JP5308416B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP5308416B2
JP5308416B2 JP2010188070A JP2010188070A JP5308416B2 JP 5308416 B2 JP5308416 B2 JP 5308416B2 JP 2010188070 A JP2010188070 A JP 2010188070A JP 2010188070 A JP2010188070 A JP 2010188070A JP 5308416 B2 JP5308416 B2 JP 5308416B2
Authority
JP
Japan
Prior art keywords
optical waveguide
face
optical
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010188070A
Other languages
Japanese (ja)
Other versions
JP2012047865A (en
Inventor
健治 河野
雅也 名波
勇治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010188070A priority Critical patent/JP5308416B2/en
Publication of JP2012047865A publication Critical patent/JP2012047865A/en
Application granted granted Critical
Publication of JP5308416B2 publication Critical patent/JP5308416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は小型で端面からの光の反射が小さく、かつ低損失な光導波路の分野に関する。   The present invention relates to the field of optical waveguides that are small, have little reflection of light from the end face, and have low loss.

光導波路を用いたデバイス(光導波路構造体)の一例としてリチウムナイオベート(LiNbO)変調器を取り上げる。リチウムナイオベートのように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、LN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに40Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。 A lithium niobate (LiNbO 3 ) modulator will be taken as an example of a device (optical waveguide structure) using an optical waveguide. A traveling wave electrode type lithium niobate in which an optical waveguide and a traveling wave electrode are formed on a substrate having a so-called electro-optical effect (hereinafter referred to as an LN substrate) whose refractive index is changed by applying an electric field, such as lithium niobate. Optical modulators (hereinafter abbreviated as LN optical modulators) are applied to 2.5 Gbit / s, 10 Gbit / s large capacity optical transmission systems because of their excellent chirping characteristics. Recently, application to an ultra large capacity optical transmission system of 40 Gbit / s is also being studied, and it is expected as a key device.

(第1の従来技術)
図5に、特許文献1に開示された第1の従来技術の光導波路構造体として、その上面図を示す。図中、1はz−カットLN基板であり、1a、1bが基板の長手方向の端である基板端面である。2はTiを熱拡散して形成したマッハツェンダ型の光導波路であり、2aは入力光導波路、2bはY分岐型の分岐光導波路、2c−1と2c−2は相互作用光導波路、2dはY分岐型の合波光導波路、2eは出力光導波路である。また、2fは入力光導波路2aの光入力用端面(あるいは入力用光導波路の端面)、2gは出力光導波路2eの光出力用端面(あるいは出力用光導波路の端面)である。3は電気信号源、4は進行波電極の中心電極、5aと5bは接地電極、6はガラスキャピラリー、7は信号光用単一モード光ファイバである。
(First prior art)
FIG. 5 shows a top view of the optical waveguide structure according to the first prior art disclosed in Patent Document 1. As shown in FIG. In the figure, 1 is a z-cut LN substrate, and 1a and 1b are substrate end faces which are ends in the longitudinal direction of the substrate. 2 is a Mach-Zehnder type optical waveguide formed by thermally diffusing Ti, 2a is an input optical waveguide, 2b is a Y-branch type optical waveguide, 2c-1 and 2c-2 are interaction optical waveguides, and 2d is Y A branching type combined optical waveguide, 2e is an output optical waveguide. Reference numeral 2f denotes an optical input end face of the input optical waveguide 2a (or an end face of the input optical waveguide), and 2g denotes an optical output end face of the output optical waveguide 2e (or an end face of the output optical waveguide). 3 is an electric signal source, 4 is a central electrode of a traveling wave electrode, 5a and 5b are ground electrodes, 6 is a glass capillary, and 7 is a single mode optical fiber for signal light.

