JP5310567B2 - Thin film transistor and manufacturing method thereof - Google Patents

Thin film transistor and manufacturing method thereof Download PDF

Info

Publication number
JP5310567B2
JP5310567B2 JP2009550025A JP2009550025A JP5310567B2 JP 5310567 B2 JP5310567 B2 JP 5310567B2 JP 2009550025 A JP2009550025 A JP 2009550025A JP 2009550025 A JP2009550025 A JP 2009550025A JP 5310567 B2 JP5310567 B2 JP 5310567B2
Authority
JP
Japan
Prior art keywords
thin film
pair
channel
electrode
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009550025A
Other languages
Japanese (ja)
Other versions
JPWO2009090966A1 (en
Inventor
浩幸 遠藤
達 東口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009550025A priority Critical patent/JP5310567B2/en
Publication of JPWO2009090966A1 publication Critical patent/JPWO2009090966A1/en
Application granted granted Critical
Publication of JP5310567B2 publication Critical patent/JP5310567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

Disclosed is a thin film transistor, which permits an application method having difficulty in shape control to be applied to and a channel length and a channel width to be easily controlled. A method for manufacturing such thin film transistor is also disclosed. A portion surrounded by a pair of source/drain electrodes (12, 13) and a pair of insulating thin films (17) serves as a channel. A semiconductor thin film (15) which forms the channel is formed of an organic material or carbon nanotubes or a mixed material containing carbon nanotubes.

Description

本発明は、有機材料又はカーボンナノチューブを半導体層として有する薄膜トランジスタ(Thin Film Transistor:TFT)に関し、特に、トランジスタ特性のばらつきが小さい薄膜トランジスタ及びその製造方法に関する。   The present invention relates to a thin film transistor (TFT) having an organic material or a carbon nanotube as a semiconductor layer, and more particularly to a thin film transistor having a small variation in transistor characteristics and a method for manufacturing the same.

薄膜トランジスタは、液晶表示装置などの表示用のスイッチング素子として広く用いられている。従来、薄膜トランジスタ(以下、TFTとも呼ぶ)は、アモルファスや多結晶のシリコンを用いて作成されていた。しかし、このようなシリコンを用いたTFTの作成に用いられるCVD(Chemical Vapor Deposition)装置は、非常に高価であり、TFTを用いた表示装置の大型化には製造コストの大幅な増加を伴うという問題があった。   Thin film transistors are widely used as switching elements for display in liquid crystal display devices and the like. Conventionally, thin film transistors (hereinafter also referred to as TFTs) have been made using amorphous or polycrystalline silicon. However, a CVD (Chemical Vapor Deposition) apparatus used to make a TFT using such silicon is very expensive, and an increase in the size of a display apparatus using TFT is accompanied by a significant increase in manufacturing cost. There was a problem.

また、アモルファスや多結晶シリコンを成膜するプロセスは非常に高い温度下で行われるため、基板として使用可能な材料の種類が限られる。すなわち、軽量な樹脂基板を使用できないという問題があった。   In addition, since the process of forming an amorphous or polycrystalline silicon film is performed at a very high temperature, the types of materials that can be used as a substrate are limited. That is, there is a problem that a lightweight resin substrate cannot be used.

上記問題を解決するために、アモルファスや多結晶シリコンに代えて有機物又はカーボンナノチューブを用いたTFTが提案されている。有機物又はカーボンナノチューブでTFTを形成する際に用いる成膜方法としては真空蒸着法や塗布法が知られており、これらの成膜方法によれば、成膜時に必要となるプロセス温度を比較的低温にできる。   In order to solve the above problems, TFTs using organic substances or carbon nanotubes instead of amorphous or polycrystalline silicon have been proposed. Vacuum deposition and coating methods are known as film formation methods used when forming TFTs with organic materials or carbon nanotubes. According to these film formation methods, the process temperature required for film formation is relatively low. Can be.

このため、有機物又はカーボンナノチューブを用いたTFTには、基板に用いる材料の選択時の制限が少ないといった利点があり、その実用化が期待される。   For this reason, TFTs using organic substances or carbon nanotubes have the advantage that there are few restrictions when selecting materials used for the substrate, and their practical application is expected.

実際、近年、有機物を用いたTFTは盛んに報告されるようになった。この一例として非特許文献1〜12がある。   In fact, in recent years, TFTs using organic substances have been actively reported. Non-patent documents 1 to 12 are examples of this.

TFTの有機化合部相に用いる有機物としては、共役系ポリマーやチオフェンなどの多量体(特許文献1〜5参照)、又は金属フタロシアニン化合物(特許文献6参照)、ペンタセンなどの縮合芳香族炭化水素(特許文献7、8参照)などが、単体又は他の化合物との混合物の状態で用いられている。   Examples of organic substances used in the organic compound phase of the TFT include multimers such as conjugated polymers and thiophenes (see Patent Documents 1 to 5), metal phthalocyanine compounds (see Patent Document 6), condensed aromatic hydrocarbons such as pentacene ( Patent Documents 7 and 8) are used in the form of a simple substance or a mixture with other compounds.

一方、カーボンナノチューブを用いたTFTも盛んに発表されており、非特許文献13、14によれば、シリコン又はシリコン以上の性能を有することが示されている。   On the other hand, TFTs using carbon nanotubes have also been actively announced, and Non-Patent Documents 13 and 14 show that they have silicon or silicon or better performance.

また、半導体層の材料として有機材料やカーボンナノチューブを使用することにより、素子の基板もガラスなどの硬い材料はもちろんのこと、樹脂やプラスチックを適用することで素子全体にフレキシブル性を持たせることが可能となり、フレキシブルTFTに関する研究も盛んに行われている。   In addition, by using organic materials and carbon nanotubes as the material for the semiconductor layer, not only hard materials such as glass can be used for the substrate of the device, but the entire device can be made flexible by applying resin or plastic. Research into flexible TFTs has been actively conducted.

さらに、有機又はカーボンナノチューブTFTの製造プロセスとして、溶液又は分散液を用いた塗布プロセスを採用できるため、低コスト化などを目標とした塗布プロセス、印刷プロセスに適用した製造方法の研究も盛んに行われている。   Furthermore, as a manufacturing process for organic or carbon nanotube TFTs, a coating process using a solution or dispersion can be adopted, so research on manufacturing methods applied to coating processes and printing processes aimed at reducing costs is also actively conducted. It has been broken.

