JP3464905B2 - Continuous production apparatus and continuous production method of lactide - Google Patents
Continuous production apparatus and continuous production method of lactideInfo
- Publication number
- JP3464905B2 JP3464905B2 JP01965998A JP1965998A JP3464905B2 JP 3464905 B2 JP3464905 B2 JP 3464905B2 JP 01965998 A JP01965998 A JP 01965998A JP 1965998 A JP1965998 A JP 1965998A JP 3464905 B2 JP3464905 B2 JP 3464905B2
- Authority
- JP
- Japan
- Prior art keywords
- lactide
- lactic acid
- reactor
- oligomerization
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明はラクチドの連続製造
装置及び連続製造方法に関し、詳細にはラクチドを原料
の乳酸から乳酸オリゴマーとした後、解重合させてラク
チドを製造する一連の工程を連続的に行う装置及び方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous production apparatus and continuous production method for lactide, and more specifically, a series of steps for producing lactide by depolymerizing lactide from lactic acid as a raw material to lactic acid oligomer. The present invention relates to an apparatus and a method for performing the same.
【0002】[0002]
【従来の技術】ラクチドは生分解性ポリマーであるポリ
乳酸の原料である。ポリ乳酸は、生体内で分解されるだ
けでなく機械的特性等にも優れていることから医療分野
で利用されていると共に、自然環境下においては微生物
等によって分解されるので環境保護の観点から種々の工
業用途や民生用途への展開が期待されており、ラクチド
の需要は益々高まっている。BACKGROUND OF THE INVENTION Lactide is a raw material for polylactic acid, which is a biodegradable polymer. Polylactic acid is used in the medical field because it is not only decomposed in the living body but also has excellent mechanical properties, etc., and it is decomposed by microorganisms in the natural environment. Demand for lactide is increasing more and more, as it is expected to expand to various industrial uses and consumer uses.
【0003】上記ラクチドの製造方法としては、特開平
7−138253号公報に記載されている方法があり、
(1) 乳酸を加熱・濃縮する工程、(2) 濃縮された乳酸を
還流しながら脱水し乳酸オリゴマーを生成する工程、及
び (3)乳酸オリゴマーを触媒の存在下に解重合して留去
する工程を、夫々回分式で行う方法が提案されている。
但し、上記の方法では、還流工程の温度管理を135℃
から150℃、160℃と段階分けして徐々に昇温しな
がら行うことが必要であり、操作が複雑であると共に、
回分式であることから非効率的でエネルギーコストが大
きく、更に大量処理が困難であるという問題があり、更
には反応器内組成が経時変化するので品質(特にラクチ
ド純度)が不安定であることが指摘されていた。As a method for producing the above-mentioned lactide, there is a method described in JP-A-7-138253.
(1) heating and concentrating lactic acid, (2) dehydrating the concentrated lactic acid under reflux to form a lactic acid oligomer, and (3) depolymerizing the lactic acid oligomer in the presence of a catalyst and distilling it off. A method has been proposed in which the steps are performed in batches.
However, in the above method, the temperature control in the reflux step is 135 ° C.
It is necessary to gradually increase the temperature in stages from 1 to 150 ° C and 160 ° C, and the operation is complicated, and
Since it is a batch system, there are problems that it is inefficient, the energy cost is large, and it is difficult to process a large amount. Furthermore, the composition in the reactor changes over time, so that the quality (particularly lactide purity) is unstable. Was pointed out.
【0004】回分式ではなく連続的にラクチドを製造す
る方法としては、乳酸を連続的にオリゴマー化する方法
が特開平9−316180号公報に開示されており、ま
た乳酸オリゴマーを連続的にラクチドとする方法が特開
平9−110859号公報に開示されている。従って、
両者の方法を組み合わせることによって乳酸から乳酸オ
リゴマーを介してラクチドを一貫して連続的に製造する
ことが可能であると考えられる。As a method for producing lactide continuously instead of a batch method, a method of continuously oligomerizing lactic acid is disclosed in JP-A-9-316180, and a lactic acid oligomer is continuously produced as lactide. A method of doing so is disclosed in Japanese Patent Laid-Open No. 9-110859. Therefore,
It is considered possible to consistently and continuously produce lactide from lactic acid via a lactic acid oligomer by combining both methods.
【0005】尚、図1は特開平9−110859号公報
に記載されているラクチドの製造装置であり、21は乳
酸オリゴマータンク、22は反応容器、23はコンデン
サ、24はラクチド受器を夫々示す。上記装置によれば
乳酸オリゴマータンク21に貯留されている乳酸オリゴ
マーは、移送ポンプPにより反応容器22に供給される
と共に、電磁弁を開にして5〜25重量%の触媒が触媒
投入用ホッパーHから導入され、真空ポンプVPにより
所定圧に保たれた上記反応容器22内で乳酸オリゴマー
は加熱されてラクチドが合成される。合成されたラクチ
ドは気化し、コンデンサ23で凝縮されてラクチド受器
24に蓄えられるという構成を採用するものである。FIG. 1 shows a lactide production apparatus described in Japanese Patent Laid-Open No. 9-110859, wherein 21 is a lactic acid oligomer tank, 22 is a reaction vessel, 23 is a condenser, and 24 is a lactide receiver. . According to the above apparatus, the lactic acid oligomer stored in the lactic acid oligomer tank 21 is supplied to the reaction container 22 by the transfer pump P, and the electromagnetic valve is opened to allow the catalyst loading of 5 to 25% by weight of the catalyst loading hopper H. The lactic acid oligomer is heated in the reaction vessel 22 introduced from the above and kept at a predetermined pressure by the vacuum pump VP to synthesize lactide. The synthesized lactide is vaporized, condensed by the condenser 23 and stored in the lactide receiver 24.
【0006】しかしながら、上記のラクチドの連続製造
方法では、乳酸オリゴマーのラクチド化に用いる触媒が
失活して、100時間前後で連続運転を中止せざるを得
ないという問題があり、乳酸から乳酸オリゴマーを経て
ラクチドを長期間に亘って連続的に製造することができ
る方法及び装置の開発が要望されていた。However, in the above-mentioned continuous production method of lactide, there is a problem that the catalyst used for lactide conversion of the lactic acid oligomer is deactivated and the continuous operation must be stopped after about 100 hours. Therefore, there has been a demand for the development of a method and an apparatus capable of continuously producing lactide over a long period of time.
【0007】更に、上記の方法によれば、触媒濃度が
5.1〜25.0%と極端に多く必要とし(従来は0.
