material such as general optical glass. Although the convex lens shape 41 of the lens 4 is shown as a single convex, it may be biconvex. The incident surface 42 on which light is incident on the lens 4 has an arc shape with a radius R centered on the light emitting surface 33 of the light emitting unit 3 in plan view (yz surface). For example, the lens 4 is formed by injection molding using a mold.

取付基板2、発光部3、及びレンズ4は、適宜の構成によって固定される。照明装置1は、例えば有底無蓋の筺体(図示せず)を備え、取付基板2及び発光部3は、筺体の底部に配置され、レンズ4は、筺体の開口に設けられる。照明装置1は、視野角θを変えて配光計測を行い、各視野角θにおける光度値を比較することによって評価される。   The mounting substrate 2, the light emitting unit 3, and the lens 4 are fixed by an appropriate configuration. The lighting device 1 includes, for example, a bottomed and uncovered casing (not shown), the mounting substrate 2 and the light emitting unit 3 are disposed at the bottom of the casing, and the lens 4 is provided at the opening of the casing. The illuminating device 1 is evaluated by performing light distribution measurement by changing the viewing angle θ and comparing the luminous intensity values at the respective viewing angles θ.

上記のように構成された照明装置1において、発光部3から出射された光は、レンズ4に入射する。レンズ4に入射した光は、視点軸32方向(x方向)については凸レンズ形状41によって集光され、光軸31及び視点軸32に直交する方向(y方向)については集光されず、入射方向のまま拡散する。発光部3から出射されレンズ4に入射する光は、視野角θが大きくなるにつれて低下する。レンズ4において、光軸を含む面S(0)に対して視野角θをなして交差する面S(θ)における凸レンズ形状41は、視野角θが大きくなるにつれてレンズ径d(θ)が増加する。このため、視野角θが大きくなっても、発光部3からの光度の低下をレンズ径d(θ)の増加によって補償し、レンズ4に入射する光束を小さくすることなく、視野角θが大きくなるにつれて照明装置1から出射される光の光度が低下することを防ぐことができる。   In the illumination device 1 configured as described above, light emitted from the light emitting unit 3 enters the lens 4. The light incident on the lens 4 is collected by the convex lens shape 41 in the direction of the viewpoint axis 32 (x direction), and is not collected in the direction (y direction) orthogonal to the optical axis 31 and the viewpoint axis 32. Spread as it is. The light emitted from the light emitting unit 3 and entering the lens 4 decreases as the viewing angle θ increases. In the lens 4, the convex lens shape 41 on the surface S (θ) intersecting the surface S (0) including the optical axis at a viewing angle θ increases the lens diameter d (θ) as the viewing angle θ increases. To do. For this reason, even if the viewing angle θ increases, the decrease in luminous intensity from the light emitting unit 3 is compensated for by increasing the lens diameter d (θ), and the viewing angle θ increases without reducing the light flux incident on the lens 4. As it becomes, it can prevent that the luminous intensity of the light radiate | emitted from the illuminating device 1 falls.

レンズ4による光度低下の補償について詳述する。図4(a)(b)(c)は、発光部3単体の配光特性を示し、(a)はxyz空間内の配光特性、(b)はyz面の配光特性、(c)はzx面の配光特性を表している。矢印Lで示す光の出射方向と光軸31とがなす角を、yz面で視野角θ、zx面で角度φとすると、その出射方向における光度I(θ,φ)(矢印Lの大きさ)は、ランベルトの余弦則により、次式で表される。
I(θ,φ)=Icosθcosφ
図5に示されるように、Icosθcosφは、最大値がIcosθであるコサインカーブの角度φにおける値である。
この光度I(θ,φ)の光が発光部3から出射され、レンズ4に入射される。
The compensation for the decrease in luminous intensity by the lens 4 will be described in detail. 4A, 4B, and 4C show the light distribution characteristics of the light emitting unit 3 alone, where FIG. 4A shows the light distribution characteristics in the xyz space, FIG. 4B shows the light distribution characteristics of the yz plane, and FIG. Represents the light distribution characteristic of the zx plane. If the angle formed by the light emission direction indicated by the arrow L and the optical axis 31 is the viewing angle θ on the yz plane and the angle φ on the zx plane, the luminous intensity I (θ, φ) in the emission direction (the size of the arrow L) ) Is expressed by the following equation according to Lambert's cosine law.
I (θ, φ) = I cos θ cos φ
As shown in FIG. 5, I cos θ cos φ is a value at an angle φ of a cosine curve whose maximum value is I cos θ.
Light having this luminous intensity I (θ, φ) is emitted from the light emitting unit 3 and is incident on the lens 4.