なお、本図には示していないが、実際のLN光変調器では入力光導波路2aに光を入力するために入力光導波路2a側の入力用光導波路の端面2fや基板端面1aにもガラスキャピラリーと単一モード光ファイバが固定される。   Although not shown in this figure, in an actual LN optical modulator, a glass capillary is also applied to the end face 2f of the input optical waveguide on the input optical waveguide 2a side and the substrate end face 1a in order to input light to the input optical waveguide 2a. Single mode optical fiber is fixed.

この第1の従来技術のLN光変調器では、相互作用光導波路2c−1、2c−2を導波する光が電気信号源3から印加した電気信号と相互作用する。つまり、電気信号源3から印加した電気信号が進行波電極の中心導体4と設置電極5a、5bを介して、相互作用光導波路2c−1、2c−2を導波する光の位相が互いに逆符号となるように位相変調する。その結果、相互作用光導波路2c−1、2c−2の部位において光は互いに符号が逆の位相変調を受ける。   In the first conventional LN optical modulator, the light guided through the interaction optical waveguides 2 c-1 and 2 c-2 interacts with the electric signal applied from the electric signal source 3. That is, the phases of the light signals applied from the electric signal source 3 through the interaction optical waveguides 2c-1 and 2c-2 through the central conductor 4 of the traveling wave electrode and the installation electrodes 5a and 5b are opposite to each other. Phase modulation is performed to obtain a code. As a result, the light undergoes phase modulation whose signs are opposite to each other in the portions of the interactive optical waveguides 2c-1 and 2c-2.

図6は図5における光出力側端面の一部Iの拡大図である。ここで、8は光学接着剤、9は基板端面1bに対する法線、10は出力光導波路2eを伝搬する光、11は出力光導波路2eを伝搬する光の内、単一モード光ファイバ7へ乗り移って伝搬する光(あるいは、透過光)、12は出力光導波路2eを伝搬する光の内、出力用光導波路の端面2gにおいて発生する反射光である。   FIG. 6 is an enlarged view of a part I of the light output side end face in FIG. Here, 8 is an optical adhesive, 9 is a normal line to the substrate end face 1b, 10 is light propagating through the output optical waveguide 2e, 11 is light propagating through the output optical waveguide 2e, and transfers to the single mode optical fiber 7. The light propagating light (or transmitted light) 12 is reflected light generated on the end face 2g of the output optical waveguide among the light propagating through the output optical waveguide 2e.

図6に示されているように、この第1の従来技術では出力光導波路2eが基板端面1bに対する法線9に対して角度θを有している。反射光12が出力光導波路2eに結合しないように角度θを設定することにより、反射光12はz−カットLN基板1内に放射されので、良好な光の反射特性を実現することができる。   As shown in FIG. 6, in the first prior art, the output optical waveguide 2e has an angle θ with respect to the normal 9 to the substrate end face 1b. By setting the angle θ so that the reflected light 12 is not coupled to the output optical waveguide 2e, the reflected light 12 is radiated into the z-cut LN substrate 1, so that good light reflection characteristics can be realized.

ところが、そのためにこの第1の従来技術では入力用光導波路の端面2fと出力用光導波路の端面2g、つまり基板の端面1a、1bをz−カットLN基板1の長手方向に対して垂直ではなく、斜めにしている。そしてこのことは基板の端面1a、1bを光導波路2の長手方向に対して一旦垂直に切断した後、斜めに研磨することを意味しており、LN光変調器のコストを著しく高価にしている。   However, in this first prior art, the end face 2f of the input optical waveguide and the end face 2g of the output optical waveguide, that is, the end faces 1a and 1b of the substrate are not perpendicular to the longitudinal direction of the z-cut LN substrate 1. And slanted. This means that the end faces 1a and 1b of the substrate are once cut perpendicularly to the longitudinal direction of the optical waveguide 2 and then polished obliquely, which greatly increases the cost of the LN optical modulator. .

