JP5311272B2 - Continuous production method of 2-cyanoacrylate - Google Patents

Continuous production method of 2-cyanoacrylate Download PDF

Info

Publication number
JP5311272B2
JP5311272B2 JP2008108138A JP2008108138A JP5311272B2 JP 5311272 B2 JP5311272 B2 JP 5311272B2 JP 2008108138 A JP2008108138 A JP 2008108138A JP 2008108138 A JP2008108138 A JP 2008108138A JP 5311272 B2 JP5311272 B2 JP 5311272B2
Authority
JP
Japan
Prior art keywords
cyanoacrylate
film evaporator
thin film
dehydration
depolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008108138A
Other languages
Japanese (ja)
Other versions
JP2009256249A (en
Inventor
稔 田中
敬宏 岩瀬
光弘 大西
耕三 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2008108138A priority Critical patent/JP5311272B2/en
Priority to PCT/JP2009/055883 priority patent/WO2009128326A1/en
Publication of JP2009256249A publication Critical patent/JP2009256249A/en
Application granted granted Critical
Publication of JP5311272B2 publication Critical patent/JP5311272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、2−シアノアクリレートの製造方法に関し、特に連続的に製造することで生産性の向上を図るのに効果的である。   The present invention relates to a method for producing 2-cyanoacrylate, and is particularly effective for improving productivity by producing continuously.

2−シアノアクリレートの製造方法には、種々あるが、現在その主流となっているものは、シアノ酢酸エステルとホルムアルデヒドとの重縮合反応により生成する2−シアノアクリレート重縮合物を減圧下で熱解重合する方法である。
従来、重縮合反応と解重合とは図3に示すように、重縮合反応槽100と、脱溶及び解重合槽200とのバッチ式で行われている(特許文献1,2参照)。
第一工程であるシアノ酢酸エステルとホルムアルデヒドの重縮合反応は水の生成を伴う反応であるから、生成される水を系外に取り出さなければ、重縮合反応は進行せず、分子量の大きい重合体が得られない。
従って、反応出発物質であるホルムアルデヒドも水分の少ないものが好ましいが、この脱水に掛かるエネルギーが多いことから、工業的には溶剤中で水分の少ないパラホルムアルデヒドを用いた不均一系反応として行い、その後、重縮合反応で生成する水と溶剤を取り除く操作を実施している。
2−シアノアクリレート重縮合物は非常に粘度が高く、取り扱いが困難なことから溶剤で溶解した形で流動化させることもパラホルムアルデヒド/溶剤系を採用している理由になっている。
重縮合工程で得られる2−シアノアクリレート重縮合物の分子量は仕込みのシアノ酢酸エステル量とホルムアルデヒド量の比で決定される。
この比が大きいと得られる重縮合物の分子量は低くなり、粘度が下がり、溶剤に容易に溶け易くなる等の操業上の取り扱いは容易になるが、解重合で得られる2−シアノアクリレートの収率は低くなる。
反対にこの比が小さいと得られる重縮合物の分子量は高くなり、粘度が非常に高くなる為に溶解するには多量の溶媒が必要になる等の問題が発生する一方で、解重合で得られる2−シアノアクリレートの収率は高くなる。
その為、従来のバッチ処理では、設備の操作性や経済性を加味しながら各社、この仕込み量を決定しているのが実状である。
また、2−シアノアクリレート重縮合物は下記化学式(1)に示すように縮合反応の終了の末端基がシアノ酢酸エステルに起因する残基の場合と、化学式(2)に示すようにホルムアルデヒドに起因する残基のものが存在することになり、解重合にて得られる2−シアノアクリレートの収率及び純度に影響を与える。
There are various methods for producing 2-cyanoacrylate, but the mainstream at present is that the 2-cyanoacrylate polycondensate produced by the polycondensation reaction of cyanoacetate and formaldehyde is thermally decomposed under reduced pressure. This is a polymerization method.
Conventionally, as shown in FIG. 3, the polycondensation reaction and the depolymerization are performed in a batch system of a polycondensation reaction tank 100 and a desolvation and depolymerization tank 200 (see Patent Documents 1 and 2).
The polycondensation reaction of cyanoacetate and formaldehyde, which is the first step, is a reaction that involves the generation of water. Therefore, the polycondensation reaction does not proceed unless the produced water is taken out of the system, and the polymer has a large molecular weight. Cannot be obtained.
Therefore, it is preferable that formaldehyde, which is a reaction starting material, also has a low water content. However, since the energy required for this dehydration is large, it is industrially carried out as a heterogeneous reaction using paraformaldehyde with a low water content in a solvent. The operation of removing the water and solvent produced by the polycondensation reaction is carried out.
Since the 2-cyanoacrylate polycondensate has a very high viscosity and is difficult to handle, fluidization in a form dissolved in a solvent is also the reason why the paraformaldehyde / solvent system is employed.
The molecular weight of the 2-cyanoacrylate polycondensate obtained in the polycondensation step is determined by the ratio of the amount of cyanoacetate charged to the amount of formaldehyde.
When this ratio is large, the molecular weight of the polycondensate obtained is low, the viscosity is lowered, and the handling in the operation such as easy dissolution in the solvent becomes easy, but the yield of 2-cyanoacrylate obtained by depolymerization is easy. The rate is low.
On the other hand, if this ratio is small, the molecular weight of the polycondensate obtained becomes high, and the viscosity becomes very high. The yield of 2-cyanoacrylate obtained is high.
Therefore, in the conventional batch processing, the actual situation is that each company determines the amount charged, taking into consideration the operability and economy of the equipment.
The 2-cyanoacrylate polycondensate is derived from formaldehyde as shown in the following chemical formula (1) when the terminal group at the end of the condensation reaction is a residue derived from cyanoacetate, and as shown in chemical formula (2). Of the residue that affects the yield and purity of 2-cyanoacrylate obtained by depolymerization.