照明装置1から出射される光の光度が視野角θによらず一定となる条件は、発光部3から出射されてレンズ4に入射する光束が視野角θによらず一定となることである。光束とは、ある面積を通過する放射束である。レンズ4の入射面において、視野角θ乃至θ+Δθ(Δθは微小増分)間の面積は、視野角θにおけるレンズ径d(θ)に比例し、d(θ)×Δθとなる。この面積を通過する光束は、面積d(θ)×Δθにおける光度I(θ,φ)の面積分である。レンズ4に入射する光束が視野角θによらず一定となる条件は、Δθが微小であるので、視野角θにおける光度I(θ,φ)をレンズ径d(θ)方向で積分した積分値が一定となることであると近似される。   The condition that the luminous intensity of the light emitted from the illumination device 1 is constant regardless of the viewing angle θ is that the light beam emitted from the light emitting unit 3 and incident on the lens 4 is constant regardless of the viewing angle θ. A luminous flux is a radiant flux that passes through a certain area. On the incident surface of the lens 4, the area between viewing angles θ to θ + Δθ (Δθ is a minute increment) is proportional to the lens diameter d (θ) at the viewing angle θ, and is d (θ) × Δθ. The luminous flux passing through this area is the area of luminous intensity I (θ, φ) in the area d (θ) × Δθ. The condition under which the luminous flux incident on the lens 4 is constant regardless of the viewing angle θ is that Δθ is very small. Therefore, the integrated value obtained by integrating the luminous intensity I (θ, φ) at the viewing angle θ in the direction of the lens diameter d (θ). Is approximated to be constant.

レンズ4の視野角θ=θaにおけるジオメトリを図6に示す。視野角θ=θaにおいて、凸レンズ形状41のレンズ径はd(θ=θa)、焦点距離はf(θ=θa)である。発光部3からレンズ4の入射面42を臨む角度は+φa及び−φaである。視野角θ=θaにおけるレンズ4に入射される光の光度I(θ=θa,φ)は、下記式で表される。
I(θ=θa,φ)=Icosθacosφ
FIG. 6 shows the geometry of the lens 4 at the viewing angle θ = θa. At the viewing angle θ = θa, the lens diameter of the convex lens shape 41 is d (θ = θa), and the focal length is f (θ = θa). The angles at which the incident surface 42 of the lens 4 faces from the light emitting unit 3 are + φa and −φa. The luminous intensity I (θ = θa, φ) of the light incident on the lens 4 at the viewing angle θ = θa is expressed by the following equation.
I (θ = θa, φ) = Icos θacosφ

視野角θ=θaにおけるレンズ4の入射角内[−φa,+φa]の光度I(θ=θa,φ)の積分値は、下記式のように求められる。

Figure 0005313181
The integrated value of the luminous intensity I (θ = θa, φ) within the incident angle [−φa, + φa] of the lens 4 at the viewing angle θ = θa is obtained as follows.
Figure 0005313181

したがって、光度I(θ=θa,φ)の積分値が視野角θによらず一定となる条件は、kを正の定数として、下記式で表される。

Figure 0005313181
Therefore, the condition that the integrated value of the luminous intensity I (θ = θa, φ) is constant regardless of the viewing angle θ is expressed by the following equation, where k is a positive constant.
Figure 0005313181

ここで、sinφは、焦点距離f(θ)とレンズ径d(θ)により下記式で表される。

Figure 0005313181
Here, sinφ is expressed by the following equation using the focal length f (θ) and the lens diameter d (θ).
Figure 0005313181

上記2式を展開してsinφを消去し、レンズ径d(θ)を求めると、下記式が得られる。

Figure 0005313181
レンズ4は、視野角θにおける凸レンズ形状41が上記式(数5)を満たすように形成される。これにより、レンズ4に入射する光束が視野角θによらず一定となり、図7に示されるように、照明装置1から出射される光の光度が視野角θによらず略一定となる。なお、レンズ4は、同式を満たせば、視野角θによって焦点距離f(θ)が変化するように形成してもよい。焦点距離f(θ)は、レンズ4の断面形状が球面レンズの場合、屈折率、曲率半径、及び厚みから算出される。 When the above two formulas are developed to eliminate sinφ and the lens diameter d (θ) is obtained, the following formula is obtained.
Figure 0005313181
The lens 4 is formed so that the convex lens shape 41 at the viewing angle θ satisfies the above formula (Equation 5). Thereby, the light beam incident on the lens 4 becomes constant regardless of the viewing angle θ, and as shown in FIG. 7, the luminous intensity of the light emitted from the illumination device 1 becomes substantially constant regardless of the viewing angle θ. The lens 4 may be formed so that the focal length f (θ) varies depending on the viewing angle θ as long as the same equation is satisfied. The focal length f (θ) is calculated from the refractive index, the radius of curvature, and the thickness when the cross-sectional shape of the lens 4 is a spherical lens.

(第2の実施形態)
本発明の第2の実施形態に係る照明装置1を図8乃至図13を参照して説明する。本実施形態の照明装置1は、第1の実施形態と同様の構成を有し、視野角θが所定の角度より小さいとき、図8及び図9に示されるように、凸レンズ形状41の焦点距離f(θ)を発光部3からレンズ4までの距離Rと異ならせ(f(θ)>R又はf(θ)<R)、かつ、凸レンズ形状41のレンズ径d(θ)を所望の光束が得られるように設定した。視野角θが所定の角度以上のときは、図10に示されるように、凸レンズ形状41の焦点距離f(θ)を発光部3からレンズ4までの距離Rと同じに設定している(f(θ)=R)。所定の角度は、照明装置1の設置状況等に応じて適宜に定められる。図8及び図9は焦点距離f(θ)を変える場合を示しているが、発光部3からレンズ4までの距離Rを変えることによって、焦点距離f(θ)を距離Rと異ならせてもよい。レンズ径d(θ)は、例えば、第1の実施形態と同様に、レンズ4に入射する光束が視野角θによらず一定となるように設定される。
(Second Embodiment)
A lighting device 1 according to a second embodiment of the present invention will be described with reference to FIGS. The illumination device 1 of the present embodiment has the same configuration as that of the first embodiment, and when the viewing angle θ is smaller than a predetermined angle, the focal length of the convex lens shape 41 is shown in FIGS. 8 and 9. f (θ) is made different from the distance R from the light emitting portion 3 to the lens 4 (f (θ)> R or f (θ) <R), and the lens diameter d (θ) of the convex lens shape 41 is set to a desired light flux. Was set to be obtained. When the viewing angle θ is equal to or greater than a predetermined angle, as shown in FIG. 10, the focal length f (θ) of the convex lens shape 41 is set to be the same as the distance R from the light emitting unit 3 to the lens 4 (f (Θ) = R). The predetermined angle is appropriately determined according to the installation status of the lighting device 1 and the like. 8 and 9 show the case where the focal length f (θ) is changed. However, even if the focal length f (θ) is made different from the distance R by changing the distance R from the light emitting unit 3 to the lens 4. Good. The lens diameter d (θ) is set so that, for example, the light beam incident on the lens 4 is constant regardless of the viewing angle θ, as in the first embodiment.

上記のように構成された照明装置1は、視野角が小さいときレンズ4による集光作用が弱くなる。このため、この照明装置1は、従来の照明装置の配光特性(図19参照)と比べると、図11に示されるように、視野角が小さいときのビーム角が大きくなってx方向に広がった配光特性を有する。図12に示されるように、視野角θが小さい(θ=θ1)照射面に対するビーム角α1は、視野角θが大きい(θ=θ2)照射面に対するビーム角α2と比べて大きくなる(α1>α2)。このため、照射領域において、視野角θが小さい領域の集光方向(x方向)の幅W1を広げ、視野角θが大きい領域の幅W2との差を低減することができる。レンズ4は、照射領域の集光方向の幅が視野角θによらず一定となるように焦点距離f(θ)を設定することが望ましい。照明装置1は、例えば、照射面の照度分布を計測し、その形状と均斉度により評価される。   The illuminating device 1 configured as described above has a weak condensing action by the lens 4 when the viewing angle is small. For this reason, as compared with the light distribution characteristic of the conventional illumination device (see FIG. 19), the illumination device 1 has a larger beam angle when the viewing angle is small and spreads in the x direction as shown in FIG. Have good light distribution characteristics. As shown in FIG. 12, the beam angle α1 with respect to the irradiation surface with a small viewing angle θ (θ = θ1) is larger than the beam angle α2 with respect to the irradiation surface with a large viewing angle θ (θ = θ2) (α1>). α2). For this reason, in the irradiation region, the width W1 in the condensing direction (x direction) of the region where the viewing angle θ is small can be widened, and the difference from the width W2 of the region where the viewing angle θ is large can be reduced. It is desirable for the lens 4 to set the focal length f (θ) so that the width of the irradiation region in the light collecting direction is constant regardless of the viewing angle θ. The illuminating device 1 measures, for example, the illuminance distribution on the irradiated surface, and is evaluated by its shape and uniformity.

この照明装置1を例えば街路灯に用いた場合、図13に示されるように、照射領域11において、視野角θが小さい(θ=θ1)領域の集光方向の幅W1と、視野角θが大きい(θ=θ2)領域の幅W2との差が低減され、歩道等を略一定の幅で照明することが可能となる。レンズ4は、照射領域11の集光方向の幅が視野角θによらず一定となるように焦点距離f(θ)を設定し、照射領域11の形状、すなわち照度分布形状を四角形とすることが望ましい。これにより、照射領域11において、視野角θが大きい領域の幅W2が、視野角θが小さい領域の幅W1よりも広がらず、必要な範囲だけに光を照射することができる。   When this illuminating device 1 is used for a street lamp, for example, as shown in FIG. 13, in the irradiation region 11, the width W1 in the light condensing direction of the region where the viewing angle θ is small (θ = θ1) and the viewing angle θ are A difference with the width W2 of the large (θ = θ2) region is reduced, and the sidewalk or the like can be illuminated with a substantially constant width. The lens 4 sets the focal length f (θ) so that the width of the irradiation region 11 in the condensing direction is constant regardless of the viewing angle θ, and the shape of the irradiation region 11, that is, the illuminance distribution shape is a rectangle. Is desirable. Thereby, in the irradiation region 11, the width W2 of the region having a large viewing angle θ is not wider than the width W1 of the region having a small viewing angle θ, and light can be irradiated only in a necessary range.

なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、第1の実施形態の照明装置1は、景観照明器具に用いてもよく、これにより、視野角によって光度が変化することが防がれる。   In addition, this invention is not restricted to the structure of said embodiment, A various deformation | transformation is possible in the range which does not change the summary of invention. For example, you may use the illuminating device 1 of 1st Embodiment for a landscape lighting fixture, and this prevents that a luminous intensity changes with a viewing angle.

1 照明装置
2 取付基板
3 発光部
31 光軸
32 視点軸
4 レンズ
41 凸レンズ形状
d レンズ径
f 焦点距離
k 定数
S 面
θ 視野角
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 Mounting board 3 Light emission part 31 Optical axis 32 View axis 4 Lens 41 Convex lens shape d Lens diameter f Focal length k Constant S Surface (theta) Viewing angle

Claims (3)

取付基板と、前記取付基板に取り付けられ、該取付基板と略直交する光軸を有する発光部と、前記発光部から出射された光を配光制御するレンズと、を備えた照明装置であって、
前記レンズは、前記光軸を含む面での断面形状、及び、前記面を視点軸周りに任意の視野角だけ回転させた面での断面形状が連続的に変化する凸レンズ形状であり、かつ、該凸レンズ形状のレンズ径は前記視野角が大きくなるにつれて増加することを特徴とする照明装置。
An illumination device comprising: a mounting substrate; a light emitting unit attached to the mounting substrate and having an optical axis substantially orthogonal to the mounting substrate; and a lens for controlling light distribution of light emitted from the light emitting unit. ,
The lens is a convex lens shape in which a cross-sectional shape on a surface including the optical axis, and a cross-sectional shape on a surface obtained by rotating the surface by an arbitrary viewing angle around a viewpoint axis, continuously change, and The illumination device characterized in that the lens diameter of the convex lens shape increases as the viewing angle increases.
前記視野角をθ、視野角θにおける前記凸レンズ形状のレンズ径をd(θ)、焦点距離をf(θ)、kを正の定数とすると、
前記凸レンズ形状は、下記式を満たすことを特徴とする請求項1に記載の照明装置。
Figure 0005313181
When the viewing angle is θ, the lens diameter of the convex lens shape at the viewing angle θ is d (θ), the focal length is f (θ), and k is a positive constant,
The illumination device according to claim 1, wherein the convex lens shape satisfies the following formula.
Figure 0005313181
視野角が所定の角度より小さいとき、前記凸レンズ形状の焦点距離を前記発光部から前記レンズまでの距離と異ならせ、かつ、前記凸レンズ形状のレンズ径を所望の光束が得られるように設定したことを特徴とする請求項1に記載の照明装置。   When the viewing angle is smaller than a predetermined angle, the focal length of the convex lens shape is made different from the distance from the light emitting unit to the lens, and the lens diameter of the convex lens shape is set so that a desired luminous flux can be obtained. The lighting device according to claim 1.
JP2010014692A 2010-01-26 2010-01-26 Lighting device Active JP5313181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014692A JP5313181B2 (en) 2010-01-26 2010-01-26 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014692A JP5313181B2 (en) 2010-01-26 2010-01-26 Lighting device

Publications (2)

Publication Number Publication Date
JP2011154831A JP2011154831A (en) 2011-08-11
JP5313181B2 true JP5313181B2 (en) 2013-10-09

Family

ID=44540665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014692A Active JP5313181B2 (en) 2010-01-26 2010-01-26 Lighting device

Country Status (1)

Country Link
JP (1) JP5313181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162681A1 (en) * 2013-04-03 2014-10-09 株式会社小糸製作所 Road lighting device
JPWO2016002359A1 (en) * 2014-07-03 2017-04-27 ソニー株式会社 Light emitting device and light emitting device assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000307807A (en) * 1999-04-22 2000-11-02 Citizen Electronics Co Ltd Linear light source unit
JP4314837B2 (en) * 2003-01-31 2009-08-19 パナソニック株式会社 Light emitting device
US7489453B2 (en) * 2005-11-15 2009-02-10 Visteon Global Technologies, Inc. Side emitting near field lens
JP2008108674A (en) * 2006-10-27 2008-05-08 Stanley Electric Co Ltd Led lighting fixture
WO2008122941A1 (en) * 2007-04-05 2008-10-16 Koninklijke Philips Electronics N.V. Light-beam shaper.
TWM345357U (en) * 2008-06-30 2008-11-21 E Pin Optical Industry Co Ltd Aspherical LED angular lens for central distribution patterns and LED assembly using the same

Also Published As

Publication number Publication date
JP2011154831A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
US9719637B2 (en) Tubular lighting device
TWI407045B (en) Lighting device
US8979317B2 (en) Luminous flux control member and illumination device
JP5888999B2 (en) Lighting device
JP2009295299A (en) Illumination body
US8240886B2 (en) Illumination device with anti-glare function
US9028100B2 (en) Adjustable LED lens and lamp with the same
JP4999881B2 (en) Tunnel lighting system
CN106164581B (en) Illuminator
JP5313181B2 (en) Lighting device
US8403537B2 (en) Lighting apparatus
JP2018146808A (en) Lens, illumination device and illumination instrument
TWI250815B (en) A lantern structure for the LEDs
US20200041096A1 (en) Luminaire with spatially separated solid state lighting elements
TWI422781B (en) Lens and lamp using the same
KR101682676B1 (en) Diffusion Lens having Scaterring Function for LED lighting
JP6093548B2 (en) Holder and lighting device
CN209991410U (en) Optical component and lighting apparatus
JP6604593B2 (en) Light distribution control lens
KR101742196B1 (en) Lens of light diffusion for LED device
CA2928432C (en) Lamp having lens element for distributing light
JP2015118132A (en) Light distribution control lens for LED
EP2947383B1 (en) Lighting device for illuminating streets, roads or paths
TWI426304B (en) Lens
KR20130118499A (en) Led lens for super wide angle and high uniformity ratio of illumination

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150