5〜2.0重量%程度)、製品であるラクチドに触媒が
混入するので、品質が低下し、触媒除去工程が不可欠で
あり、しかも上記方法で得られる製品ラクチドには、1
0%前後の乳酸オリゴマーも含まれており、純度の改善
も望まれていた。Further, according to the above-mentioned method, the catalyst concentration is extremely high at 5.1 to 25.0% (conventionally, it was 0.
5 to 2.0% by weight), since the catalyst is mixed in the product lactide, the quality is deteriorated, the catalyst removal step is indispensable, and the product lactide obtained by the above method has 1
A lactic acid oligomer of about 0% was also contained, and improvement in purity was also desired.
【0008】[0008]
【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、ラクチド化に用いる触媒
量は極力少なくすることを前提とした上で、長期間に亘
って連続的に乳酸からラクチドを製造することができ、
しかも高純度の製品ラクチドを得ることのできる装置及
び方法を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is based on the premise that the amount of catalyst used for lactide formation should be minimized, and that the catalyst should be continuously used for a long period of time. Can produce lactide from lactic acid,
Moreover, it is an object of the present invention to provide an apparatus and a method capable of obtaining a highly pure product lactide.
【0009】[0009]
【課題を解決するための手段】上記課題を解決した本発
明の連続製造装置とは、乳酸オリゴマーを解重合させる
ラクチド化反応器と、蒸発させたラクチドを凝縮させる
コンデンサを有するラクチドの連続製造装置であって、
上記ラクチド化反応器と上記コンデンサの間に、還流冷
却器を介設してなることを要旨とするものである。The continuous production apparatus of the present invention, which has solved the above-mentioned problems, is a continuous lactide production apparatus having a lactide-forming reactor for depolymerizing lactic acid oligomers and a condenser for condensing evaporated lactide. And
The gist is that a reflux condenser is provided between the lactide reaction reactor and the condenser.
【0010】また上記課題を解決した本発明の連続製造
装置とは、乳酸を加熱重合して乳酸オリゴマーを生成
し、次いで上記乳酸オリゴマーを触媒の存在下に加熱し
て解重合させることによりラクチドを生成するラクチド
の製造方法であって、乳酸を主体とする原料をオリゴマ
ー化反応器に連続的に供給し、乳酸を加熱濃縮しつつ脱
水して乳酸オリゴマーを連続的に生成するオリゴマー化
工程と、上記オリゴマー化反応器より連続的に送液され
る乳酸オリゴマーを、ラクチド化反応器において、触媒
の存在下に解重合させラクチドを連続的に生成するラク
チド化工程と、上記ラクチド化反応器から留出されたラ
クチドを、コンデンサにより液化させることによりラク
チドを連続的に回収するラクチド回収工程を有し、上記
オリゴマー化工程、上記ラクチド化工程、上記ラクチド
回収工程を連続的に行うと共に、前記ラクチド回収工程
においてラクチドを留出させるにあたり、同伴されるオ
リゴマー及び触媒を還流冷却器により還流させることを
要旨とするものである。Further, the continuous production apparatus of the present invention which has solved the above-mentioned problems, produces lactic acid oligomer by heat-polymerizing lactic acid, and then heats and depolymerizes the lactic acid oligomer in the presence of a catalyst to form lactide. A method for producing a lactide to be produced, which comprises continuously supplying a raw material mainly composed of lactic acid to an oligomerization reactor and continuously producing a lactic acid oligomer by dehydrating while concentrating the lactic acid under heating, The lactic acid oligomer continuously fed from the oligomerization reactor is depolymerized in the presence of a catalyst in the lactide reaction reactor to continuously produce lactide, and a lactide reaction is performed to distill the lactic acid oligomer from the lactide reaction reactor. The extracted lactide has a lactide recovery step of continuously recovering lactide by liquefying it with a condenser, and the above-mentioned oligomerization step, Serial lactide step, performs continuously the lactide recovery step, when distilling the lactide in the lactide recovery step, it is an Abstract that is refluxed by reflux condenser oligomers and catalyst entrained.
【0011】[0011]
【発明の実施の形態】特開平9−110859号公報に
記載されているラクチドの製造方法で、大量に触媒を使
用しているにも係らず、100時間前後で連続運転を中
止せざるを得ない理由を本発明者らが検討した結果、上
記の方法では触媒を多量に用いても、ラクチドの製造過
程で触媒がラクチド蒸気と同伴されてラクチド化反応器
外に排出されているからであるとの知見を得た。そこで
本発明者らが鋭意研究を重ねた結果、ラクチド反応器と
コンデンサの間に、還流冷却器を設けて、ラクチドに気
化同伴する触媒を乳酸オリゴマーと共に還流させれば、
少ない量の触媒で長期間に亘ってラクチド化反応を行う
ことができことを見出し、これにより乳酸から乳酸オリ
ゴマーを介して高純度のラクチドを一貫して連続的に製
造できることに成功したものである。BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing lactide described in Japanese Patent Application Laid-Open No. 9-110859, continuous operation must be stopped after about 100 hours, despite the large amount of catalyst used. As a result of the present inventors' investigation of the reason why there is no such reason, in the above-mentioned method, even if a large amount of the catalyst is used, the catalyst is discharged along with the lactide vapor along with the lactide vapor in the lactide production process. I got the knowledge. Therefore, as a result of the inventors' earnest studies, if a reflux condenser is provided between the lactide reactor and the condenser, and the catalyst vaporized with lactide is refluxed together with the lactic acid oligomer,
It was found that the lactide-forming reaction could be carried out for a long period of time with a small amount of catalyst, and by doing so, it was possible to consistently and continuously produce high-purity lactide from lactic acid via a lactic acid oligomer. .
【0012】以下、本発明に係るラクチドの連続製造方
法及び連続製造装置を、図2に基づいて詳細に説明す
る。本発明に係るラクチドの製造方法は、原料の乳酸か
ら製品のラクチドまで一貫して連続的に製造することに
特徴を有するものであるが、製造工程に関しては従来の
方法と同様に、乳酸オリゴマーを中間生成物として製造
することから、以下の(A)オリゴマー化工程と、
(B)ラクチド化工程及び(C)ラクチド回収工程に大
別できる。The continuous lactide production method and apparatus according to the present invention will be described in detail below with reference to FIG. The method for producing lactide according to the present invention is characterized by consistently and continuously producing from lactic acid as a raw material to lactide as a product. Since it is produced as an intermediate product, the following (A) oligomerization step,
It can be roughly divided into (B) lactide conversion step and (C) lactide recovery step.