Figure 0005311272
Figure 0005311272

Figure 0005311272
Figure 0005311272

特許文献3には、連続的な2−シアノアクリレートの製造方法を開示しているが、縮合工程を含む連続製造方法ではなく、2−シアノアクリレートの全製造工程の連続化という点では不十分であった。 Patent Document 3 discloses a continuous method for producing 2-cyanoacrylate, but it is not a continuous production method including a condensation step, and is insufficient in terms of continuation of all production steps for 2-cyanoacrylate. there were.

特公昭35−10309号公報Japanese Patent Publication No. 35-10309 特開昭46−7573号公報JP-A-46-7573 米国特許第6420590号公報US Pat. No. 6,420,590

本発明は、重縮合反応、脱溶及び解重合の工程を連続的に行うことができる2−シアノアクリレートの製造方法の提供を目的とする。   An object of this invention is to provide the manufacturing method of 2-cyanoacrylate which can perform the process of a polycondensation reaction, desolubilization, and a depolymerization continuously.

本発明に係る2−シアノアクリレートの連続製造方法は、シアノ酢酸エステルとホルムアルデヒドを反応槽へ導入し重縮合反応を行う工程と、得られた重縮合反応液を脱水槽に導入し脱水を行う工程と、脱水した重縮合反応液を連続的に薄膜蒸発機に導入し脱溶を行う工程と、脱溶して得られた重縮合物を連続的に薄膜蒸発機に導入し解重合を行う工程とを連続的に行うことを特徴とする。
ここで、原材料のホルムアルデヒドはパラホルムアルデヒドでもよいが、ホルマリンであるのが好ましく、脱水槽は直列に連結した2つ以上に分かれているのがよい。
また、脱水槽を2つ以上に分けた第一脱水槽に溶剤を添加して共沸脱水を行うと水分の多いホルマリンを用いても脱水に伴うエネルギーを抑えることができる。
The continuous production method of 2-cyanoacrylate according to the present invention includes a step of introducing a cyanoacetate ester and formaldehyde into a reaction vessel to perform a polycondensation reaction, and a step of introducing the obtained polycondensation reaction solution into a dehydration vessel to perform dehydration. And a step of continuously introducing the dehydrated polycondensation reaction liquid into the thin film evaporator to perform desorption, and a step of continuously introducing the polycondensate obtained by desorption into the thin film evaporator to perform depolymerization. Is performed continuously.
Here, formaldehyde as a raw material may be paraformaldehyde, but is preferably formalin, and the dehydration tank is preferably divided into two or more connected in series.
Further, when azeotropic dehydration is performed by adding a solvent to the first dehydration tank in which the dehydration tank is divided into two or more, energy associated with dehydration can be suppressed even when using formalin with a lot of moisture.

これにより、原料としてシアノ酢酸エステルとホルマリンを用いた均一系で重縮合反応を行い、取り扱いが可能な量だけの共沸溶剤を添加した状態下で脱水を行うことを複数の槽を連結した設備で連続的に行った後、薄膜蒸発機で脱溶、解重合を行い、2−シアノアクリレートを連続製造することで脱水に掛かるエネレギーを抑え、反応器単位容積当りの生産性が飛躍的に向上する。   This is a facility that connects multiple tanks to perform polycondensation reaction in a homogeneous system using cyanoacetate and formalin as raw materials, and to perform dehydration under the condition that only an azeotropic solvent that can be handled is added. , And continuously desulfurizing and depolymerizing with a thin-film evaporator. By continuously producing 2-cyanoacrylate, the energy required for dehydration is suppressed and the productivity per unit volume of the reactor is dramatically improved. To do.