ここで、代表的な有機又はカーボンナノチューブTFTの断面構造を図1に示す。TFT110は、基板111上にゲート電極(層)114及び絶縁体層116をこの順に有し、絶縁体層116上に所定の間隔をあけて形成されたソース電極112及びドレイン電極113を有する。双方の電極112、113の一部表面を含み、電極112、113間に露出する絶縁体層116上には、半導体層115が形成されている。このような構成のTFT110では、半導体層115がチャネル領域をなしており、ゲート電極114に印加される電圧でソース電極112とドレイン電極113の間に流れる電流が制御されることによってオン/オフ動作する。
特開平8−228034号公報 特開平8−228035号公報 特開平9−232589号公報 特開平10−125924号公報 特開平10−190001号公報 特開2000−174277号公報 特開平5−55568号公報 特開2001−94107号公報 特開2004−080026号公報 F. Ebisawaら,Journal of Applied Physics,54巻,3255頁,1983年 A. Assadiら,Applied Physics Letter,53巻,195頁,1988年 G. Guillaudら,Chemical Physics Letter,167巻,503頁,1990年 X. Pengら,Applied Physics Letter,57巻,2013頁,1990年 G. Horowitzら, Synthetic Metals, 41−43巻,1127頁,1991年 S. Miyauchiら,Synthetic Metals,41−43巻,1991年 H. Fuchigamiら,Applied Physics Letter,63巻,1372頁,1993年 H. Koezukaら,Applied Physics Letter,62巻,1794頁,1993年 F. Garnierら,Science,265巻,1684頁,1994年 A. R. Brownら,Synthetic Metals,68巻,65頁,1994年 A. Dodabalapurら,Science,268巻,270頁,1995年 T. Sumimotoら,Synthetic Metals,86巻,2259頁,1997年 K. Kudoら,Thin Solid Films,331巻,51頁,1998年 K. Kudoら,Synthetic Metals,102巻,900頁,1999年 K. Kudoら,Synthetic Metals,111−112巻,11頁、2000年
Here, a cross-sectional structure of a typical organic or carbon nanotube TFT is shown in FIG. The TFT 110 includes a gate electrode (layer) 114 and an insulator layer 116 on a substrate 111 in this order, and includes a source electrode 112 and a drain electrode 113 formed on the insulator layer 116 with a predetermined interval. A semiconductor layer 115 is formed on the insulator layer 116 that includes the partial surfaces of both the electrodes 112 and 113 and is exposed between the electrodes 112 and 113. In the TFT 110 having such a configuration, the semiconductor layer 115 forms a channel region, and an on / off operation is performed by controlling a current flowing between the source electrode 112 and the drain electrode 113 with a voltage applied to the gate electrode 114. To do.
JP-A-8-228034 JP-A-8-228035 Japanese Patent Laid-Open No. 9-232589 Japanese Patent Laid-Open No. 10-125924 Japanese Patent Laid-Open No. 10-190001 JP 2000-174277 A JP-A-5-55568 JP 2001-94107 A Japanese Patent Laid-Open No. 2004-080026 F. Ebisawa et al., Journal of Applied Physics, 54, 3255, 1983 A. Assadi et al., Applied Physics Letter, 53, 195, 1988 G. Guillaud et al., Chemical Physics Letter, 167, 503, 1990 X. Peng et al., Applied Physics Letter, 57, 2013, 1990 G. Horowitz et al., Synthetic Metals, 41-43, 1127, 1991 S. Miyauchi et al., Synthetic Metals, 41-43, 1991 H. Fuchigami et al., Applied Physics Letter, 63, 1372, 1993 H. Koezuka et al., Applied Physics Letter, 62, 1794, 1993 F. Garnier et al., Science, 265, 1684, 1994 AR Brown et al., Synthetic Metals, 68, 65, 1994 A. Dodabalapur et al., Science, 268, 270, 1995 T. Sumimoto et al., Synthetic Metals, 86, 2259, 1997 K. Kudo et al., Thin Solid Films, 331, 51, 1998 K. Kudo et al., Synthetic Metals, 102, 900, 1999 K. Kudo et al., Synthetic Metals, 111-112, 11 pages, 2000

上記のTFT110を均一にばらつきなく製造しようとする場合、チャネル長(ソース電極とドレイン電極との間隔)と、チャネル幅(各電極とチャネル構成半導体層との接触する長さ)とをTFT間で同一にできなければ、製造したTFTの特性も同一にすることは極めて困難である。
TFTの性能を一定に保つためにはチャネル材料の成膜制御も重要であるが、チャネル長、チャネル幅を決定する電極の製造制御も非常に重要である。
In the case where the TFT 110 is to be manufactured uniformly and without variation, the channel length (the distance between the source electrode and the drain electrode) and the channel width (the length of contact between each electrode and the channel-constituting semiconductor layer) are changed between the TFTs. If they cannot be made identical, it is very difficult to make the characteristics of the manufactured TFTs identical.
In order to keep the TFT performance constant, channel material deposition control is also important, but electrode manufacturing control for determining channel length and channel width is also very important.

特に、電極材料、チャネル材料を溶液又は分散液から製造する塗布法を適用する場合、電極の屈曲部位や終端部位の形状制御は非常に困難である。このことがチャネル長及びチャネル幅のばらつき、特にチャネル幅のばらつきを引き起こし、TFT特性のばらつきを生じさせる。また、広い範囲にチャネル材料を塗布する場合、TFTの平面は図2に示すTFT110のような状態となり、塗布形状は楕円形又は不定形となるため、塗布範囲を制御するのは困難であり、このこともチャネル長、チャネル幅の制御が困難であることに直結している。   In particular, when applying a coating method in which an electrode material and a channel material are produced from a solution or a dispersion, it is very difficult to control the shape of the bent part and the terminal part of the electrode. This causes variations in channel length and channel width, particularly variations in channel width, and causes variations in TFT characteristics. In addition, when the channel material is applied over a wide range, the plane of the TFT is in a state like the TFT 110 shown in FIG. 2, and the application shape is elliptical or indeterminate, so it is difficult to control the application range. This is directly linked to the difficulty in controlling the channel length and channel width.

特許文献9にはソース電極及びドレイン電極上に絶縁膜を設け、有機半導体材料を均一に成膜する技術を開示している。
しかし、特許文献9に開示される発明の構造では、チャネル長の制御は可能であってもチャネル幅の制御は不可能である。
Patent Document 9 discloses a technique for forming an organic semiconductor material uniformly by providing an insulating film on a source electrode and a drain electrode.
However, in the structure of the invention disclosed in Patent Document 9, the channel width cannot be controlled even though the channel length can be controlled.

本発明は係る問題に鑑みてなされたものであり、形状制御が困難な塗布法を適用することが可能で、チャネル長、チャネル幅の制御が容易である薄膜トランジスタ及びその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to apply a coating method in which shape control is difficult, and to provide a thin film transistor in which channel length and channel width can be easily controlled, and a method for manufacturing the same. Objective.

上記目的を達成するため、本発明は、第1の態様として、一対のソース電極・ドレイン電極とそれらに交わる一対の絶縁性薄膜とで囲まれた部位をチャネルとし、チャネルを形成する半導体薄膜が、有機材料又はカーボンナノチューブ若しくはカーボンナノチューブを含有する混合物で形成されたことを特徴とする薄膜トランジスタを提供するものである。   In order to achieve the above object, the present invention provides, as a first aspect, a semiconductor thin film that forms a channel in a region surrounded by a pair of source / drain electrodes and a pair of insulating thin films that intersect with the pair. The present invention provides a thin film transistor characterized by being formed of an organic material or a carbon nanotube or a mixture containing carbon nanotubes.

また、上記目的を達成するため、本発明は、第2の態様として、一対のソース電極・ドレイン電極とそれらに交わる一対の絶縁性薄膜とで囲まれた部位に、有機材料又はカーボンナノチューブ若しくはカーボンナノチューブを含有する混合物で形成したチャネルを設けることを特徴とする薄膜トランジスタ製造方法を提供するものである。   In order to achieve the above object, the present invention provides, as a second aspect, an organic material, a carbon nanotube, or a carbon nanotube in a region surrounded by a pair of source / drain electrodes and a pair of insulating thin films intersecting with them. The present invention provides a method for manufacturing a thin film transistor, characterized by providing a channel formed of a mixture containing nanotubes.

本発明によれば、形状制御が困難な塗布法を適用することが可能で、チャネル長、チャネル幅の制御が容易である薄膜トランジスタ及びその製造方法を提供できる。   According to the present invention, it is possible to provide a thin film transistor that can be applied with a coating method whose shape control is difficult, and that can easily control the channel length and the channel width, and a method for manufacturing the same.

本発明に係る薄膜トランジスタは、ソース電極・ドレイン電極を有する薄膜トランジスタであり、一対のソース・ドレイン電極とそれに交わる一対の絶縁性薄膜とで挟まれた部位をチャネルとしチャネルを形成する半導体薄膜が、有機材料又はカーボンナノチューブ若しくはカーボンナノチューブを含有する混合物で形成されることを特徴としている。この構造においては、ソース電極又はドレイン電極の距離をチャネル長とし、絶縁性薄膜で挟まれた電極の長さをチャネル幅とすることで、制御された大きさのTFTを得られる。   The thin film transistor according to the present invention is a thin film transistor having a source electrode and a drain electrode, and a semiconductor thin film forming a channel with a portion sandwiched between a pair of source / drain electrodes and a pair of insulating thin films intersecting with the organic thin film as an organic It is characterized by being formed of a material or a carbon nanotube or a mixture containing carbon nanotubes. In this structure, a TFT having a controlled size can be obtained by setting the distance between the source electrode or the drain electrode as the channel length and the length of the electrode sandwiched between the insulating thin films as the channel width.

一対のソース・ドレイン電極は互いに交わっていなければどのように配置してもTFTとしての特性を発現させることができるが、複数個配置することや様々な別の機能素子と組み合わせることを考慮すると平行に配置することが好ましい。同様の理由により、一対の絶縁性薄膜も平行に配置することが好ましい。また、一対のソース・ドレイン電極と一対の絶縁性薄膜とを直角に配置することにより、不要なキャリア成分の効果を解消させることができる。
このような配置により、ソース電極及びこれに対向するドレイン電極はどの部位をとっても最短の距離に存在する理想的なTFTを実現できる。
If the pair of source / drain electrodes do not cross each other, the TFT characteristics can be exhibited no matter how they are arranged. However, considering the arrangement of a plurality of source / drain electrodes and combinations with various other functional elements, they are parallel. It is preferable to arrange in. For the same reason, it is preferable to arrange the pair of insulating thin films in parallel. Further, by arranging the pair of source / drain electrodes and the pair of insulating thin films at right angles, the effect of unnecessary carrier components can be eliminated.
With such an arrangement, it is possible to realize an ideal TFT in which the source electrode and the drain electrode facing the source electrode are present at the shortest distance regardless of the portion.

また、ソース電極、ドレイン電極、絶縁性薄膜上に、又は積層構造によってはそれぞれの下にチャネルを構成する半導体層を設けても良い。
有機材料又はカーボンナノチューブ若しくはカーボンナノチューブを含有する混合物を用いたトランジスタにおいて、チャネル内を伝導するキャリアはシリコン半導体とは異なり、ソース電極から注入されたキャリアとなる。従って、チャネル幅を制御することでチャネル内に注入されるキャリアの量を制御可能であり、チャネルを構成する半導体層が一対のソース又はドレイン電極と絶縁性薄膜とで囲まれた部位よりも外側に存在してもトランジスタ特性に大きな影響は与えない。
In addition, a semiconductor layer that forms a channel may be provided over the source electrode, the drain electrode, the insulating thin film, or depending on the stacked structure, respectively.
In a transistor using an organic material, a carbon nanotube, or a mixture containing carbon nanotubes, a carrier conducted in a channel is a carrier injected from a source electrode unlike a silicon semiconductor. Therefore, the amount of carriers injected into the channel can be controlled by controlling the channel width, and the outside of the region where the semiconductor layer constituting the channel is surrounded by the pair of source or drain electrodes and the insulating thin film Even if present in the transistor, the transistor characteristics are not greatly affected.

ただし、一つの半導体層のエリアが一対の絶縁性薄膜を超えた外側に存在し、一対の絶縁性薄膜が外側にあるソース電極又はドレイン電極と接触する場合は、そこからもキャリアの注入が発生し、キャリアの増加、すなわちドレイン電流の増加が引き起こされて素子特性がばらつく。このため、チャネルを構成する半導体層のエリアを、一対の絶縁性薄膜の外側に位置するソース電極又はドレイン電極と接触させないことが必要である。   However, if the area of one semiconductor layer exists outside the pair of insulating thin films and the pair of insulating thin films are in contact with the outer source electrode or drain electrode, carrier injection also occurs from there. However, an increase in carriers, that is, an increase in drain current is caused to cause variation in device characteristics. For this reason, it is necessary not to contact the area of the semiconductor layer constituting the channel with the source electrode or the drain electrode located outside the pair of insulating thin films.

なお、コンタクトの型(トップコンタクト型、ボトムコンタクト型)やゲートの型(トップゲート型、ボトムゲート型)に関わらずTFTとしての特性を得ることはできるが、ソース又はドレイン電極とチャネル半導体層とが接触する長さ(チャネル幅)を制御するためには、チャネル半導体層とソース電極・ドレイン電極との間に絶縁性薄膜を形成する必要がある。具体的には、TFT20がボトムゲートボトムコンタクト型素子の場合は、図3に示すように、第3の電極であるゲート電極14、ゲート絶縁膜16、一対のソース・ドレイン電極12,13、一対の絶縁性薄膜17、チャネルを構成する半導体薄膜15の順に基板11上に積層する必要がある。   Note that the TFT characteristics can be obtained regardless of the contact type (top contact type, bottom contact type) and gate type (top gate type, bottom gate type), but the source or drain electrode, the channel semiconductor layer, In order to control the length of contact (channel width), it is necessary to form an insulating thin film between the channel semiconductor layer and the source / drain electrodes. Specifically, in the case where the TFT 20 is a bottom gate bottom contact type element, as shown in FIG. 3, a gate electrode 14 as a third electrode, a gate insulating film 16, a pair of source / drain electrodes 12, 13, and a pair The insulating thin film 17 and the semiconductor thin film 15 constituting the channel need to be laminated on the substrate 11 in this order.

同様に、TFT20がボトムゲートトップコンタクト型素子の場合は、図4に示すように、第3の電極であるゲート電極14、ゲート絶縁膜16、チャネルを構成する半導体薄膜15、一対の絶縁性薄膜17、一対のソース・ドレイン電極12,13の順に基板11上に積層する必要がある。また、TFT20がトップゲートボトムコンタクト型素子の場合は、図5に示すように、一対のソース・ドレイン電極12,13、一対の絶縁性薄膜17、チャネルを構成する半導体薄膜15、ゲート絶縁膜16、第3の電極であるゲート電極14の順に基板11上に積層する必要がある。さらに、TFT20がトップゲートトップコンタクト型素子の場合は、図6に示すように、チャネルを構成する半導体薄膜15、一対の絶縁性薄膜17、一対のソース・ドレイン電極12,13、ゲート絶縁膜16、第3の電極であるゲート電極14の順に基板11上に積層する必要がある。   Similarly, when the TFT 20 is a bottom gate top contact type element, as shown in FIG. 4, a gate electrode 14 as a third electrode, a gate insulating film 16, a semiconductor thin film 15 constituting a channel, and a pair of insulating thin films. 17, it is necessary to laminate the source / drain electrodes 12 and 13 on the substrate 11 in this order. When the TFT 20 is a top gate / bottom contact type device, as shown in FIG. 5, a pair of source / drain electrodes 12 and 13, a pair of insulating thin films 17, a semiconductor thin film 15 constituting a channel, and a gate insulating film 16 are provided. The gate electrode 14 as the third electrode needs to be stacked on the substrate 11 in this order. Further, in the case where the TFT 20 is a top gate top contact type element, as shown in FIG. 6, a semiconductor thin film 15, a pair of insulating thin films 17, a pair of source / drain electrodes 12 and 13, and a gate insulating film 16 constituting a channel. The gate electrode 14 as the third electrode needs to be stacked on the substrate 11 in this order.

本発明を適用したTFT構造は、チャネル長とチャネル幅とを均一に製造することが可能な構造であり、それぞれの構成材料の作成プロセスに限定されるものではない。従って、一般的な薄膜製造方法である真空蒸着法、スパッタリング法、塗布法などで形成することが可能である。   The TFT structure to which the present invention is applied is a structure in which the channel length and the channel width can be manufactured uniformly, and is not limited to the process of forming each constituent material. Therefore, it can be formed by a general thin film manufacturing method such as vacuum deposition, sputtering, or coating.

以下、本発明の好適な実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

図7に本実施形態に係るTFTの構成を示す。図7に示すように、TFT20は、一対のソース電極12及びドレイン電極13を有し、それに交わる形で絶縁性薄膜17を備えている。電極12、13の末端がどのような形状でも、また、チャネル層15がどのような形状でも電極12、13、及び絶縁性薄膜17で囲まれた領域のみがチャネルとして作用するため一定の特性のTFTが得られる。   FIG. 7 shows the configuration of the TFT according to this embodiment. As shown in FIG. 7, the TFT 20 includes a pair of source electrode 12 and drain electrode 13, and includes an insulating thin film 17 that intersects with the source electrode 12 and the drain electrode 13. Regardless of the shape of the ends of the electrodes 12 and 13 and the channel layer 15 of any shape, only the region surrounded by the electrodes 12 and 13 and the insulating thin film 17 acts as a channel, and thus has a certain characteristic. A TFT is obtained.

基板11として用いることの可能な材料としては、ガラス、シリコン等の無機材料やアクリル系樹脂のようなプラスチックなどその上に形成されるTFTを保持できる材料であれば特に限定はされない。また、基板以外の構成要素によりTFTの構造を十分に支持しうる場合は、基板レス構造とすることも可能である。   The material that can be used as the substrate 11 is not particularly limited as long as it is a material that can hold a TFT formed thereon, such as an inorganic material such as glass or silicon, or a plastic such as an acrylic resin. In addition, when the TFT structure can be sufficiently supported by components other than the substrate, a substrate-less structure can be used.

ソース電極12、ドレイン電極13及びゲート電極14にそれぞれ用いることが可能な材料としては、酸化インジウム錫合金(Indium Tin Oxide:ITO)、酸化錫、金、銀、白金、銅、インジウム、アルミニウム、マグネシウム、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、アルミニウム−リチウム合金、アルミニウム−スカンジウム−リチウム合金、マグネシウム−銀合金などの金属や合金の他、導電性ポリマーなどの有機材料があげられるが、これらに限定されるものではない。   Examples of materials that can be used for the source electrode 12, the drain electrode 13, and the gate electrode 14 include indium tin oxide (ITO), tin oxide, gold, silver, platinum, copper, indium, aluminum, and magnesium. In addition to metals and alloys such as magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, and magnesium-silver alloy, organic materials such as conductive polymers can be mentioned. Is not to be done.

半導体層15に含まれる化合物として、テトラセン、ペンタセン等の縮合多環式芳香族化合物や、銅フタロシアニン、亜鉛フタロシアニン等のフタロシアニン系化合物、アミン系化合物、ポリチオフェン、ポリビニルカルバゾールなどのポリマー等、半導体特性を有する有機化合物又はカーボンナノチューブ及びカーボンナノチューブを含有した混合物を使用できるが、半導体特性を有する材料であれば特に限定はされない。   The compound contained in the semiconductor layer 15 has semiconductor characteristics such as condensed polycyclic aromatic compounds such as tetracene and pentacene, phthalocyanine compounds such as copper phthalocyanine and zinc phthalocyanine, polymers such as amine compounds, polythiophene and polyvinylcarbazole. The organic compound or the carbon nanotube and the mixture containing the carbon nanotube can be used, but the material is not particularly limited as long as the material has semiconductor characteristics.

ゲート絶縁膜16及び絶縁性薄膜17にそれぞれ用いることが可能な材料としては、二酸化ケイ素膜、窒化ケイ素膜のような無機化合物のほか、アクリル樹脂、ポリイミドのような有機絶縁性材料を使用できる。これらの膜の材料は、電気絶縁性を有していれば適用可能であり、特定の材料に限定されない。   As materials that can be used for the gate insulating film 16 and the insulating thin film 17, in addition to inorganic compounds such as silicon dioxide film and silicon nitride film, organic insulating materials such as acrylic resin and polyimide can be used. The material of these films is applicable as long as it has electrical insulation, and is not limited to a specific material.

電極12、13、14の形成方法としては、真空蒸着法、スパッタ法、エッチング法、リフトオフなどの公知の電極形成プロセスを利用でき、特定の方法に限定されない。また、導電性ポリマーのような有機材料や、銀ペーストや金属粒子を含んだ分散液、金属の有機化合物を電極として使用する場合には、スピンコート法、ディップ法、ディスペンサ法、インクジェット法などの溶液プロセスを利用することもでき、特定の方法に限定されることはない。   As a method for forming the electrodes 12, 13, and 14, known electrode forming processes such as vacuum deposition, sputtering, etching, and lift-off can be used, and the method is not limited to a specific method. In addition, when using an organic material such as a conductive polymer, a silver paste or a dispersion containing metal particles, or a metal organic compound as an electrode, a spin coating method, a dip method, a dispenser method, an ink jet method, etc. A solution process can also be utilized and is not limited to a particular method.

ゲート絶縁膜16及び絶縁性薄膜17の形成方法としては、真空蒸着法、スパッタリング法などのドライプロセスの他、スピンコート法、ディップ法、ディスペンサ法、インクジェット法等の溶液プロセスも利用することができ、特定の方法に限定されない。   As a method for forming the gate insulating film 16 and the insulating thin film 17, solution processes such as a spin coating method, a dip method, a dispenser method, and an ink jet method can be used in addition to a dry process such as a vacuum evaporation method and a sputtering method. It is not limited to a specific method.

TFT30a〜dにおける半導体薄膜層15の膜厚は、特に制限されることはない。しかし、一般に、膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎるとチャネル長が長くなり、又は高い印加電圧が必要となって、TFTの性能劣化の要因となるため、数nmから1μmの範囲が好ましい。   The film thickness of the semiconductor thin film layer 15 in the TFTs 30a to 30d is not particularly limited. However, in general, if the film thickness is too thin, defects such as pinholes are likely to occur. Conversely, if the film thickness is too thick, the channel length becomes long or a high applied voltage is required, which causes deterioration in TFT performance. The range of several nm to 1 μm is preferable.

絶縁性薄膜17の膜厚は、特に限定されない。ボトムゲートボトムコンタクト型の場合、膜厚を大きくすることによってチャネル形成時の隔壁としても利用することが可能である。その他の構造の場合、膜厚を大きくしすぎると後から形成する電極やゲート絶縁膜、ゲート電極などの成膜、及びそれぞれの必要特性の維持が困難になる。また、ソース又はドレイン電極とチャネル材料とのコンタクトを遮断すればよいだけであるので、数十nmから数百nmの範囲とすることが望ましい。   The film thickness of the insulating thin film 17 is not particularly limited. In the case of the bottom gate bottom contact type, it is possible to use it as a partition wall when forming a channel by increasing the film thickness. In the case of other structures, if the film thickness is excessively large, it becomes difficult to form an electrode, a gate insulating film, a gate electrode, or the like to be formed later, and to maintain the necessary characteristics. Further, since it is only necessary to cut off the contact between the source or drain electrode and the channel material, it is desirable that the range be from several tens of nm to several hundreds of nm.