【0013】A.オリゴマー化工程
図2において、1は原料タンク、2は予熱器、3はフラ
ッシュ弁、4は蒸留塔、5はオリゴマー化反応器、6は
コンデンサ、7は留出水抜出槽、8は外部循環型熱交換
器、9は補助オリゴマー化反応器、10は撹拌機、11
はベーパー管を夫々示す。 A. Oligomerization process In FIG. 2, 1 is a raw material tank, 2 is a preheater, 3 is a flash valve, 4 is a distillation column, 5 is an oligomerization reactor, 6 is a condenser, 7 is a distillate extraction tank, and 8 is an external circulation. Type heat exchanger, 9 is an auxiliary oligomerization reactor, 10 is a stirrer, 11
Indicate vapor tubes, respectively.
【0014】原料タンク1に蓄えられた乳酸は、原料送
液ポンプP1 にて予熱器2に送られ、所定温度に加熱さ
れた後、フラッシュ弁3を経て蒸留塔4に供給される。
上記蒸留塔4はオリゴマー化反応器5の上部に配設され
ており、オリゴマー化反応器5に流下した乳酸は、反応
器内で加熱され脱水縮合されて乳酸オリゴマーとなる。
尚、原料乳酸は一般に10%前後の水を含んでおり、脱
水縮合(オリゴマー化)反応でも水が生成する。これら
の水は、加熱によって水蒸気となり、乳酸の蒸気と共に
上昇し、トレイまたは充填物が組み込まれた蒸留塔4に
到達し、乳酸の蒸気は蒸留塔4内で液化し落下してオリ
ゴマー化反応器5に戻され、一方蒸留塔4を通過した水
蒸気は、コンデンサ6に導かれる。水蒸気は、冷却水等
の冷媒が供給される上記コンデンサ6にて冷却・凝縮さ
れ、留出水抜出槽7を経て系外に排出される。また上記
コンデンサ6から留出水抜出槽7に送られる水の一部
は、ポンプP2 により蒸留塔4の頂部に還流され、該頂
部の温度制御及び水と原料成分の分離効率向上のために
利用される。The lactic acid stored in the raw material tank 1 is sent to the preheater 2 by the raw material feed pump P 1 , heated to a predetermined temperature, and then supplied to the distillation column 4 through the flash valve 3.
The distillation column 4 is disposed above the oligomerization reactor 5, and the lactic acid flowing down to the oligomerization reactor 5 is heated in the reactor and dehydrated and condensed to become a lactic acid oligomer.
Incidentally, the raw material lactic acid generally contains about 10% of water, and water is generated even in the dehydration condensation (oligomerization) reaction. These water become steam by heating and rise together with the vapor of lactic acid and reach the distillation column 4 in which a tray or packing is incorporated, and the vapor of lactic acid is liquefied in the distillation column 4 and falls to the oligomerization reactor. The water vapor returned to 5 while passing through the distillation column 4 is guided to the condenser 6. The water vapor is cooled and condensed by the condenser 6 to which a coolant such as cooling water is supplied, and is discharged to the outside of the system through the distillate water withdrawing tank 7. Further, a part of the water sent from the condenser 6 to the distillate extraction tank 7 is refluxed to the top of the distillation column 4 by the pump P 2 , in order to control the temperature of the top and improve the separation efficiency of water and raw material components. Used.
【0015】尚、前記オリゴマー化反応器5に配設され
る加熱器は、ジャケット構造による熱媒循環加熱方式や
電熱ヒータ加熱方式のものを用いればよく、また前記予
熱器2の液加熱方式は、シェル/チューブ型の熱媒循環
加熱や電熱ヒータ加熱等が採用できる。The heater provided in the oligomerization reactor 5 may be a heating medium circulating heating system having a jacket structure or an electric heater heating system, and the liquid heating system of the preheater 2 is not limited to this. , Shell / tube type heating medium circulation heating, electric heater heating, etc. can be adopted.
【0016】この様にして、原料中に含まれる水と、オ
リゴマー化反応器5で発生する蒸気中の水分は、蒸留塔
4の頂部から水蒸気として取り出され、オリゴマー化反
応器5内から水分は系外に取り除かれるので、供給系か
らの原料と蒸気中の未反応原料は濃縮されつつオリゴマ
ー化反応器に溜められ、オリゴマー化反応器内の原料の
濃縮が高められ、かつ縮合反応によりオリゴマー化が進
行する。In this way, the water contained in the raw materials and the water content in the steam generated in the oligomerization reactor 5 are taken out as steam from the top of the distillation column 4, and the water content is removed from the oligomerization reactor 5. Since it is removed outside the system, the raw materials from the feed system and the unreacted raw materials in the vapor are concentrated and stored in the oligomerization reactor, the concentration of the raw materials in the oligomerization reactor is enhanced, and the condensation reaction causes oligomerization. Progresses.
【0017】オリゴマー化反応器5は、外部循環型熱交
換器8を介して補助オリゴマー化反応器9に連通してい
る。上記外部循環型熱交換器8及び補助オリゴマー化反
応器9は、加熱器(ジャケット構造による熱媒循環型加
熱器や電熱ヒータ等)を有しており、その内液温度をオ
リゴマー化反応器中の液温よりも高く保つことによっ
て、オリゴマー化反応器から補助オリゴマー化反応器及
び外部循環型熱交換器への液の流れを確保することがで
きる様に構成されている。尚、補助オリゴマー化反応器
9に、撹拌機10を配設して、器内の液を攪拌して給熱
効率を高めることが望ましい(但し、補助オリゴマー化
反応器9の内液の粘度が低く、自然対流で液が器内を循
環する場合には上記撹拌機は必要ない)。The oligomerization reactor 5 is in communication with the auxiliary oligomerization reactor 9 via the external circulation heat exchanger 8. The external circulation type heat exchanger 8 and the auxiliary oligomerization reactor 9 have a heater (heat medium circulation type heater having a jacket structure, electric heater, etc.), and the internal liquid temperature thereof is set in the oligomerization reactor. The temperature of the liquid is kept higher than the liquid temperature of (1) to ensure the flow of liquid from the oligomerization reactor to the auxiliary oligomerization reactor and the external circulation heat exchanger. In addition, it is desirable to dispose a stirrer 10 in the auxiliary oligomerization reactor 9 to stir the liquid in the container to improve heat supply efficiency (however, the viscosity of the liquid in the auxiliary oligomerization reactor 9 is low. , If the liquid circulates in the vessel by natural convection, the agitator is not required).
