JP5309410B2 - Method and apparatus for monitoring pore opening - Google Patents

Method and apparatus for monitoring pore opening Download PDF

Info

Publication number
JP5309410B2
JP5309410B2 JP2009033862A JP2009033862A JP5309410B2 JP 5309410 B2 JP5309410 B2 JP 5309410B2 JP 2009033862 A JP2009033862 A JP 2009033862A JP 2009033862 A JP2009033862 A JP 2009033862A JP 5309410 B2 JP5309410 B2 JP 5309410B2
Authority
JP
Japan
Prior art keywords
leaf
simulated
temperature
wet surface
leaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009033862A
Other languages
Japanese (ja)
Other versions
JP2010187577A (en
Inventor
善昭 北宅
章 斉藤
賢三 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa KK
Osaka Prefecture University
Original Assignee
Seiwa KK
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa KK, Osaka Prefecture University filed Critical Seiwa KK
Priority to JP2009033862A priority Critical patent/JP5309410B2/en
Publication of JP2010187577A publication Critical patent/JP2010187577A/en
Application granted granted Critical
Publication of JP5309410B2 publication Critical patent/JP5309410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for monitoring a stomatal aperture, accurately grasping the water stress condition of a plant with an easy means. <P>SOLUTION: This method for monitoring a stomatal aperture includes arranging each a wet surface imitation leaf 1 getting wet in water and a dried imitation leaf 2 evaporating completely no water in the vicinity of a raw leaf 110 of a plant 100, measuring each leaf temperature of the raw leaf 110, the wet surface imitation leaf 1, and the dried imitation leaf 2, and obtaining a stomatal aperture of the raw leaf 110 using each of the measured leaf temperatures. Since each leaf temperature of the raw leaf, the wet surface imitation leaf, and the dried imitation leaf is measured, it is possible to exclude environmental factors based on the leaf temperatures, and accurately grasp the relative value of the stomatal aperture by an easy means. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、植物の水の管理に必要となる気孔開度のモニタリング方法及び装置に関する。   The present invention relates to a method and an apparatus for monitoring pore opening required for management of plant water.

植物の水の管理は、野菜や果物等の収穫量や品質に直接影響するため、非常に重要である。水の供給量が多すぎると根腐れ等の悪影響を与え、反対に水分が不足すると、枯れたり生育が悪くなったりしてしまう。これらの現象は植物の水ストレスに起因し、植物が水ストレスを受けると、上記の現象に先立ち、植物は体内の水分を保持するために、葉の気孔開度を低下させて、蒸散速度を低下させる。したがって、植物体の水ストレスの指標として、気孔開度は重要である。   Plant water management is very important because it directly affects the yield and quality of vegetables and fruits. If the amount of water supplied is too large, it will cause adverse effects such as root rot, and conversely, if water is insufficient, it will die or grow poorly. These phenomena are caused by plant water stress.When plants are subjected to water stress, prior to the above phenomenon, the plant reduces the stomatal opening of the leaves and increases the transpiration rate in order to retain the moisture in the body. Reduce. Therefore, the stomatal opening is important as an indicator of water stress in the plant body.

植物が正常に生育するためには、水ストレスを回避する水管理が必要である。そのため、水の適切な管理には、植物の水ストレスの有無およびその程度をモニタリングすることが必要である。   In order for plants to grow normally, water management that avoids water stress is necessary. Therefore, proper management of water requires monitoring the presence and extent of water stress in plants.

特許文献1では、蒸散速度をモニタリングするための水蒸気センサが開示されている。また、非特許文献1では、乾燥模擬葉を使用して乾燥模擬葉と生葉の葉温と気温からトウモロコシ固体蒸散量の算定を行っている。   Patent Document 1 discloses a water vapor sensor for monitoring the transpiration rate. In Non-Patent Document 1, the dry simulating leaf is used to calculate the amount of corn solid transpiration from the dry simulated leaf and the leaf temperature and temperature of the fresh leaf.

特開2006−214858号公報JP 2006-214858 A

今 久他1名、「乾燥模擬葉を使ったトウモロコシ固体蒸散量の算定」、農業気象第64巻第3号 2008年9月Imahisa et al., “Calculation of solid transpiration of corn using dry simulated leaves”, Agricultural Meteorology Vol. 64, No. 3, September 2008

しかしながら、水蒸気センサには、経年劣化があり、信頼性に劣るという問題があると共に高価である。また、乾燥模擬葉を用いた固体蒸散量の算定は、簡便ではあるが、気温や気流等の環境要因の影響を受け、正確な蒸散速度を算定することが困難である。   However, the water vapor sensor has a problem that it has aged deterioration, is inferior in reliability, and is expensive. In addition, calculation of solid transpiration using dry simulated leaves is simple, but it is difficult to calculate the exact transpiration rate due to the influence of environmental factors such as temperature and airflow.

本発明は、上記事情に鑑みてなされたもので、簡便な方法でかつ低コストで蒸散速度を正確に把握できる気孔開度のモニタリング方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus for monitoring the pore opening that can accurately grasp the transpiration rate at a low cost with a simple method.

上記目的を達成するため、本発明の気孔開度のモニタリング方法は、植物の生葉の近傍に、湿面模擬葉及び乾燥模擬葉をそれぞれ配置し、前記生葉、前記湿面模擬葉及び前記乾燥模擬葉の各葉温を測定することを特徴とする。生葉、湿面模擬葉及び乾燥模擬葉の各葉温を測定することにより、これらの葉温に基づき、環境要因を排除して生葉での気孔開度の相対値のみを算定することが可能となる。   In order to achieve the above object, the method for monitoring stomatal opening according to the present invention includes a wet surface simulated leaf and a dry simulated leaf disposed in the vicinity of a raw leaf of the plant, respectively, and the raw leaf, the wet surface simulated leaf, and the dry simulation. It is characterized by measuring the leaf temperature of each leaf. By measuring the leaf temperature of fresh leaves, wet simulated leaves, and dry simulated leaves, it is possible to calculate only the relative value of the stomatal opening in the fresh leaves based on these leaf temperatures, eliminating environmental factors. Become.

また、本発明の気孔開度のモニタリング方法は、測定した前記生葉の葉温、測定した前記湿面模擬葉の葉温及び測定した前記乾燥模擬葉の葉温に基づいて前記生葉の気孔開度を求めることを特徴とする。求められた気孔開度の相対値は、環境要因が排除されて正確である。   In addition, the method for monitoring stomatal opening of the present invention is based on the measured leaf temperature of the fresh leaf, the measured leaf temperature of the wet simulated leaf and the measured leaf temperature of the dried simulated leaf. It is characterized by calculating | requiring. The relative value of the determined pore opening is accurate with the environmental factors eliminated.

また、本発明の気孔開度のモニタリング方法は、測定した前記生葉の葉温をT、測定した前記湿面模擬葉の葉温をT、測定した前記乾燥模擬葉の葉温をTとするとき、下記式(1)
(T−T)/(T−T)・・・(1)
から、簡易気孔開度比を求めることを特徴とする。(1)式は、乾燥模擬葉と生葉との葉温差と乾燥模擬葉と湿面模擬葉との葉温差の比を求めているため、環境要因を排除して生葉での気孔開度のみに比例する簡易気孔開度比を簡便に求めることができる。
In addition, the method for monitoring stomatal opening according to the present invention includes a measured leaf temperature of T L , measured wet surface simulated leaf temperature T W , and measured dried simulated leaf leaf temperature T D. When the following formula (1)
(T D -T L) / ( T D -T W) ··· (1)
From the above, a simple pore opening ratio is obtained. Equation (1) calculates the ratio of the leaf temperature difference between the dry simulated leaf and the fresh leaf and the leaf temperature difference between the dry simulated leaf and the wet surface simulated leaf. The proportional simple pore opening ratio can be easily obtained.

前記生葉、前記湿面模擬葉及び前記乾燥模擬葉の形状及び大きさが同一であることが好ましい。これらの生葉、湿面模擬葉及び乾燥模擬葉の形状と大きさを同一とすることにより、環境要因の排除が可能となる。   It is preferable that the raw leaves, the wet surface simulated leaves, and the dry simulated leaves have the same shape and size. By making the shape and size of these fresh leaves, wet surface simulated leaves, and dry simulated leaves the same, it is possible to eliminate environmental factors.

本発明の気孔開度のモニタリング装置は、植物の生葉の近傍に配置される湿面模擬葉と、前記生葉の近傍に配置される乾燥模擬葉と、前記生葉の葉温と、前記湿面模擬葉の葉温と、前記乾燥模擬葉の葉温とをそれぞれ検出する葉温測定手段とを有することを特徴とする。葉温測定手段で検出された3種類の葉温のデータを用いて生葉の気孔開度の相対値の算定をすることができる。   The stomatal opening monitoring device according to the present invention includes a wet surface simulated leaf disposed in the vicinity of a raw leaf of a plant, a dry simulated leaf disposed in the vicinity of the raw leaf, a leaf temperature of the raw leaf, and the wet surface simulation. It has a leaf temperature measuring means for detecting the leaf temperature of the leaf and the leaf temperature of the dry simulated leaf. The relative value of the stomatal opening degree of the raw leaf can be calculated using the three types of leaf temperature data detected by the leaf temperature measuring means.

本発明の気孔開度のモニタリング装置は、前記生葉の葉温のデータと前記湿面模擬葉の葉温のデータと前記乾燥模擬葉の葉温のデータとを記憶する記憶手段と、前記葉温測定手段で検出されたそれぞれの葉温のデータを前記記憶手段へ記憶させる制御部とを有する構成とすることが好ましい。生葉、湿面模擬葉及び乾燥模擬葉の各葉温のデータに基づいて環境要因を排除した生葉での気孔開度の相対値のみを算定することが可能となる。   The monitoring device for stomatal opening according to the present invention comprises: storage means for storing leaf temperature data of the fresh leaves, leaf temperature data of the wet surface simulated leaves, and leaf temperature data of the dry simulated leaves; It is preferable to include a control unit that stores each leaf temperature data detected by the measurement unit in the storage unit. It is possible to calculate only the relative value of the stomatal opening in the fresh leaf, excluding environmental factors, based on the leaf temperature data of the fresh leaf, wet surface simulated leaf, and dry simulated leaf.

また、前記制御部に、前記生葉、前記湿面模擬葉及び前記乾燥模擬葉の各葉温のデータを用いて前記生葉の気孔開度の相対値を求める手段が設定されていることが好ましい。求められた蒸散速度の相対値は、環境要因が排除されて正確である。   Moreover, it is preferable that a means for obtaining a relative value of the stomatal opening degree of the fresh leaf using the leaf temperature data of the fresh leaf, the wet surface simulated leaf, and the dry simulated leaf is set in the control unit. The relative value of the determined transpiration rate is accurate with the environmental factors eliminated.

また、本発明の気孔開度のモニタリング装置は、前記制御部に、測定した前記生葉の葉温をT、測定した前記湿面模擬葉の葉温をT、測定した前記乾燥模擬葉の葉温をTとするとき、下記式(1)
(T−T)/(T−T)・・・(1)
から、簡易気孔開度比を求める手段が設定されていることを特徴とする。環境要因を排除して生葉での気孔開度のみに比例する簡易気孔開度比を簡便に求めることができる。
In addition, the pore opening monitoring device according to the present invention may be configured such that the controller controls the measured leaf temperature of the fresh leaf to T L , the measured wet surface simulated leaf temperature to T W , and the measured dry simulated leaf when the leaf temperature and T D, the following formula (1)
(T D -T L) / ( T D -T W) ··· (1)
From the above, a means for obtaining a simple pore opening ratio is set. It is possible to easily obtain a simple pore opening ratio that is proportional to only the pore opening in the raw leaves by eliminating environmental factors.

本発明の気孔開度のモニタリング方法及び装置によれば、生葉、湿面模擬葉及び乾燥模擬葉の各葉温を測定する構成であるため、これらの葉温に基づき、環境要因を排除でき、簡便な方法で気孔開度の相対値を正確に把握することができる。   According to the method and apparatus for monitoring stomatal opening of the present invention, because it is configured to measure each leaf temperature of fresh leaves, wet surface simulated leaves and dry simulated leaves, environmental factors can be eliminated based on these leaf temperatures, It is possible to accurately grasp the relative value of the pore opening by a simple method.

本発明の葉の気孔開度のモニタリング方法に用いる湿面模擬葉と乾燥模擬葉の配置方法の一例を示す模式図である。It is a schematic diagram which shows an example of the arrangement | positioning method of the wet surface simulated leaf used for the monitoring method of the stomatal opening degree of the leaf of this invention, and a dry simulated leaf. 本発明の葉の気孔開度のモニタリング装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the monitoring apparatus of the stomatal opening degree of the leaf of this invention. トマト葉の蒸散速度の実測値と簡易気孔開度比の相関関係を示すグラフである。It is a graph which shows the correlation of the actual value of the transpiration rate of a tomato leaf, and a simple pore opening ratio.

以下、本発明の気孔開度のモニタリング方法及び装置の実施の形態について説明するが、本発明は、以下の実施の形態に限定されるものではない。   Hereinafter, although the embodiment of the method and apparatus for monitoring the pore opening degree of the present invention will be described, the present invention is not limited to the following embodiment.

植物は、普通水を根毛から吸水し、吸水された水は木部の導管又は仮導管を通って植物体を上昇し、葉の気孔から蒸発して、大気中に水蒸気として放出される。蒸散とは、植物体内の水が水蒸気の状態で体外に放出される現象をいう。気孔は葉の裏面に多くあり、開閉し、多くの植物では光が当たると光合成を行うために気孔が開き、二酸化炭素が植物体に取り込まれ、同時に体内の水が蒸散により失われる。蒸散の量が吸水の量を上回り、植物体内の水の量が少なくなると、気孔が閉じ、水が失われないように気孔の開度が調節される。   The plant absorbs normal water from the root hair, and the absorbed water ascends the plant through the xylem conduit or temporary conduit, evaporates from the pores of the leaves, and is released into the atmosphere as water vapor. Transpiration refers to a phenomenon in which water in a plant body is released outside the body in the form of water vapor. There are many pores on the back of the leaf, open and close, and in many plants, when exposed to light, the pores open for photosynthesis, carbon dioxide is taken into the plant, and water in the body is lost due to transpiration. When the amount of transpiration exceeds the amount of water absorption and the amount of water in the plant body decreases, the pores are closed and the opening of the pores is adjusted so that water is not lost.

本発明の気孔開度のモニタリング方法は、葉の気孔から蒸発する水の量を間接的に測定するものである。図1に、本発明の気孔開度のモニタリング方法の概念図を示す。まず、蒸散量を測定しようとする植物100を選定する。植物は葉を有していれば草本、木本のいずれでもよい。植物は環境が調整された屋内に存在しても屋外に存在してもよい。植物100を代表する一枚の生葉110を選定する。本発明においては、選定された生葉110と同一形状で同一の大きさの湿面模擬葉1と乾燥模擬葉2を用意する。形状と大きさの同一は厳密である必要はなく、概ねで足りる。   The pore opening monitoring method of the present invention indirectly measures the amount of water evaporated from the leaf pores. In FIG. 1, the conceptual diagram of the monitoring method of the pore opening degree of this invention is shown. First, a plant 100 to be measured for transpiration is selected. The plant may be either herbaceous or woody as long as it has leaves. Plants may exist indoors or outdoors where the environment is adjusted. One fresh leaf 110 representing the plant 100 is selected. In the present invention, the wet surface simulated leaf 1 and the dry simulated leaf 2 having the same shape and the same size as the selected fresh leaf 110 are prepared. The same shape and size do not need to be exact, but are generally sufficient.

湿面模擬葉1は、生葉110とほぼ同一形状・大きさで、一面側の全面又は両面の全面が水で濡れて、水が蒸発できる構造を有する。湿面模擬葉1の厚さは、生葉110に近いことが好ましい。例えば、生葉の形状の基板に基板と同一形状の濾紙、織布、不織布などの吸水性のシートを貼り付けた積層体を用いることができる。基板は、葉の形状を保持し、一面側からの水の蒸発を防止するために用いられ、アルミニウム、銅、鉄等の金属、木、陶器、プラスチックの薄板、シート又はフィルムを用いることができる。吸水性のシート自体が葉の形状を保つことができれば、基板を省略して、例えば濾紙だけで構成することが可能である。また、素焼等の多孔質の素材を用いて湿面模擬葉1を形成するようにしてもよい。湿面模擬葉1には、水を蓄える図示しない貯水槽から水を吸い上げる吸水部11が接続され、貯水槽から給水部11を介して常に水が供給され、湿面模擬葉1の両面又は片面の全面から水が常に蒸発するようになっている。   The wet surface simulated leaf 1 has substantially the same shape and size as the fresh leaf 110, and has a structure in which the entire surface on one side or the entire surface of both surfaces can be wetted with water and the water can be evaporated. The thickness of the wet surface simulated leaf 1 is preferably close to the fresh leaf 110. For example, a laminate in which a water-absorbing sheet such as filter paper, woven fabric, or non-woven fabric having the same shape as that of the substrate is attached to a fresh leaf-shaped substrate can be used. The substrate is used to keep the leaf shape and prevent water from evaporating from one side, and can be made of metal such as aluminum, copper, iron, wood, earthenware, plastic thin plate, sheet or film. . If the water-absorbing sheet itself can maintain the shape of the leaf, the substrate can be omitted, and for example, it can be configured with only filter paper. Alternatively, the wet surface simulated leaf 1 may be formed using a porous material such as unglazed baking. The wet surface simulated leaf 1 is connected to a water absorption unit 11 that sucks water from a water storage tank (not shown) that stores water, and water is always supplied from the water storage tank via the water supply unit 11. Water always evaporates from the entire surface.