なお、例えば出力用光導波路の端面2g、つまり基板の端面1bが光導波路2の長手方向に対して垂直な場合において、出力用光導波路の端面2gからの反射光12の影響を抑えるために、出力用光導波路2eを出力用光導波路の端面2gに対して斜めに配置すると、単一モード光ファイバ7を斜めに配置しなければならず、モジュールとしての組み立てが困難となり、やはりコストアップにつながってしまう。そしてこのことは入力用光導波路についても言うことができる。   For example, when the end face 2g of the output optical waveguide, that is, the end face 1b of the substrate is perpendicular to the longitudinal direction of the optical waveguide 2, in order to suppress the influence of the reflected light 12 from the end face 2g of the output optical waveguide, If the output optical waveguide 2e is disposed obliquely with respect to the end face 2g of the output optical waveguide, the single mode optical fiber 7 must be disposed obliquely, which makes it difficult to assemble as a module, which also leads to an increase in cost. End up. This can also be said for the input optical waveguide.

(第2の従来技術)
第1の従来技術の問題であった製作のコストを低減するには、入力用光導波路の端面2fと出力用光導波路の端面2g、つまり基板の端面1a、1bを光導波路2の長手方向に対して垂直に切断研磨することが望ましい。特許文献2に開示される図7に示す構成は、第1の従来技術として示した図6の基板端面1bをz−カットLN基板1の長手方向に対して垂直としたのとともに、出力光導波路2eを基板端面1bについての法線9に平行にしたものである。このような構成の場合には出力光導波路2eを伝搬する光10の光軸と反射光12の光軸が完全に一致するので、出力用光導波路の端面2gにおける反射は光変調特性を劣化させるほど大きなものになる。
(Second prior art)
In order to reduce the manufacturing cost, which was a problem of the first prior art, the end face 2f of the input optical waveguide and the end face 2g of the output optical waveguide, that is, the end faces 1a and 1b of the substrate are arranged in the longitudinal direction of the optical waveguide 2. On the other hand, it is desirable to cut and polish vertically. The configuration shown in FIG. 7 disclosed in Patent Document 2 is such that the substrate end face 1b shown in FIG. 6 shown as the first prior art is made perpendicular to the longitudinal direction of the z-cut LN substrate 1, and the output optical waveguide 2e is parallel to the normal line 9 with respect to the substrate end face 1b. In such a configuration, since the optical axis of the light 10 propagating through the output optical waveguide 2e and the optical axis of the reflected light 12 are completely coincident with each other, the reflection at the end face 2g of the output optical waveguide deteriorates the light modulation characteristics. It will be bigger.

なお、第2の従来技術を例にとって説明すると、実際には図8に示した斜視図に示すように、図7に示した単一モード光ファイバ7及びガラスキャピラリー6と出力光導波路2e及び基板端面1bとの接着強度を大きくするために、ヤトイ15を用いる。また、第1の従来技術も図8と同様にヤトイを用いる構造である。このヤトイ15は信頼性については重要ではあるが、ここで議論している光学特性には影響しないので以下の説明では省略する。   The second prior art will be described as an example. Actually, as shown in the perspective view of FIG. 8, the single mode optical fiber 7, the glass capillary 6, the output optical waveguide 2e, and the substrate shown in FIG. In order to increase the adhesive strength with the end face 1b, the yatoe 15 is used. The first prior art also has a structure using a yatoy as in FIG. The Yaito 15 is important in terms of reliability, but does not affect the optical characteristics discussed here, and is therefore omitted in the following description.

図7に出力用光導波路の端面の一部IIとして示した領域の拡大図を図9に示す。実際には、出力用光導波路の端面2gの表面粗さ(ここでは、中心線平均粗さとする)はゼロではない(換言すると、出力用光導波路の端面2gは完全には平坦ではない)。このような結合構造の場合には、端面2gの表面粗さは一般的に5Å以下の鏡面で構成されている。そのため、図9に示すように、出力用光導波路の端面2gで発生した反射光12と出力光導波路2eを伝搬する光10となす角度は小さく、反射光12は出力光導波路2eに結合・伝搬して不図示の光源の方に戻ってしまうという問題があった。   FIG. 9 shows an enlarged view of the region shown as part II of the end face of the output optical waveguide in FIG. Actually, the surface roughness (here, the center line average roughness) of the end face 2g of the output optical waveguide is not zero (in other words, the end face 2g of the output optical waveguide is not completely flat). In the case of such a coupling structure, the surface roughness of the end face 2g is generally constituted by a mirror surface of 5 mm or less. Therefore, as shown in FIG. 9, the angle between the reflected light 12 generated on the end face 2g of the output optical waveguide and the light 10 propagating through the output optical waveguide 2e is small, and the reflected light 12 is coupled and propagated to the output optical waveguide 2e. As a result, there is a problem of returning to a light source (not shown).

特開2006−047956号公報JP 2006-047956 A 特開平8−313758号公報JP-A-8-313758

以上のように、第1の従来技術では製作のコストが高く、第2の従来技術では例えば出力用光導波路の端面で発生した反射光の多くが出力光導波路に結合して逆行して戻ってしまい、光デバイスとしての特性を劣化させてしまうという問題があった。そのため、製作する上でコストが低く、かつ出力用光導波路の端面での反射光が出力光導波路に結合しにくい光導波路の構造の開発が望まれていた。   As described above, in the first conventional technique, the manufacturing cost is high, and in the second conventional technique, for example, most of the reflected light generated on the end face of the output optical waveguide is coupled back to the output optical waveguide and returns. Therefore, there has been a problem that the characteristics as an optical device are deteriorated. For this reason, it has been desired to develop an optical waveguide structure that is low in manufacturing cost and is less likely to couple the reflected light at the end face of the output optical waveguide to the output optical waveguide.

上記課題を解決するために、本発明の請求項1に記載の光変調器は、電気光学効果を有する基板上に光導波路と進行波電極とが形成され、光が入力される又は光を出力する光導波路端面が前記基板の端面に形成された光導波路体と、前記光導波路端面と光結合した状態で前記基板の前記端面と光学接着剤を用いて接着固定される光ファイバと、を備えた光変調器において、前記光導波路端面における光の導波方向と、前記基板の前記端面とが直交し、前記光ファイバがキャピラリーに挿通され、当該光ファイバと当該キャピラリーとで前記基板の前記端面に前記接着固定されており、前記光導波路端面の表面粗さが30Å〜300Åでなり、前記光導波路を導波する光の屈折率と前記光学接着剤の屈折率とが異なることにより前記光導波路端面で光入出力時に発生する戻り光を抑制するとともに、前記接着固定の接着強度を向上させることを特徴としている。 In order to solve the above-mentioned problems, an optical modulator according to claim 1 of the present invention is configured such that an optical waveguide and a traveling wave electrode are formed on a substrate having an electro-optical effect, and light is input or output. An optical waveguide body having an optical waveguide end face formed on the end face of the substrate, and an optical fiber that is bonded and fixed to the end face of the substrate using an optical adhesive in a state optically coupled to the end face of the optical waveguide. In the optical modulator, the light guide direction of the optical waveguide end face is orthogonal to the end face of the substrate, the optical fiber is inserted through a capillary, and the end face of the substrate is connected to the optical fiber and the capillary. The optical waveguide has a surface roughness of 30 to 300 mm, and the refractive index of light guided through the optical waveguide is different from the refractive index of the optical adhesive. end With suppressing the return light generated when the light output in, is characterized by improving the adhesive strength of the adhesive fixing.

本発明の光変調器によれば、低い製作コストで反射光のパワーを極めて小さく抑えつつ、挿入損失の増加も抑制できるという効果がある。 According to the optical modulator of the present invention, there is an effect that an increase in insertion loss can be suppressed while suppressing the power of reflected light at a low manufacturing cost.

本発明の光導波路構造体の上面図Top view of the optical waveguide structure of the present invention 図1のIII領域の部分拡大図Partial enlarged view of region III in FIG. 本発明の光導波路構造体の動作原理を説明する図The figure explaining the principle of operation of the optical waveguide structure of the present invention 本発明の光導波路構造体の動作原理を説明する図The figure explaining the principle of operation of the optical waveguide structure of the present invention 第1の従来技術の光導波路構造体を示す、LN光変調器の上面図Top view of an LN optical modulator showing a first prior art optical waveguide structure 図5のI領域の部分拡大図であって、出力用光導波路、単一モード光ファイバ、ガラスキャピラリー、光学接着剤などの配置を説明する図FIG. 6 is a partially enlarged view of the I region in FIG. 5, illustrating the arrangement of output optical waveguides, single mode optical fibers, glass capillaries, optical adhesives, and the like. 第2の従来技術の光導波路構造体を示す、LN光変調器の上面図Top view of an LN optical modulator showing a second prior art optical waveguide structure 第2の従来技術の光導波路構造体を示す、LN光変調器の斜視図A perspective view of an LN optical modulator showing a second prior art optical waveguide structure 図7のII領域の部分拡大図Partial enlarged view of region II in FIG.

以下、本発明の実施形態について説明するが、図5から図9に示した第1の従来技術及び第2の従来技術と同じ番号は同じ部位に対応しているため、ここでは同じ番号を持つ部位の説明を省略する。   Hereinafter, embodiments of the present invention will be described. Since the same numbers as those in the first and second prior arts shown in FIGS. 5 to 9 correspond to the same parts, the same numbers are used here. Description of the part is omitted.

[実施形態]
図1に本発明の光導波路構造体の実施形態を示す。ここでは、出力用光導波路の端面2gにおいて光を出力する場合で議論するが、入力用光導波路の端面2fにおいて光が入力される場合についても同じ結論を得ることができるのはいうまでもない。
[Embodiment]
FIG. 1 shows an embodiment of an optical waveguide structure according to the present invention. Here, the case where light is output at the end face 2g of the output optical waveguide will be discussed, but it goes without saying that the same conclusion can be obtained when light is input at the end face 2f of the input optical waveguide. .

本発明では、出力用光導波路2eを伝搬する光10の等価屈折率と光学接着剤8の屈折率のわずかな差により出力用光導波路の端面2gにおいて生じた反射光13の光軸が出力光導波路2eに対して大きな角度をなすように構成する。これにより、反射光13は出力用光導波路2eに結合しにくく、不図示の光源の動作を損なうことはない。これを実現するための構造について以下に説明する。   In the present invention, the optical axis of the reflected light 13 generated at the end surface 2g of the output optical waveguide due to a slight difference between the equivalent refractive index of the light 10 propagating through the output optical waveguide 2e and the refractive index of the optical adhesive 8 is the output light. A large angle is formed with respect to the waveguide 2e. As a result, the reflected light 13 is unlikely to be coupled to the output optical waveguide 2e, and operation of a light source (not shown) is not impaired. A structure for realizing this will be described below.

図1に出力用光導波路の端面2gのIIIとして示した領域の拡大図を図2に示す。図9に示した第2の従来技術と異なり、本実施形態では出力用光導波路の端面2gの表面粗さを所定の値になるように意図的に荒く形成することにより、反射光13の光軸と出力光導波路2eを伝搬する光10の光軸とがなす角度を大きくしている。   FIG. 2 is an enlarged view of the region indicated as III of the end face 2g of the output optical waveguide in FIG. Unlike the second prior art shown in FIG. 9, in the present embodiment, the surface roughness of the end face 2g of the output optical waveguide is intentionally roughened so as to have a predetermined value. The angle formed by the axis and the optical axis of the light 10 propagating through the output optical waveguide 2e is increased.

なお、光学接着剤8はその屈折率が単一モード光ファイバ7の屈折率と等しいことが望ましいが、実際には少しそれらの値は互いに異なっている。従って、光学接着剤8の選択に当たっては、その屈折率と単一モード光ファイバ7との屈折率の差に起因してスネルの法則により決定される透過光11の伝搬状態が単一モード光ファイバ7の導波条件を略満たすように選ぶことが望ましい。   The optical adhesive 8 desirably has a refractive index equal to the refractive index of the single mode optical fiber 7, but in reality the values are slightly different from each other. Therefore, when selecting the optical adhesive 8, the propagation state of the transmitted light 11 determined by Snell's law due to the difference between the refractive index and the refractive index of the single mode optical fiber 7 is the single mode optical fiber. It is desirable to select so as to substantially satisfy the waveguide conditions of No. 7.

まず、単一モード光ファイバ7の接着強度について議論する。図3は出力用光導波路の端面2gの表面粗さを変数とした場合における単一モード光ファイバ7の接着強度である。図3に示すように表面粗さが粗くなるほどアンカー効果により接着強度が増加する。実用的な強度を得るためには5Å以上の表面粗さが必要であり、最も好適には10Å以上の表面粗さが望ましい。   First, the adhesive strength of the single mode optical fiber 7 will be discussed. FIG. 3 shows the adhesive strength of the single-mode optical fiber 7 when the surface roughness of the end face 2g of the output optical waveguide is a variable. As shown in FIG. 3, as the surface roughness increases, the adhesive strength increases due to the anchor effect. In order to obtain a practical strength, a surface roughness of 5 mm or more is required, and a surface roughness of 10 mm or more is most preferable.

図4は出力用光導波路の端面2gの表面粗さを変数とした場合における反射光13のパワー反射率を左の縦軸に、出力用光導波路2eから単一モード光ファイバ7へ伝搬した光(つまり透過光)11の挿入損失を右の縦軸に示す。   FIG. 4 shows light propagating from the output optical waveguide 2e to the single mode optical fiber 7 with the power reflectance of the reflected light 13 on the left vertical axis when the surface roughness of the end face 2g of the output optical waveguide is a variable. The insertion loss of (that is, transmitted light) 11 is shown on the right vertical axis.

図からわかるように、反射光13のパワー反射率は出力用光導波路の端面2gの表面粗さが粗くなると急速に改善される。実用上、5Å以上500Å以下の表面粗さであれば、符号誤り率の観点からぎりぎり通信に使えるレベルである。10Å以上300Å以下の表面粗さの場合には、若干のエラーは生じるものの通信に使える。20Å以上300Å以下の表面粗さの場合には、エラーの発生確率は充分小さくなる。30Å以上300Å以下の表面粗さの場合にはエラーの発生確率は極めて小さく、大変良好な符号誤り率特性を実現できる。一方、透過光11の挿入損失は比較的表面粗さに対して耐力があり、300Åまでは透過光11の挿入損失は大変小さい。   As can be seen, the power reflectivity of the reflected light 13 is rapidly improved when the surface roughness of the end face 2g of the output optical waveguide becomes rough. Practically, a surface roughness of 5 to 500 mm is a level that can be used for barely communication from the viewpoint of a code error rate. In the case of a surface roughness of 10 mm or more and 300 mm or less, although a slight error occurs, it can be used for communication. When the surface roughness is 20 to 300 mm, the error occurrence probability is sufficiently small. When the surface roughness is 30 mm or more and 300 mm or less, the probability of occurrence of errors is extremely small, and a very good code error rate characteristic can be realized. On the other hand, the insertion loss of the transmitted light 11 is relatively resistant to surface roughness, and the insertion loss of the transmitted light 11 is very small up to 300 mm.

[各種実施形態]
上記の実施形態においては出力用光導波路の端面や基板端面が光導波路(あるいはz−カットLN基板)の長手方向に対して垂直であるとして説明した。さらに、出力用光導波路の端面が所定の表面粗さを有し、かつ出力用光導波路の端面や基板端面が光導波路(あるいはz−カットLN基板)の長手方向に対して角度を有する場合にも、本発明を用いることによりその角度を小さくしても反射抑圧の充分な効果を得ることができる。従って、こうした構成も本発明に属することは言うまでもない。そして、この明細書における出力用光導波路の端面についての全ての議論は入射用光導波路の端面についても成り立つ。
[Various embodiments]
In the above embodiment, it has been described that the end face of the output optical waveguide and the end face of the substrate are perpendicular to the longitudinal direction of the optical waveguide (or z-cut LN substrate). Further, when the end face of the output optical waveguide has a predetermined surface roughness, and the end face of the output optical waveguide or the end face of the substrate has an angle with respect to the longitudinal direction of the optical waveguide (or z-cut LN substrate). However, by using the present invention, a sufficient effect of reflection suppression can be obtained even if the angle is reduced. Therefore, it goes without saying that such a configuration also belongs to the present invention. All the discussions about the end face of the output optical waveguide in this specification also hold true for the end face of the incident optical waveguide.

以上の議論は、光導波路構造体としてLN光変調器のみでなく、石英光導波路(Planar Lightwave Circuit: PLC)の場合にも適用可能であることを確認している。また、単一モード光ファイバの代わりにその他の光導波路を適用しても良い。さらに、実施形態においては光が入射し、出射する端面が基板の両側に設けられた形態について説明したが、基板の片方のみに設けられても良いことはいうまでもない。   It has been confirmed that the above discussion can be applied not only to an LN optical modulator as an optical waveguide structure but also to a case of a quartz optical waveguide (PLC). Other optical waveguides may be applied instead of the single mode optical fiber. Further, in the embodiment, the description has been given of the form in which the light incident and exit end faces are provided on both sides of the substrate, but it goes without saying that the light may be provided only on one side of the substrate.

1:z−カットLN基板
1a,1b:基板端面
1c,1d:基板側面
2:マッハツェンダ型の光導波路
2a:入力光導波路
2b:Y分岐型の分岐光導波路
2c−1,2c−2:相互作用光導波路
2d:Y分岐型の合波光導波路
2e:出力光導波路
2f:光入力用端面
2g:光出力用端面
3:電気信号源
4:進行波電極の中心電極
5a,5b:接地電極
6:ガラスキャピラリー
7:信号光用単一モード光ファイバ
8:光学接着剤
9:基板端面1bへの法線
10:出力光導波路2eを伝搬する光
11:信号光用単一モード光ファイバを伝搬する光
12、13:反射光
15:ヤトイ
1: z-cut LN substrate 1a, 1b: substrate end face 1c, 1d: substrate side surface 2: Mach-Zehnder type optical waveguide 2a: input optical waveguide 2b: Y branch type branched optical waveguide 2c-1, 2c-2: interaction Optical waveguide 2d: Y-branch combined optical waveguide 2e: Output optical waveguide 2f: End face for light input 2g: End face for light output 3: Electric signal source 4: Center electrodes of traveling wave electrodes 5a, 5b: Ground electrodes 6: Glass capillary 7: Single mode optical fiber for signal light 8: Optical adhesive 9: Normal to substrate end face 1b 10: Light propagating through output optical waveguide 2e 11: Light propagating through single mode optical fiber for signal light 12, 13: Reflected light 15: Yatoi

Claims (1)