【0018】外部循環型熱交換器8及び補助オリゴマー
化反応器9を循環する反応液中の水分及び乳酸や乳酸オ
リゴマーの一部は外部循環型熱交換器8による加熱で気
化し、気化した蒸気は、補助オリゴマー化反応器の上部
に設けたベーパー管11を通って、蒸留塔4に戻され
る。戻された蒸気中の水分は、前述の様に蒸留塔の頂部
から水蒸気として取り出され、原料類は濃縮されて再び
反応システム内に戻される。この様に原料及びオリゴマ
ーが、オリゴマー反応器5,外部循環型熱交換器8及び
補助オリゴマー化反応器9を循環すると共に、蒸留塔の
頂部から水分を留出させることにより、原料の濃縮及び
脱水縮合(オリゴマー化)反応が進行する。Moisture and a part of lactic acid or lactic acid oligomer in the reaction liquid circulating through the external circulation heat exchanger 8 and the auxiliary oligomerization reactor 9 are vaporized by heating by the external circulation heat exchanger 8 and vaporized vapor. Is returned to the distillation column 4 through a vapor pipe 11 provided at the upper part of the auxiliary oligomerization reactor. Moisture in the returned steam is taken out as steam from the top of the distillation column as described above, and the raw materials are concentrated and returned to the reaction system again. In this way, the raw material and the oligomer are circulated through the oligomer reactor 5, the external circulation heat exchanger 8 and the auxiliary oligomerization reactor 9, and the water is distilled from the top of the distillation column to concentrate and dehydrate the raw material. A condensation (oligomerization) reaction proceeds.
【0019】更にオリゴマー化反応器内の液の一定量
は、底部の配管を通じてオリゴマー循環ポンプP3 によ
り原料供給ラインに戻され、原料と一体となって予熱器
2に送られてフラッシュ弁3を経て再び蒸留塔4に供給
される。Further, a fixed amount of the liquid in the oligomerization reactor is returned to the raw material supply line by the oligomer circulation pump P 3 through the pipe at the bottom, and is sent to the preheater 2 together with the raw material and sent to the flash valve 3. After that, it is again supplied to the distillation column 4.
【0020】尚、蒸留塔4、オリゴマー化反応器5、外
部循環型熱交換器8及び補助オリゴマー化反応器9等
は、コンデンサ6の下流に配設された真空ポンプVP1
により減圧され、圧力調整バルブV1 により一定圧力に
制御されている。The distillation column 4, the oligomerization reactor 5, the external circulation heat exchanger 8, the auxiliary oligomerization reactor 9 and the like are vacuum pumps VP 1 arranged downstream of the condenser 6.
The pressure is reduced by, and the pressure is adjusted to a constant pressure by the pressure adjusting valve V 1 .
【0021】オリゴマー化反応器内の気相圧力は、水
を、乳酸やオリゴマーが同伴することなく留去できる範
囲に設定することが望ましく、30Torr未満では、
留去水に乳酸が同伴し、原料ロスとなり、一方200T
orrを超えると、水を十分留去できず、オリゴマーの
分子量が上がらないので30Torr以上200Tor
r以下とすることが望ましい。It is desirable that the gas phase pressure in the oligomerization reactor is set within a range in which water can be distilled off without being accompanied by lactic acid or oligomers.
Lactic acid accompanies distilled water, resulting in raw material loss, while 200T
If it exceeds orr, water cannot be distilled off sufficiently and the molecular weight of the oligomer does not increase, so 30 Torr or more and 200 Tor
It is desirable to be r or less.
【0022】またオリゴマー化反応器内の液相温度は、
乳酸の光学異性化を抑え、且つ脱水・縮合反応を進める
範囲に設定することが望ましく、150℃未満では、反
応速度が遅く非効率的であり、一方200℃を超える
と、光学異性化が進行しやすくなると共に、留去水に乳
酸が同伴しやすくなるので、150℃以上200℃以下
に制御してオリゴマー化反応を行うことが推奨される。The liquidus temperature in the oligomerization reactor is
It is desirable to set it in a range that suppresses optical isomerization of lactic acid and promotes dehydration / condensation reaction. Below 150 ° C, the reaction rate is slow and inefficient, while above 200 ° C, optical isomerization proceeds. Since lactic acid easily accompanies distilled water, it is recommended to control the oligomerization reaction at 150 ° C or higher and 200 ° C or lower.
【0023】また、オリゴマー化反応器5及び補助オリ
ゴマー化反応器9の上部及び底部、蒸留塔4、予熱器2
以降の原料供給配管、オリゴマー化反応器9底部からの
液送配管、オリゴマー循環ポンプP3 からの液送配管、
外部循環型熱交換器8と補助オリゴマー化反応器9と間
の循環配管、オリゴマー送液ポンプP4 の吸引及び吐出
配管,ベーパー管は電熱ヒータまたはジャケット等にて
加熱・保温することが望ましい。Further, the top and bottom of the oligomerization reactor 5 and the auxiliary oligomerization reactor 9, the distillation column 4, the preheater 2
Subsequent raw material supply pipes, liquid feed pipes from the bottom of the oligomerization reactor 9, liquid feed pipes from the oligomer circulation pump P 3 ,
The circulation pipe between the external circulation heat exchanger 8 and the auxiliary oligomerization reactor 9, the suction and discharge pipes of the oligomer feed pump P 4 , and the vapor pipe are preferably heated and kept warm by an electric heater or a jacket.
【0024】この様に本発明に係るオリゴマー化反応器
には蒸留塔を備え、この蒸留塔にて還流操作を行って乳
酸の濃縮すると共に、反応系からの脱水を図るものであ
る。これにより、水分(原料乳酸に含まれる水及びオリ
ゴマー化反応で発生する縮合水)を効率的に除去し、オ
リゴマー化反応を促進できることから、乳酸オリゴマー
の分子量が向上すると共に水分量を減少させることがで
きる。また留出水中の乳酸(=原料ロス)含量が低く、
ラクチドの収率が向上し、しかも効率良く反応を進めら
ることができるので反応器内滞留時間が短くてすみ、異
性化反応を抑えられる。更にはエネルギーコストが小さ
いという利点を有するものである。Thus, the oligomerization reactor according to the present invention is equipped with a distillation column, and the reflux operation is performed in this distillation column to concentrate lactic acid and to dehydrate the reaction system. As a result, water (water contained in raw material lactic acid and condensed water generated in the oligomerization reaction) can be efficiently removed and the oligomerization reaction can be promoted, so that the molecular weight of the lactic acid oligomer is improved and the water content is reduced. You can Also, the content of lactic acid (= raw material loss) in distillate water is low,
Since the yield of lactide is improved and the reaction can proceed efficiently, the residence time in the reactor can be shortened and the isomerization reaction can be suppressed. Further, it has an advantage that the energy cost is small.