湿面模擬葉1の色彩は、生葉と同等の放射率(射出率)0.93−0.96の黒色であることが好ましい。基板と吸水性シートの積層体の場合は、基板はつや消しの黒色に着色、塗装又は表面処理されていることが好ましく、吸水性シートも黒色であることが好ましい。また熱容量も生葉と同等である必要がある。湿面模擬葉1を黒色とすることにより、生葉に入射して吸収される短波放射(太陽放射)フラックス(日射量、吸収放射)と模擬葉に入射して吸収される短波放射フラックスとをほぼ同一とすることができる。その結果、環境要因中の日射量の影響を無くすことができる。   The color of the wet surface simulated leaf 1 is preferably black with an emissivity (emission rate) of 0.93 to 0.96 equivalent to that of the fresh leaf. In the case of a laminate of a substrate and a water absorbent sheet, the substrate is preferably colored, painted or surface-treated with a matte black, and the water absorbent sheet is also preferably black. Also, the heat capacity must be equivalent to that of fresh leaves. By making the wet surface simulated leaf 1 black, the short wave radiation (solar radiation) flux (solar radiation, absorbed radiation) absorbed by the raw leaf and absorbed and the short wave radiation flux absorbed by the simulated leaf are substantially reduced. Can be the same. As a result, it is possible to eliminate the influence of solar radiation in environmental factors.

乾燥模擬葉2は、生葉110とほぼ同一形状・大きさで、生葉110に近い厚さを有し、湿面模擬葉と同一構造とすることが好ましい。湿面模擬葉1が基板と吸水性シートの積層体であれば、乾燥模擬葉2も同じ構造の積層体を用いることが好ましい。しかし、湿面模擬葉1と異なった構造であってもよい。例えば、アルミニウム、銅、鉄等の金属板、プラスチックシート又はフィルムだけで形成することもできる。また、乾燥模擬葉2の表面も艶消しの黒色に着色、塗装又は表面処理されていることが好ましい。湿面模擬葉1と同様に、太陽光の吸収率を生葉と同じにして環境要因中の日射量の影響を無くすことができる。乾燥模擬葉2には水を供給せず、水が蒸発しない模擬葉として用いる。   The dry simulated leaves 2 are preferably substantially the same shape and size as the fresh leaves 110, have a thickness close to that of the fresh leaves 110, and preferably have the same structure as the wet simulated leaves. If the wet surface simulated leaf 1 is a laminate of a substrate and a water-absorbent sheet, the dry simulated leaf 2 is preferably a laminate having the same structure. However, a structure different from the wet surface simulated leaf 1 may be used. For example, it can be formed of only a metal plate such as aluminum, copper, iron, a plastic sheet or a film. Moreover, it is preferable that the surface of the dry simulation leaf 2 is also colored, painted, or surface-treated with matte black. Similar to the wet surface simulated leaf 1, it is possible to eliminate the influence of the amount of solar radiation in the environmental factors by making the absorption rate of sunlight the same as that of the raw leaf. Water is not supplied to the dry simulated leaf 2 and used as a simulated leaf in which water does not evaporate.

湿面模擬葉1と乾燥模擬葉2は、選定した生葉110の近傍に配置することが好ましい。また、配置する位置は限定されないが、図1に示したように、生葉110の左右に生葉と方向を揃え、同一の高さに配置することが好ましい。このような配置とすることにより、気流の影響を排除することができる。   The wet simulated leaf 1 and the dry simulated leaf 2 are preferably arranged in the vicinity of the selected fresh leaf 110. Moreover, although the position to arrange | position is not limited, as shown in FIG. 1, it is preferable to arrange | position to the left and right of the fresh leaf 110, and to arrange | position with a fresh leaf, and to arrange | position at the same height. By setting it as such an arrangement | positioning, the influence of an airflow can be excluded.

図2に本発明の気孔開度のモニタリング装置の概略構成を示す。この気孔開度のモニタリング装置3は、湿面模擬葉1、生葉110及び乾燥模擬葉2の各葉温を測定する葉温測定手段4と、葉温測定手段4で測定された温度データ等、あるいはプログラムを記憶する記憶手段5と、装置全体を制御する制御部6と、各葉温等を表示する表示部7とを有し、これらがバスで接続されている。   FIG. 2 shows a schematic configuration of the pore opening monitoring device of the present invention. The pore opening monitoring device 3 includes a leaf temperature measuring means 4 for measuring each leaf temperature of the wet surface simulated leaf 1, the fresh leaf 110, and the dry simulated leaf 2, temperature data measured by the leaf temperature measuring means 4, and the like. Or it has the memory | storage means 5 which memorize | stores a program, the control part 6 which controls the whole apparatus, and the display part 7 which displays each leaf temperature etc., These are connected by the bus | bath.

葉温測定手段4としては、図2に示したように、熱電対41,42,43を備えると共に、熱電対41,42,43から得られる各葉温データを取得するデータ取得部4aを備えたものを用いることができる。熱電対41,42,43の測温点は、葉の中心近傍とすることが好ましい。また、気孔は葉の表面よりも裏面に多く存在するため、また熱電対感部への直達日射を避けるため、熱電対41,42,43は、葉の裏面に取り付けることが好ましい。葉温測定手段4としては、このほか、物体から放射される赤外線や可視光線の強度を測定して、物体の温度を測定する放射温度計等を用いることもできる。放射温度計は非接触で3つの葉温を同時に測定できる点で優れているが、高価であることから、図2に示したような熱電対を用いることが好ましい。   As shown in FIG. 2, the leaf temperature measuring unit 4 includes thermocouples 41, 42, and 43, and a data acquisition unit 4 a that acquires each leaf temperature data obtained from the thermocouples 41, 42, and 43. Can be used. The temperature measuring points of the thermocouples 41, 42 and 43 are preferably near the center of the leaf. Further, since there are more pores on the back surface than on the leaf surface, and in order to avoid direct solar radiation to the thermocouple sensitive part, the thermocouples 41, 42, and 43 are preferably attached to the back surface of the leaf. As the leaf temperature measuring means 4, a radiation thermometer that measures the temperature of an object by measuring the intensity of infrared rays or visible rays emitted from the object can be used. The radiation thermometer is excellent in that it can simultaneously measure three leaf temperatures in a non-contact manner, but since it is expensive, it is preferable to use a thermocouple as shown in FIG.

葉温測定手段4で測定された各葉温データは、例えば一定時間毎に制御部6がプログラムの指令によりデータ取得部4aから記憶手段5へ格納されると共に、各葉温を表示部7に表示させる。また、制御部6は、湿面模擬葉1、生葉110及び乾燥模擬葉2の各葉温データから、生葉110の気孔開度の相対値を算定し、その結果を表示部7に表示させる。   Each leaf temperature data measured by the leaf temperature measuring unit 4 is stored in the storage unit 5 from the data acquisition unit 4a to the storage unit 5 by a command of a program by the control unit 6 at regular intervals, for example, and each leaf temperature is displayed on the display unit 7. Display. Further, the control unit 6 calculates the relative value of the pore opening degree of the fresh leaf 110 from the leaf temperature data of the wet surface simulated leaf 1, the fresh leaf 110, and the dry simulated leaf 2, and causes the display unit 7 to display the result.

一定温度を維持している一枚の葉における熱収支は、次の式で表される。単位はW/mである。 The heat balance in a single leaf maintaining a constant temperature is expressed by the following equation. The unit is W / m 2 .

[葉に入射して吸収される短波放射(太陽放射)フラックス]+[長波波長(熱放射)フラックス−葉から射出される長波放射フラックス]=[正味の吸収放射フラックス]=[顕熱(温度勾配に比例して高温側から低温側へ輸送される熱エネルギー)フラックス]+[潜熱(葉面での蒸散過程において、水が水蒸気になるときに費やされる熱エネルギー)フラックス]   [Short wave radiation (solar radiation) flux absorbed by entering the leaf] + [Long wave wavelength (thermal radiation) flux-Long wave radiation flux emitted from the leaf] = [Net absorbed radiation flux] = [Sensible heat (temperature) Thermal energy transported from the high temperature side to the low temperature side in proportion to the gradient) Flux] + [Latent heat (thermal energy consumed when water turns into water vapor during the transpiration process on the leaf surface) Flux]

日照中は、太陽放射の影響で正味の吸収放射フラックスを増加させる。乾燥模擬葉2は潜熱フラックスがゼロであるので、最も葉温が上昇し、次に、生葉110、そして湿面模擬葉21の順に葉温が低くなる。夜間は、短波放射フラックスがゼロであるから、乾燥模擬葉2の葉温は気温とほぼ同じか、放射冷却がある場合はやや低くなり、生葉110の葉温は乾燥模擬葉2より低くなり、湿面模擬葉1の葉温は生葉110より更に低くなる。   During sunshine, the net absorbed radiant flux is increased due to solar radiation. Since the latent heat flux of the dry simulated leaf 2 is zero, the leaf temperature increases most, and then the leaf temperature decreases in the order of the raw leaf 110 and the wet surface simulated leaf 21 in this order. At night, the short wave radiant flux is zero, so the leaf temperature of the dry simulated leaf 2 is almost the same as the temperature, or slightly lower when there is radiative cooling, and the leaf temperature of the fresh leaf 110 is lower than that of the dry simulated leaf 2, The leaf temperature of the wet simulated leaf 1 is lower than that of the fresh leaf 110.

葉の表面には、葉面境界層と呼ばれる空気の層が形成され、気流中に置かれた葉では、葉面の部位により葉面境界層の厚さが異なり、その結果、顕熱及び潜熱輸送フラックスが異なるので、葉温は葉面上で不均一に分布することになる。生葉と同じ気流の影響を受ける湿面模擬葉1を用いることにより、気流により生じる葉温の不均一の影響を排除することができる。   On the surface of the leaf, a layer of air called the foliar boundary layer is formed, and in leaves placed in an air stream, the thickness of the foliar boundary layer varies depending on the site of the foliage, resulting in sensible and latent heat. Since the transport flux is different, the leaf temperature is unevenly distributed on the leaf surface. By using the wet surface simulated leaf 1 that is affected by the same airflow as that of the fresh leaves, it is possible to eliminate the influence of uneven leaf temperature caused by the airflow.

短波放射フラックス(日射量)の増加は、葉温を上昇させるが、模擬葉1,2を黒色にして模擬葉1,2の光吸収率を生葉と同じになるようにすれば、日射量変動の影響を排除することができる。   Increasing shortwave radiation flux (irradiation amount) increases leaf temperature, but if the simulated leaves 1 and 2 are black and the light absorptivity of the simulated leaves 1 and 2 is the same as that of fresh leaves, the amount of solar radiation varies. The influence of can be eliminated.

また、葉からの蒸散速度は葉内の水蒸気圧(あるいは絶対湿度)と周辺の水蒸気圧の差に比例するので、気孔開度が同じでも、湿度が上昇すると生葉110の葉温も上昇するが、湿面模擬葉1の温度も同様に上昇するため、生葉110と湿面模擬葉1との温度差はほぼ一定である。したがって生葉110と湿面模擬葉1との温度差は、気孔開度のみに依存する水蒸気コンダクタンス(蒸散のし易さの指標)の差に該当し、水蒸気圧の変動の影響を排除することができる。また顕熱フラックスは葉温と気温との差に比例するので、水蒸気圧(あるいは絶対湿度)が同じであっても、気温が上昇すると、葉における顕熱フラックスを減少させ、生葉110の葉温は上昇するが、湿面模擬葉1および乾燥模擬葉2の温度も同様に上昇するため、式(1)は、顕熱フラックスの項を消去して気温変動の影響を排除することができる。   In addition, since the transpiration rate from the leaf is proportional to the difference between the water vapor pressure (or absolute humidity) in the leaf and the water vapor pressure in the surrounding area, the leaf temperature of the fresh leaf 110 increases as the humidity increases even if the pore opening is the same. Since the temperature of the wet surface simulated leaf 1 similarly rises, the temperature difference between the raw leaf 110 and the wet surface simulated leaf 1 is substantially constant. Therefore, the temperature difference between the fresh leaf 110 and the wet simulated leaf 1 corresponds to a difference in water vapor conductance (an index of easiness of transpiration) that depends only on the pore opening, and the influence of fluctuations in water vapor pressure can be eliminated. it can. Further, since the sensible heat flux is proportional to the difference between the leaf temperature and the air temperature, even if the water vapor pressure (or absolute humidity) is the same, when the air temperature rises, the sensible heat flux in the leaf is decreased and the leaf temperature of the fresh leaf 110 is decreased. However, since the temperatures of the wet simulated leaf 1 and the dry simulated leaf 2 also increase, Equation (1) can eliminate the effect of temperature fluctuations by eliminating the sensible heat flux term.

その結果、湿面模擬葉1、生葉110及び乾燥模擬葉2の各葉温を測定することにより、日射量、湿度、気温、気流などの環境要因を排除して潜熱フラックスに影響する水蒸気コンダクタンスのみを算定することが可能となる。したがって、気孔開度のみに依存する水蒸気コンダクタンスの相対値を求めることにより、気孔開度の相対値を算定することができる。   As a result, by measuring the leaf temperature of the wet simulated leaf 1, fresh leaf 110, and dry simulated leaf 2, only the water vapor conductance that affects the latent heat flux by eliminating environmental factors such as solar radiation, humidity, temperature, and airflow. Can be calculated. Therefore, the relative value of the pore opening can be calculated by obtaining the relative value of the water vapor conductance that depends only on the pore opening.

図2に示した気孔開度のモニタリング装置3における制御部6は、該制御部6に設定されたコンピュータプログラムにより、記憶手段5に格納されている湿面模擬葉1、生葉110及び乾燥模擬葉2の各葉温に基づいて生葉110の気孔開度の相対値を算定し、その値を表示部7に表示させる。   The control unit 6 in the pore opening degree monitoring device 3 shown in FIG. 2 uses the computer program set in the control unit 6 to simulate the wet surface simulated leaf 1, the fresh leaf 110 and the dry simulated leaf stored in the storage unit 5. The relative value of the stomatal opening degree of the fresh leaf 110 is calculated based on each leaf temperature of 2 and the value is displayed on the display unit 7.

但し、潅水の管理では、蒸散速度の正確な値は必要ではなく、気孔開度の相対値で足りる。その場合、制御部6に設定されているコンピュータプログラムとしては、例えば、生葉の葉温をT、湿面模擬葉の葉温をT、乾燥模擬葉の葉温をTとすると、
(T−T)/(T−T)・・・(1)
の式から、簡易気孔開度比を求める構成とすることができる。例えば、T=30℃、T=23℃、T=20℃とすると、簡易気孔開度比は、0.7となる。簡易気孔開度比が0のときは、(T−T)=0、即ち、気孔が完全に閉じている状態、簡易気孔開度比が1のときは、T=Tのとき、即ち、生葉の気孔開度は100%であり、生葉110と湿面模擬葉1の蒸散速度が同一の状態である。このことから、理想的には、湿面模擬葉1の蒸散速度を、生葉110の気孔開度が100%のときの蒸散速度と一致するようにすることがよい。
However, in irrigation management, the exact value of the transpiration rate is not necessary, and the relative value of the pore opening is sufficient. In this case, as a computer program set in the control unit 6, for example, when the leaf temperature of the fresh leaf is T L , the leaf temperature of the wet surface simulated leaf is T W , and the leaf temperature of the dry simulated leaf is T D ,
(T D -T L) / ( T D -T W) ··· (1)
From this equation, a simple pore opening ratio can be obtained. For example, when T D = 30 ° C., T L = 23 ° C., and T W = 20 ° C., the simple pore opening ratio is 0.7. When simple stomatal aperture ratio is 0, (T D -T L) = 0, i.e., the state where pores are fully closed when the simple stomatal aperture ratio is 1, when T L = T W That is, the stomatal opening of the fresh leaves is 100%, and the transpiration rates of the fresh leaves 110 and the wet surface simulated leaves 1 are the same. For this reason, ideally, the transpiration rate of the wet surface simulated leaf 1 should be matched with the transpiration rate when the pore opening degree of the fresh leaf 110 is 100%.

制御部6は、生葉の葉温T、湿面模擬葉の葉温T、乾燥模擬葉の葉温Tから簡易気孔開度比を求め、その値を表示部7へ表示させる。簡易気孔開度比の値を用いて、気孔開度の相対値が設定値以下に低下した時に、一定量の潅水を開始するように、潅水システムをリアルタイムで自動調節することが可能となる。 The control unit 6 obtains a simple pore opening ratio from the leaf temperature T L of the fresh leaves, the leaf temperature T W of the wet surface simulated leaf, and the leaf temperature T D of the dry simulated leaf, and displays the value on the display unit 7. Using the value of the simple pore opening ratio, it is possible to automatically adjust the irrigation system in real time so that a certain amount of irrigation is started when the relative value of the pore opening falls below a set value.

また、簡易気孔開度比を、0〜1の範囲で数段階、例えば5段階に区分し、どの区分の気孔開度に該当するかで、潅水の管理を行ってもよい。   In addition, the simple pore opening ratio may be divided into several stages, for example, five stages in the range of 0 to 1, and irrigation management may be performed depending on which classification the pore opening degree corresponds to.

(実験例)
トマトの葉の蒸散速度と簡易気孔開度比の一致性を確かめる実験を行った。一枚の葉110と茎と根を残して、他の部位を除去した植物を用いた。湿面模擬葉1は、黒色の濾紙を、選定した生葉とほぼ同じ形状・大きさに切って葉身に該当する部分を形成し、濾紙の一部を葉柄に該当するように延長して貯水槽から水を吸い上げる給水部11を形成した。乾燥模擬葉2は、厚さ0.35mmのアルミニウム板を、選定した葉とほぼ同じ形状・大きさに切り出し、艶消しの黒色塗装を行って形成した。
(Experimental example)
An experiment was conducted to confirm the consistency between the transpiration rate of tomato leaves and the simple pore opening ratio. A plant from which other parts were removed while leaving a single leaf 110, stem and root was used. Wet surface simulated leaf 1 is a black filter paper cut into almost the same shape and size as the selected raw leaves to form a part corresponding to the blade, and a part of the filter paper is extended so as to correspond to the petiole to store water The water supply part 11 which sucks up water from the tank was formed. The dry simulated leaf 2 was formed by cutting an aluminum plate having a thickness of 0.35 mm into a shape and size substantially the same as the selected leaf and performing matte black coating.

選定した葉110、湿面模擬葉1、乾燥模擬葉2のそれぞれの裏面の中央部に熱電対の接点を貼り付けた。湿面模擬葉1と乾燥模擬葉2のそれぞれを選定した葉と同一の高さで方向を揃えて配置した。湿面模擬葉1には、給水部11を介して貯水槽から水を供給した。これらの生葉、湿面模擬葉及び乾燥模擬葉を、気温23.5〜34.2℃、短波放射フラックス42〜740W/m,相対湿度38〜59%、気流速度0.1〜0.3m/sの環境下に曝した。これらの3つの熱電対からの葉温のデータを所定時間毎に取得して図2に示す記憶手段5へ記憶させると共に、表示部7へ表示した。同時に、トマト葉の蒸散速度を秤量法により実測した。 A thermocouple contact was affixed to the center of the back surface of each selected leaf 110, wet surface simulated leaf 1, and dry simulated leaf 2. Each of the wet simulated leaf 1 and the dry simulated leaf 2 was arranged at the same height as the selected leaf in the same direction. Water was supplied from the water storage tank to the wet surface simulated leaf 1 through the water supply unit 11. These fresh leaves, wet surface simulated leaves, and dry simulated leaves were heated at a temperature of 23.5 to 34.2 ° C., a short wave radiation flux of 42 to 740 W / m 2 , a relative humidity of 38 to 59%, and an air velocity of 0.1 to 0.3 m. / S environment. The leaf temperature data from these three thermocouples were acquired every predetermined time and stored in the storage means 5 shown in FIG. At the same time, the transpiration rate of tomato leaves was measured by a weighing method.

トマト葉の蒸散速度の実測値と簡易気孔開度比の相関関係を図3に示す。相関関係の決定係数R2は、0.93の高い値であり、簡易気孔開度比は高精度の蒸散速度の指標であることが確認できた。   FIG. 3 shows the correlation between the measured value of the transpiration rate of tomato leaves and the simple pore opening ratio. The correlation determination coefficient R2 was a high value of 0.93, and it was confirmed that the simple pore opening ratio is a highly accurate index of the transpiration rate.

本発明の気孔開度のモニタリング方法及び装置は、栽培している植物の水の管理に利用することができる。   The stomatal opening monitoring method and apparatus of the present invention can be used for water management of cultivated plants.

1 : 湿面模擬葉
11 : 給水部
2 : 乾燥模擬葉
3 : 気孔開度のモニタリング装置
4 : 葉温測定手段
5 : 記憶手段
6 : 制御部
7 : 表示部
100: 植物
110: 生葉
1: wet surface simulated leaf 11: water supply unit 2: dry simulated leaf 3: stomatal opening monitoring device 4: leaf temperature measuring unit 5: storage unit 6: control unit 7: display unit 100: plant 110: fresh leaves

Claims (8)

植物の生葉の近傍に、湿面模擬葉及び乾燥模擬葉をそれぞれ配置し、前記生葉、前記湿面模擬葉及び前記乾燥模擬葉の各葉温を測定することを特徴とする気孔開度のモニタリング方法。   Stomatal opening monitoring characterized in that a wet surface simulated leaf and a dry simulated leaf are arranged in the vicinity of a raw leaf of a plant, and each leaf temperature of the raw leaf, the wet surface simulated leaf and the dry simulated leaf is measured. Method. 測定した前記生葉の葉温、測定した前記湿面模擬葉の葉温及び測定した前記乾燥模擬葉の葉温を用いて前記生葉の気孔開度を求めることを特徴とする請求項1記載の気孔開度のモニタリング方法。   The stomatal opening of the said raw leaf is calculated | required using the measured leaf temperature of the said raw leaf, the measured leaf temperature of the said wet surface simulated leaf, and the measured leaf temperature of the said dry simulated leaf. How to monitor the opening. 測定した前記生葉の葉温をT、測定した前記湿面模擬葉の葉温をT、測定した前記乾燥模擬葉の葉温をTとするとき、下記式(1)
(T−T)/(T−T)・・・(1)
から、簡易気孔開度比を求めることを特徴とする請求項1記載の気孔開度のモニタリング方法。
When the measured leaf temperature is T L , the measured wet surface leaf temperature is T W , and the measured dry simulated leaf temperature is T D , the following formula (1)
(T D -T L) / ( T D -T W) ··· (1)
2. The method for monitoring the pore opening degree according to claim 1, wherein a simple pore opening ratio is obtained.
前記生葉、前記湿面模擬葉及び前記乾燥模擬葉の形状及び大きさが同一であることを特徴とする請求項1〜3いずれかに記載の気孔開度のモニタリング方法。   The method for monitoring pore opening according to any one of claims 1 to 3, wherein the raw leaves, the wet surface simulated leaves, and the dry simulated leaves have the same shape and size. 植物の生葉の近傍に配置される湿面模擬葉と、
前記生葉の近傍に配置される乾燥模擬葉と、
前記生葉の葉温と、前記湿面模擬葉の葉温と、前記乾燥模擬葉の葉温とをそれぞれ検出する葉温測定手段と
を有することを特徴とする気孔開度のモニタリング装置。
Wet surface simulated leaves placed in the vicinity of the raw leaves of the plant,
A dry simulated leaf disposed in the vicinity of the fresh leaf;
A stomatal opening monitoring device comprising leaf temperature measuring means for detecting the leaf temperature of the fresh leaf, the leaf temperature of the wet surface simulated leaf, and the leaf temperature of the dry simulated leaf.
前記生葉の葉温のデータと前記湿面模擬葉の葉温のデータと前記乾燥模擬葉の葉温のデータとを記憶する記憶手段と、
前記葉温測定手段で検出されたそれぞれの葉温のデータを前記記憶手段へ記憶させる制御部と
を有することを特徴とする請求項5記載の気孔開度のモニタリング装置。
Storage means for storing the leaf temperature data of the raw leaves, the leaf temperature data of the wet surface simulated leaves, and the leaf temperature data of the dry simulated leaves;
6. A device for monitoring a pore opening degree according to claim 5, further comprising a control unit for storing data of each leaf temperature detected by said leaf temperature measuring means in said storage means.
前記制御部に、前記生葉、前記湿面模擬葉及び前記乾燥模擬葉の各葉温のデータを用いて前記生葉の気孔開度を求める手段が設定されていることを特徴とする請求項5又は6記載の気孔開度のモニタリング装置。   The said control part is set with the means to obtain | require the pore opening degree of the said raw leaf using each leaf temperature data of the said raw leaf, the said wet surface simulated leaf, and the said dry simulated leaf. 6. The device for monitoring pore opening according to 6. 前記制御部に、
測定した前記生葉の葉温をT、測定した前記湿面模擬葉の葉温をT、測定した前記乾燥模擬葉の葉温をTとするとき、下記式(1)
(T−T)/(T−T)・・・(1)
から、簡易気孔開度比を求める手段が設定されていることを特徴とする請求項5又は6記載の気孔開度のモニタリング装置。
In the control unit,
When the measured leaf temperature is T L , the measured wet surface leaf temperature is T W , and the measured dry simulated leaf temperature is T D , the following formula (1)
(T D -T L) / ( T D -T W) ··· (1)
7. A device for monitoring a pore opening according to claim 5 or 6, wherein means for obtaining a simple pore opening ratio is set.
JP2009033862A 2009-02-17 2009-02-17 Method and apparatus for monitoring pore opening Active JP5309410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033862A JP5309410B2 (en) 2009-02-17 2009-02-17 Method and apparatus for monitoring pore opening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033862A JP5309410B2 (en) 2009-02-17 2009-02-17 Method and apparatus for monitoring pore opening

Publications (2)

Publication Number Publication Date
JP2010187577A JP2010187577A (en) 2010-09-02
JP5309410B2 true JP5309410B2 (en) 2013-10-09

Family

ID=42814359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033862A Active JP5309410B2 (en) 2009-02-17 2009-02-17 Method and apparatus for monitoring pore opening

Country Status (1)

Country Link
JP (1) JP5309410B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019333920A1 (en) * 2018-09-05 2021-05-06 Rubicon Research Pty Ltd Method and system for plant stress determination and irrigation based thereon
WO2020202660A1 (en) * 2019-04-01 2020-10-08 パナソニック株式会社 Cultivation control system, cultivation control device, cultivation control method, and cultivation control program
KR102280192B1 (en) * 2020-10-21 2021-07-27 주식회사 마스터벨그로우 Growth Monitoring and Environment Automatic Controlling System and Method of Crop Cultivation Facility
KR102620290B1 (en) * 2020-12-24 2024-01-03 강원특별자치도 Smart Farm System for Preventing Condensation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144451A (en) * 1981-03-02 1982-09-07 Kokuritsu Kogai Kenkyusho Picture measuring method for plant living body information simultaneously and quantitatively
JP2002153127A (en) * 2000-11-21 2002-05-28 Toda Biosystem:Kk Growth controlling system for plant
JP2005052045A (en) * 2003-08-01 2005-03-03 Japan Science & Technology Agency System for quantitatively evaluating environmental influence of plant
JP5119539B2 (en) * 2005-02-03 2013-01-16 独立行政法人産業技術総合研究所 Water vapor sensor and manufacturing method, water vapor measuring device, transpiration amount measuring method
JP4817176B2 (en) * 2006-03-01 2011-11-16 独立行政法人農業・食品産業技術総合研究機構 Body water stress display sheet for plants

Also Published As

Publication number Publication date
JP2010187577A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
Baniasadi et al. Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage
Drake et al. Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind speed
Alves et al. Non-water-stressed baselines for irrigation scheduling with infrared thermometers: a new approach
Lundblad et al. Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics
Zhang et al. Predicting the microclimate inside a greenhouse: an application of a one-dimensional numerical model in an unheated greenhouse
JP5309410B2 (en) Method and apparatus for monitoring pore opening
Niu et al. Physical environmental factors and their properties
DAYIOĞLU et al. Performance analysis of a greenhouse fan-pad cooling system: gradients of horizontal temperature and relative humidity
Smith et al. Physiological and environmental control of transpiration by trees in windbreaks
De Boeck et al. Ideas and perspectives: Heat stress: More than hot air
Tabares-Velasco et al. The Role of Plants in the Reduction of Heat Flux through Green Roofs: Laboratory Experiments.
Holwerda et al. Surface energy exchange in a tropical montane cloud forest environment: Flux partitioning, and seasonal and land cover-related variations
JP2006345768A (en) Calculating method of evapotranspiration, and watering control method
Jiang et al. Current status and prospects of rice canopy temperature research
JP2010051190A (en) Apparatus and method for cooling local area of cultivated plant
JPWO2019123933A1 (en) Agricultural house
CN110083954B (en) Greenhouse crop water demand calculation method based on boundary layer resistance measurement technology
JP6095206B2 (en) Wet black bulb thermometer
JPH0611438A (en) Film warmth keeping performance measuring method
Bouhoun Ali et al. CFD analysis of the climate inside a closed greenhouse at night including condensation and crop transpiration
Attarod et al. Measurements of the actual evapotranspiration and crop coefficients of summer and winter seasons crops in Japan
Tusi et al. Comparison of Three Ventilation Rate Measurement Methods under Different Window Apertures in Winter and Spring
Hemming et al. A method to quantify the energy-saving performance of greenhouse screen materials
Vasanth et al. Low-Cost Relative Humidity Measurement Based on Wet Bulb Thermometers
Gaafer et al. Estimating fan and pad greenhouse reference evapotranspiration using FAO-56-Penman-Monteith and a simplified heat transfer approach for predicting internal temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130615

R150 Certificate of patent or registration of utility model

Ref document number: 5309410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250