また、本発明に係るTFTは、ソース電極又はドレイン電極と半導体層とが直接接触する領域を制御する構造を有するため、ソース又はドレイン電極と半導体層との間に絶縁性薄膜を有する構造であれば、これらの部位やその他の構成部材の積層順序は任意である。   In addition, since the TFT according to the present invention has a structure for controlling a region in which the source or drain electrode and the semiconductor layer are in direct contact with each other, the TFT has a structure having an insulating thin film between the source or drain electrode and the semiconductor layer. For example, the order of laminating these parts and other constituent members is arbitrary.

以下、実施例を基に本発明を詳細に説明するが、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example, unless it deviates from the summary.

図7に示した有機TFT20を以下の手順で作成した。
まず、ガラス製の基板11上にクロミウムを真空蒸着法によって100nmの膜厚で成膜してゲート電極14とした。次いで、ゲート電極14上に、二酸化ケイ素膜をスパッタリング法によって200nmの膜厚に成膜し、これを絶縁体層16とした。さらに、絶縁体層16上に、ディスペンサ装置を用いてナノ銀コロイド溶液を線幅200μm、間隔200μmで2本成膜し、150℃で30分加熱することによりソース電極12及びドレイン電極13を形成した。
The organic TFT 20 shown in FIG. 7 was prepared by the following procedure.
First, chromium was formed into a film having a thickness of 100 nm on a glass substrate 11 by a vacuum deposition method to form a gate electrode 14. Next, a silicon dioxide film having a thickness of 200 nm was formed on the gate electrode 14 by sputtering, and this was used as the insulator layer 16. Further, two nano-silver colloid solutions are formed on the insulator layer 16 with a line width of 200 μm and an interval of 200 μm using a dispenser device, and heated at 150 ° C. for 30 minutes to form the source electrode 12 and the drain electrode 13. did.

引き続き、ディスペンサ装置を用いてポリメタクリル酸メチル溶液を線幅200μm、間隔1000μmで2本成膜し、120℃で30分加熱することにより絶縁性薄膜17を形成した。   Subsequently, two polymethyl methacrylate solutions were formed with a line width of 200 μm and an interval of 1000 μm using a dispenser device, and heated at 120 ° C. for 30 minutes to form an insulating thin film 17.

続いて、ディスペンサ装置を用いてポリ(3−ヘキシル)チオフェン溶液を直径500μmの大きさでソース電極12、ドレイン電極13、及び絶縁性薄膜17で囲まれた領域に4滴塗布し、半導体層15を形成しTFT101を得た。   Subsequently, four drops of the poly (3-hexyl) thiophene solution having a diameter of 500 μm are applied to a region surrounded by the source electrode 12, the drain electrode 13, and the insulating thin film 17 using a dispenser device, and the semiconductor layer 15. And TFT 101 was obtained.

同様の製造方法でTFTを20個作成し、ゲート電圧−20V、ドレイン電圧−10Vのときの電流値を測定し、最大電流と最小電流との比を算出した。その結果は、比の値は1.13であり、比較例1と比べて良好な値であった。   Twenty TFTs were produced by the same manufacturing method, current values were measured when the gate voltage was −20 V and the drain voltage was −10 V, and the ratio between the maximum current and the minimum current was calculated. As a result, the value of the ratio was 1.13, which was a favorable value as compared with Comparative Example 1.

[比較例1]
絶縁体薄膜17を形成しないことを除いては実施例1と同様にTFTを形成し、TFT102を得た。作成したTFTについて、実施例1と同様の条件で測定した電流値の最大値と最小値との比は10.9であった。
[Comparative Example 1]
A TFT was formed in the same manner as in Example 1 except that the insulator thin film 17 was not formed. For the prepared TFT, the ratio between the maximum value and the minimum value of the current value measured under the same conditions as in Example 1 was 10.9.

半導体材料として表1に示した化合物を用いた以外は、実施例1と全く同様にTFTを作製し、TFT103〜106を得た。作製したTFT103〜106について、実施例1と同様の条件で測定した電流値の最大値と最小値との比は、それぞれ表1に示す結果であった。いずれのTFTに関しても、最大電流値と最小電流値との比は良好であった。   A TFT was produced in the same manner as in Example 1 except that the compounds shown in Table 1 were used as the semiconductor material, and TFTs 103 to 106 were obtained. For the fabricated TFTs 103 to 106, the ratio between the maximum value and the minimum value of the current values measured under the same conditions as in Example 1 was the result shown in Table 1, respectively. For any TFT, the ratio between the maximum current value and the minimum current value was good.

Figure 0005310567
Figure 0005310567

まず、ガラス製の基板11上にクロミウムを真空蒸着法によって100nmの膜厚で成膜してゲート電極14とした。次いで、ゲート電極14上に、二酸化ケイ素膜をスパッタリング法によって200nmの膜厚に成膜し、これを絶縁体層16とした。続いて、ディスペンサ装置を用いてポリ(3−ヘキシル)チオフェン溶液を直径500μmの大きさで4滴塗布し、半導体層15を形成し、半導体層15の上にディスペンサ装置を用いてポリメタクリル酸メチル溶液を線幅200μm、間隔1000μmで2本成膜し、120℃で30分加熱することによって絶縁性薄膜17を形成した。
さらに、半導体層15及び絶縁性薄膜17上に、絶縁性薄膜17と直交する形でディスペンサ装置を用いてナノ銀コロイド溶液を線幅200μm、間隔200μmで2本成膜し、150℃で30分加熱することによりソース電極12及びドレイン電極13を形成し、TFT107を得た。
First, chromium was formed into a film having a thickness of 100 nm on a glass substrate 11 by a vacuum deposition method to form a gate electrode 14. Next, a silicon dioxide film having a thickness of 200 nm was formed on the gate electrode 14 by sputtering, and this was used as the insulator layer 16. Subsequently, 4 drops of a poly (3-hexyl) thiophene solution having a diameter of 500 μm are applied using a dispenser device to form a semiconductor layer 15. Polymethylmethacrylate is then formed on the semiconductor layer 15 using a dispenser device. Two solutions with a line width of 200 μm and an interval of 1000 μm were formed and heated at 120 ° C. for 30 minutes to form an insulating thin film 17.
Further, two nano silver colloidal solutions are formed on the semiconductor layer 15 and the insulating thin film 17 at a line width of 200 μm and an interval of 200 μm by using a dispenser device in a shape orthogonal to the insulating thin film 17, and at 150 ° C. for 30 minutes. The source electrode 12 and the drain electrode 13 were formed by heating, and the TFT 107 was obtained.

同様の製造方法でTFTを20個作製し、ゲート電圧−20V、ドレイン電圧−10Vの時の電流値を測定し、最大電流と最小電流との比を算出した。その結果、比は1.08であり、比較例2と比較して良好な値が得られた。   Twenty TFTs were manufactured by the same manufacturing method, and current values at a gate voltage of −20 V and a drain voltage of −10 V were measured, and a ratio between the maximum current and the minimum current was calculated. As a result, the ratio was 1.08, and a good value was obtained as compared with Comparative Example 2.

[比較例2]
絶縁性薄膜17を形成しないことを除いては実施例3と同様にTFTを作製し、TFT108を得た。
作製した有機TFT108について、実施例3と同様の条件で測定した電流値の最大値と最小値との比は15.2であった。
[Comparative Example 2]
A TFT was produced in the same manner as in Example 3 except that the insulating thin film 17 was not formed, and a TFT 108 was obtained.
For the manufactured organic TFT 108, the ratio of the maximum value and the minimum value of the current value measured under the same conditions as in Example 3 was 15.2.

半導体材料として表2に示した化合物を用いた以外は実施例3と同様にTFTを作製し、TFT109〜112を得た。作製したTFT109〜112について、実施例3と同様の条件で測定した電流値の最大値と最小値との比は、それぞれ表2に示す通りであった。いずれのTFTに関しても最大電流値と最小電流値との比は良好であった。   A TFT was produced in the same manner as in Example 3 except that the compounds shown in Table 2 were used as the semiconductor material, and TFTs 109 to 112 were obtained. For the fabricated TFTs 109 to 112, the ratio between the maximum value and the minimum value of the current value measured under the same conditions as in Example 3 was as shown in Table 2, respectively. The ratio between the maximum current value and the minimum current value was good for any TFT.

Figure 0005310567
Figure 0005310567

まず、ポリエチレンナフタレート製の基板11上にディスペンサ装置を用いてポリ(3−ヘキシル)チオフェン溶液を直径500μmの大きさで4滴塗布し、半導体層15を形成し、半導体層15の上にディスペンサ装置を用いてポリメタクリル酸メチル溶液を線幅200μm、間隔1000μmで2本成膜し、120℃で30分加熱することにより絶縁性薄膜17を形成した。   First, four drops of poly (3-hexyl) thiophene solution having a diameter of 500 μm are applied onto a substrate 11 made of polyethylene naphthalate using a dispenser device to form a semiconductor layer 15. Using an apparatus, two polymethyl methacrylate solutions were formed with a line width of 200 μm and an interval of 1000 μm, and heated at 120 ° C. for 30 minutes to form an insulating thin film 17.

次に、半導体層15及び絶縁性薄膜17上に、絶縁性薄膜17と直交する形でディスペンサ装置を用いてナノ銀コロイド溶液を線幅200μm、間隔200μmで2本成膜し、150℃で30分加熱することによりソース電極12及びドレイン電極13を形成した。続いて、これらの上に二酸化ケイ素膜をスパッタリング法によって200nmの膜厚で成膜し、これを絶縁体層16とした。最後に金を真空蒸着法によって100nmの膜厚で成膜してゲート電極14とし、TFT113を得た。   Next, two nano-silver colloidal solutions are formed on the semiconductor layer 15 and the insulating thin film 17 at a line width of 200 μm and an interval of 200 μm using a dispenser device in a shape orthogonal to the insulating thin film 17 and 30 at 150 ° C. The source electrode 12 and the drain electrode 13 were formed by partial heating. Subsequently, a silicon dioxide film having a thickness of 200 nm was formed thereon by sputtering, and this was used as the insulator layer 16. Finally, gold was formed into a film having a thickness of 100 nm by a vacuum evaporation method to form a gate electrode 14 to obtain a TFT 113.

同様の製造方法でTFTを20個作製し、ゲート電圧−20V、ドレイン電圧−10Vのときの電圧値を測定し、最大電流と最小電流との比を算出した。その結果、比の値
は1.24であり、比較例3と比較して良好な値が得られた。
Twenty TFTs were produced by the same manufacturing method, and the voltage values when the gate voltage was −20 V and the drain voltage was −10 V were measured, and the ratio between the maximum current and the minimum current was calculated. As a result, the value of the ratio was 1.24, and an excellent value was obtained as compared with Comparative Example 3.

[比較例3]
絶縁性薄膜17を形成しないことを除いては実施例5と同様にTFTを作製し、TFT114を得た。作製したTFT114について、実施例5と同様の条件で測定した電流値の最大値と最小値との比は9.87であった。
[Comparative Example 3]
A TFT was produced in the same manner as in Example 5 except that the insulating thin film 17 was not formed, and a TFT 114 was obtained. For the manufactured TFT 114, the ratio of the maximum value and the minimum value of the current values measured under the same conditions as in Example 5 was 9.87.

半導体材料として表3に示す化合物を用いたことを除いては実施例5と同様にTFTを作製し、TFT115〜118を得た。作製したTFT115〜118について、実施例5と同様の条件で測定した電流値の最大値と最小値との比は、それぞれ表3に示す通りであった。いずれのTFTに関しても、最大電流値と最小電流値との比は良好であった。   A TFT was produced in the same manner as in Example 5 except that the compounds shown in Table 3 were used as the semiconductor material, and TFTs 115 to 118 were obtained. For the fabricated TFTs 115 to 118, the ratio between the maximum value and the minimum value of the current values measured under the same conditions as in Example 5 was as shown in Table 3, respectively. For any TFT, the ratio between the maximum current value and the minimum current value was good.

Figure 0005310567
Figure 0005310567

まず、ポリエチレンナフタレート製の基板11上にディスペンサ装置を用いてナノ銀コロイド溶液を線幅200μm、間隔200μmで2本成膜し、150℃で30分加熱することによってソース電極12及びドレイン電極13を形成した。次に、ディスペンサ装置を用いてポリメタクリル酸メチル溶液を線幅200μm、間隔1000μmで2本、電極12、13と直交する位置に成膜し、120℃で30分加熱することにより絶縁性薄膜17を形成した。続いて、ディスペンサ装置を用いてポリ(3−ヘキシル)チオフェン溶液を直径500μmの大きさでソース電極12、ドレイン電極13及び絶縁性薄膜17で囲まれた領域に4滴塗布して半導体層15を形成した。   First, two nanosilver colloidal solutions are formed on a polyethylene naphthalate substrate 11 using a dispenser device at a line width of 200 μm and an interval of 200 μm, and heated at 150 ° C. for 30 minutes to form a source electrode 12 and a drain electrode 13. Formed. Next, using a dispenser device, two polymethyl methacrylate solutions are formed at positions perpendicular to the electrodes 12 and 13 with a line width of 200 μm and a spacing of 1000 μm, and heated at 120 ° C. for 30 minutes, thereby insulating thin film 17. Formed. Subsequently, 4 drops of a poly (3-hexyl) thiophene solution having a diameter of 500 μm are applied to a region surrounded by the source electrode 12, the drain electrode 13, and the insulating thin film 17 using a dispenser device, and the semiconductor layer 15 is applied. Formed.

これらの上に、二酸化ケイ素膜をスパッタリング法によって200nmの膜厚で成膜し、これを絶縁体層16とした。最後に、金を真空蒸着法によって100nmの膜厚で成膜してゲート電極14とし、TFT119を得た。   On these, a silicon dioxide film was formed to a thickness of 200 nm by sputtering, and this was used as the insulator layer 16. Finally, gold was deposited with a film thickness of 100 nm by a vacuum deposition method to form the gate electrode 14 to obtain a TFT 119.

同様の方法でTFTを20個作製し、ゲート電圧−20V、ドレイン電圧−10Vの時の電流値を測定し、最大電流と最小電流との比を算出した。その結果、比の値は1.65であり、比較例4と比較して良好な値が得られた。   Twenty TFTs were produced by the same method, and the current values when the gate voltage was −20 V and the drain voltage was −10 V were measured, and the ratio between the maximum current and the minimum current was calculated. As a result, the value of the ratio was 1.65, and a good value was obtained as compared with Comparative Example 4.

[比較例4]
絶縁性薄膜17を形成しないことを除いては実施例7と同様にTFTを作製し、TFT120を得た。作製した有機TFT120について、実施例7と同様の条件で測定した電流値の最大値と最小値との比は20.8であった。
[Comparative Example 4]
A TFT was produced in the same manner as in Example 7 except that the insulating thin film 17 was not formed, and a TFT 120 was obtained. For the produced organic TFT 120, the ratio between the maximum value and the minimum value of the current value measured under the same conditions as in Example 7 was 20.8.

半導体材料として表4に示す化合物を用いたことを除いては実施例7と同様にTFTを作製し、TFT121〜124を得た。作製したTFT121〜124について、実施例7と同様の条件で測定した電流値の最大値と最小値との比は、それぞれ表4に示す通りであった。いずれのTFTに関しても最大電流値と最小電流値との比は良好であった。   A TFT was produced in the same manner as in Example 7 except that the compound shown in Table 4 was used as the semiconductor material, and TFTs 121 to 124 were obtained. For the fabricated TFTs 121 to 124, the ratio between the maximum value and the minimum value of the current values measured under the same conditions as in Example 7 was as shown in Table 4, respectively. The ratio between the maximum current value and the minimum current value was good for any TFT.

Figure 0005310567
Figure 0005310567

なお、上記の実施の形態は本発明の好適な実施の一例であり、本発明はこれに限定されるものではなく、様々な変形が可能である。   In addition, said embodiment is an example of suitable implementation of this invention, This invention is not limited to this, A various deformation | transformation is possible.

この出願は、2008年1月18日に出願された日本出願特願2008−009556を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2008-009556 for which it applied on January 18, 2008, and takes in those the indications of all here.

一般的なTFTの断面構成を示す図である。It is a figure which shows the cross-sectional structure of a general TFT. 一般的なTFTの平面構成を示す図である。It is a figure which shows the planar structure of a general TFT. 本発明に係るTFTをボトムゲートボトムコンタクト型で構成した場合の断面構成を示す図である。It is a figure which shows the cross-sectional structure at the time of comprising TFT concerning this invention by a bottom gate bottom contact type | mold. 本発明に係るTFTをボトムゲートトップコンタクト型で構成した場合の断面構成を示す図である。It is a figure which shows the cross-sectional structure at the time of comprising TFT concerning this invention by a bottom gate top contact type | mold. 本発明に係るTFTをトップゲートボトムコンタクト型で構成した場合の断面構成を示す図である。It is a figure which shows the cross-sectional structure at the time of comprising TFT concerning this invention by a top gate bottom contact type | mold. 本発明に係るTFTをトップゲートトップコンタクト型で構成した場合の断面構成を示す図である。It is a figure which shows the cross-sectional structure at the time of comprising TFT concerning this invention by a top gate top contact type | mold. 本発明に係るTFTの構成を示す図である。It is a figure which shows the structure of TFT which concerns on this invention.

符号の説明Explanation of symbols

11 基板
12 ソース電極
13 ドレイン電極
14 ゲート電極
15 半導体層
16 絶縁体層
17 絶縁性薄膜
20 TFT

DESCRIPTION OF SYMBOLS 11 Substrate 12 Source electrode 13 Drain electrode 14 Gate electrode 15 Semiconductor layer 16 Insulator layer 17 Insulating thin film 20 TFT

Claims (18)

一対のソース電極・ドレイン電極と半導体薄膜に囲まれた一対の絶縁性薄膜を有し、
前記一対のソース電極・ドレイン電極とそれらに交わる前記一対の絶縁性薄膜とで囲まれた部位をチャネルとし、
前記チャネルを形成する半導体薄膜が、有機材料又はカーボンナノチューブ若しくはカーボンナノチューブを含有する混合物で形成されたことを特徴とする薄膜トランジスタ。
A pair of insulating thin films surrounded by a pair of source / drain electrodes and a semiconductor thin film,
A site surrounded by the pair of source / drain electrodes and the pair of insulating thin films intersecting with the pair is a channel,
A thin film transistor, wherein the semiconductor thin film forming the channel is formed of an organic material, a carbon nanotube, or a mixture containing carbon nanotubes.
前記一対のソース電極・ドレイン電極が平行に配置されたことを特徴とする請求項1記載の薄膜トランジスタ。  2. The thin film transistor according to claim 1, wherein the pair of source / drain electrodes are arranged in parallel. 前記一対の絶縁性薄膜が平行に配置されたことを特徴とする請求項1又は2記載の薄膜トランジスタ。  3. The thin film transistor according to claim 1, wherein the pair of insulating thin films are arranged in parallel. 前記一対のソース電極・ドレイン電極と、前記一対の絶縁性薄膜とが直交することを特徴とする請求項1から3のいずれか1項記載の薄膜トランジスタ。  4. The thin film transistor according to claim 1, wherein the pair of source / drain electrodes and the pair of insulating thin films are orthogonal to each other. 5. 基板側から順に、第3の電極であるゲート電極、ゲート絶縁膜、前記一対のソース電極・ドレイン電極、前記一対の絶縁性薄膜、前記チャネルを構成する半導体薄膜が積層されたことを特徴とする請求項1から4のいずれか1項記載の薄膜トランジスタ。  A gate electrode as a third electrode, a gate insulating film, the pair of source / drain electrodes, the pair of insulating thin films, and a semiconductor thin film constituting the channel are stacked in this order from the substrate side. The thin film transistor according to any one of claims 1 to 4. 基板側から順に、前記一対のソース電極・ドレイン電極、前記一対の絶縁性薄膜、前記チャネルを構成する半導体薄膜、ゲート絶縁膜、第3の電極であるゲート電極が積層されたことを特徴とする請求項1から4のいずれか1項記載の薄膜トランジスタ。  The pair of source / drain electrodes, the pair of insulating thin films, the semiconductor thin film constituting the channel, the gate insulating film, and the gate electrode as the third electrode are stacked in this order from the substrate side. The thin film transistor according to any one of claims 1 to 4. 基板側から順に、前記チャネルを構成する半導体薄膜、前記一対の絶縁性薄膜、前記一対のソース電極・ドレイン電極、ゲート絶縁膜、第3の電極であるゲート電極が積層されたことを特徴とする請求項1から4のいずれか1項記載の薄膜トランジスタ。  A semiconductor thin film that constitutes the channel, the pair of insulating thin films, the pair of source / drain electrodes, a gate insulating film, and a gate electrode as a third electrode are stacked in that order from the substrate side. The thin film transistor according to any one of claims 1 to 4. 前記チャネルを構成する半導体薄膜が、チャネル構成半導体材料を含む溶液又は分散液を基に形成されたことを特徴とする請求項1から5、7、8のいずれか1項記載の薄膜トランジスタ。  9. The thin film transistor according to claim 1, wherein the semiconductor thin film constituting the channel is formed on the basis of a solution or dispersion containing a channel constituting semiconductor material. ゲート電極、ゲート絶縁膜、前記ソース電極、前記ドレイン電極、絶縁性薄膜のうちの少なくともいずれかが、溶液又は分散液を基に形成されたことを特徴とする請求項1から5、7から9のいずれか1項記載の薄膜トランジスタ。  10. At least one of a gate electrode, a gate insulating film, the source electrode, the drain electrode, and an insulating thin film is formed based on a solution or a dispersion liquid. The thin film transistor according to any one of the above. 一対のソース電極・ドレイン電極とそれらに交わる一対の絶縁性薄膜とで囲まれた部位に、有機材料又はカーボンナノチューブ若しくはカーボンナノチューブを含有する混合物で形成したチャネルを設けることを特徴とする薄膜トランジスタ製造方法。  A method of manufacturing a thin film transistor, characterized in that a channel formed of an organic material or carbon nanotubes or a mixture containing carbon nanotubes is provided in a portion surrounded by a pair of source / drain electrodes and a pair of insulating thin films intersecting with them . 前記一対のソース電極・ドレイン電極を平行に配置することを特徴とする請求項11記載の薄膜トランジスタの製造方法。  12. The method of manufacturing a thin film transistor according to claim 11, wherein the pair of source and drain electrodes are arranged in parallel. 前記一対の絶縁性薄膜を平行に配置することを特徴とする請求項11又は12記載の薄膜トランジスタの製造方法。  13. The method of manufacturing a thin film transistor according to claim 11, wherein the pair of insulating thin films are arranged in parallel. 前記一対のソース電極・ドレイン電極と、前記一対の絶縁性薄膜とを直交するように配置することを特徴とする請求項11から13のいずれか1項記載の薄膜トランジスタの製造方法。  14. The method of manufacturing a thin film transistor according to claim 11, wherein the pair of source / drain electrodes and the pair of insulating thin films are arranged so as to be orthogonal to each other. 基板側から順に、第3の電極であるゲート電極、ゲート絶縁膜、前記一対のソース電極・ドレイン電極、前記一対の絶縁性薄膜、前記チャネルを構成する半導体薄膜を積層することを特徴とする請求項11から14のいずれか1項記載の薄膜トランジスタの製造方法。  3. A gate electrode as a third electrode, a gate insulating film, the pair of source / drain electrodes, the pair of insulating thin films, and a semiconductor thin film constituting the channel are stacked in order from the substrate side. Item 15. The method for producing a thin film transistor according to any one of Items 11 to 14. 基板側から順に、前記一対のソース電極・ドレイン電極、前記一対の絶縁性薄膜、前記チャネルを構成する半導体薄膜、ゲート絶縁膜、第3の電極であるゲート電極を積層することを特徴とする請求項11から14のいずれか1項記載の薄膜トランジスタの製造方法。  The pair of source / drain electrodes, the pair of insulating thin films, the semiconductor thin film constituting the channel, a gate insulating film, and a gate electrode as a third electrode are stacked in order from the substrate side. Item 15. The method for producing a thin film transistor according to any one of Items 11 to 14. 基板側から順に、前記チャネルを構成する半導体薄膜、前記一対の絶縁性薄膜、前記一対のソース電極・ドレイン電極、ゲート絶縁膜、第3の電極であるゲート電極を積層することを特徴とする請求項11から14のいずれか1項記載の薄膜トランジスタの製造方法。  The semiconductor thin film constituting the channel, the pair of insulating thin films, the pair of source / drain electrodes, the gate insulating film, and the gate electrode as the third electrode are laminated in order from the substrate side. Item 15. The method for producing a thin film transistor according to any one of Items 11 to 14. 前記チャネルを構成する半導体薄膜を、チャネル構成半導体材料を含む溶液又は分散液を基に形成することを特徴とする請求項11から15、17、18のいずれか1項記載の薄膜トランジスタの製造方法。  19. The method of manufacturing a thin film transistor according to claim 11, wherein the semiconductor thin film constituting the channel is formed based on a solution or dispersion containing a channel constituting semiconductor material. ゲート電極、ゲート絶縁膜、前記ソース電極、前記ドレイン電極、絶縁性薄膜のうちの少なくともいずれかが、溶液又は分散液を基に形成することを特徴とする請求項11から15、17から19のいずれか1項記載の薄膜トランジスタの製造方法。  The gate electrode, the gate insulating film, the source electrode, the drain electrode, or the insulating thin film is formed on the basis of a solution or a dispersion liquid. The manufacturing method of the thin-film transistor of any one of Claims 1.
JP2009550025A 2008-01-18 2009-01-14 Thin film transistor and manufacturing method thereof Active JP5310567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009550025A JP5310567B2 (en) 2008-01-18 2009-01-14 Thin film transistor and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008009556 2008-01-18
JP2008009556 2008-01-18
PCT/JP2009/050399 WO2009090966A1 (en) 2008-01-18 2009-01-14 Thin film transistor and method for manufacturing the same
JP2009550025A JP5310567B2 (en) 2008-01-18 2009-01-14 Thin film transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2009090966A1 JPWO2009090966A1 (en) 2011-05-26
JP5310567B2 true JP5310567B2 (en) 2013-10-09

Family

ID=40885355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009550025A Active JP5310567B2 (en) 2008-01-18 2009-01-14 Thin film transistor and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5310567B2 (en)
WO (1) WO2009090966A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048339A1 (en) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrate for patterning thin film and surface treatment thereof
JP2007088169A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Organic thin film manufacturing method, thin film for transistor or diode, and thin film for organic el
JP2007273874A (en) * 2006-03-31 2007-10-18 Pioneer Electronic Corp Organic semiconductor device and method of manufacturing the same
JP2008042043A (en) * 2006-08-09 2008-02-21 Hitachi Ltd Display device
JP2009087996A (en) * 2007-09-27 2009-04-23 Dainippon Printing Co Ltd Organic semiconductor element and its manufacturing method, organic transistor array, and display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048339A1 (en) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrate for patterning thin film and surface treatment thereof
JP2007088169A (en) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd Organic thin film manufacturing method, thin film for transistor or diode, and thin film for organic el
JP2007273874A (en) * 2006-03-31 2007-10-18 Pioneer Electronic Corp Organic semiconductor device and method of manufacturing the same
JP2008042043A (en) * 2006-08-09 2008-02-21 Hitachi Ltd Display device
JP2009087996A (en) * 2007-09-27 2009-04-23 Dainippon Printing Co Ltd Organic semiconductor element and its manufacturing method, organic transistor array, and display

Also Published As

Publication number Publication date
JPWO2009090966A1 (en) 2011-05-26
WO2009090966A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
TWI381568B (en) Method for forming semiconductor thin film and method for manufacturing thin film semiconductor device
Gundlach et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits
JP5544796B2 (en) Three-terminal electronic device and two-terminal electronic device
JP5333221B2 (en) Carbon nanotube structure and thin film transistor
US8309992B2 (en) Switching element including carbon nanotubes and method for manufacturing the same
Park et al. Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates
US8748873B2 (en) Electronic device with dual semiconducting layer
TW200843118A (en) Ambipolar transistor design
US8304763B2 (en) Thin-film semiconductor device and field-effect transistor
WO2010053171A1 (en) Switching element and method for manufacturing same
JP2007273594A (en) Field-effect transistor
WO2012033075A1 (en) Organic semiconductor material, field-effect transistor, and manufacturing method therefor
WO2013065276A1 (en) Organic single crystal film, organic single crystal film array, and semiconductor device including an organic single crystal film
JP4443944B2 (en) Transistor and manufacturing method thereof
JP5310567B2 (en) Thin film transistor and manufacturing method thereof
KR101910680B1 (en) Method for producing organic transistor, organic transistor, method for producing semiconductor device, semiconductor device, and electronic apparatus
JP2012169419A (en) Organic thin-film transistor
WO2011065083A1 (en) Organic thin film transistor, and process for production thereof
WO2009096525A1 (en) Thin film transistor
Lee et al. Exfoliated Graphite Electrodes for Organic Single-Crystal Field-Effect Transistor Devices
JP2008300419A (en) Organic thin-film transistor
JP2020096006A (en) Thin film transistor
JPWO2020080109A1 (en) Manufacturing method of field effect transistor and manufacturing method of wireless communication device
JP2008186845A (en) Logic device
JP2008294061A (en) Organic thin-film transistor

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20100713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5310567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150