【0025】また本発明に係るオリゴマー化反応器は外
部循環加熱型フラッシュ蒸留缶であり、原料乳酸をフラ
ッシュ操作で反応器に連続供給し、かつオリゴマー化反
応器内の反応液を連続的に抜き出し外部加熱した後フラ
ッシュ操作で再び反応器に戻すものである。従って、原
料中の水と乳酸の分離を促進させ、オリゴマー化(十分
な平均分子量に到達する)に必要な反応器滞留時間を短
縮でき、蒸留のみで脱水を図る場合に比べ、エネルギー
コストを低く抑えることができる。The oligomerization reactor according to the present invention is an external circulation heating type flash distillation can, and the raw material lactic acid is continuously supplied to the reactor by a flash operation, and the reaction liquid in the oligomerization reactor is continuously withdrawn. After external heating, it is returned to the reactor again by a flash operation. Therefore, the separation of water and lactic acid in the raw material can be promoted, the reactor residence time required for oligomerization (reaching a sufficient average molecular weight) can be shortened, and the energy cost can be reduced as compared with the case where dehydration is performed only by distillation. Can be suppressed.
【0026】更に外部循環型熱交換器8を設けること
で、オリゴマー化反応器5及び補助オリゴマー化反応器
8における液加熱では困難な大熱量供給を可能とし、脱
水縮合反応に必要な熱量を加えることができる。またサ
ーモサイホン効果により外部循環型熱交換器8と補助オ
リゴマー反応器9の間で反応操作・脱水操作に理想的な
循環状況を得ることができる。従って外部循環型熱交換
器8を設けることにより、大容量処理(大量生産)が可
能となる。Further, by providing the external circulation type heat exchanger 8, it is possible to supply a large amount of heat, which is difficult with liquid heating in the oligomerization reactor 5 and the auxiliary oligomerization reactor 8, and to add the amount of heat required for the dehydration condensation reaction. be able to. Further, due to the thermosiphon effect, it is possible to obtain an ideal circulation state between the external circulation heat exchanger 8 and the auxiliary oligomer reactor 9 for reaction operation / dehydration operation. Therefore, by providing the external circulation heat exchanger 8, large capacity processing (mass production) becomes possible.
【0027】以上の重合反応システムで生成したオリゴ
マーは、オリゴマー送液ポンプP4にて所定の送液速度
で抜き出され、次工程であるラクチド化工程の反応シス
テムに供給される。The oligomer produced by the above polymerization reaction system is extracted at a predetermined liquid feed rate by the oligomer feed pump P4 and supplied to the reaction system of the next step, the lactide conversion step.
【0028】B.ラクチド化工程
図2において、12は外部循環型熱交換器、13はラク
チド化反応器、14は撹拌機を夫々示す。 B. Lactidation step In FIG. 2, 12 is an external circulation heat exchanger, 13 is a lactide reaction reactor, and 14 is a stirrer.
【0029】オリゴマー化送液ポンプP4 にて送液され
たオリゴマーは、外部循環型熱交換器12を経てラクチ
ド化反応器13に送られる。またラクチド化触媒は触媒
濃度が所定の範囲となる様に、予めラクチド化反応器1
3に投入される。The oligomer fed by the oligomerization feed pump P 4 is sent to the lactide reaction reactor 13 via the external circulation heat exchanger 12. In addition, the lactide-forming catalyst is preliminarily adjusted so that the catalyst concentration is within a predetermined range.
It is thrown into 3.
【0030】上記外部循環型熱交換器12及びラクチド
化反応器13は夫々加熱器(ジャケット構造による熱媒
循環型加熱器や電熱ヒータ等)を有しており、液を加熱
することによって、ラクチド化反応及びラクチドの気化
反応が進行する。またラクチド化反応器13には、撹拌
機14が配設されており、器内の液を撹拌することで給
熱効率が高められる構成となっている。The external circulation type heat exchanger 12 and the lactide reaction reactor 13 each have a heater (heat medium circulation type heater having a jacket structure, an electric heater, etc.), and by heating the liquid, the lactide is heated. The chemical reaction and the vaporization reaction of lactide proceed. Further, a stirrer 14 is provided in the lactide reaction reactor 13, and the heat supply efficiency is increased by stirring the liquid in the reactor.
【0031】またラクチド化反応器内の気相圧力は、ラ
クチドを効率良く留出させる範囲に設定することが望ま
しく、100Torrを超えると、ラクチドの揮発が進
行しにくいので、100Torr以下とすることが推奨
される。尚、圧力が低過ぎても、ラクチドに乳酸オリゴ
マーが同伴し易く、留出物中のラクチド純度が低下する
と共に、高減圧対応のための設備・機器コストが増大す
るので10Torr以上に設定すればよい。Further, the gas phase pressure in the lactide reaction reactor is preferably set in a range in which lactide is efficiently distilled, and when it exceeds 100 Torr, volatilization of lactide is difficult to proceed, and therefore, it should be 100 Torr or less. Recommended. Even if the pressure is too low, lactic acid oligomers are easily entrained in the lactide, the purity of lactide in the distillate is lowered, and the equipment / equipment cost for dealing with high pressure reduction increases. Good.
【0032】更に、ラクチド化反応器内の温度は、異性
化を抑え、且つラクチドの生成及び気化を進める範囲に
設定することが望ましく、170℃未満では反応速度が
遅く非効率的であり、220℃を超えると、異性化が進
行し易くなると共に、ラクチドにオリゴマーが気化同伴
し易くなるので液相温度を170℃以上220℃以下に
制御してラクチド化反応を行うことが望ましい。Furthermore, it is desirable to set the temperature in the lactide reactor to a range that suppresses isomerization and promotes lactide production and vaporization. If the temperature is lower than 170 ° C., the reaction rate is slow and inefficient. When the temperature exceeds ℃, isomerization is likely to proceed and the lactide is easily vaporized with the oligomer. Therefore, it is desirable to control the liquid phase temperature to 170 ° C or higher and 220 ° C or lower to carry out the lactide reaction.