電気光学効果を有する基板上に光導波路と進行波電極とが形成され、光が入力される又は光を出力する光導波路端面が前記基板の端面に形成された光導波路体と、
前記光導波路端面と光結合した状態で前記基板の前記端面と光学接着剤を用いて接着固定される光ファイバと、を備えた光変調器において、
前記光導波路端面における光の導波方向と、前記基板の前記端面とが直交し、
前記光ファイバがキャピラリーに挿通され、当該光ファイバと当該キャピラリーとで前記基板の前記端面に前記接着固定されており、
前記光導波路端面の表面粗さが30Å〜300Åでなり、前記光導波路を導波する光の屈折率と前記光学接着剤の屈折率とが異なることにより前記光導波路端面で光入出力時に発生する戻り光を抑制するとともに、前記接着固定の接着強度を向上させることを特徴とする光変調器。
An optical waveguide having an electrooptic effect formed on an optical waveguide and a traveling wave electrode, and an optical waveguide end surface on which an optical waveguide for inputting or outputting light is formed on an end surface of the substrate;
In an optical modulator comprising: an optical fiber that is bonded and fixed using an optical adhesive to the end surface of the substrate in a state optically coupled to the end surface of the optical waveguide;
The light guiding direction at the end face of the optical waveguide is orthogonal to the end face of the substrate,
The optical fiber is inserted into a capillary, and the optical fiber and the capillary are bonded and fixed to the end surface of the substrate,
The surface roughness of the end face of the optical waveguide is 30 to 300 mm, and is generated at the time of light input / output at the end face of the optical waveguide because the refractive index of light guided through the optical waveguide is different from the refractive index of the optical adhesive. An optical modulator characterized by suppressing return light and improving the adhesive strength of the adhesive fixing .
JP2010188070A 2010-08-25 2010-08-25 Light modulator Expired - Fee Related JP5308416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010188070A JP5308416B2 (en) 2010-08-25 2010-08-25 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188070A JP5308416B2 (en) 2010-08-25 2010-08-25 Light modulator

Publications (2)

Publication Number Publication Date
JP2012047865A JP2012047865A (en) 2012-03-08
JP5308416B2 true JP5308416B2 (en) 2013-10-09

Family

ID=45902838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188070A Expired - Fee Related JP5308416B2 (en) 2010-08-25 2010-08-25 Light modulator

Country Status (1)

Country Link
JP (1) JP5308416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059758B2 (en) * 2018-03-30 2022-04-26 住友大阪セメント株式会社 Optical modulator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150200A (en) * 1991-11-29 1993-06-18 Fujitsu Ltd Optical transmitter
JP2589765Y2 (en) * 1993-09-10 1999-02-03 日本碍子株式会社 Coupling structure between optical waveguide and optical fiber
JP4380166B2 (en) * 2003-01-28 2009-12-09 パナソニック電工株式会社 Optical device manufacturing method
JP4161723B2 (en) * 2003-01-28 2008-10-08 松下電工株式会社 Optical device and manufacturing method thereof
JP2005055796A (en) * 2003-08-07 2005-03-03 Sanyo Electric Co Ltd Optical connector provided with antireflection member and its forming method
JP2006047956A (en) * 2004-06-29 2006-02-16 Anritsu Corp Waveguide type optical device

Also Published As

Publication number Publication date
JP2012047865A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP4842987B2 (en) Optical device
JP4241622B2 (en) Light modulator
US7366372B2 (en) Waveguide device having improved spatial filter configurations
US8909006B2 (en) Optical waveguide device
JP2020020953A (en) Optical modulator, optical modulator module, and optical transmission module
JP2006276518A (en) Optical modulator
US9423566B2 (en) Optical modulator and optical transmitter
WO2008020475A1 (en) Waveguide type polarizer and optical waveguide device
JP2014092713A (en) Polarization multiplex optical modulator device and integrated optical element
JP3967356B2 (en) Optical waveguide device
JP4025799B2 (en) Optical modulator with monitor photodetector
JP7334616B2 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmitter
JP5308416B2 (en) Light modulator
JP7293605B2 (en) Optical waveguide element and optical modulator
JP2006047956A (en) Waveguide type optical device
JP4183583B2 (en) Integrated optical waveguide device
EP3828623B1 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
JP2001350046A (en) Integrated optical waveguide element
JP5133930B2 (en) Optical modulator module
JP3895250B2 (en) Optical waveguide device
JP2004271681A (en) Optical waveguide element
JP2000321449A (en) Waveguide type optical multiplexing/demultiplexing circuit chip
JP4519436B2 (en) Reflective light modulator
JP2003279769A (en) Integrated light guide element
CN116107104A (en) Optical device and optical communication apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees