JP5313032B2 - Sintered adsorbent and cartridge for solid phase extraction - Google Patents

Sintered adsorbent and cartridge for solid phase extraction Download PDF

Info

Publication number
JP5313032B2
JP5313032B2 JP2009107965A JP2009107965A JP5313032B2 JP 5313032 B2 JP5313032 B2 JP 5313032B2 JP 2009107965 A JP2009107965 A JP 2009107965A JP 2009107965 A JP2009107965 A JP 2009107965A JP 5313032 B2 JP5313032 B2 JP 5313032B2
Authority
JP
Japan
Prior art keywords
solid phase
phase extraction
adsorbent
solid
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009107965A
Other languages
Japanese (ja)
Other versions
JP2010256225A (en
Inventor
嘉則 井上
満 齊藤
敏文 加藤
英之 梁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Filcon Co Ltd
Original Assignee
Nippon Filcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Filcon Co Ltd filed Critical Nippon Filcon Co Ltd
Priority to JP2009107965A priority Critical patent/JP5313032B2/en
Publication of JP2010256225A publication Critical patent/JP2010256225A/en
Application granted granted Critical
Publication of JP5313032B2 publication Critical patent/JP5313032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、化学分析の前処理工程において使用される固相抽出用の吸着材およびそれを用いた固相抽出用カートリッジに関するものである。 The present invention relates to an adsorbent for solid phase extraction used in a pretreatment step of chemical analysis and a cartridge for solid phase extraction using the same.

液体試料中からの測定対象物の抽出には溶媒抽出法(液−液抽出法)が古くから用いられてきた。溶媒抽出法は、操作が煩雑で、かつ環境負荷の高い有機溶媒を大量に使用する等、種々の問題が指摘されているため、近年は固相抽出法に移行しつつある。固相抽出法は、固相と液相との間の相互作用による物理的抽出法で、測定対象物質の固相抽出剤への高い親和性を利用して、測定対象物質を固相抽出剤表面に抽出・濃縮するものである。溶媒抽出法に比べ、高回収率、高精度、迅速性、簡便性、安全性、低コスト、溶媒低減、自動化が容易、フィールドサンプリングが可能等の特長を有している。そのため、多数の検体の迅速処理が必要とされる環境試料や食品試料中の農薬等の微量有害物質の抽出・濃縮に広く利用されている。 A solvent extraction method (liquid-liquid extraction method) has been used for a long time to extract a measurement object from a liquid sample. Since the solvent extraction method has been pointed out various problems such as the use of a large amount of an organic solvent that is complicated in operation and has a high environmental load, the solvent extraction method has recently been shifted to the solid phase extraction method. The solid-phase extraction method is a physical extraction method based on the interaction between the solid phase and the liquid phase, and the high-affinity of the measurement target substance to the solid-phase extraction agent is used to convert the measurement target substance into the solid-phase extraction agent. Extracted and concentrated on the surface. Compared with the solvent extraction method, it has features such as high recovery rate, high accuracy, rapidity, simplicity, safety, low cost, solvent reduction, easy automation, and field sampling. For this reason, it is widely used for extraction and concentration of trace harmful substances such as agricultural chemicals in environmental samples and food samples that require rapid processing of a large number of specimens.

固相抽出剤としては、シランカップリング反応によりシリカゲル表面にオクタデシル基やオクチル基等の疎水基を導入したシリカ系固相抽出剤が使用されてきたが、近年では、負荷量が大きいこと、耐薬品性が高いこと、ロット間のバラツキが少ないこと、多彩な種類があること等の理由により、高分子物質を利用したポリマー系固相抽出剤が急速に普及しつつある。ポリマー系固相抽出剤としては、当初は、スチレン−ジビニルベンゼン共重合体が用いられたが、抽出効率を改善するためメタクリレートとジビニルベンゼン共重合体(特許文献1参照)やビニルピロリドンとジビニルベンゼン共重合体(特許文献2参照)等、内部に極性基をもつ固相抽出剤が提案されている。また、疎水性固相抽出剤にイオン交換基を導入したもの(特許文献3参照)やキレート性官能基を導入したもの(特許文献4参照)等多機能な固相抽出剤も提案されている。 As a solid phase extractant, a silica-based solid phase extractant in which a hydrophobic group such as an octadecyl group or an octyl group has been introduced on the surface of a silica gel by a silane coupling reaction has been used. Polymer-based solid-phase extraction agents using high-molecular substances are rapidly spreading due to high chemical properties, small lot-to-lot variations, and various types. As a polymer-based solid phase extraction agent, a styrene-divinylbenzene copolymer was initially used. However, in order to improve extraction efficiency, methacrylate and divinylbenzene copolymer (see Patent Document 1), vinylpyrrolidone and divinylbenzene were used. A solid phase extraction agent having a polar group inside such as a copolymer (see Patent Document 2) has been proposed. In addition, multifunctional solid-phase extraction agents such as those in which an ion exchange group is introduced into a hydrophobic solid-phase extraction agent (see Patent Document 3) and those in which a chelating functional group is introduced (see Patent Document 4) have been proposed. .

これらの固相抽出剤は、破砕形あるいは球形の数十μmの粉体であり、樹脂製(主に、ポリプロピレン製)のリザーバに充填して使用する。固相抽出用リザーバの作成は、下部にポリエチレン製等の焼結フィルタ(フリットと呼ぶ)を挿入したリザーバに乾式で充填を行い、その後、充填ベッドの上にもフリットを挿入し、固相抽出カートリッジとする。代表的な固相抽出カートリッジの構成を図1に示す。乾式充填によって充填された固相抽出剤の充填状態は、高速液体クロマトグラフィーに使用される充填カラムのように高密度に充填されているわけではない。したがって、充填直後に均一に充填されているようにみえても、振動や衝撃を受けると固相抽出剤が動き、上部フリットと充填ベッド上部との間に隙間が生じてしまうことがある。このような隙間が生じたまま使用すると、均一な抽出ができないとか、速やかな溶出ができない等により、抽出回収率が変動する上、カートリッジ中に試料溶液が残存するといった問題が生じる。 These solid-phase extraction agents are pulverized or spherical powders of several tens of μm, and are used by filling a reservoir made of resin (mainly made of polypropylene). To create a solid phase extraction reservoir, dry fill the reservoir with a polyethylene sintered filter (called a frit) in the bottom, and then insert the frit onto the packed bed to extract the solid phase. A cartridge is used. A typical solid phase extraction cartridge is shown in FIG. The packed state of the solid phase extraction agent packed by dry packing is not packed as densely as the packed column used in high performance liquid chromatography. Therefore, even if it seems to be uniformly packed immediately after filling, the solid phase extraction agent may move when subjected to vibration or impact, and a gap may be formed between the upper frit and the upper portion of the packed bed. If such a gap is used, there is a problem that the extraction recovery rate fluctuates and the sample solution remains in the cartridge because uniform extraction cannot be performed or rapid elution cannot be performed.

固相抽出剤がポリマー系固相抽出剤の場合には膨潤・収縮による問題も生じる。固相抽出カートリッジを用いて水試料からの抽出を行う場合、まず有機溶媒で固相抽出剤を洗浄するとともに、充填ベッドの調整を行う。その後、純水等を流して試料溶液の液性に合わせるという作業を行う(この操作をコンディショニングとよんでいる。)。一般に、ポリマー系固相抽出剤は有機溶媒中で膨潤するが、有機溶媒で膨潤した固相抽出剤を水中に入れると一気に収縮する。つまり、コンディショニングの間に充填ベッドは膨潤した後、収縮することとなるため、上記のような隙間やチャネリングが発生してしまうことがある。このような状態で使用すると、抽出回収率の低下やバラツキが生じてしまう。これらの問題を解決するためには、形状が安定しており、かつ膨潤・収縮のないポリマー系固相抽出剤が必要となる。 When the solid phase extraction agent is a polymer-based solid phase extraction agent, problems due to swelling and shrinkage also occur. When extracting from a water sample using a solid phase extraction cartridge, the solid phase extractant is first washed with an organic solvent and the packed bed is adjusted. Thereafter, an operation of flowing pure water or the like to match the liquidity of the sample solution is performed (this operation is called conditioning). In general, a polymer-based solid phase extractant swells in an organic solvent, but when a solid phase extractant swollen with an organic solvent is put into water, it contracts at once. That is, since the packed bed swells during conditioning and then contracts, the gaps and channeling as described above may occur. If it is used in such a state, the extraction recovery rate will be reduced and will vary. In order to solve these problems, a polymer-based solid phase extraction agent having a stable shape and free from swelling / shrinking is required.

上記問題を解決することが可能と思われる技術が、特許文献5〜6に提案されている。これらの特許文献では、粉体の固相抽出剤を高分子繊維(パルプ)と混合し、溶媒留去法あるいは加熱融着法によってシート状あるいは膜状とした固相抽出体として使用することが開示されている。これらは、ポリテトラフルオロエチレン、ポリオレフィン、ポリアラミド、ポリアミド、ポリウレタン、セルロース等の繊維により形成される網目状のシートあるいは膜内部に微粒子の固相抽出剤を保持させたものである。保持担体となる繊維は、通常の固相抽出工程において使用される溶媒では溶解することはなく、膨潤することもない。したがって、このような方法を用いることで膨潤・収縮のない固相抽出体を製造することができるとともに、上下のフリットも不要となる。しかしながら、このような方法によって製造される固相抽出体は厚さ1mm以下の薄膜状であり、一般的な固相抽出カートリッジのように円柱状に充填して、充填ベッド高さの調整によって必要な充填量を得るためには煩雑な作業が必要となる。これらの薄膜状固相抽出体は、通常のろ紙と同様の方法で使用するため、固相抽出カートリッジと共通の器具を使用することはできないから、専用の器具を準備しなければならない。さらに、孔径も小さいため、高流速での抽出処理がしにくく、目詰まりが生じやすいという問題もある。 Patent Documents 5 to 6 propose techniques that can solve the above problems. In these patent documents, a solid phase extractant in powder form is mixed with polymer fibers (pulp) and used as a solid phase extract in the form of a sheet or film by a solvent distillation method or a heat fusion method. It is disclosed. These are obtained by holding a solid-phase extractant of fine particles in a mesh-like sheet or film formed of fibers such as polytetrafluoroethylene, polyolefin, polyaramid, polyamide, polyurethane, and cellulose. The fiber serving as the holding carrier is not dissolved or swollen by the solvent used in the normal solid phase extraction process. Therefore, by using such a method, a solid-phase extract without swelling / shrinking can be produced, and upper and lower frits are not required. However, the solid-phase extract produced by such a method is a thin film having a thickness of 1 mm or less, and is packed in a cylindrical shape like a general solid-phase extraction cartridge, and is necessary by adjusting the height of the packed bed. In order to obtain a sufficient filling amount, complicated work is required. Since these thin-film solid-phase extracts are used in the same manner as ordinary filter paper, it is not possible to use an instrument common to the solid-phase extraction cartridge, so a dedicated instrument must be prepared. Furthermore, since the hole diameter is small, there is a problem that extraction processing at a high flow rate is difficult and clogging is likely to occur.

近年、高流速下で高分離が得られるとされるモノリス型充填剤の製造方法が提案(特許文献9など参照)されており、実際に商品化もされている。ポリマー系のモノリスに関しても種々検討されており、特許文献10では固相抽出分野への適用例が示されている。特許文献10のポリマーモノリスの製造方法によれば、0.5〜10μm程度のスルーポア、2〜50nmのメソポアを有する円柱状の固相抽出剤を製造することが可能であるとされている。このポリマーモノリスのスルーポア径は、一般的な粒子状固相抽出剤を充填した空隙よりも小さいが、十分に固相抽出剤として使用可能であると推察される。ポリマーモノリスは、密閉された反応容器内にモノマー、架橋剤、希釈剤、重合開始剤を入れて重合反応によって製造されるものであり、反応容器の内部の形状と同じ形状の多孔質体が得られる。高速液体クロマトグラフィー用カラムや固相抽出カートリッジとして使用する場合には、製造されたポリマーモノリスを反応容器からいったん取り出してからさらに加工して目的のカラムやカートリッジに挿入して使用することが通常である。しかしこれでは煩雑であるため、目的のカラムやカートリッジそのものを反応容器として用い、それら内部に直接モノリス型の固相抽出剤ベッドを生成させてしまうというというものである。この製造方法は、粒子を充填する工程が省けるという利点があると同時に、ポリマーモノリスそのものが多孔体であるため、通常の固相抽出カートリッジで使用される上下フリットも不要となる。しかしながら、固相抽出カートリッジ一本ずつ個別に固相抽出剤ベッドを重合反応により直接製造する方法は煩雑であり、大量製造に適しないという問題とともに、重合反応による内圧上昇によって樹脂製の固相抽出カートリッジでは変形してしまうおそれもある。さらには、固相抽出剤にさらに化学反応により種々の官能基を導入して高機能化を図りたいという場合、スルーポアが小さいために反応が均一に進行せず、固相抽出剤への官能基の導入率が低いという問題が発生する。 In recent years, a method for producing a monolithic filler, which is said to provide high separation at a high flow rate, has been proposed (see, for example, Patent Document 9) and has been commercialized. Various studies have also been made on polymer-based monoliths, and Patent Document 10 shows an application example in the solid-phase extraction field. According to the method for producing a polymer monolith of Patent Document 10, it is said that it is possible to produce a columnar solid-phase extraction agent having a through pore of about 0.5 to 10 μm and a mesopore of 2 to 50 nm. Although the through-pore diameter of this polymer monolith is smaller than a void filled with a general particulate solid phase extraction agent, it is presumed that it can be sufficiently used as a solid phase extraction agent. A polymer monolith is produced by a polymerization reaction in which a monomer, a crosslinking agent, a diluent, and a polymerization initiator are placed in a sealed reaction vessel, and a porous body having the same shape as that inside the reaction vessel is obtained. It is done. When used as a column for high-performance liquid chromatography or a solid-phase extraction cartridge, the produced polymer monolith is usually removed from the reaction vessel and further processed and inserted into the target column or cartridge for use. is there. However, since this is complicated, the target column or cartridge itself is used as a reaction vessel, and a monolithic solid-phase extraction agent bed is directly generated inside them. This manufacturing method has the advantage that the step of filling particles can be omitted, and at the same time, since the polymer monolith itself is a porous body, the upper and lower frits used in a normal solid phase extraction cartridge are also unnecessary. However, the method of directly producing a solid-phase extraction agent bed individually by polymerization reaction for each solid-phase extraction cartridge is cumbersome and not suitable for mass production, and the solid-phase extraction made of resin due to the increase in internal pressure due to the polymerization reaction The cartridge may be deformed. Furthermore, when it is desired to introduce various functional groups into the solid-phase extraction agent by chemical reaction to achieve higher functionality, the reaction does not proceed uniformly due to the small through-pores, and the functional group to the solid-phase extraction agent The problem that the introduction rate of is low.

特許3274898号公報Japanese Patent No. 3274898 特許公表2000−514704号公報Patent Publication 2000-514704 特許公表2002−517574号公報Patent Publication 2002-517574 特許公開2005−213477号公報Japanese Patent Publication No. 2005-213477 特許3785438号公報Japanese Patent No. 3785438 特表平10−500058号公報JP 10-500058 Gazette 特表2001−502762号公報JP-T-2001-502762 特表2002−524243号公報Special Table 2002-524243 特開2007−292751号公報JP 2007-292751 A 特開2006−15333号公報JP 2006-15333 A 特開2008−221611号公報JP 2008-221611 A

本発明は、上記の問題点をかんがみてなされたもので、粒子状の多孔質のポリマー系固相抽出剤の機能を損なうことなく、取扱いが容易で各種の要求に対応しやすい固相抽出用吸着材および充填密度の変動がない固相抽出用カートリッジを提供することを目的とする。 The present invention has been made in view of the above problems, and for solid phase extraction that is easy to handle and can meet various requirements without impairing the function of the particulate porous polymer-based solid phase extraction agent. It is an object of the present invention to provide a solid phase extraction cartridge that does not vary in adsorbent and packing density.

本発明は、鋭意研究を行った結果、粒子状の多孔質のポリマー系固相抽出剤を熱可塑性樹脂粉体と混合して混合物とし、この混合物を加熱・焼結して多孔の焼結体(以下では多孔焼結体とよぶことがある。)とすることにより、この多孔焼結体が多孔質のポリマー系固相抽出剤の機能を損なうことなく、取り扱いが容易で各種要求に対応しやすい固相抽出用吸着材となる知見を得たことに基づくものである。すなわち、混合物を加熱・焼結すると、混合物中の熱可塑性樹脂粉体は、その表層付近が融着して相互に結合し、多孔質で三次元網目状の構造を形成するが、この際多孔質のポリマー系固相抽出剤がこの網目状の構造中に固定された焼結体となるので、多孔質のポリマー系固相抽出剤の機能を損なうことなく、取り扱いが容易で各種要求に対応しやすい固相抽出用吸着材を製造することができる。この際、ポリマー系固相抽出剤の粉体の表面と熱可塑性樹脂粉体の表面とが融着により結合して一体的になることも予想される。
すなわち、粒子状の多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体の混合物を加熱・焼結することにより得られた熱可塑性樹脂の焼結マトリックス中に多孔質ポリマー系固相抽出剤が分散固定されたものであることを特徴とする焼結型固相抽出用吸着材、およびこの焼結型固相抽出用吸着材をリザーバあるいはホルダに装着した固相抽出用カートリッジとすることにより上述の課題を解決しようとするものである。
As a result of earnest research, the present invention has mixed a particulate porous polymer solid phase extractant with a thermoplastic resin powder to form a mixture, and this mixture is heated and sintered to obtain a porous sintered body. (Hereinafter sometimes referred to as a porous sintered body), the porous sintered body is easy to handle and meets various requirements without impairing the function of the porous polymer-based solid phase extractant. This is based on the finding of an easy-to-adsorb material for solid phase extraction. That is, when the mixture is heated and sintered, the thermoplastic resin powder in the mixture is fused near the surface layer and bonded to each other to form a porous, three-dimensional network structure. High-quality polymer-based solid-phase extractant becomes a sintered body fixed in this network structure, so it can be handled easily and meets various requirements without impairing the function of the porous polymer-based solid-phase extractant It is possible to produce an adsorbent for solid phase extraction that is easy to perform. At this time, it is expected that the surface of the powder of the polymer-based solid phase extractant and the surface of the thermoplastic resin powder are bonded together by fusion.
That is, a porous polymer-based solid phase extractant in a thermoplastic resin sintered matrix obtained by heating and sintering a mixture of a particulate porous polymer-based solid phase extractant and a thermoplastic resin powder By using a sintered solid-phase extraction adsorbent characterized by being dispersed and fixed, and a solid-phase extraction cartridge having the sintered solid-phase extraction adsorbent mounted on a reservoir or holder The above-mentioned problem is to be solved.

本発明では、乾燥時のベッド体積と溶媒に膨潤させた時のベッド体積から下記式1により求められる膨潤度が1.0〜2.0である多孔質のポリマー系固相抽出剤が熱可塑性樹脂粉体に混合される。 In the present invention, a porous polymer-based solid phase extractant having a degree of swelling of 1.0 to 2.0 determined by the following formula 1 from the bed volume when dried and the bed volume when swollen in a solvent is thermoplastic. Mixed with resin powder.

式1Formula 1

本発明においては、熱可塑性樹脂粉体に混合される多孔質のポリマー系固相抽出剤の混合率が、10〜70重量%である。 In the present invention, the mixing ratio of the porous polymer-based solid phase extractant mixed with the thermoplastic resin powder is 10 to 70% by weight.

本発明において使用される熱可塑性樹脂としては、ポリエチレン、ポリプロピレンのいずれかまたはそれらを混合したものを主成分とし、必要に応じて、エチレン−酢酸ビニル共重合体あるいはエチレン−ビニルアルコール共重合体を混合したものも使用することができる。 The thermoplastic resin used in the present invention is mainly composed of polyethylene, polypropylene or a mixture thereof, and if necessary, an ethylene-vinyl acetate copolymer or an ethylene-vinyl alcohol copolymer. Mixtures can also be used.

本発明においては、熱可塑性樹脂多孔焼結体内部に多孔質ポリマー系固相抽出剤が固定された焼結型固相抽出用吸着材をリザーバあるいはホルダに装着して固相抽出用カートリッジとする。 In the present invention, a solid-phase extraction cartridge is prepared by mounting a sintered solid-phase extraction adsorbent having a porous polymer-based solid-phase extraction agent fixed inside a thermoplastic resin porous sintered body to a reservoir or holder. .

本発明によれば、多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体とを混合し、融着法を用いて製造される多孔焼結体を固相抽出用吸着材として用いることで、多孔質ポリマー系固相抽出剤の機能を損なうことなく、取扱いが容易で各種要求に対応しやすい固相抽出用吸着材となり、この多孔焼結体を適切なリザーバあるいはホルダに装着することで、振動や膨潤・収縮による充填密度の変動がない固相抽出用カートリッジを、簡便かつ安価に得ることができる。 According to the present invention, a porous sintered polymer solid phase extractant and a thermoplastic resin powder are mixed, and a porous sintered body produced by using a fusion method is used as an adsorbent for solid phase extraction. It becomes an adsorbent for solid-phase extraction that is easy to handle and can meet various requirements without impairing the function of the porous polymer-based solid-phase extractant. By attaching this porous sintered body to an appropriate reservoir or holder, Thus, a solid phase extraction cartridge free from fluctuations in packing density due to vibration, swelling and shrinkage can be obtained simply and inexpensively.

図1は、一般的な固相抽出用カートリッジの構成例を示す。FIG. 1 shows a configuration example of a general solid phase extraction cartridge. 図2は、焼結型固相抽出用吸着材を用いた固相抽出用カートリッジの構成例を示す。FIG. 2 shows a configuration example of a solid phase extraction cartridge using a sintered solid phase extraction adsorbent. 図3は、上下に細孔径の異なる多孔焼結体層を一体成形した多層式焼結型固相抽出用吸着材を用いた固相抽出用カートリッジの構成例を示す。FIG. 3 shows a configuration example of a cartridge for solid phase extraction using a multilayer sintered solid phase extraction adsorbent in which a porous sintered body layer having different pore diameters is integrally formed on the upper and lower sides. 図4は、焼結型固相抽出用吸着材を用いたルアー型固相抽出用カートリッジの構成例を示す。FIG. 4 shows a configuration example of a Luer type solid phase extraction cartridge using a sintered type solid phase extraction adsorbent. 図5は、焼結型固相抽出用吸着材を用いた平板型固相抽出用カートリッジの構成例を示す。FIG. 5 shows a configuration example of a flat plate type solid phase extraction cartridge using a sintered solid phase extraction adsorbent. 図6は、固相抽出法の操作工程を示した図を示す。FIG. 6 shows a diagram showing the operation steps of the solid phase extraction method. 図7は、固相抽出法に用いる吸引マニュホールドの構成例を示す。FIG. 7 shows a configuration example of a suction manifold used in the solid phase extraction method. 図8は、実施例1の焼結型固相抽出用吸着材Aとキレート樹脂粒子aの各pHにおける金属吸着特性比較を行ったグラフを示す。FIG. 8 is a graph showing comparison of metal adsorption characteristics at each pH between the adsorbent A for solid phase extraction of Example 1 and the chelate resin particles a. 図8aは、五価ヒ素As(V)の各pHにおける吸着特性比較を示す。FIG. 8a shows a comparison of adsorption characteristics of pentavalent arsenic As (V) at each pH. 図8bは、カドミウムCdの各pHにおける吸着特性比較を示す。FIG. 8b shows a comparison of adsorption characteristics of cadmium Cd at each pH. 図8cは、コバルトCoの各pHにおける吸着特性比較を示す。FIG. 8c shows a comparison of adsorption characteristics of cobalt Co at each pH. 図8dは、三価クロムCr(III)の各pHにおける吸着特性比較を示す。FIG. 8d shows a comparison of adsorption characteristics of trivalent chromium Cr (III) at each pH. 図8eは、銅Cuの各pHにおける吸着特性比較を示す。FIG. 8e shows a comparison of the adsorption characteristics of copper Cu at each pH. 図8fは、鉄Feの各pHにおける吸着特性比較を示す。FIG. 8f shows a comparison of adsorption characteristics of iron Fe at each pH. 図8gは、マンガンMnの各pHにおける吸着特性比較を示す。FIG. 8g shows a comparison of adsorption characteristics of manganese Mn at each pH. 図8hは、モリブデンMoの各pHにおける吸着特性比較を示す。FIG. 8h shows a comparison of adsorption characteristics of molybdenum Mo at each pH. 図8iは、ニッケルNiの各pHにおける吸着特性比較を示す。FIG. 8 i shows a comparison of the adsorption characteristics of nickel Ni at each pH. 図8jは、鉛Pbの各pHにおける吸着特性比較を示す。FIG. 8 j shows a comparison of the adsorption characteristics of lead Pb at each pH. 図8kは、バナジウムVの各pHにおける吸着特性比較を示す。FIG. 8k shows a comparison of adsorption characteristics of vanadium V at each pH. 図8lは、亜鉛Znの各pHにおける吸着特性比較を示す。FIG. 8l shows a comparison of adsorption characteristics of zinc Zn at each pH.

本発明は、粒子状の多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体とを混合した後、公知の方法によりこの混合物を加熱・焼結し、冷却して多孔焼結体とし、この焼結体を固相抽出用吸着材として用い、この多孔焼結体を適切なリザーバあるいはホルダに装着して固相抽出用カートリッジとするものである。 In the present invention, after mixing the particulate porous polymer-based solid phase extractant and the thermoplastic resin powder, the mixture is heated and sintered by a known method, and cooled to form a porous sintered body. This sintered body is used as an adsorbent for solid phase extraction, and this porous sintered body is attached to an appropriate reservoir or holder to form a solid phase extraction cartridge.

本発明において使用される多孔質のポリマー系固相抽出剤の材質は、特に限定されるものではない。既存の疎水性樹脂、親水性樹脂、イオン交換樹脂、キレート樹脂等を用いることができる。また、その形状に関しても特に限定されるものではなく、公知の塊状重合法により得られる樹脂の粉砕による不定形粒子、公知の懸濁重合法により得られる球状粒子であってもよい。 The material of the porous polymer-based solid phase extractant used in the present invention is not particularly limited. Existing hydrophobic resins, hydrophilic resins, ion exchange resins, chelate resins, and the like can be used. Further, the shape thereof is not particularly limited, and may be irregular particles obtained by pulverization of a resin obtained by a known bulk polymerization method, or spherical particles obtained by a known suspension polymerization method.

一般に、ポリマー系の吸着材は良溶媒中で膨潤するという特性をもつ。疎水性のポリマー系固相抽出剤は有機溶媒中で、イオン交換樹脂やキレート樹脂は水中で高度に膨潤する。乾燥体積を基準とすると、良溶媒中での膨潤体積は数倍以上にもなるものもある。膨潤することにより吸着材の細孔が大きくなると同時に比表面積も増加するが、非膨潤状態での比表面積は数十m/g以下と非常に小さいため、その粒子のもつ機能を十分に発揮することができない。多孔焼結体も細孔を有してはいるものの比表面積は低いため、このような比表面積の小さい粒子を熱可塑性樹脂粉体に混合して多孔焼結体としても十分な機能は発現しない。このとき、多孔焼結体の内部に保持された粒子が膨潤することができれば比表面積が大幅に増加することとなるが、粒子の周囲は熱可塑性樹脂との融着によって固定されていて十分に膨潤することができない。一部が膨潤して細孔を広げたとしても、多孔焼結体が形成する細孔の閉塞を引き起こしてしまう。さらに、膨潤・収縮が繰り返されると、熱可塑性樹脂との融着状態が崩れて、多孔焼結体から脱離・漏出が生じる恐れもある。これらの問題を解消するためには、膨潤度合いが小さく、かつ比表面積の大きい粒子を用いる必要がある。 In general, a polymer-based adsorbent has a characteristic of swelling in a good solvent. Hydrophobic polymer-based solid phase extractants are highly swollen in organic solvents, and ion exchange resins and chelate resins are highly swollen in water. On the basis of the dry volume, the swelling volume in a good solvent may be several times or more. Swelling increases the pore size of the adsorbent and at the same time increases the specific surface area. However, the specific surface area in the non-swelled state is very small, tens of m 2 / g or less, so the functions of the particles are fully demonstrated. Can not do it. Although the porous sintered body also has pores, the specific surface area is low, so mixing such particles with a small specific surface area with the thermoplastic resin powder does not provide sufficient function as a porous sintered body. . At this time, if the particles held inside the porous sintered body can swell, the specific surface area will be greatly increased, but the periphery of the particles is sufficiently fixed by fusion with the thermoplastic resin. Cannot swell. Even if a part swells and widens the pores, the pores formed by the porous sintered body are blocked. Furthermore, if the swelling / shrinking is repeated, the fused state with the thermoplastic resin may be lost, and detachment / leakage may occur from the porous sintered body. In order to solve these problems, it is necessary to use particles having a small degree of swelling and a large specific surface area.

本発明においては、熱可塑性樹脂と混合される多孔質ポリマー系固相抽出剤は、多孔焼結体内に安定して固定し、かつ使用時の通液特性を確保するために膨潤度合いの小さいものが用いられる。多孔質ポリマー系固相抽出剤の膨潤度は、乾燥時のベッド体積と溶媒に膨潤させた時のベッド体積から、上記の式1により求められる。本発明においては1.0〜2.0、好ましくは1.0〜1.8の膨潤度を示す高分子担体が用いられる。多孔質のポリマー系固相抽出剤の細孔径、比表面積は吸着対象成分や共存成分の特性にも依存するため特に限定されるものではないが、一般に、非膨潤時の細孔物性として、平均細孔径4〜50nm、比表面積100〜1000m/gのものを用いる。 In the present invention, the porous polymer-based solid phase extractant mixed with the thermoplastic resin has a low degree of swelling in order to stably fix it in the porous sintered body and to ensure the liquid permeation characteristics during use. Is used. The degree of swelling of the porous polymer-based solid phase extractant can be obtained from the above formula 1 from the bed volume when dried and the bed volume when swollen in a solvent. In the present invention, a polymer carrier having a degree of swelling of 1.0 to 2.0, preferably 1.0 to 1.8 is used. The pore size and specific surface area of the porous polymer-based solid phase extractant are not particularly limited because they depend on the properties of the components to be adsorbed and the coexisting components. Those having a pore diameter of 4 to 50 nm and a specific surface area of 100 to 1000 m 2 / g are used.

本発明において、熱可塑性樹脂粉体に混合される多孔質のポリマー系固相抽出剤の量は10〜70重量%であり、好ましくは10〜60重量%である。添加量が10重量%未満では多孔焼結体中に固定される多孔質のポリマー系固相抽出剤量が少なくなり、十分抽出機能を発揮することができなくなる。また、多孔質のポリマー系固相抽出剤の添加量が70重量%を超えると、多孔焼結体の成形性が低下したり、強度や柔軟性等の物性が低下したりする。 In the present invention, the amount of the porous polymer solid-phase extractant mixed with the thermoplastic resin powder is 10 to 70% by weight, preferably 10 to 60% by weight. When the addition amount is less than 10% by weight, the amount of the porous polymer-based solid phase extractant fixed in the porous sintered body is small, and the extraction function cannot be sufficiently exhibited. Moreover, when the addition amount of a porous polymer type solid-phase extraction agent exceeds 70 weight%, the moldability of a porous sintered body will fall or physical properties, such as intensity | strength and a softness | flexibility, will fall.

本発明の焼結型固相抽出用吸着材は、多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体とを混合後に加熱・焼結するため、多孔質のポリマー系固相抽出剤の熱変性が問題となる。一般にポリマー系固相抽出剤は、耐熱性が低いため、この熱変性を防ぐため熱可塑性樹脂の材料としては融点が比較的低いポリエチレンやポリプロピレンが用いられる。これら熱可塑性樹脂粉体を単独あるいは混合して用いることができる。これらの材質は撥水性の強い材質であるが、濡れ性を改善させるため、さらには柔軟性を改善するために、エチレン−酢酸ビニル共重合体やエチレン−ビニルアルコール共重合体の粉体を混合することができる。 The adsorbent for sintering type solid phase extraction of the present invention is heated and sintered after mixing the porous polymer solid phase extractant and the thermoplastic resin powder. Thermal denaturation becomes a problem. In general, polymer-based solid-phase extraction agents have low heat resistance, and thus polyethylene or polypropylene having a relatively low melting point is used as a thermoplastic resin material in order to prevent this thermal denaturation. These thermoplastic resin powders can be used alone or in combination. These materials have strong water repellency, but in order to improve wettability and further improve flexibility, powders of ethylene-vinyl acetate copolymer and ethylene-vinyl alcohol copolymer are mixed. can do.

本発明において使用される多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体の粒子径は、とくに限定はなく、任意のものを使用することができるが、一般に、多孔質のポリマー系固相抽出剤の平均粒子径は5〜300μm、熱可塑性樹脂粉体の平均粒子径は20〜800μmのものが用いられる。多孔質のポリマー系固相抽出剤の平均粒子径が小さい場合には多孔焼結体からの漏出が起きてしまう可能性がある。このような場合、熱可塑性樹脂の溶融度合いを高めることで多孔質のポリマー系固相抽出剤の脱落を防ぐことが可能であるが、得られた多孔焼結体の開孔率が低下し、透過性の悪い多孔焼結体となってしまう。そのため、通常は、混合する多孔質のポリマー系固相抽出剤の平均径に対して0.5〜4倍の平均径を有する熱可塑性樹脂粉体が使用される。一方、多孔質のポリマー系固相抽出剤の粒子径が大きすぎる場合には熱可塑性樹脂粉体との融着度が低くなり、強度、柔軟性ともに不十分な多孔焼結体となってしまう。なお、熱可塑性樹脂粉体の形状に関しては、不定形の破砕型であっても、球形であってもかまわない。 The particle diameters of the porous polymer solid phase extractant and the thermoplastic resin powder used in the present invention are not particularly limited, and any particle diameter can be used. The average particle diameter of the phase extractant is 5 to 300 μm, and the average particle diameter of the thermoplastic resin powder is 20 to 800 μm. When the average particle size of the porous polymer-based solid phase extractant is small, leakage from the porous sintered body may occur. In such a case, it is possible to prevent dropping of the porous polymer-based solid phase extractant by increasing the melting degree of the thermoplastic resin, but the porosity of the obtained porous sintered body is reduced, It becomes a porous sintered body with poor permeability. Therefore, usually, a thermoplastic resin powder having an average diameter of 0.5 to 4 times the average diameter of the porous polymer solid phase extractant to be mixed is used. On the other hand, if the particle size of the porous polymer-based solid phase extractant is too large, the degree of fusion with the thermoplastic resin powder will be low, resulting in a porous sintered body with insufficient strength and flexibility. . The shape of the thermoplastic resin powder may be an irregular crush type or a spherical shape.

本発明の焼結型固相抽出用吸着材は、公知のプラスチックの多孔焼結体の製造法の応用によって製造される。すなわち、1)目的の機能を有する反応性官能基を有する多孔質のポリマー系固相抽出剤を準備する工程、2)前記多孔質のポリマー系固相抽出剤の粒子と熱可塑性樹脂粉体とを混合する工程、3)前記多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体との混合物を金型のキャビティに振動させながら充填する工程、4)前記粒子および粉体の混合物が充填された金型を熱可塑性樹脂の融点付近の温度に設定された恒温炉に入れて所定時間加熱して多孔焼結体を成形する工程、および、5)金型を冷却して成形された多孔焼結体を取り出す工程、により製造される。 The adsorbent for sintered solid phase extraction of the present invention is produced by applying a known method for producing a porous sintered body of plastic. That is, 1) a step of preparing a porous polymer-based solid phase extractant having a reactive functional group having a desired function, and 2) particles of the porous polymer-based solid phase extractant and thermoplastic resin powder 3) Step of filling the cavity of the mold with a mixture of the porous polymer-based solid phase extractant and the thermoplastic resin powder while vibrating 4) Filling the mixture of the particles and the powder Placing the molded mold in a constant temperature furnace set to a temperature near the melting point of the thermoplastic resin and heating the mold for a predetermined time, and 5) molding the porous sintered body by cooling the mold It is manufactured by the step of taking out the sintered body.

本発明の焼結型固相抽出用吸着材における多孔焼結体の細孔径は、使用する熱可塑性樹脂粉体の平均粒子径および粒度分布により決定される。多孔焼結体の濾過精度や通液精度を調節するために、特許文献11に示されるような多層式焼結体とすることも可能である。すなわち、金型下部に、目的濾過精度を達成しうる粒子径を有する熱可塑性樹脂粉体を、目的の厚さが得られる量だけ充填して恒温炉中で加熱融着により多孔焼結体を成形後、いったん金型を開け、本発明の粒子および粉体の混合物の一定量を充填し、再度恒温炉中で所定時間加熱して多孔焼結体を成形するという方法を用いる。この方法により、下面(あるいは上面)に細孔径の異なる多孔焼結体層を有する多孔焼結体を得ることができる。 The pore diameter of the porous sintered body in the adsorbent for sintered solid phase extraction of the present invention is determined by the average particle diameter and particle size distribution of the thermoplastic resin powder used. In order to adjust the filtration accuracy and liquid passing accuracy of the porous sintered body, a multilayer sintered body as shown in Patent Document 11 can be used. In other words, the lower part of the mold is filled with a thermoplastic resin powder having a particle size that can achieve the target filtration accuracy in an amount to obtain the target thickness, and the porous sintered body is formed by heat fusion in a constant temperature furnace. After molding, a method is used in which the mold is once opened, filled with a certain amount of the mixture of particles and powder of the present invention, and heated again in a constant temperature furnace for a predetermined time to form a porous sintered body. By this method, a porous sintered body having a porous sintered body layer having different pore diameters on the lower surface (or upper surface) can be obtained.

本発明の焼結型固相抽出用吸着材は、適切な形状および容量を有するリザーバあるいはホルダに装着して、固相抽出用カートリッジとして用いる。図2に、本発明の焼結型固相抽出用吸着材12を注射筒型のリザーバ1に挿入したときの例を示す。このとき、本発明の焼結型固相抽出用吸着材の透過性やろ過精度が問題となれば、図1に示すように、粒子状固相抽出剤11を充填した固相抽出カートリッジと同様に上部あるいは下部、またはその両方に、適切な透過性あるいはろ過精度を示すフリット(2および3)を挿入してもよい。また、図3に示すように、上部あるいは下部、またはその両方に多孔焼結体層13aおよび13bを一体成形した焼結型固相抽出用吸着材13も用いることができる。この他、図4に示すように、上部が開放形でなくメス型ルアー部を有するキャップ4aを使用するリザーバ4bに焼結型固相抽出用吸着材14を挿入したルアー型固相抽出用カートリッジとしたり、図5に示すように、フィルタホルダ類似構造をもつ平板型ホルダ5に平板状に成形した焼結型固相抽出用吸着材15を装着した平板型固相抽出用カートリッジ等とすることも容易である。 The adsorbent for sintered solid phase extraction of the present invention is used as a cartridge for solid phase extraction by being mounted on a reservoir or holder having an appropriate shape and capacity. FIG. 2 shows an example when the adsorbent 12 for solid-phase extraction of the present invention is inserted into a syringe-type reservoir 1. At this time, if the permeability and filtration accuracy of the adsorbent for sintering type solid phase extraction of the present invention become a problem, as shown in FIG. 1, the same as the solid phase extraction cartridge filled with the particulate solid phase extraction agent 11 is used. Frits (2 and 3) may be inserted at the top or bottom, or both, to provide adequate permeability or filtration accuracy. Further, as shown in FIG. 3, a sintered solid phase extraction adsorbent 13 in which porous sintered body layers 13a and 13b are integrally formed on the upper part, the lower part, or both can also be used. In addition, as shown in FIG. 4, a luer type solid phase extraction cartridge in which an adsorbent 14 for sintered solid phase extraction is inserted into a reservoir 4b that uses a cap 4a having a female luer part instead of an open shape at the top. As shown in FIG. 5, a flat plate type solid phase extraction cartridge or the like having a flat plate type holder 5 having a filter holder-like structure and a sintered solid phase extraction adsorbent 15 formed in a flat plate shape. Is also easy.

本発明において、固相抽出用のリザーバあるいはホルダの材質はとくに限定されるものではなく、必要に応じて、ステンレス、ガラス、プラスチック製のものを用いることができる。通常は、ディスポーザブルカートリッジとして使用するため、安価なポリプロピレン等のプラスチック製が用いられる。 In the present invention, the material of the reservoir or holder for solid phase extraction is not particularly limited, and stainless steel, glass, or plastic can be used as necessary. Usually, since it is used as a disposable cartridge, an inexpensive plastic such as polypropylene is used.

本発明の固相抽出用カートリッジは、通常の固相抽出用カートリッジと同様の方法で用いることができる。すなわち、図6に示すように、1)適切な溶媒・溶液を用いてコンディショニングを行い、固相抽出剤の活性化(水和、溶媒和)を行う、2)一定量の試料溶液を適切な流速で通液し、試料溶液中の測定対象物質を抽出・濃縮する、3)適切な溶媒・溶液を用いて固相抽出剤に抽出された不要成分を洗い出す、4)適切な溶離液を用いて固相抽出剤に抽出・濃縮された測定対象成分を溶離させる、5)溶離された測定対象成分を含む溶液を適切な機器で測定する、という工程により行われる。固相抽出用カートリッジへのコンディショニング液、試料溶液、洗浄液、溶離液等の送液は、注射筒等を用いて手動で行うこともできるが、再現性の向上や省力化のため、種々の送液ポンプや図7に示すような固相抽出用マニュホールド21等を用いて行うことも可能である。 The solid phase extraction cartridge of the present invention can be used in the same manner as an ordinary solid phase extraction cartridge. That is, as shown in FIG. 6, 1) conditioning is performed using an appropriate solvent / solution, and activation (hydration, solvation) of the solid-phase extraction agent is performed. Pass the sample at a flow rate to extract and concentrate the substance to be measured in the sample solution. 3) Wash out unnecessary components extracted in the solid-phase extractant using an appropriate solvent and solution. 4) Use an appropriate eluent. The measurement target component extracted and concentrated in the solid phase extraction agent is eluted, and 5) the solution containing the eluted measurement target component is measured with an appropriate instrument. Conditioning liquid, sample solution, washing liquid, eluent, etc. can be sent manually to the cartridge for solid phase extraction using a syringe or the like. It is also possible to use a liquid pump or a solid phase extraction manifold 21 as shown in FIG.

図7において、固相抽出用カートリッジ6を固相抽出用マニュホールド21にセットする。固相抽出用マニュホールド21内に溶出液用受器(たとえば試験管、ビーカー)23をセットする。つぎに、アスピレータなどにより吸引を開始してマニュホールド21内を減圧とし、特定の減圧に保持する。ついで、固相抽出用カートリッジ6に、たとえば、アセトニトリル、水、3M硝酸、水および0.1M酢酸アンモニウム緩衝液(pH5)の順で、それぞれ10mLずつ通液してコンディショニングを行う。この際、コック22の開閉により通液を行う。この後、試料溶液を固相抽出用カートリッジ6に投入して通液させ、目的とする成分を固相抽出用カートリッジ6の焼結型固相抽出用吸着材に吸着させる。試料が固相抽出用カートリッジ6を抜けきったら、適当な溶媒を通液して焼結型固相抽出用吸着材中に吸着された不要成分を洗い出し、この洗浄液が固相抽出用カートリッジ6を抜けきったあと、コックを閉じ、固相抽出用カートリッジ6を隣のコックに移動させて取り付ける。さらに、吸着された成分を溶出させるため、適当な溶媒を固相抽出用カートリッジ6にコックの開閉により通液する。溶出された成分を溶出液用受器23に導く。このあと、受器23を取出し、さらに必要な分析などの操作を行うものである。
つぎに実施例によって本発明を説明するが、この実施例によって本発明をなんら限定するものではない。
In FIG. 7, the solid phase extraction cartridge 6 is set in the solid phase extraction manifold 21. An eluate receiver (for example, a test tube or a beaker) 23 is set in the solid phase extraction manifold 21. Next, suction is started by an aspirator or the like, the inside of the manifold 21 is depressurized, and the specific depressurization is held. Next, conditioning is performed by passing 10 mL each of the solid phase extraction cartridge 6 in the order of, for example, acetonitrile, water, 3M nitric acid, water, and 0.1M ammonium acetate buffer (pH 5). At this time, liquid is passed by opening and closing the cock 22. Thereafter, the sample solution is introduced into the cartridge for solid phase extraction 6 and allowed to flow therethrough, and the target component is adsorbed on the adsorbent for sintering type solid phase extraction of the cartridge for solid phase extraction 6. When the sample has passed through the solid-phase extraction cartridge 6, an appropriate solvent is passed through to wash out unnecessary components adsorbed in the sintered solid-phase extraction adsorbent, and this washing solution removes the solid-phase extraction cartridge 6. After the removal, the cock is closed and the solid phase extraction cartridge 6 is moved to the adjacent cock and attached. Further, in order to elute the adsorbed components, an appropriate solvent is passed through the solid phase extraction cartridge 6 by opening and closing the cock. The eluted component is guided to the eluate receiver 23. Thereafter, the receiver 23 is taken out and further necessary operations such as analysis are performed.
Next, the present invention will be described with reference to examples, but the present invention is not limited to the examples.

焼結型固相抽出用吸着材Aの製造
(1)キレート樹脂粒子aの合成
多孔質ポリマー系担体の合成は、懸濁重合法により行った。グリシジルメタクリレート80g、エチレンジメタクリレート120g、酢酸ブチル200gおよび2,2’−アゾビスイソブチロニトリル2gの混合物を、0.1%ポリビニルアルコール水溶液2,000mL中に加え、油滴径が60μmになるように攪拌した。その後、70℃で6時間重合反応を行った。生成した共重合体粒子を濾取し、水、メタノールの順で洗浄した。一日風乾後、分級を行い、32〜90μmの多孔質ポリマー系担体80gを得た。得られた多孔質ポリマー系担体70gを、イソプロピルアルコール200mL、水800mLにペンタエチレンヘキサミン80gを溶解した溶液中に加え、50℃で6時間反応させてポリアミノ化を行いポリアミノ化樹脂とする。このポリアミノ化樹脂を濾取後、水、メタノール、水の順で洗浄した。洗浄したポリアミノ化樹脂の全量を、1M NaOH 1,000mLにクロロ酢酸ナトリウム150gを溶解した溶液中に入れ、40℃で6時間反応させ、カルボキシメチル化を行った。反応物を濾過して十分に水で洗浄後、メタノールに置換し、乾燥させてキレート樹脂粒子aを得た。
Production of Adsorbent A for Sintered Solid Phase Extraction (1) Synthesis of Chelate Resin Particles a The synthesis of the porous polymer carrier was carried out by suspension polymerization. A mixture of 80 g of glycidyl methacrylate, 120 g of ethylene dimethacrylate, 200 g of butyl acetate and 2 g of 2,2′-azobisisobutyronitrile is added to 2,000 mL of a 0.1% aqueous polyvinyl alcohol solution, resulting in an oil droplet diameter of 60 μm. Was stirred as such. Thereafter, a polymerization reaction was carried out at 70 ° C. for 6 hours. The produced copolymer particles were collected by filtration and washed with water and methanol in this order. After air drying for one day, classification was performed to obtain 80 g of a 32-90 μm porous polymer carrier. 70 g of the obtained porous polymer carrier is added to a solution obtained by dissolving 80 g of pentaethylenehexamine in 200 mL of isopropyl alcohol and 800 mL of water, and reacted at 50 ° C. for 6 hours to perform polyamination to obtain a polyaminated resin. The polyaminated resin was collected by filtration and washed with water, methanol and water in this order. The whole amount of the washed polyaminated resin was placed in a solution of 150 g of sodium chloroacetate in 1,000 mL of 1M NaOH and reacted at 40 ° C. for 6 hours to carry out carboxymethylation. The reaction product was filtered and sufficiently washed with water, then replaced with methanol, and dried to obtain chelate resin particles a.

(2)キレート樹脂粒子aの特性評価
前記(1)で得られたキレート樹脂粒子aの比表面積および平均細孔径(Beckman Coulter SA3100 Surface Area Analyzerで測定)は、それぞれ180m/gおよび12.1nmであった。また、乾燥状態のベッド体積とメタノール膨潤ベッド体積から求めた膨潤度は1.18であり、膨潤度が低いことが確認された。このキレート樹脂粒子aの250mgをとり、下部に孔径20μmのフィルタを挿入した内径8.9mm、高さ64mmのポリプロピレン製の注射筒型リザーバに充填し、充填ベッド上部にも同様のフィルタを挿入し、固相抽出用カートリッジを作成した。この固相抽出用カートリッジに、アセトニトリル、水、3M硝酸、水および0.1M酢酸アンモニウム緩衝液(pH5)の順で、それぞれ10mLずつ通液してコンディショニングを行った。その後、0.05M酢酸アンモニウム緩衝液(pH5)で調整された0.5M硫酸銅溶液3mLを通液し、キレート性官能基を銅で飽和させた後、水10mL、0.005M硝酸5mLで洗浄した。吸着された銅を3M硝酸3mLで溶出し、溶出液を10mLに定容後、吸光光度計で805nmにおける銅の吸光度を測定し、銅吸着量を求めた。その結果、銅の吸着量は、0.44mmol Cu/gであり、十分な金属吸着能を示した。また、このキレート樹脂粒子a充填固相抽出用カートリッジを用いて、−30kPaの減圧下での純水の通液速度を測定したところ、44mL/minであった。
(2) Characteristic evaluation of chelate resin particle a Specific surface area and average pore diameter (measured by Beckman Coulter SA3100 Surface Area Analyzer) of the chelate resin particle a obtained in the above (1) were 180 m 2 / g and 12.1 nm, respectively. Met. Moreover, the swelling degree calculated | required from the bed volume of the dry state and the methanol swelling bed volume was 1.18, and it was confirmed that the swelling degree is low. 250 mg of this chelate resin particle a is taken, filled into a syringe barrel reservoir made of polypropylene having an inner diameter of 8.9 mm and a height of 64 mm with a filter having a pore diameter of 20 μm inserted in the lower part, and the same filter is also inserted in the upper part of the filling bed. A cartridge for solid phase extraction was prepared. The solid phase extraction cartridge was conditioned by passing 10 mL each in the order of acetonitrile, water, 3M nitric acid, water and 0.1M ammonium acetate buffer (pH 5). Then, 3 mL of 0.5 M copper sulfate solution adjusted with 0.05 M ammonium acetate buffer (pH 5) was passed through to saturate the chelating functional group with copper, and then washed with 10 mL of water and 5 mL of 0.005 M nitric acid. did. The adsorbed copper was eluted with 3 mL of 3M nitric acid, the volume of the eluate was adjusted to 10 mL, and the absorbance of copper at 805 nm was measured with an absorptiometer to determine the amount of adsorbed copper. As a result, the adsorption amount of copper was 0.44 mmol Cu / g, indicating a sufficient metal adsorption ability. Further, when the flow rate of pure water under a reduced pressure of −30 kPa was measured using this chelate resin particle a-filled solid phase extraction cartridge, it was 44 mL / min.

(3)焼結型固相抽出用吸着材Aの製造
前記(1)で得られたキレート樹脂粒子aの25gとポリエチレン粉体(平均粒子径125μm)25gを混合して、混合物とした。この混合物の一部を直径9mm、高さ10mmの円柱状の成形体が得られる金型のキャビティに振動させながら充填をした。その後、金型に蓋をし、130℃の恒温炉中で20分間加熱した。加熱終了後、金型を空冷し、成型品を取り出し、円柱状の焼結型固相抽出用吸着材Aを得た。この円柱状の焼結型固相抽出用吸着材Aの平均重量は0.22g/個であり,キレート樹脂粒子aの混合量は50%であるので,キレート樹脂粒子aが0.11g含まれていることとなる。
(3) Production of Adsorbent A for Sintering Solid Phase Extraction 25 g of the chelate resin particles a obtained in the above (1) and 25 g of polyethylene powder (average particle diameter 125 μm) were mixed to obtain a mixture. A part of this mixture was filled while vibrating in a mold cavity from which a cylindrical molded body having a diameter of 9 mm and a height of 10 mm was obtained. Thereafter, the mold was covered and heated in a constant temperature oven at 130 ° C. for 20 minutes. After the heating, the mold was air-cooled, the molded product was taken out, and a cylindrical sintered adsorbent A for solid phase extraction was obtained. Since the average weight of the cylindrical adsorbent A for solid phase extraction is 0.22 g / piece and the mixing amount of the chelate resin particles a is 50%, 0.11 g of the chelate resin particles a is included. Will be.

(4)焼結型固相抽出用吸着材Aの特性評価
前記(3)で得られた焼結型固相抽出用吸着材Aを、内径8.9mm、高さ64mmのポリプロピレン製の注射筒型リザーバに挿入して固相抽出用カートリッジを作成し、前記(2)と同様の方法で銅の吸着量を調べた。銅吸着量は0.21mmol Cu/gであり、十分な金属吸着能を示した。この焼結型固相抽出用吸着材A中のキレート樹脂粒子aの混合量は50%であるので、キレート樹脂粒子aの吸着能力の95.5%を維持していることとなり、ポリエチレン粉体との融着による大きな機能低下はなく十分な金属吸着能を示した。また、この焼結型固相抽出用吸着材A挿入固相抽出カートリッジを用いて、−30kPaの減圧下での純水の通液速度を測定したところ、39mL/minであり、(2)で得られたキレート樹脂粒子a充填固相抽出用カートリッジより若干通液速度は低下したが、十分使用可能な範囲のものであった。この評価試験時における流出液をBeckman Coulter Multisizer 3 Coulter Counterを用いて測定したが、キレート樹脂粒子の漏出は観察されなかった。さらに、水60mL−メタノール60mLの通液を繰り返し5回行ったが、体積変化はまったく観察されなかった。
(4) Characteristic evaluation of adsorbent A for sintering type solid phase extraction The adsorbing material A for sintering type solid phase extraction obtained in (3) above is an injection cylinder made of polypropylene having an inner diameter of 8.9 mm and a height of 64 mm. A solid phase extraction cartridge was prepared by inserting into a mold reservoir, and the amount of copper adsorbed was examined by the same method as in (2) above. The amount of copper adsorption was 0.21 mmol Cu / g, indicating a sufficient metal adsorption capacity. Since the mixing amount of the chelate resin particles a in the adsorbent A for solid-phase extraction is 50%, it means that 95.5% of the adsorption capacity of the chelate resin particles a is maintained. There was no significant functional degradation due to fusion with the metal, and sufficient metal adsorption capacity was exhibited. Moreover, when the flow rate of pure water under a reduced pressure of −30 kPa was measured using this adsorbent A-inserted solid phase extraction cartridge for sintered solid phase extraction, it was 39 mL / min. Although the liquid passing speed was slightly lower than that of the obtained chelate resin particle a-filled solid phase extraction cartridge, it was in a sufficiently usable range. The effluent at the time of this evaluation test was measured using a Beckman Coulter Multisizer 3 Coulter Counter, but no leakage of chelate resin particles was observed. Furthermore, the flow of 60 mL of water-60 mL of methanol was repeated 5 times, but no volume change was observed.

評価試験1Evaluation test 1

焼結型固相抽出用吸着材Aの吸着特性評価
前記(2)で得られたキレート樹脂粒子aを充填した固相抽出用カートリッジと、前記(4)で得られた焼結型固相抽出用吸着材Aを挿入した固相抽出用カートリッジを用いて種々のpHにおける金属吸着特性を調べた。前記(2)にしたがい、各固相抽出用カートリッジのコンディショニングを行った後、種々のpHに調整した金属混合標準液(五価ヒ素As(5価)、カドミウムCd、コバルトCo、三価クロムCr(III)、銅Cu、鉄Fe、マンガンMn、モリブデンMo、ニッケルNi、鉛Pb、バナジウムV、亜鉛Zn、各0.1mg/L)を通液し、金属を吸着させた。吸着させた金属は、3M硝酸3mLで溶出させ、溶出液中の金属濃度を測定して、回収率を求めた。金属濃度の測定には、PerkinElmer Optima 3000 DV ICP発光分光分析装置を用いた。その結果を図8に示す。焼結型固相抽出用吸着材Aの吸着特性は、混合したキレート樹脂粒子aの吸着特性とほとんど同じであり、本発明による焼結型固相抽出用吸着材は、多孔焼結体内に固定された機能性樹脂粒子の吸着特性を変化させていないことが分かった。
Adsorption characteristic evaluation of adsorbent A for sintered solid phase extraction Solid phase extraction cartridge filled with chelate resin particles a obtained in (2) above, and sintered solid phase extraction obtained in (4) above Metal adsorption characteristics at various pH values were examined using a solid-phase extraction cartridge in which the adsorbent A was inserted. According to the above (2), after conditioning each cartridge for solid phase extraction, a mixed metal standard solution (pentavalent arsenic As (pentavalent), cadmium Cd, cobalt Co, trivalent chromium Cr) adjusted to various pHs. (III), copper Cu, iron Fe, manganese Mn, molybdenum Mo, nickel Ni, lead Pb, vanadium V, zinc Zn, each 0.1 mg / L) were passed through to adsorb the metal. The adsorbed metal was eluted with 3 mL of 3M nitric acid, and the metal concentration in the eluate was measured to determine the recovery rate. A PerkinElmer Optima 3000 DV ICP emission spectroscopic analyzer was used for the measurement of the metal concentration. The result is shown in FIG. The adsorption characteristics of the adsorbent A for sintering type solid phase extraction are almost the same as those of the mixed chelate resin particles a, and the adsorbing material for sintering type solid phase extraction according to the present invention is fixed in the porous sintered body. It was found that the adsorption characteristics of the functional resin particles made were not changed.

焼結型固相抽出用吸着材Bの作製
(1)キレート樹脂粒子bの合成
グリシジルメタクリレート60g、エチレンジメタクリレート140gとした他は、前記(1)と同様の条件で多孔質ポリマー系担体を合成し、45〜90μmに分級した。この多孔質ポリマー系担体を用いて、実施例1(1)と同様の条件でキレート樹脂粒子bを合成した。得られたキレート樹脂粒子bの比表面積は232m/g、平均細孔径は11.6nm、および膨潤度は1.17であった。また、前記(2)と同様の方法で銅吸着量を求めたところ、0.33mmol Cu/gであった。
Preparation of adsorbent B for sintered solid phase extraction (1) Synthesis of chelate resin particles b A porous polymer carrier was synthesized under the same conditions as in (1) except that 60 g of glycidyl methacrylate and 140 g of ethylene dimethacrylate were used. And classified into 45 to 90 μm. Using this porous polymer carrier, chelate resin particles b were synthesized under the same conditions as in Example 1 (1). The resulting chelate resin particles b had a specific surface area of 232 m 2 / g, an average pore diameter of 11.6 nm, and a degree of swelling of 1.17. Moreover, when the copper adsorption amount was calculated | required by the method similar to said (2), it was 0.33 mmol Cu / g.

(2)焼結型固相抽出用吸着材Bの作製と評価
前記(1)で得られたキレート樹脂粒子bの10g、ポリエチレン粉体(平均粒子径125μm)20gおよびエチレン−酢酸ビニル共重合体粉体(平均粒子径120μm)20gを混合後、実施例1(3)と同様の方法で成形し、直径9mm、高さ10mmの円柱状の焼結型固相抽出用吸着材Bを得た。この焼結型固相抽出用吸着材Bの金属吸着量を前記(4)にしたがい測定した。銅吸着量は、0.05mmol Cu/gであった。この焼結型固相抽出用吸着材B中のキレート樹脂粒子bの混合量は20%であるので、キレート樹脂粒子aの吸着能力の75.8%を維持していた。エチレン−酢酸ビニル共重合体粉体を混合した焼結型固相抽出用吸着材Bは、乾燥状態でも速やかに水が浸透し、濡れ性の改善効果があることが分かった。
(2) Production and evaluation of adsorbent B for sintered solid phase extraction 10 g of chelate resin particles b obtained in (1) above, 20 g of polyethylene powder (average particle size 125 μm), and ethylene-vinyl acetate copolymer After mixing 20 g of powder (average particle size 120 μm), it was molded by the same method as in Example 1 (3) to obtain a cylindrical sintered adsorbent B for solid phase extraction having a diameter of 9 mm and a height of 10 mm. . The amount of metal adsorption of this adsorbent B for solid phase extraction was measured according to (4) above. The amount of copper adsorbed was 0.05 mmol Cu / g. Since the mixing amount of the chelate resin particles b in the adsorbent B for sintering type solid phase extraction is 20%, 75.8% of the adsorption capacity of the chelate resin particles a was maintained. It was found that the adsorbent B for sintered solid phase extraction mixed with the ethylene-vinyl acetate copolymer powder rapidly penetrates water even in a dry state and has an effect of improving wettability.

焼結型固相抽出用吸着材Cの作製
(1)陰イオン交換基を導入した疎水性固相抽出剤cの合成
グリシジルメタクリレート30g、ジビニルベンゼン170g、トルエン180g、n−ドデカン20gおよび2,2’−アゾビスイソブチロニトリル2gの混合物を、0.1%ポリビニルアルコール水溶液2,000mL中に加え、油滴径が40μmになるように攪拌した。その後、80℃で6時間重合反応を行った。生成した共重合体粒子を濾取し、水、メタノールの順で洗浄した。一日風乾後、分級を行い、32〜63μmの多孔質ポリマー系担体75gを得た。得られた多孔質ポリマー系担体70gを、イソプロピルアルコール200mL、水800mLにN,N−ジメチルエチルアミン70gを溶解した溶液中に加え、40℃で6時間反応させて四級アンモニウム基を導入した。得られた樹脂を、濾取後、水、メタノールの順で洗浄し、乾燥させて、疎水性固相抽出剤cを得た。
Preparation of adsorbent C for sintered solid phase extraction (1) Synthesis of hydrophobic solid phase extractant c into which anion exchange groups have been introduced 30 g of glycidyl methacrylate, 170 g of divinylbenzene, 180 g of toluene, 20 g of n-dodecane and 2,2 A mixture of 2 g of '-azobisisobutyronitrile was added to 2,000 mL of a 0.1% aqueous polyvinyl alcohol solution, and the mixture was stirred so that the oil droplet diameter was 40 μm. Thereafter, a polymerization reaction was carried out at 80 ° C. for 6 hours. The produced copolymer particles were collected by filtration and washed with water and methanol in this order. After air drying for one day, classification was performed to obtain 75 g of a porous polymer carrier having a size of 32 to 63 μm. 70 g of the obtained porous polymer carrier was added to a solution of 70 g of N, N-dimethylethylamine dissolved in 200 mL of isopropyl alcohol and 800 mL of water, and reacted at 40 ° C. for 6 hours to introduce a quaternary ammonium group. The obtained resin was collected by filtration, washed with water and methanol in this order, and dried to obtain a hydrophobic solid phase extractant c.

(2)陰イオン交換基を導入した疎水性固相抽出剤cの特性評価
実施例1(1)で得られたキレート樹脂粒子aの比表面積および平均細孔径は、それぞれ645m/gおよび5.2nmであった。また、乾燥状態のベッド体積とメタノール膨潤ベッド体積から求めた膨潤度は1.71であった。この陰イオン交換基を導入した疎水性固相抽出剤cのイオン交換容量を逆滴定法により測定したところ、0.34meq/gであった。また、この陰イオン交換基を導入した疎水性固相抽出剤cの60mgを実施例1(2)と同様の注射筒型リザーバに充填した固相抽出用カートリッジを用いて、−30kPaの減圧下での純水の通液速度を測定したところ、38mL/minであった。
(2) Characteristic Evaluation of Hydrophobic Solid-Phase Extracting Agent c Introduced with Anion Exchange Group The specific surface area and average pore diameter of the chelate resin particles a obtained in Example 1 (1) are 645 m 2 / g and 5 respectively. .2 nm. Moreover, the swelling degree calculated | required from the bed volume of the dry state and the methanol swelling bed volume was 1.71. It was 0.34 meq / g when the ion exchange capacity | capacitance of the hydrophobic solid-phase extraction agent c which introduce | transduced this anion exchange group was measured by the back titration method. Further, using a solid phase extraction cartridge in which 60 mg of the hydrophobic solid phase extraction agent c introduced with the anion exchange group was filled in the same syringe barrel reservoir as in Example 1 (2), the pressure was reduced to −30 kPa. The flow rate of pure water was measured at 38 mL / min.

(3)焼結型固相抽出用吸着材Cの作製と評価
前記(2)で得られた陰イオン交換基を導入した疎水性固相抽出剤cの25gとポリエチレン粉体(平均粒子径125μm)25gを混合後、直径9mm、高さ5mmの円柱状の成形体が得られる金型のキャビティに振動させながら充填をし、実施例1(3)と同一条件で、円柱状の焼結型固相抽出用吸着材Cを得た。この円柱状の焼結型固相抽出用吸着材Cの平均重量は0.12g/個であり、陰イオン交換基を導入した疎水性固相抽出剤cの混合量は50%であるので、陰イオン交換基を導入した疎水性固相抽出剤cが0.06g含まれていることとなる。この焼結型固相抽出用吸着材Cのイオン交換容量を逆滴定法により測定したところ、0.15meq/gであった。この焼結型固相抽出用吸着材C中の陰イオン交換基を導入した疎水性固相抽出剤cの混合量は50%であるので、陰イオン交換基を導入した疎水性固相抽出剤cのイオン交換容量の88.2%を維持していた。この焼結型固相抽出用吸着材Cを実施例1(4)と同一の注射筒型リザーバに挿入して固相抽出用カートリッジを作成し、−30kPaの減圧下での純水を通液した時の通液速度は、32mL/minであり、十分使用可能な範囲のものであった。また、流出液中にも粒子の漏出は観察されなかった。さらに、水−メタノール通液を繰り返し試験においても、体積変化はまったく観察されなかった。
(3) Production and evaluation of adsorbent C for sintering type solid-phase extraction 25 g of hydrophobic solid-phase extraction agent c introduced with the anion exchange group obtained in (2) above and polyethylene powder (average particle size 125 μm) ) After mixing 25 g, filling the cavity of the mold to obtain a cylindrical molded body having a diameter of 9 mm and a height of 5 mm while vibrating, under the same conditions as in Example 1 (3), a cylindrical sintered mold Adsorbent C for solid phase extraction was obtained. Since the average weight of this columnar sintered solid-phase extraction adsorbent C is 0.12 g / piece, and the mixing amount of the hydrophobic solid-phase extraction agent c into which an anion exchange group is introduced is 50%, This means that 0.06 g of a hydrophobic solid phase extraction agent c into which an anion exchange group has been introduced is contained. It was 0.15 meq / g when the ion exchange capacity of this adsorbent C for solid phase extraction was measured by a back titration method. Since the mixed amount of the hydrophobic solid phase extraction agent c introduced with the anion exchange group in the adsorbent C for sintering type solid phase extraction is 50%, the hydrophobic solid phase extraction agent introduced with the anion exchange group is 50%. 88.2% of the ion exchange capacity of c was maintained. This adsorbent C for solid phase extraction is inserted into the same syringe cylinder reservoir as in Example 1 (4) to produce a solid phase extraction cartridge, and pure water is passed under a reduced pressure of −30 kPa. The liquid passing speed at this time was 32 mL / min, which was in a sufficiently usable range. In addition, no leakage of particles was observed in the effluent. Furthermore, no volume change was observed even when the water-methanol flow was repeated.

評価試験2Evaluation test 2

焼結型固相抽出用吸着材Bの吸着特性評価
前記(3)で作製した陰イオン交換基を導入した疎水性固相抽出剤cを60mg充填した固相抽出用カートリッジと、実施例2(1)で作製した直径9mm、高さ5mmの円柱状の焼結型固相抽出用吸着材Cを挿入した固相抽出用カートリッジを用いて、薬物の固相抽出を行い回収率の比較を行った。試料は、表1に示す薬物を1mol/Lの酢酸ナトリウム緩衝液10mLに溶解したものを用いた。
Adsorption characteristic evaluation of adsorbent B for sintering type solid phase extraction Solid phase extraction cartridge filled with 60 mg of hydrophobic solid phase extraction agent c introduced with anion exchange group prepared in (3) above, and Example 2 ( Using the solid-phase extraction cartridge inserted with the cylindrical sintered solid-phase extraction adsorbent C having a diameter of 9 mm and a height of 5 mm prepared in 1), the solid phase extraction of the drug was performed and the recovery rates were compared. It was. A sample prepared by dissolving the drug shown in Table 1 in 10 mL of 1 mol / L sodium acetate buffer was used.

上記固相抽出用カートリッジにメタノール2mL、純水2mL、2mol/L酢酸ナトリウム緩衝液1mLを通液してコンディショニングした後、上記試料溶液全量を注入した。ついで、95:5=0.1mol/L酢酸ナトリウム緩衝液:メタノールの混合溶液2mLを同カートリッジに通液して洗浄した。その後、メタノール2mLを通液して固相抽出剤に吸着した薬物を溶出した。酸性物質に関しては、2%のギ酸−メタノール溶液4mLを通液して溶出した。溶出液中の各薬物濃度をHPLCを用いて表2に示す条件で測定し、吸着回収率を求めた。表3に各薬物の回収率を示す。 The solid phase extraction cartridge was conditioned by passing 2 mL of methanol, 2 mL of pure water, and 1 mL of 2 mol / L sodium acetate buffer, and the whole sample solution was injected. Subsequently, 2 mL of a mixed solution of 95: 5 = 0.1 mol / L sodium acetate buffer: methanol was passed through the cartridge for washing. Thereafter, 2 mL of methanol was passed through to elute the drug adsorbed on the solid phase extractant. The acidic substance was eluted by passing 4 mL of 2% formic acid-methanol solution. Each drug concentration in the eluate was measured under the conditions shown in Table 2 using HPLC, and the adsorption recovery rate was determined. Table 3 shows the recovery rate of each drug.


表3の結果から、円柱状の焼結型固相抽出用吸着材Cは、中性化合物、塩基性化合物および酸性化合物をほぼ100%吸着回収することができ、混合された陰イオン交換基を導入した疎水性固相抽出剤cの特性を十分発揮できることがわかった。 From the results in Table 3, the columnar sintered solid-phase extraction adsorbent C can adsorb and recover almost 100% of neutral compounds, basic compounds and acidic compounds. It was found that the characteristics of the introduced hydrophobic solid phase extractant c can be sufficiently exhibited.

本発明によれば、多孔質ポリマー系固相抽出剤と熱可塑性樹脂粉体との熱融着という簡単な方法で、疎水性樹脂、親水性樹脂、キレート樹脂、イオン交換樹脂等の多孔質ポリマー系固相抽出剤を高度に保持し、かつ充填密度の変動といった問題が生じない、高機能な焼結型固相抽出用吸着材を装着した固相抽出カートリッジを得ることができる。本発明の焼結型固相抽出用吸着材は、平板状や円盤状、円柱状や角柱状、中空の円筒状や角筒状、さらには、これらの一端を閉塞させたカップ状等の多彩な成形体を得ることが可能であり、液体試料中の測定対象成分の抽出・濃縮以外にも、大気中成分の捕集用カートリッジ等とすることも可能であり、化学分析に使用される前処理剤として広く使用することが可能である。 According to the present invention, a porous polymer such as a hydrophobic resin, a hydrophilic resin, a chelate resin, or an ion exchange resin can be obtained by a simple method of thermal fusion between a porous polymer-based solid phase extractant and a thermoplastic resin powder. It is possible to obtain a solid-phase extraction cartridge equipped with a high-performance adsorbent for sintered solid-phase extraction, which retains the system solid-phase extraction agent at a high level and does not cause problems such as fluctuations in packing density. The adsorbent for sintered solid-phase extraction of the present invention has a variety of shapes such as a flat plate shape, a disk shape, a columnar shape, a prism shape, a hollow cylindrical shape, a rectangular tube shape, and a cup shape in which one end is closed. In addition to extraction / concentration of components to be measured in liquid samples, it can be used as a cartridge for collecting atmospheric components, etc., before being used for chemical analysis. It can be widely used as a treating agent.

1:注射筒型リザーバ
2:上部フリット
3:下部フリット
4:ルアー型リザーバ、4a:キャップ、4b:ボディ
5:平板型ホルダ、5a:キャップ、5b:ボディ
6:固相抽出用カートリッジ
11:粒子状固相抽出剤
12:本発明の焼結型固相抽出用吸着材
13:上部および下部に多孔焼結体層を一体成形した本発明の焼結型固相抽出用吸着材
13a:上部多孔焼結体層、13b:下部多孔焼結体層
14:本発明の焼結型固相抽出用吸着材
15:平板状に成形した本発明の焼結型固相抽出用吸着材
21:固相抽出用吸引マニュホールド
22:ストップコック
23:溶出液用受器
●:実施例1の焼結型固相抽出用吸着材Aの金属の吸着回収率
△:実施例1のキレート樹脂粒子aの金属の吸着回収率
1: syringe type reservoir 2: upper frit 3: lower frit 4: lure type reservoir, 4a: cap, 4b: body 5: flat plate holder, 5a: cap, 5b: body 6: cartridge for solid phase extraction 11: particles Solid-phase extraction agent 12: Sintered solid-phase extraction adsorbent 13 of the present invention: Sintered solid-phase extraction adsorbent 13a of the present invention in which a porous sintered body layer is integrally formed at the upper and lower portions: Upper porous Sintered body layer, 13b: Lower porous sintered body layer 14: Adsorbent for sintered solid phase extraction 15 of the present invention 15: Adsorbent for sintered solid phase extraction of the present invention formed into a flat plate shape 21: Solid phase Extraction suction manifold 22: Stop cock 23: Eluate receiver ●: Metal adsorption recovery rate of sintered solid phase extraction adsorbent A of Example 1 Δ: Metal of chelate resin particles a of Example 1 Adsorption recovery rate

Claims (5)

粒子状の多孔質のポリマー系固相抽出剤と熱可塑性樹脂粉体の混合物を加熱・焼結することにより得られた熱可塑性樹脂の焼結マトリックス中に孔質ポリマー系固相抽出剤が分散固定されたものであることを特徴とする焼結型固相抽出用吸着材。 Particulate porous polymeric solid phase extraction agent and the thermoplastic resin powder multi porous polymeric solid phase extraction agent in the sintered matrix of the thermoplastic resin obtained by heating and sintering a mixture of A sintered solid-phase extraction adsorbent characterized by being dispersed and fixed. 熱可塑性樹脂粉体に混合される多孔質のポリマー系固相抽出剤が、乾燥時のベッド体積と溶媒に膨潤させた時のベッド体積から下記式1により求められる膨潤度として1.0〜2.0である請求項1に記載の焼結型固相抽出用吸着材。
The degree of swelling determined by the following formula 1 from the bed volume when the porous polymer-based solid phase extractant mixed with the thermoplastic resin powder is swelled with a solvent is 1.0 to 2 The adsorbent for sintering type solid phase extraction according to claim 1, which is 0.0.
熱可塑性樹脂粉体に混合される多孔質のポリマー系固相抽出剤の混合率が、10〜70重量%であることを特徴とする請求項1および請求項2に記載の焼結型固相抽出用吸着材。   The sintered solid phase according to claim 1 or 2, wherein a mixing ratio of the porous polymer solid phase extractant mixed with the thermoplastic resin powder is 10 to 70 wt%. Adsorbent for extraction. 熱可塑性樹脂が、ポリエチレン、ポリプロピレンのいずれかまたはそれらを混合したものを主成分としたものであることを特徴とする請求項1ないし請求項3に記載の焼結型固相抽出用吸着材。   The adsorbent for sintered solid phase extraction according to claim 1, wherein the thermoplastic resin is mainly composed of polyethylene, polypropylene, or a mixture thereof. 前記請求項1ないし4記載の熱可塑性樹脂多孔焼結体内部に多孔質ポリマー系固相抽出剤が固定された焼結型固相抽出用吸着材をリザーバあるいはホルダに装着した固相抽出用カートリッジ。
5. A solid phase extraction cartridge comprising a reservoir or a holder mounted with a sintered solid phase extraction adsorbent in which a porous polymer solid phase extraction agent is fixed in the thermoplastic resin porous sintered body according to claim 1. .
JP2009107965A 2009-04-27 2009-04-27 Sintered adsorbent and cartridge for solid phase extraction Active JP5313032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107965A JP5313032B2 (en) 2009-04-27 2009-04-27 Sintered adsorbent and cartridge for solid phase extraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107965A JP5313032B2 (en) 2009-04-27 2009-04-27 Sintered adsorbent and cartridge for solid phase extraction

Publications (2)

Publication Number Publication Date
JP2010256225A JP2010256225A (en) 2010-11-11
JP5313032B2 true JP5313032B2 (en) 2013-10-09

Family

ID=43317302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107965A Active JP5313032B2 (en) 2009-04-27 2009-04-27 Sintered adsorbent and cartridge for solid phase extraction

Country Status (1)

Country Link
JP (1) JP5313032B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098532A1 (en) * 2017-11-17 2019-05-23 주식회사 엘지화학 Micro device for solid phase extraction
KR20190088185A (en) * 2018-01-18 2019-07-26 주식회사 엘지화학 A Micro device for Solid Phase Extraction

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940313B2 (en) 2012-01-27 2016-06-29 日本フイルコン株式会社 Polymer adsorbent
JP6187133B2 (en) * 2013-10-18 2017-08-30 株式会社アイスティサイエンス Solid phase extraction cartridge
JP6526964B2 (en) * 2014-12-05 2019-06-05 日立化成テクノサービス株式会社 Solid phase extraction material and solid phase extraction cartridge
KR102355295B1 (en) * 2018-02-21 2022-01-24 주식회사 엘지화학 A Micro device for Solid Phase Extraction
KR102351335B1 (en) * 2018-09-03 2022-01-13 주식회사 엘지화학 A Micro device for Solid Phase Extraction
KR102351381B1 (en) * 2018-09-20 2022-01-13 주식회사 엘지화학 A Micro device for Solid Phase Extraction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808125A (en) * 1972-08-25 1974-04-30 Phillips Petroleum Co Chromatographic apparatus
JP3274898B2 (en) * 1993-03-10 2002-04-15 横河アナリティカルシステムズ株式会社 Cartridge column for solid phase extraction
DE69412286T2 (en) * 1993-12-22 1998-12-03 Minnesota Mining & Mfg USE OF LEAF-SHAPED MATERIALS FOR SOLID PHASE EXTRACTIONS AND SOLID PHASE REACTIONS
DE69504327T2 (en) * 1994-05-05 1999-04-29 Minnesota Mining & Mfg CHEMICALLY MODIFIED SOLID-PHASE EXTRACTION PARTICLES AND ITEMS CONTAINING THEM
JP2002030121A (en) * 2000-07-19 2002-01-31 Mitsubishi Chemicals Corp Crosslinked polymer particle nd method for the same
JP2004331767A (en) * 2003-05-06 2004-11-25 Chisso Corp Porous phosphorylated polysaccharide particle and manufacturing process therefor
JP4732868B2 (en) * 2005-11-21 2011-07-27 Hoya株式会社 column
JP4732869B2 (en) * 2005-11-21 2011-07-27 Hoya株式会社 Column manufacturing method and column
JP2007327821A (en) * 2006-06-07 2007-12-20 Sekisui Chem Co Ltd Packing for ion-exchange liquid chromatography, and analyzing method of saccharified hemoglobin
JP2008221611A (en) * 2007-03-13 2008-09-25 Shu Someya Multi-layer plastic sintered body and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098532A1 (en) * 2017-11-17 2019-05-23 주식회사 엘지화학 Micro device for solid phase extraction
CN110691635A (en) * 2017-11-17 2020-01-14 株式会社Lg化学 Micro device for solid phase extraction
US11065557B2 (en) 2017-11-17 2021-07-20 Lg Chem, Ltd. Micro device for solid phase extraction
CN110691635B (en) * 2017-11-17 2021-08-17 株式会社Lg化学 Micro device for solid phase extraction
KR20190088185A (en) * 2018-01-18 2019-07-26 주식회사 엘지화학 A Micro device for Solid Phase Extraction
KR102342836B1 (en) * 2018-01-18 2021-12-22 주식회사 엘지화학 A Micro device for Solid Phase Extraction

Also Published As

Publication number Publication date
JP2010256225A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5313032B2 (en) Sintered adsorbent and cartridge for solid phase extraction
Háková et al. Electrospun nanofiber polymers as extraction phases in analytical chemistry–The advances of the last decade
US8110289B2 (en) Sintered body, resin particles and method for producing the same
AU2014333579B2 (en) Chromatography medium
JP4796693B2 (en) Recovery of organic solutes from aqueous solutions
Wang et al. Polymer monoliths with chelating functionalities for solid phase extraction of metal ions from water
EP4206274A1 (en) Hybrid membrane comprising crosslinked cellulose
KR20140014217A (en) Filtration media
EP3851189A1 (en) Porous materials for solid phase extraction and chromatography
CA2762628C (en) Porous polymeric separation material
CN108043374B (en) Ion exchange foam for removing ions from a sample
JP5435708B2 (en) Metal adsorbent sintered porous body and method for producing the same
WO2011140405A1 (en) Enhanced clarification media
CN111295242A (en) Improved HLB copolymers
JP2011058859A (en) Nonwoven fabric type solid-phase extraction medium, and solid-phase extraction cartridge
CN107652377A (en) The preparation method of the chelating resin of polyfunctional group modification
JP2018183747A (en) Solid phase extraction medium and method for producing the same, and solid phase extraction cartridge
CN104437438B (en) Surface modification of resin chromatograph packing material and preparation method thereof and solid-phase extraction column
Eeltink et al. Recent developments and applications of polymer monolithic stationary phases
KR101757395B1 (en) Porous ion selectivity adsorption ball and manufacturing method thereof
JP7373836B2 (en) Porous adsorption medium, solid phase extraction cartridge equipped with porous adsorption medium, and method for producing porous adsorption medium
JP7329205B2 (en) POROUS ADSORPTION MEDIA, SOLID PHASE EXTRACTION CARTRIDGE WITH POROUS ADSORPTION MEDIA AND METHOD FOR MANUFACTURING POROUS ADSORPTION MEDIA
JP6526964B2 (en) Solid phase extraction material and solid phase extraction cartridge
JP2018066610A (en) Solid phase extraction material and solid phase extraction cartridge
Miki et al. Novel Self-Molding Particulate Sorbents as Solid-Phase Extraction Media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5313032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250