【0033】またラクチド化触媒は、スズ,亜鉛,鉛,
アルカリ金属及びこれらの化合物ないしはそれらの混合
物等の公知のラクチド化反応触媒から適宜選択して用い
れば良く、適正な触媒濃度はその触媒の種類により異な
るが5%以下の添加量で十分であり、例えばラクチド化
触媒として代表的なオクチル酸スズの場合には、100
0〜20000ppm程度用いれば良い。The lactide-forming catalyst includes tin, zinc, lead,
It may be used by appropriately selecting from known lactide-forming reaction catalysts such as alkali metals and these compounds or mixtures thereof, and an appropriate catalyst concentration varies depending on the kind of the catalyst, but an addition amount of 5% or less is sufficient, For example, in the case of a typical tin octylate as a lactide-forming catalyst, 100
It suffices to use approximately 0 to 20000 ppm.
【0034】尚、前記外部循環型熱交換器12を設ける
ことで、ラクチド化反応器13における液加熱では困難
な大熱量供給を可能とし、ラクチド化反応及びラクチド
の気化に必要な熱量を加えることができる。ラクチド化
反応器13中の液は、反応液循環ポンプP5 により所定
流速で外部循環型熱交換器12に送液され、該反応シス
テム中で液循環を保つことができるため、大容量処理が
可能である(但し、サーモサイホン効果により液が循環
する場合には上記反応液循環ポンプP5 は必要ない)。By providing the external circulation type heat exchanger 12, it is possible to supply a large amount of heat, which is difficult with liquid heating in the lactide reaction reactor 13, and to add the amount of heat necessary for the lactide reaction and the vaporization of lactide. You can The liquid in the lactide reaction reactor 13 is sent to the external circulation type heat exchanger 12 at a predetermined flow rate by the reaction liquid circulation pump P 5 , and liquid circulation can be maintained in the reaction system, so that large-capacity treatment is possible. It is possible (however, if the liquid circulates due to the thermosiphon effect, the reaction liquid circulation pump P 5 is not necessary).
【0035】C.ラクチド回収工程
図2において、15が還流冷却器、16はラクチドコン
デンサ、17はラクチド抜出槽を夫々示す。 C. Lactide recovery step In FIG. 2, 15 is a reflux condenser, 16 is a lactide condenser, and 17 is a lactide extraction tank.
【0036】気化したラクチド(若干量のオリゴマー成
分を含む)は、ラクチド化反応器13の上部配管を通じ
て還流冷却器15に至る。The vaporized lactide (containing a small amount of oligomer component) reaches the reflux condenser 15 through the upper pipe of the lactide reaction reactor 13.
【0037】還流冷却器15はシェル/チューブ型の熱
媒循環加熱方式の熱交換器を用いれば良く、140〜1
80℃の熱媒を導入することによりラクチド蒸気は通過
させ、乳酸オリゴマー及び触媒は液化してラクチド反応
器13に戻すことができる。還流冷却器15を通過した
ラクチド蒸気は、ラクチドコンデンサ16にて冷却・凝
縮され、ラクチド抜出槽17を経て系外に排出され製品
ラクチドとなる。上記ラクチドコンデンサ16には、ラ
クチド蒸気を液化されることのできる(但し、固化はさ
せない)所定温度の冷媒が供給される。また、ラクチド
コンデンサ16の外殻、ラクチド抜出槽17及びこれら
をつなぐ配管は、電熱ヒータか或いはジャケット構造に
よる熱媒循環方式にて、ラクチドの融解状態を保つ(気
化・固化させず液体状態を保つ)温度に加熱される。As the reflux condenser 15, a shell / tube type heat medium circulation heating type heat exchanger may be used.
By introducing the heating medium at 80 ° C., the lactide vapor can be passed, and the lactic acid oligomer and the catalyst can be liquefied and returned to the lactide reactor 13. The lactide vapor that has passed through the reflux condenser 15 is cooled and condensed by the lactide condenser 16 and is discharged to the outside of the system through the lactide withdrawing tank 17 to become a product lactide. The lactide condenser 16 is supplied with a refrigerant having a predetermined temperature capable of liquefying (but not solidifying) the lactide vapor. Further, the outer shell of the lactide condenser 16, the lactide extraction tank 17, and the pipes connecting them are kept in a molten state of lactide by an electric heater or a heating medium circulating system with a jacket structure (the liquid state is not vaporized and solidified). Keep) heated to temperature.
【0038】尚、外部循環型熱交換器12、ラクチド化
反応器13、還流冷却器15、ラクチドコンデンサ16
及びラクチド抜出槽17等は、真空ポンプVP2 により
減圧され、圧力調整バルブV2 により所定圧力に制御さ
れている。An external circulation heat exchanger 12, a lactide reaction reactor 13, a reflux condenser 15, a lactide condenser 16 are provided.
The lactide withdrawal tank 17 and the like are decompressed by a vacuum pump VP 2 and controlled to a predetermined pressure by a pressure adjusting valve V 2 .
【0039】また18は、ラクチドトラップであり、ラ
クチドコンデンサ16から漏出する微量のラクチド蒸気
を液化して真空ポンプへ流れることを防止するものであ
る。上記ラクチドトラップ18は図3に示す様に2基
(18a,18b)を並設すれば、流路を交互に切り替
え、片方が詰まった場合に他方を用いる様にすることで
連続運転に支障をきたすことなくラクチドの製造ができ
望ましい。尚、上記ラクチドトラップ18a,18bに
は、ラクチドを固化させる際には冷却水を流し、固化し
て捕捉したラクチドを融解させる際にはスチームを導入
すればよい。Further, reference numeral 18 is a lactide trap, which prevents a small amount of lactide vapor leaking from the lactide condenser 16 from being liquefied and flowing to a vacuum pump. If two lactide traps 18 (18a, 18b) are installed side by side as shown in FIG. 3, the flow paths are alternately switched, and when one is blocked, the other is used, which hinders continuous operation. It is desirable that lactide can be produced without causing any trouble. In addition, cooling water may be caused to flow into the lactide traps 18a and 18b when the lactide is solidified, and steam may be introduced when the lactide captured by being solidified and melted.
【0040】以上の操作を行うことによって、効率的に
反応液に熱を与えてラクチド化反応及び生成ラクチドの
気化を進行させることができ、ラクチド以外の成分であ
る触媒やオリゴマーを反応システム内に戻しつつラクチ
ドを捕集することで高純度のラクチドを安定して連続的
に得ることができる。By carrying out the above operation, heat can be efficiently applied to the reaction solution to promote the lactide reaction and the vaporization of the produced lactide, and the catalyst or oligomer which is a component other than lactide can be introduced into the reaction system. High-purity lactide can be stably and continuously obtained by collecting lactide while returning.
【0041】なお、ラクチド化反応器13の上部及び底
部、外部循環型熱交換器12とラクチド化反応器13と
の間の循環配管、ラクチド化反応器13と還流冷却器1
5の間の配管、還流冷却器15とラクチドコンデンサ1
6の間の配管は電熱ヒータ、ジャケット等にて所定温度
に保護される。The top and bottom of the lactide reaction reactor 13, the circulation piping between the external circulation heat exchanger 12 and the lactide reaction reactor 13, the lactide reaction reactor 13 and the reflux condenser 1
Piping between 5, reflux condenser 15 and lactide condenser 1
The pipe between 6 is protected at a predetermined temperature by an electric heater, a jacket or the like.
【0042】また上記還流冷却器15に替えて、下部に
トレイや充填物が組み込まれ、上部にはシェル/チュー
ブ型の熱媒循環加熱方式の熱交換器からなる上下2段構
造の分縮器を用いれば、気液接触効率が高まり望まし
い。Further, in place of the reflux condenser 15, a tray and a packing are incorporated in the lower part, and a shell / tube type heat medium circulation heating type heat exchanger in the upper part is a demultiplexer having an upper and lower two-stage structure. Is preferable because the gas-liquid contact efficiency is increased.
【0043】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any modification of the design of the present invention can be made in view of the gist of the preceding and the following. It is included within the technical scope of.
【0044】[0044]
【実施例】図2に示す装置構成のラクチド製造装置によ
り、ラクチド化触媒としてオクチル酸スズを用いて、表
1に示す条件でラクチドを連続的に製造した。尚、表1
において反応器容量及び液温の欄の及びは、夫々
:オリゴマー化反応器、:補助オリゴマー化反応器
を示す。Example Using the lactide production apparatus having the apparatus configuration shown in FIG. 2, tin octylate was used as the lactide-forming catalyst to continuously produce lactide under the conditions shown in Table 1. Table 1
In the column of reactor volume and liquid temperature, and indicate the: oligomerization reactor, and auxiliary oligomerization reactor, respectively.
【0045】得られたラクチドの純度、光学純度、水分
含有率を測定すると共に、オリゴマー化工程で得られた
オリゴマーの平均分子量と水分含有率を調べ、更に留去
水の乳酸濃度を測定した。結果は、表2に示す。The purity, optical purity and water content of the obtained lactide were measured, the average molecular weight and water content of the oligomer obtained in the oligomerization step were examined, and the lactic acid concentration of the distilled water was measured. The results are shown in Table 2.
【0046】[0046]
【表1】 [Table 1]
【0047】[0047]
【表2】 [Table 2]
【0048】No.1〜3は本発明の実施例であり、い
ずれも純度及び光学純度が共に高く、しかも200時間
の連続運転を行ったが、均一なラクチドを安定して製造
することができた。No. Nos. 1 to 3 are Examples of the present invention, and all have high purity and optical purity, and even after continuous operation for 200 hours, uniform lactide can be stably produced.
【0049】No.4は、オリゴマー化反応器内の気相
圧力が高過ぎる場合の比較例であり、オリゴマーの平均
分子量が小さく、得られたラクチドの純度が低かった。
またNo.5はラクチド化反応工程における液温が高過
ぎ、且つ気相圧力が高過ぎる場合の比較例であり、ラク
チドの純度及び光学純度が共に低かった。No. No. 4 is a comparative example when the gas phase pressure in the oligomerization reactor is too high, the average molecular weight of the oligomer was small, and the purity of the obtained lactide was low.
In addition, No. No. 5 is a comparative example when the liquid temperature in the lactide reaction step is too high and the gas phase pressure is too high, and the lactide purity and the optical purity were both low.
【0050】[0050]
【発明の効果】本発明は以上の様に構成されているの
で、ラクチド化に用いる触媒量は極力少なくすることを
前提とした上で、長期間に亘って連続的に乳酸からラク
チドを製造することができ、しかも高純度の製品ラクチ
ドを得ることのできる装置及び方法が提供できることと
なった。EFFECTS OF THE INVENTION Since the present invention is constituted as described above, lactide is continuously produced from lactic acid over a long period of time on the premise that the amount of catalyst used for lactide formation is minimized. It has become possible to provide an apparatus and a method capable of obtaining a highly pure product lactide.
【図1】従来のラクチドの製造装置を示す概略説明図で
ある。FIG. 1 is a schematic explanatory view showing a conventional lactide manufacturing apparatus.
【図2】本発明に係るラクチドの製造装置の代表例を示
す概略説明図である。FIG. 2 is a schematic explanatory view showing a representative example of a lactide manufacturing apparatus according to the present invention.
【図3】ラクチドトラップを2基並設した場合の装置構
成を示す概略説明図である。FIG. 3 is a schematic explanatory view showing an apparatus configuration when two lactide traps are arranged side by side.
【符号の説明】 1 原料タンク 2 予熱器 3 フラッシュ弁 4 蒸留塔 5 オリゴマー化反応器 6 コンデンサ 7 留出水抜出槽 8 外部循環型熱交換器 9 補助オリゴマー化反応器 10 撹拌機 11 ベーパー管 12 外部循環型熱交換器 13 ラクチド化反応器 14 撹拌機 15 還流冷却器 16 ラクチドコンデンサ 17 ラクチド抜出槽 18 ラクチドトラップ 19 ラクチドタンク 21 乳酸オリゴマータンク 22 反応容器 23 コンデンサ 24 ラクチド受器[Explanation of symbols] 1 raw material tank 2 preheater 3 flash valve 4 distillation tower 5 Oligomerization reactor 6 capacitors 7 Distilled water extraction tank 8 External circulation heat exchanger 9 Auxiliary oligomerization reactor 10 stirrer 11 vapor tubes 12 External circulation heat exchanger 13 Lactidation reactor 14 Stirrer 15 Reflux cooler 16 lactide condenser 17 Lactide extraction tank 18 lactide trap 19 lactide tank 21 Lactic acid oligomer tank 22 Reaction vessel 23 Capacitor 24 lactide receiver
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 浩司 神戸市西区高塚台1丁目5番5号 株式 会社神戸製鋼所神戸総合技術研究所内 (72)発明者 藤浦 貴保 神戸市西区高塚台1丁目5番5号 株式 会社神戸製鋼所神戸総合技術研究所内 (56)参考文献 特表 平7−503490(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Yamamoto 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi Kobe Steel Works, Ltd., Kobe Research Institute (72) Inventor Kiho Fujiura 1-chome, Takatsuka, Nishi-ku, Kobe No. 5 No. 5 Kobe Steel Works, Ltd., Kobe Research Institute (56) References Tokukaihei 7-503490 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08G 63/00 -63/91
Claims (2)
化反応器と、 蒸発させたラクチドを凝縮させるコンデンサを有するラ
クチドの連続製造装置であって、 上記ラクチド化反応器と上記コンデンサの間に、ラクチ
ドに気化同伴する触媒を乳酸オリゴマーと共に還流させ
るための還流冷却器を介設してなることを特徴とするラ
クチドの連続製造装置。And 1. A lactide reactor for depolymerizing lactic acid oligomers, a continuous manufacturing apparatus of lactide having a capacitor for condensing lactide evaporation, during the lactide reactor and the capacitor, lactide
The catalyst that vaporizes with the gas is refluxed with the lactic acid oligomer.