脱溶及び解重合に用いる薄膜蒸発機は縦型でもよいが横型であることが望ましい。
薄膜蒸発機は、円筒体の内側に薄膜形成体又はワイパー状攪拌翼を備え、重合物と溶剤を分離する方法として、公知であり、円筒体を縦置きにした縦型薄膜蒸発機と、円筒体を横置きにした横型薄膜蒸発機がある。
脱溶時に縦型の薄膜蒸発機を用いた場合、溶剤の蒸発経路が上部にあるために、脱溶されて高粘度化した2−シアノアクリレート縮合物が溶剤の蒸発を妨げるため(以下、この現象を「ガスロック」ともいう。)、処理量に制限がある。
内部コンデンサーを用いてこれを解消したり、強制的に脱溶後液を下部に送り出す方法もあるが、設備が複雑になったり、品種の切り替え時に洗浄不十分によりコンタミネーションの原因となる。
また、薄膜蒸発器下部での焼き付け現象を防止する為に処理量を増やしたり、処理温度を下げると、滞留時間を十分に取れない為に設備が大型化することになる。
これに対して横型薄膜蒸発機の場合は、処理に掛かる重力の要因が無い為、原料側の供給速度・温度の他、横型薄膜蒸発機側の回転数、処理温度等を自由に調整出来るので、設備の小型化が容易となる。
また、一般的に溶剤と脱溶されて高粘度化した2−シアノアクリレート重縮合物は別の経路をとる為にガスロックの心配も無い。
ここで脱溶剤の処理温度は溶剤の蒸気圧が13.3kPa以下となるように温度制御するのが好ましい。
溶剤の蒸気圧が13.3kPaを越えると、シアノ基が脱離したり、脱炭酸、脱オレフィン等の主鎖以外の部分で結合が分解し、モノマー純度が低下する。
また、解重合を行う薄膜蒸発機が横型薄膜蒸発機であることが好ましい。
本発明は解重合工程に横型薄膜蒸発機を採用している点に特徴がある。
ここで、横型薄膜蒸発機は生成するガス状2−シアノアクリレートと解重合前の高粘度化した2−シアノアクリレート重縮合物とが接触しない構造を有していることがより好ましい。
この際に、横型薄膜蒸発機内の重縮合物の保持時間が10分以内であることが理想的である。
保持時間が10分を越えると、モノマー純度が低下する恐れがある。
The thin film evaporator used for demelting and depolymerization may be a vertical type, but is preferably a horizontal type.
The thin film evaporator is known as a method of separating a polymer and a solvent by providing a thin film forming body or a wiper-like stirring blade inside a cylindrical body, and a vertical thin film evaporator in which the cylindrical body is placed vertically, and a cylinder There is a horizontal thin film evaporator with the body placed horizontally.
When a vertical thin film evaporator is used at the time of desorption, since the solvent evaporation path is at the top, the decontaminated 2-cyanoacrylate condensate, which has been increased in viscosity, prevents the evaporation of the solvent (hereinafter referred to as this The phenomenon is also referred to as “gas lock”.
There are methods to eliminate this by using an internal condenser, or to force the solution after desorption to the lower part, but this complicates the equipment and causes contamination due to inadequate cleaning when changing the product type.
Further, if the processing amount is increased or the processing temperature is lowered in order to prevent the baking phenomenon at the lower part of the thin film evaporator, the residence time cannot be sufficiently obtained, so that the equipment becomes large.
On the other hand, in the case of a horizontal thin film evaporator, since there is no cause of gravity for processing, in addition to the supply speed and temperature on the raw material side, the rotational speed on the horizontal thin film evaporator side, the processing temperature, etc. can be adjusted freely. It is easy to downsize the equipment.
In general, a 2-cyanoacrylate polycondensate which has been dissolved in a solvent and has a high viscosity takes another route, so there is no risk of gas lock.
Here, the solvent removal treatment temperature is preferably controlled so that the vapor pressure of the solvent is 13.3 kPa or less.
When the vapor pressure of the solvent exceeds 13.3 kPa, the cyano group is eliminated or the bond is decomposed at a portion other than the main chain such as decarboxylation and deolefination, and the monomer purity is lowered.
The thin film evaporator that performs depolymerization is preferably a horizontal thin film evaporator.
The present invention is characterized in that a horizontal thin film evaporator is employed in the depolymerization step.
Here, it is more preferable that the horizontal thin film evaporator has a structure in which the generated gaseous 2-cyanoacrylate does not come into contact with the highly viscous 2-cyanoacrylate polycondensate before depolymerization.
At this time, the retention time of the polycondensate in the horizontal thin film evaporator is ideally within 10 minutes.
If the holding time exceeds 10 minutes, the monomer purity may be lowered.

本発明においては、重縮合反応工程、脱水工程、脱溶及び解重合工程を連続的に行うことができるので、個々の反応槽を小型化でき、かつ、解重合部の安定性が高まり、モノマー収率は飛躍的に向上する。また、本発明に係る連続製造方法では、ホルマリンを原料とした場合であっても共沸溶剤を用いることで、脱水に必要なエネルギーを抑えることができる。   In the present invention, since the polycondensation reaction step, dehydration step, demelting and depolymerization step can be carried out continuously, each reaction vessel can be miniaturized and the stability of the depolymerization part is increased, The yield is dramatically improved. Further, in the continuous production method according to the present invention, even when formalin is used as a raw material, the energy required for dehydration can be suppressed by using an azeotropic solvent.

本発明に係る製造方法例を以下説明する。
図1に工程の流れを模式的に示し、図2に脱溶装置4の要部説明図を示す。
本発明の製造対象となる2−シアノアクリレートの一般式を下記化学式(3)に示し、Rはハロゲン原子を有していてもよい炭素数が1〜20の飽和または不飽和の、直鎖型鎖状炭化水素基、分岐型鎖状炭化水素基、環状炭化水素基または芳香族炭化水素基である。
An example of the manufacturing method according to the present invention will be described below.
FIG. 1 schematically shows a flow of steps, and FIG.
The general formula of 2-cyanoacrylate which is the production target of the present invention is shown in the following chemical formula (3), and R is a saturated or unsaturated linear chain type having 1 to 20 carbon atoms which may have a halogen atom. A chain hydrocarbon group, a branched chain hydrocarbon group, a cyclic hydrocarbon group or an aromatic hydrocarbon group.

Figure 0005311272
この一般式で示される2−シアノアクリレートの具体例としては、2−シアノアクリル酸のメチル、エチル、クロロエチル、n−プロピル、i−プロピル、アリル、プロパギル、n−ブチル、i−ブチル、n−ペンチル、n−ヘキシル、アミル、2−メチル−3−ブテニル、3−メチル−3−ブテニル、2−ペンテニル、n−ヘキシル、6−クロロヘキシル、シクロヘキシル、フェニル、テトラヒドロフルフリル、2−ヘキセニル、4−メチルーペンテニル、3−メチルー2−シクロヘキセニル、ノルボルニル、ヘプチル、シクロヘキサンメチル、シクロヘプチル、1−メチル−シクロヘキシル、2−メチル−シクロヘキシル、3−メチル−シクロヘキシル、2−エチルヘキシル、n−オクチル、シクロオクチル、シクロペンタンメチル、2,3−ジメチルシクロヘキシル、n−ノニル、イソノニル、オキソノニル、n−デシル、イソデシル、n−ドデシル、2−エトキシエチル、2−エトキシ−2−エトキシエチル、ブトキシ−エトキシーエチル、2,2,2−トリフルオロエチル、ヘキサフルオロイソプロピル、ラウリル、イソトリデシル、ミリスチル、セチル、ステアリル、オレイル、ベヘニル、ヘキシルデシル、オクチルドデシル、ベンジル、クロロフェニル、2−ペンチルオキシエチル、2−ヘキシルオキシエチル、2−シクロヘキシルオキシエチル、2−(2−エチルヘキシルオキシ)エチルおよび2−フェノキシエチル等が挙げられ、これらはシアノアクリレート系瞬間接着剤の主成分または副成分として用いられるものである。
Figure 0005311272
Specific examples of 2-cyanoacrylate represented by the general formula include methyl, ethyl, chloroethyl, n-propyl, i-propyl, allyl, propargyl, n-butyl, i-butyl, n- of 2-cyanoacrylic acid. Pentyl, n-hexyl, amyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 2-pentenyl, n-hexyl, 6-chlorohexyl, cyclohexyl, phenyl, tetrahydrofurfuryl, 2-hexenyl, 4 -Methyl-pentenyl, 3-methyl-2-cyclohexenyl, norbornyl, heptyl, cyclohexanemethyl, cycloheptyl, 1-methyl-cyclohexyl, 2-methyl-cyclohexyl, 3-methyl-cyclohexyl, 2-ethylhexyl, n-octyl, cyclo Octyl, cyclopentanemethyl, 2 3-dimethylcyclohexyl, n-nonyl, isononyl, oxononyl, n-decyl, isodecyl, n-dodecyl, 2-ethoxyethyl, 2-ethoxy-2-ethoxyethyl, butoxy-ethoxy-ethyl, 2,2,2-tri Fluoroethyl, hexafluoroisopropyl, lauryl, isotridecyl, myristyl, cetyl, stearyl, oleyl, behenyl, hexyldecyl, octyldodecyl, benzyl, chlorophenyl, 2-pentyloxyethyl, 2-hexyloxyethyl, 2-cyclohexyloxyethyl, 2 -(2-Ethylhexyloxy) ethyl, 2-phenoxyethyl, etc. are mentioned, and these are used as the main component or subcomponent of the cyanoacrylate-based instant adhesive.

(実施例)
本発明の実施例1を図1の工程図に基づいて説明する。
コンデンサーを備えた250L SUS製の重縮合反応槽1に系内の温度を75℃以下に保ちながら、37%ホルマリン46.6kg/hr、シアン酢酸エチル70.7kg/hr、ピペリジン0.05kg/hrを連続的に仕込み、2hr後から連続的にコンデンサー及び水分離器2bを備えた500L SUS製第一脱水槽2に117.3kg/hrで送液(1a)を開始する。
これにより重縮合反応槽1での反応率は80%に達する。
重縮合反応は、無触媒でも可能であるが、反応時間の短縮、及び反応率の向上のためには、アルカリ触媒の存在が好ましく、本実施例では、ピペリジンを用いた。
その他に、触媒の例としては、トリエチルアミン、ジエチルアミン、ピリジンが有効である。
第一脱水槽2には酢酸エチル27.1kg/hrを連続的に仕込みながら、外部より熱を加えることで酢酸エチルと水の共沸状態で蒸発させ、蒸気をコンデンサーで凝縮して、水分離器2bで水のみを回収して、酢酸エチルは系内に戻す。
これにより理論脱水量の90%以上に達する。
第一脱水槽での処理開始3.5hr後から連続的にコンデンサー及び水分離器3bを備えた350L SUS製第二脱水槽3に106.5kg/hrで送液(2a)を開始する。
第二脱水槽3では外部より熱を加えることで酢酸エチルと水の共沸状態で蒸発させ、蒸気をコンデンサーで凝縮して、水分離器3bで水のみを回収して、酢酸エチルは系内に戻す。
これにより理論脱水量の99%以上に達する。
第二脱水槽での処理開始2.5hr後から伝熱面積1.0mの横型薄膜蒸発機からなる脱溶装置4に104.8kg/hrで送液(3a)を開始する。
脱水装置4の要部説明図を図2に示す。
円筒状のケーシンク41は横置きになっていて、内側に回転軸43に取り付けられたワイパー42が配設されている。
第二脱水槽から送り込まれた縮合物と溶剤の混合物(a)は供給口45から本機器に連続的に投入される。
ワイパー42の外周は互い違いに突出した櫛型ペラ44となっており、回転軸43及びワイパー42が回転することで内容物を46の排出口側へ送り出す(b)。
また、回転軸43は中空になっていて攪拌軸全域に渡って孔43aが開けられている。
本機器は外部からの熱、ケーシンク41内を減圧下にすることで使用される。
遠心力によりケーシンク41の内壁に押し付けられ、ワイパー42及び櫛型ペラ44で薄膜化した2−シアノアクリレート重縮合物は酢酸エチルを蒸発させながら、46の排出口から排出される。一方で、遠心力の掛かり難いガス状の分離した酢酸エチル及び脱水操作により取り切れなかった微量の水分は43aの孔から攪拌軸43を通り、ガス排出口47から排出される(c)。
本実施例では、横型薄膜蒸発機で内温150℃、内圧12kPa以下で連続的に脱酢酸エチルを行い、最終的に酢酸エチル5000ppm以下の2−シアノアクリレート縮合物を連続的に得た。
得られた2−シアノアクリレート縮合物を再度、別の横型薄膜蒸発機5に外温245℃、内圧0.06〜0.10kPaで一過的に通すことで、2−シアノアクリレートを67.6kg/hrで連続的に得られた。
解重合装置5の構造は脱溶装置4と同様であり、この場合には、ガス排出口47から留出する2−シアノアクリレートモノマーガスをコンデンサーで冷却して製品が得られ、排出口46から固形分残渣物が排出されることになる。
下記表1に、本発明の実施例として原材料の仕込み量及び各製造条件とともに、モノマー収率、解重合安定性及びモノマー純度の測定結果を示す。
ここで、解重合安定性とは、製品である2−シアノアクリレートモノマー100kg取得当たりに解重合コンデンサーに付着生成するゲルの量を示し、このゲルが少ないほど、装置のメンテナンスが容易で、連続運転を行う上で重要である。
モノマー純度は、H−NMRから求めた二重結合量に基づいて求めた。
(分析条件)
JNM−ECA400 H−NMR(核磁気共鳴装置)
装置溶媒 重クロロホルム
測定温度 室温25℃
得られたチャートの1.2ppm(末端エステルのCH:通常3.00)の値に
対する6.7ppm(末端二重結合)の値を求める。
表中、到達分子量は、GPCによるポリスチレン換算重量平均分子量を示し、保持時間は、脱溶後2−シアノアクリレート重縮合物を薄膜蒸発機に供給開始してから、固形物が排出口46に出てくるまでの時間をいう。
また、脱溶部及び解重合部の「JK温度」はジャケットの温度を示し、脱水部における回数2回とは、第一脱水槽と第二脱水槽に分けて連続的に行ったことを示す。
(Example)
A first embodiment of the present invention will be described with reference to the process diagram of FIG.
In a 250 L SUS polycondensation reaction tank 1 equipped with a condenser, while maintaining the temperature in the system at 75 ° C. or lower, 37% formalin 46.6 kg / hr, ethyl cyanate 70.7 kg / hr, piperidine 0.05 kg / hr Is continuously fed into the 500 L SUS first dewatering tank 2 equipped with a condenser and a water separator 2b after 2 hours, and liquid feeding (1a) is started at 117.3 kg / hr.
Thereby, the reaction rate in the polycondensation reaction tank 1 reaches 80%.
The polycondensation reaction can be carried out without a catalyst, but in order to shorten the reaction time and improve the reaction rate, the presence of an alkali catalyst is preferred. In this example, piperidine was used.
In addition, triethylamine, diethylamine, and pyridine are effective as examples of the catalyst.
The first dehydration tank 2 is continuously charged with 27.1 kg / hr of ethyl acetate, and is heated from the outside to evaporate in an azeotropic state of ethyl acetate and water. The vapor is condensed in a condenser and separated into water. Only water is collected in the vessel 2b, and ethyl acetate is returned to the system.
This reaches 90% or more of the theoretical dehydration amount.
After 3.5 hr from the start of treatment in the first dehydration tank, liquid feeding (2a) is started at 106.5 kg / hr to the 350 L SUS second dehydration tank 3 continuously equipped with a condenser and a water separator 3b.
In the second dehydration tank 3, heat is applied from the outside to evaporate in an azeotropic state of ethyl acetate and water, the vapor is condensed in a condenser, and only water is recovered in the water separator 3b. Return to.
This reaches 99% or more of the theoretical dehydration amount.
After 2.5 hours from the start of the treatment in the second dehydration tank, liquid feeding (3a) is started at 104.8 kg / hr to the demelting device 4 composed of a horizontal thin film evaporator having a heat transfer area of 1.0 m 2 .
FIG. 2 shows an explanatory view of the main part of the dehydrating apparatus 4.
The cylindrical case sink 41 is placed horizontally, and a wiper 42 attached to the rotary shaft 43 is disposed inside.
The mixture (a) of the condensate and the solvent fed from the second dehydration tank is continuously charged into the apparatus from the supply port 45.
The outer periphery of the wiper 42 is a comb-shaped peller 44 that protrudes alternately, and the rotating shaft 43 and the wiper 42 rotate to feed the contents to the discharge port side 46 (b).
Moreover, the rotating shaft 43 is hollow, and a hole 43a is opened over the entire stirring shaft.
This device is used by applying heat from outside and reducing the pressure in the case 41.
The 2-cyanoacrylate polycondensate which is pressed against the inner wall of the case sink 41 by centrifugal force and thinned by the wiper 42 and the comb-shaped peller 44 is discharged from the outlet 46 while evaporating ethyl acetate. On the other hand, gaseous ethyl acetate that is difficult to apply centrifugal force and a trace amount of water that cannot be removed by the dehydration operation are discharged from the gas outlet 47 through the stirring shaft 43 through the hole 43a (c).
In this example, ethyl acetate was continuously removed with a horizontal thin film evaporator at an internal temperature of 150 ° C. and an internal pressure of 12 kPa or less, and finally a 2-cyanoacrylate condensate having an ethyl acetate of 5000 ppm or less was continuously obtained.
By passing the obtained 2-cyanoacrylate condensate again through another horizontal thin film evaporator 5 at an external temperature of 245 ° C. and an internal pressure of 0.06 to 0.10 kPa, 67.6 kg of 2-cyanoacrylate was obtained. / Hr continuously.
The structure of the depolymerization device 5 is the same as that of the desulfurization device 4. In this case, the product is obtained by cooling the 2-cyanoacrylate monomer gas distilled from the gas discharge port 47 with a condenser, and from the discharge port 46. Solid residue will be discharged.
Table 1 below shows the measurement results of monomer yield, depolymerization stability, and monomer purity, together with the raw material charge amount and production conditions as examples of the present invention.
Here, the depolymerization stability indicates the amount of gel that adheres to the depolymerization capacitor per 100 kg of the product 2-cyanoacrylate monomer, and the smaller the gel, the easier the maintenance of the device and the continuous operation. Is important in doing.
The monomer purity was determined based on the double bond amount determined from H-NMR.
(Analysis conditions)
JNM-ECA400 H-NMR (nuclear magnetic resonance apparatus)
Equipment solvent Deuterated chloroform Measurement temperature Room temperature 25 ° C
The value of 6.7 ppm (terminal double bond) with respect to the value of 1.2 ppm (CH 3 of terminal ester: usually 3.00) of the obtained chart is determined.
In the table, the reached molecular weight indicates the weight average molecular weight in terms of polystyrene by GPC, and the retention time indicates that after the desolubilization, the 2-cyanoacrylate polycondensate starts to be supplied to the thin film evaporator, and then the solid matter is discharged to the outlet 46. Time to come.
The “JK temperature” of the demelting part and the depolymerization part indicates the temperature of the jacket, and the number of times in the dewatering part of 2 indicates that the dewatering part and the dewatering tank were continuously performed separately. .

Figure 0005311272
Figure 0005311272

(比較例)
比較の為に図3に示した従来のバッチ処理にて製造した例を示し、その条件及び結果を下記表2に示す。
表中、「バッチ」と記載した工程は、従来のバッチ処理で行ったことを示し、「連続」と記載した工程は、本実施例に記載した連続工程で行ったことを示す。
(Comparative example)
For comparison, an example manufactured by the conventional batch process shown in FIG. 3 is shown, and the conditions and results are shown in Table 2 below.
In the table, a process described as “batch” indicates that the process was performed by a conventional batch process, and a process described as “continuous” indicates that the process was performed by a continuous process described in this example.

Figure 0005311272
Figure 0005311272

比較例2は、コンデンサーを備えた5000L SUS製の重縮合反応槽100に酢酸エチル1200L、パラホルムアルデヒド450kgを仕込み、パラホルムアルデヒドを分散させた後、ピペリジン1250mLを添加し、シアン酢酸エチル1695kgを系内の温度を80℃以下に保つ為に1.5hr掛けて連続的に供給する。パラホルムアルデヒドは溶剤に溶けないので、反応は不均一系で進行する。
その後、反応を進行させる為に外部より熱を加えて酢酸エチルと水の共沸状態で蒸発させ、蒸気をコンデンサーで凝縮して、水のみを水分離器で回収して、酢酸エチルは系内に戻す。
この時、外部からの熱が強過ぎると未反応のパラホルムアルデヒドが昇華してコンデンサーを閉塞させたり、シアン酢酸エチルとのモル比が仕込み量と異なってくるため、反応率が85%までは徐々に加熱する必要がある。
脱水操作を6hr行うことで理論脱水量の90%以上に達する。
得られた2−シアノアクリレート縮合物の酢酸エチル溶液を攪拌機を備えたSUS製5000L解重合槽200に送液した後、内温155℃以下、内圧2kPa以下で脱溶剤を4hr実施して、最終的に酢酸エチル5000ppm以下の2−シアノアクリレート縮合物を得る。
続いて加熱を11hr続行して解重合を行い、留出する2−シアノアクリレートモノマーガスをコンデンサーで凝縮して2−シアノアクリレート1550kgを得る。
(考察)
実施例と比較例の結果を比較すると、従来のバッチ式に比較して、本発明に係る連続製造方法は、モノマー収率が約10%以上向上し、解重合安定性及びモノマー純度が高いことが分かる。
Comparative Example 2 was prepared by adding 1200 L of ethyl acetate and 450 kg of paraformaldehyde to a 5000 L SUS polycondensation reaction tank 100 equipped with a condenser, dispersing paraformaldehyde, adding 1250 mL of piperidine, and adding 1695 kg of ethyl cyanate in the system. In order to keep the temperature at 80 ° C. or lower, it is continuously fed over 1.5 hours. Since paraformaldehyde is not soluble in the solvent, the reaction proceeds in a heterogeneous system.
Then, in order to proceed with the reaction, heat is applied from the outside to evaporate in an azeotropic state of ethyl acetate and water, the vapor is condensed with a condenser, and only water is recovered with a water separator. Return to.
At this time, if the external heat is too strong, unreacted paraformaldehyde sublimates to block the condenser, or the molar ratio with ethyl cyanate acetate differs from the charged amount, so that the reaction rate is gradually increased to 85%. Need to be heated.
It reaches 90% or more of the theoretical dehydration amount by performing the dehydration operation for 6 hours.
After the ethyl acetate solution of the obtained 2-cyanoacrylate condensate was fed to a SUS 5000L depolymerization tank 200 equipped with a stirrer, the solvent was removed at an internal temperature of 155 ° C. or lower and an internal pressure of 2 kPa or lower for 4 hours. Thus, 2-cyanoacrylate condensate having an ethyl acetate content of 5000 ppm or less is obtained.
Subsequently, heating is continued for 11 hours to perform depolymerization, and the 2-cyanoacrylate monomer gas to be distilled is condensed with a condenser to obtain 1550 kg of 2-cyanoacrylate.
(Discussion)
Comparing the results of Examples and Comparative Examples, compared to the conventional batch method, the continuous production method according to the present invention has improved monomer yield by about 10% or more, and high depolymerization stability and monomer purity. I understand.

本発明に係る製造工程例を模式的に示す。The manufacturing process example which concerns on this invention is shown typically. 脱溶装置の要部説明図を示す。The principal part explanatory drawing of a demelting apparatus is shown. 従来の製造例を示す。A conventional manufacturing example is shown.

符号の説明Explanation of symbols

1 重縮合反応槽
2 第一脱水槽
3 第二脱水槽
4 脱溶装置
5 解重合装置
DESCRIPTION OF SYMBOLS 1 Polycondensation reaction tank 2 1st dehydration tank 3 2nd dehydration tank 4 Desorption apparatus 5 Depolymerization apparatus

Claims (6)

シアノ酢酸エステルとホルマリンを反応槽へ導入し重縮合反応を行う工程と、
得られた重縮合反応液を脱水槽に導入し脱水を行う工程と、
脱水した重縮合反応溶液を連続的に薄膜蒸発機に導入し脱溶を行う工程と、
脱溶して得られた重縮合物を連続的に薄膜蒸発機に導入し解重合を行う工程とを連続的に行い、
前記脱水槽は、直列に連結した2つ以上の脱水槽に分かれ、複数連結した脱水槽のうち第一脱水槽に前記重縮合反応液を導入した後、溶剤を添加して、共沸脱水を行うことを特徴とする2−シアノアクリレートの連続製造方法。
Introducing a cyanoacetate ester and formalin into a reaction vessel to conduct a polycondensation reaction;
Introducing the obtained polycondensation reaction liquid into a dehydration tank and performing dehydration;
A process of continuously introducing a dehydrated polycondensation reaction solution into a thin film evaporator to perform desorption;
The process of continuously introducing the polycondensate obtained by desolvation into the thin film evaporator and depolymerizing it ,
The dehydration tank is divided into two or more dehydration tanks connected in series, and after introducing the polycondensation reaction liquid into the first dehydration tank among a plurality of connected dehydration tanks, a solvent is added to perform azeotropic dehydration. A process for continuously producing 2-cyanoacrylate, which is performed .
前記脱溶を行う薄膜蒸発機が横型薄膜蒸発機であることを特徴とする請求項1記載の2−シアノアクリレートの連続製造方法。 2. The method for continuously producing 2-cyanoacrylate according to claim 1, wherein the thin film evaporator for performing desorption is a horizontal thin film evaporator. 前記脱溶を行う横型薄膜蒸発機の内圧が、溶剤の蒸気圧13.3kPa以下となる温度で連続的に行うことを特徴とする請求項記載の2−シアノアクリレートの連続製造方法。 The continuous production method of 2-cyanoacrylate according to claim 2, wherein the internal pressure of the horizontal thin film evaporator for performing the desorption is continuously performed at a temperature at which the vapor pressure of the solvent is 13.3 kPa or less. 前記解重合を行う薄膜蒸発機が横型薄膜蒸発機であることを特徴とする請求項1〜3のいずれか1項に記載の2−シアノアクリレートの連続製造方法。 The method for continuously producing 2-cyanoacrylate according to any one of claims 1 to 3, wherein the thin film evaporator that performs the depolymerization is a horizontal thin film evaporator. 前記解重合を行う横型薄膜蒸発機内の重縮合物の保持時間が、10分以内であることを特徴とする請求項に記載の2−シアノアクリレートの連続製造方法。 The continuous production method of 2-cyanoacrylate according to claim 4 , wherein the polycondensate holding time in the horizontal thin film evaporator for performing the depolymerization is within 10 minutes. 前記解重合を行う横型薄膜蒸発機は生成するガス状2−シアノアクリレートと2−シアノアクリレート重縮合物とが接触しない構造を有していることを特徴とする請求項4又は5記載の2−シアノアクリレートの連続製造方法。 The depolymerization horizontal thin-film evaporator which performs the claims 4 or 5, wherein the gaseous 2-cyanoacrylate which generates a 2-cyanoacrylate polycondensate has a structure that does not contact 2- Continuous production method of cyanoacrylate.
JP2008108138A 2008-04-17 2008-04-17 Continuous production method of 2-cyanoacrylate Active JP5311272B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008108138A JP5311272B2 (en) 2008-04-17 2008-04-17 Continuous production method of 2-cyanoacrylate
PCT/JP2009/055883 WO2009128326A1 (en) 2008-04-17 2009-03-25 Method of continuously producing 2-cyanoacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108138A JP5311272B2 (en) 2008-04-17 2008-04-17 Continuous production method of 2-cyanoacrylate

Publications (2)

Publication Number Publication Date
JP2009256249A JP2009256249A (en) 2009-11-05
JP5311272B2 true JP5311272B2 (en) 2013-10-09

Family

ID=41384153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108138A Active JP5311272B2 (en) 2008-04-17 2008-04-17 Continuous production method of 2-cyanoacrylate

Country Status (1)

Country Link
JP (1) JP5311272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518436B2 (en) 2009-11-09 2014-06-11 日東電工株式会社 Optical adhesive sheet
CN107827778B (en) * 2017-10-30 2024-01-12 烟台国邦化工机械科技有限公司 Device and process for refining cyanoacetic acid ester by continuous rectification
CN113173867B (en) * 2021-03-26 2023-05-30 湖南浩森胶业有限公司 Preparation method of ethyl cyanoacrylate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320796A1 (en) * 1983-06-09 1984-12-13 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLY- (ALPHA) -CYANACRYLIC ACID ESTERS
JP2875867B2 (en) * 1990-09-13 1999-03-31 田岡化学工業株式会社 Method for producing α-cyanoacrylates
JP3072334B2 (en) * 1991-03-11 2000-07-31 ヘンケル・コーポレーション Control method of depolymerization of raw materials to produce low molecular weight products
JP3475780B2 (en) * 1998-04-03 2003-12-08 東亞合成株式会社 Method for producing 2-cyanoacrylate
US6420590B1 (en) * 2000-10-31 2002-07-16 Closure Medical Corporation Continuous processes and apparatus for forming cyanoacetate and cyanoacrylate

Also Published As

Publication number Publication date
JP2009256249A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4427571B2 (en) Apparatus and method for polymer synthesis
US20050222379A1 (en) Method and apparatus for synthesis of lactide
US10822324B2 (en) Method for separating propylene carbonate in preparing process of polyether carbonate polyol
FI95697C (en) Preparation of lactide by suitable dehydration of an aqueous lactic acid feed
TW200911741A (en) Process for preparing alkali metal alkoxides
JP5459974B2 (en) Method and apparatus for producing purified lactic acid cyclic dimer, and method and apparatus for producing polylactic acid
JP5311272B2 (en) Continuous production method of 2-cyanoacrylate
CN112898266B (en) Device and method for industrially preparing L-lactide
CN110128397B (en) Preparation method of high-purity lactide
JPH0790024A (en) Production of polyterafluoroethyelne having low molecular weight
US10981852B2 (en) Ripening of 1,4-bis (4-phenoxybenzoyl)benzene
US20190135749A1 (en) Production of Cyclic Imides Suitable for Oxidation Catalysis
JP2005525400A (en) High-yield by-product recycling process in anhydrosugar alcohols
JP5098233B2 (en) Polyhydroxycarboxylic acid synthesis method and apparatus
WO2009128326A1 (en) Method of continuously producing 2-cyanoacrylate
US8153754B2 (en) Equipment and method for producing polyhydroxycarboxylic acid
CN104557536A (en) Method for preparing mono-methyl succinate
JP2009298935A (en) Synthesis method and device of lactide and polylactic acid
EP2275400B1 (en) Process for producing acrylic acid, and process for producing hydrophilic resin and process for producing water absorptive resin using the process
JP2009269950A (en) Method for continuously producing 2-cyanoacrylate condensate
JP3464905B2 (en) Continuous production apparatus and continuous production method of lactide
JPS5899436A (en) Selective preparation of 2-hydroxynaphthalene-6- carboxylic acid
EP3133092A1 (en) Hydrofluorocarbon recovery method
US5959148A (en) Purification process of N-vinylformamide
TWI335313B (en) Method and equipment for the depolymerization of the poly(alkyl α-cyanoacrylate)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250