A continuous lactide production apparatus, characterized in that a reflux condenser for the purpose is provided.
成し、次いで上記乳酸オリゴマーを触媒の存在下に加熱
して解重合させることによりラクチドを生成するラクチ
ドの製造方法であって、 乳酸を主体とする原料をオリゴマー化反応器に連続的に
供給し、乳酸を加熱濃縮しつつ脱水して乳酸オリゴマー
を連続的に生成するオリゴマー化工程と、 上記オリゴマー化反応器より連続的に送液される乳酸オ
リゴマーを、ラクチド化反応器において、触媒の存在下
に解重合させラクチドを連続的に生成するラクチド化工
程と、 上記ラクチド化反応器から留出されたラクチドを、コン
デンサにより液化させることによりラクチドを連続的に
回収するラクチド回収工程を有し、 上記オリゴマー化工程、上記ラクチド化工程、上記ラク
チド回収工程を連続的に行うと共に、 前記ラクチド回収工程においてラクチドを留出させるに
あたり、同伴されるオリゴマー及び触媒を還流冷却器に
より還流させることを特徴とするラクチドの連続製造方
法。2. A method for producing lactide, wherein lactic acid is heat-polymerized to form a lactic acid oligomer, and then the lactic acid oligomer is heated in the presence of a catalyst to depolymerize to produce lactide. The raw material to be supplied is continuously supplied to the oligomerization reactor, and the oligomerization step of continuously producing lactic acid oligomer by dehydrating the lactic acid while heating and concentrating it is continuously fed from the oligomerization reactor. In the lactide reaction reactor, the lactic acid oligomer is depolymerized in the presence of a catalyst to continuously generate lactide, and the lactide distilled from the lactide reaction reactor is liquefied by a condenser to lactide. A lactide recovery step for continuously recovering the lactide. The oligomerization step, the lactide conversion step, and the lactide recovery step are combined. , When distilling the lactide in the lactide recovery step, continuous process lactide, characterized in that for returning the reflux condenser oligomers and catalyst entrained with to perform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01965998A JP3464905B2 (en) | 1998-01-30 | 1998-01-30 | Continuous production apparatus and continuous production method of lactide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01965998A JP3464905B2 (en) | 1998-01-30 | 1998-01-30 | Continuous production apparatus and continuous production method of lactide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11217425A JPH11217425A (en) | 1999-08-10 |
JP3464905B2 true JP3464905B2 (en) | 2003-11-10 |
Family
ID=12005386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01965998A Expired - Fee Related JP3464905B2 (en) | 1998-01-30 | 1998-01-30 | Continuous production apparatus and continuous production method of lactide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3464905B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4872387B2 (en) * | 2006-03-08 | 2012-02-08 | 株式会社日立プラントテクノロジー | Polyhydroxycarboxylic acid synthesis method and polyhydroxycarboxylic acid synthesis apparatus used therefor |
JP2007308644A (en) * | 2006-05-22 | 2007-11-29 | Hitachi Plant Technologies Ltd | Method for producing polymer and apparatus for producing polymer |
JP5098233B2 (en) | 2006-06-30 | 2012-12-12 | 株式会社日立プラントテクノロジー | Polyhydroxycarboxylic acid synthesis method and apparatus |
WO2012110118A1 (en) | 2011-02-18 | 2012-08-23 | Sulzer Chemtech Ag | Method for the manufacture of a polyhydroxy-carboxylic acid |
WO2022155762A1 (en) * | 2021-01-19 | 2022-07-28 | 万华化学(四川)有限公司 | Preparation method for lactide and reaction device |
-
1998
- 1998-01-30 JP JP01965998A patent/JP3464905B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11217425A (en) | 1999-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10065914B1 (en) | Thermolysis of polypropiolactone to produce acrylic acid | |
CN101080378B (en) | Process for purifying hydroxycarboxylic acid, process for producing cyclic ester, and process for producing polylhydroxycaboxylic acid | |
EP0385000B1 (en) | Atmospheric pressure process for preparing cyclic esters | |
US5357034A (en) | Lactide polymerization | |
CN108686397B (en) | Method for distilling dimethyl sulfoxide and multi-section distillation tower | |
CA2197644A1 (en) | Integrated process for the manufacture of lactide | |
JP3255413B2 (en) | Thin film depolymerization for dimeric cyclic ester formation | |
CN102766132A (en) | Method for preparing lactide continuously | |
JP3464905B2 (en) | Continuous production apparatus and continuous production method of lactide | |
US5866677A (en) | Method and system for producing poly (lactic acid) | |
KR920009111B1 (en) | Method of carrying out chemical dehydration reaction and apparatus therefor | |
EP2172506B1 (en) | Equipment and method for producing polyhydroxycarboxylic acid | |
US20020134517A1 (en) | Apparatus and process for generating mixed multi-component vapor | |
US20120116100A1 (en) | System and method for producing polyhydroxycarboxylic acid | |
JPH10130256A (en) | Production of lactide | |
JP4293633B2 (en) | Method for producing multicyanate ester | |
JPH0542460B2 (en) | ||
JP4673028B2 (en) | Method for purifying ethylene carbonate | |
WO2024181283A1 (en) | Method for producing cyclic lactam and apparatus for producing cyclic lactam | |
EP0808861B1 (en) | Apparatus and method for producing 2-hydroxycarboxylic acid oligomer | |
US2770641A (en) | Preparation of benzonitrile | |
JP2014214166A (en) | Method and apparatus for producing polyester | |
JP3680520B2 (en) | Bivalent phenol alkyl ether production apparatus and production method thereof | |
CN215288584U (en) | Glycolide refining system | |
JP2011236317A (en) | Apparatus and method for synthesizing polylactic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030805 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |