JP5308280B2 - Static pressure gas bearing - Google Patents

Static pressure gas bearing Download PDF

Info

Publication number
JP5308280B2
JP5308280B2 JP2009199122A JP2009199122A JP5308280B2 JP 5308280 B2 JP5308280 B2 JP 5308280B2 JP 2009199122 A JP2009199122 A JP 2009199122A JP 2009199122 A JP2009199122 A JP 2009199122A JP 5308280 B2 JP5308280 B2 JP 5308280B2
Authority
JP
Japan
Prior art keywords
bearing
housing
static pressure
pressure gas
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009199122A
Other languages
Japanese (ja)
Other versions
JP2011047512A (en
Inventor
清隆 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanken Seal Seiko Co Ltd
Original Assignee
Tanken Seal Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanken Seal Seiko Co Ltd filed Critical Tanken Seal Seiko Co Ltd
Priority to JP2009199122A priority Critical patent/JP5308280B2/en
Publication of JP2011047512A publication Critical patent/JP2011047512A/en
Application granted granted Critical
Publication of JP5308280B2 publication Critical patent/JP5308280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、固定部と回転部との間にあって回転部を支える静圧気体軸受に関し、特に自動調心機能を持つ、組立て部品化(アセンブリー化ともいう)した静圧気体軸受に関する。   The present invention relates to a static pressure gas bearing that is between a fixed portion and a rotating portion and supports the rotating portion, and particularly relates to a static pressure gas bearing that has an automatic alignment function and is an assembly part (also referred to as assembly).

従来、静圧気体軸受は、回転精度が高く、摩擦抵抗がないことから、主に精密検査装置の高精度回転台や、高速加工機の高速回転軸に用いられている。   Conventionally, hydrostatic gas bearings have high rotational accuracy and no frictional resistance, and are therefore mainly used for high-precision rotary tables for precision inspection devices and high-speed rotary shafts for high-speed processing machines.

静圧気体軸受としては、ハウジングの内周面に少なくとも2個のOリングを介してスリーブを弾性支持することで、Oリングにスリーブの振れ回りを吸収させて、軸受面と軸との接触を防いだものが提案されている(例えば、特許文献1参照)。   As a static pressure gas bearing, the sleeve is elastically supported on the inner peripheral surface of the housing via at least two O-rings, so that the O-ring absorbs the swirling of the sleeve and the contact between the bearing surface and the shaft is maintained. The thing which prevented is proposed (for example, refer patent document 1).

また、別の静圧気体軸受としては、静圧軸受部とカバー部との間にOリングを介在させることで、Oリングにハウジングの歪(ゆが)みによる不均一な隙間(すきま)を吸収させて、ハウジングの加工精度を高めなくても、組み付け調整治具を用いなくても、簡単に組み付けられるようにしたものが提案されている(例えば、特許文献2参照)。   As another hydrostatic gas bearing, an O-ring is interposed between the hydrostatic bearing portion and the cover portion, so that a non-uniform gap (gap) due to distortion (distortion) of the housing is caused in the O-ring. There has been proposed a structure that can be easily assembled without absorbing the processing accuracy of the housing and without using an assembly adjustment jig (see, for example, Patent Document 2).

特開平8−219159号公報(段落0007,0009,0022、図1)JP-A-8-219159 (paragraphs 0007, 0009, 0022, FIG. 1) 特開平7−35140号公報(段落0010,0011,0026、図1)JP 7-35140 A (paragraphs 0010, 0011, 0026, FIG. 1)

しかしながら、静圧気体軸受は、その性能を発揮させるために、静圧気体軸受が組み付けられる装置自体にも高い精度、例えば軸に対するハウジングの直角度や、軸の真直度が求められるため、静圧気体軸受を組み付けられる装置が限られてしまう。   However, in order to exhibit the performance of the static pressure gas bearing, the apparatus itself to which the static pressure gas bearing is assembled is required to have high accuracy, for example, the right angle of the housing with respect to the shaft and the straightness of the shaft. The apparatus which can assemble a gas bearing will be limited.

前記特許文献1に係る静圧気体軸受では、スラスト軸受が軸の一端側部に突設したフランジ状の鍔(つば)部の平面状のスラスト軸受を挟持するように構成されているため、スリーブのスラスト方向の振れ回りを吸収できない。   In the hydrostatic gas bearing according to Patent Document 1, since the thrust bearing is configured to sandwich the flat thrust bearing of the flange-shaped flange portion protruding from one end side portion of the shaft, the sleeve It cannot absorb the thrust swing in the thrust direction.

前記特許文献2に係る静圧気体軸受では、依然としてラジアル軸受隙間(特許文献2において静圧軸受部の軸受孔と回転軸との隙間をいう)を数μmに調整しなければならないため、静圧気体軸受の組み付けには高度な組立て技術と正確な測定技術が求められる。   In the static pressure gas bearing according to Patent Document 2, the radial bearing gap (referred to as the gap between the bearing hole of the static pressure bearing portion and the rotating shaft in Patent Document 2) must be adjusted to several μm. Assembly of gas bearings requires advanced assembly technology and accurate measurement technology.

そこで、この発明では、前記した課題を解決し、自動調心機能を持つ、組立て部品化した静圧気体軸受を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above-described problems and to provide a static pressure gas bearing as an assembly part having an automatic alignment function.

前記課題を解決するため、請求項1と請求項2に係る発明では、静圧気体軸受を軸の外周面に対向配置される内筒筐体(きょうたい)と、ハウジングの内周面に対向配置される外筒筐体とから成し、内筒筐体又は外筒筐体の互いに対向する面にラジアル軸受面及びスラスト軸受面を設け、これら軸受面の間に形成されたラジアル軸受隙間及びスラスト軸受隙間に圧縮気体を供給して、軸とハウジングを非接触状態に保持するようにした。そして、ラジアル軸受隙間に対して裏側の面に、第1の弾性体を設けるようにした。さらに、スラスト軸受隙間に対して裏側の面であって、第1の弾性体が備えられた筐体に、第2の弾性体を設けるようにした。 In order to solve the above-mentioned problems, in the inventions according to claim 1 and claim 2 , the hydrostatic gas bearing is opposed to the outer peripheral surface of the shaft and is opposed to the inner peripheral surface of the housing. A radial bearing gap formed between the bearing surfaces, and a radial bearing surface and a thrust bearing surface provided on surfaces of the inner cylinder housing or the outer cylinder housing facing each other. Compressed gas was supplied to the thrust bearing gap to keep the shaft and housing in a non-contact state. And the 1st elastic body was provided in the surface on the back side with respect to the radial bearing clearance. Furthermore, the second elastic body is provided on the casing on the back side with respect to the thrust bearing gap and provided with the first elastic body.

請求項1と請求項2に係る発明によれば、静圧気体軸受を軸の外周面に対向配置される内筒筐体と、ハウジングの内周面に対向配置される外筒筐体とから成し、内筒筐体又は外筒筐体の互いに対向する面にラジアル軸受面及びスラスト軸受面を設け、これら軸受面の間に形成されたラジアル軸受隙間及びスラスト軸受隙間に圧縮気体を供給して、軸とハウジングを非接触状態に保持するようにしたので、静圧気体軸受を組み立て部品化することができる。 According to the invention which concerns on Claim 1 and Claim 2 , from the inner cylinder housing | casing arrange | positioned a static pressure gas bearing facing the outer peripheral surface of an axis | shaft, and the outer cylinder housing | casing arrange | positioned facing the inner peripheral surface of a housing A radial bearing surface and a thrust bearing surface are provided on the mutually facing surfaces of the inner cylinder housing or the outer cylinder housing, and compressed gas is supplied to the radial bearing gap and the thrust bearing gap formed between the bearing surfaces. Since the shaft and the housing are held in a non-contact state, the static pressure gas bearing can be assembled into a component.

つまり、請求項1と請求項2に係る発明によれば、軸受面を静圧気体軸受の内部に設けるようにしたので、例えばラジアル軸受隙間を調整した状態であらかじめ組み立てておくと、従来のように静圧気体軸受の組み付け現場で、ラジアル軸受面と支軸との隙間を数μmに調整しなくても、組立て部品化された静圧気体軸受をハウジングの嵌(は)め合い部分に挿入するだけで、簡単に静圧気体軸受を取り付けることができる。そのため、静圧気体軸受の組み付け作業時や調整作業時における静圧気体軸受の破損を防ぐことができる。 In other words, according to the first and second aspects of the invention, since the bearing surface is provided inside the static pressure gas bearing, for example, if it is assembled in advance with the radial bearing gap adjusted, At the assembly site of the hydrostatic gas bearing, the assembled hydrostatic gas bearing is inserted into the fitting part of the housing without adjusting the clearance between the radial bearing surface and the support shaft to several μm. This makes it possible to easily attach a static pressure gas bearing. For this reason, it is possible to prevent the static pressure gas bearing from being damaged during the assembling work or the adjustment work of the static pressure gas bearing.

請求項1と請求項2に係る発明によれば、ラジアル軸受隙間に対して裏側の面に、第1の弾性体を設けるようにしたので、軸に対するハウジングの直角度精度が劣る場合であっても、第1の弾性体が広い隙間においては弱く、狭い隙間においては強く圧縮され、隙間に応じて変形してハウジングの直角度精度の狂いを吸収できる。そのため、組立て部品化された静圧気体軸受をハウジングの嵌め合い部分に挿入するだけで、簡単に静圧気体軸受を取り付けることができる。 According to the first and second aspects of the invention, since the first elastic body is provided on the back surface with respect to the radial bearing gap, the perpendicularity accuracy of the housing with respect to the shaft is inferior. However, the first elastic body is weak in the wide gap and is strongly compressed in the narrow gap, and can deform according to the gap to absorb the deviation in the squareness accuracy of the housing. Therefore, the static pressure gas bearing can be easily attached only by inserting the assembled static pressure gas bearing into the fitting portion of the housing.

また、軸の真直度精度が劣る場合には、装置の運転時にラジアル方向にいわゆる縄跳び現象(例えば、軸が1回転すると、軸は半回転ごとに真直度の狂い分だけ軸心から外れ、1回転ごとに元に戻る現象をいう)が起こり、軸とハウジングとの角度が変化するためにラジアル軸受隙間を維持できなくなるところ、第1の弾性体が変形し、ラジアル軸受を軸に対して傾かせる(この動きを、軸受が首を振るという)ことができる。つまり、第1の弾性体が変形することで、軸とハウジングとの角度変化に追従して連続的に、ラジアル軸受と軸との角度を変化させることができる。このようにラジアル軸受に首振り機構を設けたので、軸とハウジングとの角度が変化しても、ラジアル軸受隙間を自動的に平行かつ最適な間隔に調整することができる。   When the straightness accuracy of the shaft is inferior, the so-called jump rope phenomenon in the radial direction during operation of the apparatus (for example, when the shaft makes one revolution, the shaft is deviated from the axial center by a straightness deviation every half rotation. This occurs when the rotation angle of the shaft and the housing changes, and the radial bearing gap cannot be maintained because the angle between the shaft and the housing changes. The first elastic body is deformed and the radial bearing is tilted with respect to the shaft. (This movement is called that the bearing swings its head). That is, by deforming the first elastic body, the angle between the radial bearing and the shaft can be continuously changed following the change in the angle between the shaft and the housing. Since the radial bearing is provided with the swing mechanism in this manner, the radial bearing gap can be automatically adjusted to the parallel and optimum interval even if the angle between the shaft and the housing changes.

請求項1と請求項2に係る発明によれば、スラスト軸受隙間に対して裏側の面であって、第1の弾性体が備えられた筐体に、第2の弾性体を設けるようにしたので、軸に対するハウジングの直角度精度が劣る場合であっても、第2の弾性体によって内筒筐体又は外筒筐体がスラスト方向に付勢されるため、スラスト軸受隙間を自動的に平行かつ最適な間隔に調整することができる。そのため、組立て部品化された静圧気体軸受をハウジングの嵌め合い部分に挿入するだけで、簡単に静圧気体軸受を取り付けることができる。 According to the first and second aspects of the invention, the second elastic body is provided on the casing on the back side of the thrust bearing gap and provided with the first elastic body. Therefore, even when the perpendicularity accuracy of the housing with respect to the shaft is inferior, the inner cylindrical housing or the outer cylindrical housing is biased in the thrust direction by the second elastic body, so that the thrust bearing gap is automatically parallelized. And it can adjust to an optimal space | interval. Therefore, the static pressure gas bearing can be easily attached only by inserting the assembled static pressure gas bearing into the fitting portion of the housing.

また、例えば荷重が加わることで、軸がスラスト方向に移動する場合には、第2の弾性体が伸び縮みし、内筒筐体又は外筒筐体を軸の移動に追従して移動させることができる。このように、スラスト軸受に緩衝機構を設けたので、スラスト軸受隙間を自動的に平行かつ最適な間隔に調整することができる。   In addition, for example, when the shaft moves in the thrust direction by applying a load, the second elastic body expands and contracts, and moves the inner cylinder housing or the outer cylinder housing following the movement of the shaft. Can do. Thus, since the shock-absorbing mechanism is provided in the thrust bearing, the thrust bearing gap can be automatically adjusted to a parallel and optimum interval.

以上のように、請求項1と請求項2に係る発明によれば、首振り機構と緩衝機構による自動調心機能によって、ラジアル軸受隙間とスラスト軸受隙間を自動的に平行かつ最適な間隔に調整することができる。その結果として、軸に対するハウジングの直角度や、軸の真直度の精度が劣る装置であっても、静圧気体軸受を取り付けることができる。 As described above, according to the first and second aspects of the present invention, the radial bearing gap and the thrust bearing gap are automatically adjusted to the parallel and optimum intervals by the self-aligning function of the swing mechanism and the buffer mechanism. can do. As a result, a static pressure gas bearing can be attached even to a device that is inferior in accuracy of the perpendicularity of the housing relative to the shaft or the straightness of the shaft.

また、請求項1と請求項2に係る発明によれば、軸受隙間を自動的に平行かつ最適な間隔に保つことで、非接触状態を維持し摩擦抵抗をなくすことができるため、常に軸受性能を発揮させることができる。そして、低消費動力や、回転誤差の低減、ひいては静圧気体軸受が取り付けられた装置の検査精度や加工精度の向上にも貢献することができる。
Further, according to the inventions according to claim 1 and claim 2 , since the bearing clearance is automatically maintained in parallel and at an optimum interval, a non-contact state can be maintained and frictional resistance can be eliminated. Can be demonstrated. And it can also contribute to the improvement of inspection accuracy and processing accuracy of a device to which low power consumption, rotation error is reduced, and by extension, a static pressure gas bearing is attached.

これら以外にも、静圧気体軸受の特有の効果として、転がり軸受のように注油の必要がないため保守が容易であり、転がり軸受のような摩擦による摩耗がないため長寿命でもある。   In addition to these, as a unique effect of the static pressure gas bearing, maintenance is easy because there is no need for lubrication unlike a rolling bearing, and there is no wear due to friction as in a rolling bearing, and the service life is also long.

実施形態に係る静圧気体軸受の斜視図である。It is a perspective view of the static pressure gas bearing which concerns on embodiment. 実施形態に係る静圧気体軸受の分解斜視図である。It is a disassembled perspective view of the static pressure gas bearing which concerns on embodiment. 実施形態に係る静圧気体軸受を取り付けたスピンコーターの角度変化への追従の様子を示す断面図である。It is sectional drawing which shows the mode of the tracking to the angle change of the spin coater which attached the static pressure gas bearing which concerns on embodiment. 実施形態に係る静圧気体軸受を取り付けたスピンコーターのスラスト方向への追従の様子を示す断面図である。It is sectional drawing which shows the mode of the tracking to the thrust direction of the spin coater which attached the static pressure gas bearing which concerns on embodiment. 他の実施形態に係る静圧気体軸受の斜視図である。It is a perspective view of the static pressure gas bearing which concerns on other embodiment. 他の実施形態に係る静圧気体軸受の分解斜視図である。It is a disassembled perspective view of the static pressure gas bearing which concerns on other embodiment. 他の実施形態に係る静圧気体軸受を取り付けたガイドロール装置の全体斜視図である。It is a whole perspective view of the guide roll apparatus which attached the static pressure gas bearing which concerns on other embodiment. 他の実施形態に係る静圧気体軸受を取り付けたガイドロール装置の要部断面図である。It is principal part sectional drawing of the guide roll apparatus which attached the static pressure gas bearing which concerns on other embodiment. 他の実施形態に係る静圧気体軸受を取り付けたガイドロール装置の自動調心の様子を示す断面図である。It is sectional drawing which shows the mode of the self-alignment of the guide roll apparatus which attached the static pressure gas bearing which concerns on other embodiment.

次に、この発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1は、実施形態に係る静圧気体軸受の斜視図であり、図2は、実施形態に係る静圧気体軸受の分解斜視図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 1 is a perspective view of a hydrostatic gas bearing according to the embodiment, and FIG. 2 is an exploded perspective view of the hydrostatic gas bearing according to the embodiment.

図1に示すように、静圧気体軸受1は、軸の外周面に対向配置される内筒筐体2と、ハウジングの内周面に対向配置される外筒筐体3とを有して構成されている。そして、外筒筐体3には、その外周面に環状に第1の弾性体4と、その一端面に第2の弾性体5が備えられている。   As shown in FIG. 1, the static pressure gas bearing 1 includes an inner cylindrical housing 2 that is disposed to face the outer peripheral surface of the shaft, and an outer cylindrical housing 3 that is disposed to face the inner peripheral surface of the housing. It is configured. And the outer cylinder housing | casing 3 is equipped with the 1st elastic body 4 cyclically | annularly in the outer peripheral surface, and the 2nd elastic body 5 in the end surface.

図2に示すように、内筒筐体2は、筒状の部材である内筒21と、その一端面に配設される鍔状の部材であるフランジ22とを有して構成されている。   As shown in FIG. 2, the inner cylinder housing 2 includes an inner cylinder 21 that is a cylindrical member, and a flange 22 that is a flange-shaped member disposed on one end surface thereof. .

外筒筐体3は、筒状の部材であって、その内周面に多孔質材料から成るラジアル軸受面3aと、その一端面に多孔質材料から成るスラスト軸受面3bが形成されている。   The outer cylinder housing 3 is a cylindrical member, and a radial bearing surface 3a made of a porous material is formed on an inner peripheral surface thereof, and a thrust bearing surface 3b made of a porous material is formed on one end surface thereof.

そして、内筒筐体2と外筒筐体3は、内筒21の外周面とラジアル軸受面3aがラジアル軸受隙間を有して対向するように、フランジ22の鍔面とスラスト軸受面3bがスラスト軸受隙間を有して対向するように構成されている。   The inner cylinder housing 2 and the outer cylinder housing 3 have the flange surface 22 and the thrust bearing surface 3b so that the outer peripheral surface of the inner tube 21 and the radial bearing surface 3a face each other with a radial bearing gap. A thrust bearing gap is provided so as to face each other.

外筒筐体3には、その外周面(ラジアル軸受隙間に対して裏側の面に相当する)に、環状に第1の弾性体4、ここでは0リング4が外筒筐体3の中央部に1つ備えられている。また、外筒筐体3には、スラスト軸受面3bが形成されていない端面(スラスト軸受隙間の対して裏側の面に相当する)に、第2の弾性体5、ここではバネ5が円周上にわたって複数備えられている。   The outer cylinder housing 3 has a first elastic body 4, in this case an O-ring 4, in the center of the outer cylinder housing 3 on the outer peripheral surface (corresponding to the surface on the back side of the radial bearing gap). One is provided. Further, the outer cylindrical housing 3 has a second elastic body 5, in this case, a spring 5, on the end surface where the thrust bearing surface 3 b is not formed (corresponding to the surface on the back side with respect to the thrust bearing gap). There are several on the top.

以上のように構成される静圧気体軸受1は、内筒筐体2と外筒筐体3がラジアル軸受隙間を調整した状態で組み立てられ、組立て部品化されている。そして、静圧気体軸受1は、静圧気体軸受1の組み付け現場で、あらかじめ組み立てられた静圧気体軸受1をハウジングの嵌め合い部分に挿入して装置に取り付けられる。   The static pressure gas bearing 1 configured as described above is assembled in the state where the inner cylinder housing 2 and the outer cylinder housing 3 adjust the radial bearing gap, and are assembled into assembly parts. The static pressure gas bearing 1 is attached to the apparatus by inserting the pre-assembled static pressure gas bearing 1 into the fitting portion of the housing at the assembly site of the static pressure gas bearing 1.

図3は、実施形態に係る静圧気体軸受1を取り付けたスピンコーターの角度変化への追従の様子を示す断面図であり、図4は、実施形態に係る静圧気体軸受1を取り付けたスピンコーターのスラスト方向への追従の様子を示す断面図である。   FIG. 3 is a cross-sectional view showing how the spin coater attached with the hydrostatic gas bearing 1 according to the embodiment follows the change in angle, and FIG. 4 shows a spin attached with the hydrostatic gas bearing 1 according to the embodiment. It is sectional drawing which shows the mode of the tracking to the thrust direction of a coater.

図3と図4に示すように、静圧気体軸受1は、内筒筐体2がスピンコーターScの回転軸の外周面に対向し、外筒筐体3がハウジングHの内周面に対向した状態で、スピンコーターScに取り付けられている。   As shown in FIGS. 3 and 4, the hydrostatic gas bearing 1 has an inner cylindrical housing 2 that faces the outer peripheral surface of the rotation axis of the spin coater Sc, and an outer cylindrical housing 3 that faces the inner peripheral surface of the housing H. In this state, it is attached to the spin coater Sc.

静圧気体軸受1には、外筒筐体3の外周面(ラジアル軸受隙間に対して裏側の面に相当する)に、第1の弾性体4、ここではOリング4が外筒筐体3とハウジングHとに当接した状態で備えられている。   In the static pressure gas bearing 1, a first elastic body 4, here an O-ring 4, is provided on the outer peripheral surface of the outer cylinder housing 3 (corresponding to the surface on the back side with respect to the radial bearing gap). And the housing H.

また、静圧気体軸受1には、外筒筐体3のスラスト軸受面3bが形成されていない端面(スラスト軸受隙間の対して裏側の面に相当する)に、第2の弾性体5、ここではバネ5a,5bが外筒筐体3とハウジングHとに押圧され縮んだ状態で、外筒筐体3に形成された凹(おう)部に差し入れられている。   Further, the hydrostatic gas bearing 1 has a second elastic body 5 on the end surface (corresponding to the back surface of the thrust bearing gap) where the thrust bearing surface 3b of the outer casing 3 is not formed. Then, the springs 5 a and 5 b are inserted into a concave portion formed in the outer cylinder housing 3 in a state where the springs 5 a and 5 b are pressed and contracted by the outer cylinder housing 3 and the housing H.

以上のように構成された静圧気体軸受1では、図3に示すように、軸に対する直角度精度が劣るハウジングHであっても、Oリング4とバネ5a,5bが変形することで、組立て部品化された静圧気体軸受1をハウジングHの嵌め合い部分に挿入するだけで取り付けられるとともに、静圧気体軸受1が回転軸に対して直角となるように自動的に調心される。   In the static pressure gas bearing 1 configured as described above, as shown in FIG. 3, the O-ring 4 and the springs 5a and 5b are deformed even if the housing H is inferior in squareness accuracy with respect to the shaft. The hydrostatic gas bearing 1 made into a component is attached by simply inserting it into the fitting portion of the housing H, and the hydrostatic gas bearing 1 is automatically aligned so as to be perpendicular to the rotation axis.

詳細に説明すると、軸に対する直角度精度が劣るハウジングHでは、軸とハウジングHとの隙間量が不均一となる。しかし、静圧気体軸受1では、Oリング4が広い隙間においては弱く、狭い隙間においては強く圧縮されて変形し、不均一な隙間量を吸収する。このとき、図3に示すように、スラスト軸受面3bが形成されていない端面(スラスト軸受隙間の対して裏側の面に相当する)とハウジングHの隙間量が不均一な場合には、バネ5aが伸びながら、バネ5bは縮みながら、外筒筐体3をスラスト軸受面3b側に付勢し続ける。その結果として、静圧気体軸受1が回転軸に対して直角となるように自動的に調心され、ラジアル軸受隙間とスラスト軸受隙間も平行かつ最適な間隔に保たれる。   More specifically, in the housing H that is inferior in squareness accuracy with respect to the shaft, the gap amount between the shaft and the housing H is non-uniform. However, in the static pressure gas bearing 1, the O-ring 4 is weak in a wide gap and is strongly compressed and deformed in a narrow gap to absorb a non-uniform gap amount. At this time, as shown in FIG. 3, when the gap amount between the end surface where the thrust bearing surface 3 b is not formed (corresponding to the surface on the back side with respect to the thrust bearing gap) and the housing H is not uniform, the spring 5 a While the spring 5b is extended, the outer cylinder housing 3 is continuously urged toward the thrust bearing surface 3b while the spring 5b is contracted. As a result, the static pressure gas bearing 1 is automatically aligned so as to be perpendicular to the rotation axis, and the radial bearing gap and the thrust bearing gap are also maintained in parallel and at an optimum interval.

また、軸の真直度精度が劣る場合には、軸を回転させると軸とハウジングHとの角度が変化し、軸受部の接触などが起こり軸受性能を発揮できなくなる。しかし、静圧気体軸受1では、Oリング4が力が加わる方向に滑りながら押しつぶされ、バネ5a,5bが外筒筐体3の動きを妨げないように伸び縮みして、外筒筐体3が軸とハウジングHとの角度変化に追従して連続的に、首を振るように動く。その結果として、ラジアル軸受隙間とスラスト軸受隙間は、平行かつ最適な間隔に保たれる。   In addition, when the straightness accuracy of the shaft is inferior, when the shaft is rotated, the angle between the shaft and the housing H changes, contact of the bearing portion occurs, and the bearing performance cannot be exhibited. However, in the static pressure gas bearing 1, the O-ring 4 is squeezed while sliding in the direction in which force is applied, and the springs 5 a and 5 b expand and contract so as not to hinder the movement of the outer casing 3. Follows the change in the angle between the shaft and the housing H, and continuously moves so as to swing the head. As a result, the radial bearing gap and the thrust bearing gap are kept parallel and at an optimum interval.

図4に示すように、例えばスピンコーターScの回転軸が加重によって矢印に示すスラスト方向へ移動する場合であっても、バネ5は、スラスト軸受面3bが形成されていない端面とハウジングHの隙間が狭まることで縮みながら、外筒筐体3をスラスト軸受面3b側に付勢し続ける。その結果として、軸のスラスト方向移動に追従して、スラスト軸受面3bが形成されていない端面とハウジングHの隙間が自動的に調整され、スラスト軸受隙間が平行かつ最適な間隔に保たれる。   As shown in FIG. 4, for example, even when the rotation shaft of the spin coater Sc moves in the thrust direction indicated by the arrow due to weighting, the spring 5 has a gap between the end surface where the thrust bearing surface 3 b is not formed and the housing H. The outer cylinder housing 3 continues to be urged toward the thrust bearing surface 3b while shrinking due to narrowing. As a result, following the movement of the shaft in the thrust direction, the gap between the end surface where the thrust bearing surface 3b is not formed and the housing H is automatically adjusted, and the thrust bearing gap is maintained in parallel and at an optimum interval.

図3と図4に示すように、スピンコーターScは、コンプレッサーなどの圧力気体供給源からチューブTを介してラジアル軸受面3aとスラスト軸受面3bに圧縮気体を供給するようになっている。実施形態に係る静圧気体軸受1では、この圧縮気体を供給する機構が、固定部であるハウジングHの内周面に対向配置される、外筒筐体3に設けられている。このように、圧縮気体を供給する機構を、固定部に対向配置される筐体側に設けるようにしたので、静圧気体軸受1の構造を簡素化することができる。   As shown in FIGS. 3 and 4, the spin coater Sc supplies compressed gas to the radial bearing surface 3 a and the thrust bearing surface 3 b through a tube T from a pressure gas supply source such as a compressor. In the static pressure gas bearing 1 according to the embodiment, the mechanism for supplying the compressed gas is provided in the outer cylindrical housing 3 that is disposed to face the inner peripheral surface of the housing H that is a fixed portion. As described above, since the mechanism for supplying the compressed gas is provided on the side of the casing that is disposed to face the fixed portion, the structure of the static pressure gas bearing 1 can be simplified.

実施形態に係る静圧気体軸受1を取り付けるスピンコーターScは、装置の精度が不足していても、組立て部品化された静圧気体軸受1をハウジングHの嵌め合い部分に挿入するだけで簡単に取り付けられるため、従来のように高精度の装置に限らず、幅広い装置に静圧気体軸受を用いられる。また、実施形態に係る静圧気体軸受1を取り付けたスピンコーターScでは、装置の精度不足や精度変化に対して自動的に調心されるため、スピンコーターScが安定して回転する。   The spin coater Sc to which the hydrostatic gas bearing 1 according to the embodiment is attached can be easily obtained by simply inserting the hydrostatic gas bearing 1 assembled into a fitting portion of the housing H even if the accuracy of the apparatus is insufficient. Since it is attached, a static pressure gas bearing can be used in a wide range of devices as well as a high-precision device as in the prior art. Moreover, in the spin coater Sc to which the static pressure gas bearing 1 according to the embodiment is attached, the spin coater Sc rotates stably because the alignment is automatically performed with respect to insufficient accuracy of the apparatus or a change in accuracy.

続いて、この発明の他の実施形態に係る静圧気体軸受について、適宜図面を参照しながら詳細に説明する。図5は、他の実施形態に係る静圧気体軸受の斜視図であり、図6は、他の実施形態に係る静圧気体軸受の分解斜視図である。   Subsequently, a static pressure gas bearing according to another embodiment of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 5 is a perspective view of a hydrostatic gas bearing according to another embodiment, and FIG. 6 is an exploded perspective view of a hydrostatic gas bearing according to another embodiment.

図5に示すように、他の実施形態に係る静圧気体軸受11は、軸の外周面に対向配置される内筒筐体12と、ハウジングの内周面に対向配置される外筒筐体13とを有して構成されている。そして、内筒筐体12には、その内周面に環状に第1の弾性体14と、その一端面に第2の弾性体15が備えられている。   As shown in FIG. 5, the hydrostatic gas bearing 11 according to another embodiment includes an inner cylinder housing 12 that is disposed to face the outer peripheral surface of the shaft, and an outer cylinder housing that is disposed to face the inner peripheral surface of the housing. 13. And the inner cylinder housing | casing 12 is equipped with the 1st elastic body 14 cyclically | annularly in the inner peripheral surface, and the 2nd elastic body 15 in the end surface.

図6に示すように、内筒筐体12は、筒状の部材であって、その外周面に多孔質材料から成るラジアル軸受面12aと、その一端面に多孔質材料から成るスラスト軸受面12bが形成されている。また、内筒筐体12には、スラスト軸受面12bが形成されていない端面(スラスト軸受隙間に対して裏側の面に相当する)に、ラジアル軸受面12aとスラスト軸受面12bに圧縮気体を供給するための圧縮気体供給孔12cが形成されている。   As shown in FIG. 6, the inner cylindrical housing 12 is a cylindrical member, and has a radial bearing surface 12a made of a porous material on the outer peripheral surface thereof, and a thrust bearing surface 12b made of a porous material on one end surface thereof. Is formed. In addition, compressed gas is supplied to the radial bearing surface 12a and the thrust bearing surface 12b on the end surface (corresponding to the surface on the back side with respect to the thrust bearing gap) where the thrust bearing surface 12b is not formed in the inner cylindrical housing 12. A compressed gas supply hole 12c is formed.

内筒筐体12には、その内周面に環状に第1の弾性体41、ここでは0リング41が内筒筐体12の中央部に1つ備えられている。また、内筒筐体12には、スラスト軸受面12bが形成されていない端面に第2の弾性体51、ここではバネ51がその端面の円周上にわたって複数備えられている。   The inner cylinder housing 12 is provided with a first elastic body 41, in this case an O-ring 41, on the inner peripheral surface of the inner cylinder housing 12. In addition, the inner cylinder housing 12 is provided with a plurality of second elastic bodies 51, here, springs 51 on the circumference of the end face on the end face where the thrust bearing surface 12b is not formed.

外筒筐体13は、筒状の部材である外筒131と、その一端面に配設される鍔状の部材であるフランジ132とを有して構成されている。そして、外筒131は、内筒筐体12に形成されたラジアル軸受面12aとラジアル軸受隙間を有して対向するように構成されている。また、フランジ132は、内筒筐体12に形成されたスラスト軸受面12bとスラスト軸受隙間を有して対向するように構成されている。   The outer cylinder housing 13 includes an outer cylinder 131 that is a cylindrical member, and a flange 132 that is a flange-shaped member disposed on one end surface thereof. The outer cylinder 131 is configured to face the radial bearing surface 12a formed in the inner cylinder housing 12 with a radial bearing gap. Further, the flange 132 is configured to face the thrust bearing surface 12b formed in the inner cylinder housing 12 with a thrust bearing gap.

以上のように構成される静圧気体軸受11は、内筒筐体12と外筒筐体13がラジアル軸受隙間を調整した状態で組み立てられ、組立て部品化されている。そして、静圧気体軸受11は、静圧気体軸受11の組み付け現場で、あらかじめ組み立てられた静圧気体軸受11をハウジングの嵌め合い部分に挿入して装置に取り付けられる。   The static pressure gas bearing 11 configured as described above is assembled in a state where the inner cylindrical housing 12 and the outer cylindrical housing 13 adjust the radial bearing gap, and is assembled into an assembly part. The static pressure gas bearing 11 is attached to the apparatus by inserting the pre-assembled static pressure gas bearing 11 into the fitting portion of the housing at the assembly site of the static pressure gas bearing 11.

図7は、他の実施形態に係る静圧気体軸受11を取り付けたガイドロール装置の全体斜視図である。図7に示すように、静圧気体軸受11は、ガイドロール装置Gの両端部に設けられたハウジングの嵌め合い部分に差し入れられ、ガイドロール装置Gに取り付けられている。   FIG. 7 is an overall perspective view of a guide roll device to which a static pressure gas bearing 11 according to another embodiment is attached. As shown in FIG. 7, the static pressure gas bearing 11 is inserted into fitting portions of housings provided at both ends of the guide roll device G and attached to the guide roll device G.

ガイドロール装置Gは、コンプレッサーなどの圧縮気体供給源からチューブTを介して静圧気体軸受11に圧縮気体が供給されることで、静圧気体軸受11が支軸Sを非接触状態に保持するように構成されている。そして、ガイドロール装置Gでは、例えばシート材を矢印方向に搬送する場合には、シート材から受ける摩擦力によって、ガイドロール部材G’がシート材の走行速度と同期して回転することで、シート材に張力を与えながらシート材を各種装置に搬送するように構成されている。   In the guide roll device G, the compressed gas is supplied from a compressed gas supply source such as a compressor to the static pressure gas bearing 11 through the tube T, so that the static pressure gas bearing 11 holds the support shaft S in a non-contact state. It is configured as follows. In the guide roll device G, for example, when the sheet material is conveyed in the arrow direction, the guide roll member G ′ is rotated in synchronization with the traveling speed of the sheet material by the frictional force received from the sheet material. The sheet material is conveyed to various apparatuses while applying tension to the material.

図8は、他の実施形態に係る静圧気体軸受11を取り付けたガイドロール装置Gの要部断面図であり、図9は、他の実施形態に係る静圧気体軸受11を取り付けたガイドロール装置Gの自動調心の様子を示す断面図である。   FIG. 8 is a cross-sectional view of a main part of a guide roll device G to which a static pressure gas bearing 11 according to another embodiment is attached, and FIG. 9 is a guide roll to which the static pressure gas bearing 11 according to another embodiment is attached. It is sectional drawing which shows the mode of the self-alignment of the apparatus G.

図8に示すように、他の実施形態に係る静圧気体軸受11は、内筒筐体12が支軸Sの外周面に対向し、外筒筐体13がハウジングHの内周面に対向した状態で、ガイドロール装置Gに取り付けられている。   As shown in FIG. 8, in the static pressure gas bearing 11 according to another embodiment, the inner cylindrical housing 12 faces the outer peripheral surface of the support shaft S, and the outer cylindrical housing 13 faces the inner peripheral surface of the housing H. In this state, it is attached to the guide roll device G.

静圧気体軸受11には、内筒筐体12の内周面(ラジアル軸受隙間に対して裏側の面に相当する)に、第1の弾性体41、ここではOリング41が内筒筐体12の中央部に、内筒筐体12と支軸Sとに当接した状態で備えられている。   The static pressure gas bearing 11 includes a first elastic body 41, here an O-ring 41, on the inner peripheral surface of the inner cylinder housing 12 (corresponding to the surface on the back side with respect to the radial bearing gap). 12 is provided in contact with the inner cylinder housing 12 and the support shaft S.

また、静圧気体軸受11には、内筒筐体12のスラスト軸受面12bが形成されていない端面(スラスト軸受隙間に対して裏側の面に相当する)に、第2の弾性体51、ここではバネ51が内筒筐体12とハウジングHとに押圧され縮んだ状態で、内筒筐体12に形成された凹(おう)部に差し入れられている。   Further, the static pressure gas bearing 11 has a second elastic body 51 on the end surface (corresponding to the back surface with respect to the thrust bearing gap) where the thrust bearing surface 12b of the inner cylinder housing 12 is not formed. Then, the spring 51 is inserted into a concave portion formed in the inner cylinder housing 12 in a state where the spring 51 is pressed and contracted by the inner cylinder housing 12 and the housing H.

静圧気体軸受11では、圧縮気体を供給する機構が、固定部である支軸Sの外周面に対向配置される、内筒筐体12に設けられている。このように、圧縮気体を供給する機構を、固定部に対向配置される筐体側に設けるようにしたので、静圧気体軸受11の構造を簡素化することができる。   In the static pressure gas bearing 11, a mechanism for supplying compressed gas is provided in the inner cylinder housing 12 that is disposed to face the outer peripheral surface of the support shaft S that is a fixed portion. As described above, since the mechanism for supplying the compressed gas is provided on the side of the casing that is disposed to face the fixed portion, the structure of the static pressure gas bearing 11 can be simplified.

以上のように構成された静圧気体軸受11では、図9に示すように、ガイドロール部材G’(図7参照)が自重によって撓み、ガイドロール部材G’(図9においてハウジングH)と支軸Sとの角度が変化する方向に、直角方向からずれた方向に力が加わると、その力によってOリング41とバネ51a,51bが変形し、ラジアル軸受隙間とスラスト軸受面隙間が平行かつ最適な間隔に保たれる。   In the static pressure gas bearing 11 configured as described above, as shown in FIG. 9, the guide roll member G ′ (see FIG. 7) bends by its own weight and supports the guide roll member G ′ (housing H in FIG. 9). When a force is applied in a direction deviating from a right angle direction in a direction in which the angle with the shaft S changes, the O ring 41 and the springs 51a and 51b are deformed by the force, and the radial bearing clearance and the thrust bearing surface clearance are parallel and optimal. Is kept at a proper interval.

詳細に説明すると、例えばガイドロール部材G’が下方に撓むと、ガイドロール部材G’の左端部と静圧気体軸受11には、矢印に示す方向に力が加わる。このとき、Oリング41は、矢印に示す方向に滑りながら、加わる力によって押しつぶされる。   More specifically, for example, when the guide roll member G ′ bends downward, a force is applied to the left end portion of the guide roll member G ′ and the static pressure gas bearing 11 in the direction indicated by the arrow. At this time, the O-ring 41 is crushed by the applied force while sliding in the direction indicated by the arrow.

また、このとき、バネ51aは、内筒筐体12とハウジングHの隙間が広がるため、圧縮力が弱まり伸びる。一方、バネ51bは、内筒筐体12とハウジングHの隙間が狭まるため、圧縮力が強まり縮む。   At this time, since the gap between the inner cylinder housing 12 and the housing H is widened, the spring 51a is weakened and stretched. On the other hand, since the gap between the inner cylinder housing 12 and the housing H is narrowed, the spring 51b has a compressive force that is reduced.

このように、Oリング41が滑りながら変形し、バネ51a,51bが内筒筐体12の動きを妨げないように伸び縮みする。そして、内筒筐体12は、ハウジングHと支軸Sとの角度変化に追従して連続的に、首を振るように動く。その結果として、ラジアル軸受隙間は、平行かつ最適な間隔に保たれる。   In this way, the O-ring 41 is deformed while sliding, and the springs 51 a and 51 b expand and contract so as not to hinder the movement of the inner cylinder housing 12. And the inner cylinder housing | casing 12 follows a change of the angle of the housing H and the support shaft S, and moves so that a head may be shaken continuously. As a result, the radial bearing gap is kept parallel and at an optimum spacing.

また、バネ51aは伸びながら、バネ51bは縮みながら、内筒筐体12をスラスト軸受面12b側に付勢し続ける。その結果として、スラスト軸受隙間は、平行かつ最適な間隔に保たれる。   Further, while the spring 51a is extended and the spring 51b is contracted, the inner cylinder housing 12 is continuously urged toward the thrust bearing surface 12b. As a result, the thrust bearing gap is kept parallel and at an optimal spacing.

さらに、ガイドロール部材G’が撓むと、ガイドロール部材G’がスラスト方向中央に引っ張られる。このとき、バネ51は、内筒筐体12とハウジングHの隙間が広がるため、圧縮力が弱まり伸びる。そして、バネ51は伸びながら、内筒筐体12をスラスト軸受面12b側に付勢し続ける。その結果として、スラスト軸受隙間は、平行かつ最適な間隔に保たれる。   Further, when the guide roll member G ′ is bent, the guide roll member G ′ is pulled to the center in the thrust direction. At this time, since the gap between the inner cylinder housing 12 and the housing H is widened, the spring 51 is weakened and stretched. The spring 51 continues to urge the inner cylinder housing 12 toward the thrust bearing surface 12b while extending. As a result, the thrust bearing gap is kept parallel and at an optimal spacing.

他の実施形態に係る静圧気体軸受11を取り付けたガイドロール装置Gでは、ガイドロール部材G’が撓んでも、ラジアル軸受隙間とスラスト軸受隙間が平行かつ最適な間隔に保たれるため、ガイドロール部材G’が安定して回転する。   In the guide roll device G to which the hydrostatic gas bearing 11 according to another embodiment is attached, the radial bearing gap and the thrust bearing gap are maintained in parallel and at an optimum interval even when the guide roll member G ′ is bent. The roll member G ′ rotates stably.

以上、この発明の実施形態について説明したが、この発明は前記実施形態には限定されない。例えば、この発明に係る第1の弾性体4,41はOリングに限られるものではなく、バネでも構わない。さらに、弾性体と同じ役目を果たす球面座でも構わない。また、この発明に係る第2の弾性体5,51はコイルバネに限られるものではなく、板バネでも構わない。さらに、バネ以外に、ゴムでも構わない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, the first elastic bodies 4 and 41 according to the present invention are not limited to O-rings, and may be springs. Furthermore, a spherical seat that plays the same role as the elastic body may be used. The second elastic bodies 5 and 51 according to the present invention are not limited to coil springs, and may be leaf springs. In addition to the spring, rubber may be used.

また、第1の弾性体4,41が備えられる位置は、ラジアル軸受隙間に対して裏側の面であればよく、前記実施形態のようにラジアル軸受面3a,12aの反対面に限定されない。   Further, the position where the first elastic bodies 4 and 41 are provided is not limited to the surface opposite to the radial bearing surfaces 3a and 12a as in the above embodiment, as long as it is a surface on the back side with respect to the radial bearing gap.

この発明においてラジアル軸受隙間に対して裏側の面とは、ラジアル隙間を形成する面の反対面をいう。また、この発明においてスラスト軸受隙間に対して裏側の面とは、スラスト隙間を形成する面の反対面をいう。そのため、例えば静圧気体軸受1では、内筒筐体2の内周面と軸と間に第1の弾性体4を備えるようにしても構わない。この場合には、第2の弾性体5は、スラスト隙間を形成する面の反対面であって、内筒筐体2に備えられる。   In this invention, the surface on the back side with respect to the radial bearing gap refers to the surface opposite to the surface forming the radial gap. Further, in the present invention, the surface on the back side with respect to the thrust bearing gap refers to the surface opposite to the surface forming the thrust gap. Therefore, for example, in the static pressure gas bearing 1, the first elastic body 4 may be provided between the inner peripheral surface of the inner cylinder housing 2 and the shaft. In this case, the second elastic body 5 is provided on the inner cylinder housing 2 on the surface opposite to the surface forming the thrust gap.

1,11 静圧気体軸受
2,12 内筒筐体
3,13 外筒筐体
3a,12a ラジアル軸受面
3b,12b スラスト軸受面
4,41 第1の弾性体(Oリング)
5,51 第2の弾性体(バネ)
DESCRIPTION OF SYMBOLS 1,11 Static pressure gas bearing 2,12 Inner cylinder housing | casing 3,13 Outer cylinder housing | casing 3a, 12a Radial bearing surface 3b, 12b Thrust bearing surface 4,41 1st elastic body (O-ring)
5, 51 Second elastic body (spring)

Claims (2)

軸の外周面に対向配置される内筒とその一端面に配設されるフランジとを有して構成される内筒筐体と、ハウジングの内周面に対向配置される外筒筐体とから成り、内筒又は外筒筐体の互いに対向する面にラジアル軸受面を設け、フランジ又は外筒筐体の互いに対向する面にスラスト軸受面を設け、これら軸受面の間に形成されたラジアル軸受隙間及びスラスト軸受隙間に圧縮気体を供給し、軸とハウジングを非接触状態に保持する静圧気体軸受において、
前記ラジアル軸受隙間に対して裏側の面に第1の弾性体を備え、
前記スラスト軸受隙間に対して裏側の面であって、第1の弾性体が備えられた筐体に第2の弾性体を備えることを特徴とする静圧気体軸受。
An inner cylinder housing configured to have an inner cylinder opposed to the outer peripheral surface of the shaft and a flange disposed at one end surface thereof ; and an outer cylinder housing disposed to oppose the inner peripheral surface of the housing; made, the inner cylinder or the radial bearing surface provided on the opposing surfaces of the outer cylindrical casing, a thrust bearing surface provided on the opposing surfaces of the flange or outer cylindrical casing, which is formed between the bearing surfaces In a hydrostatic gas bearing that supplies compressed gas to the radial bearing gap and the thrust bearing gap and holds the shaft and the housing in a non-contact state,
A first elastic body is provided on the back surface with respect to the radial bearing gap,
A static pressure gas bearing, comprising a second elastic body in a casing on the back side with respect to the thrust bearing gap and provided with the first elastic body.
軸の外周面に対向配置される内筒筐体と、ハウジングの内周面に対向配置される外筒とその一端面に配設されるフランジとを有して構成される外筒筐体とから成り、内筒筐体又は外筒の互いに対向する面にラジアル軸受面を設け、内筒筐体又はフランジの互いに対向する面にスラスト軸受面を設け、これら軸受面の間に形成されたラジアル軸受隙間及びスラスト軸受隙間に圧縮気体を供給し、軸とハウジングを非接触状態に保持する静圧気体軸受において、
前記ラジアル軸受隙間に対して裏側の面に第1の弾性体を備え、
前記スラスト軸受隙間に対して裏側の面であって、第1の弾性体が備えられた筐体に第2の弾性体を備えることを特徴とする静圧気体軸受。
An outer cylinder housing which is arranged to be opposed to the outer peripheral surface of the shaft, an outer cylinder which is arranged to be opposed to the inner circumferential surface of the housing, and a flange which is arranged on one end surface thereof ; A radial bearing surface is provided on the mutually facing surfaces of the inner cylinder housing or outer cylinder, and a thrust bearing surface is provided on the mutually facing surfaces of the inner cylinder housing or flange, and the radial formed between these bearing surfaces In the hydrostatic gas bearing that supplies compressed gas to the bearing gap and the thrust bearing gap and holds the shaft and the housing in a non-contact state,
A first elastic body is provided on the back surface with respect to the radial bearing gap,
A static pressure gas bearing, comprising a second elastic body in a casing on the back side with respect to the thrust bearing gap and provided with the first elastic body.
JP2009199122A 2009-08-30 2009-08-30 Static pressure gas bearing Expired - Fee Related JP5308280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199122A JP5308280B2 (en) 2009-08-30 2009-08-30 Static pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199122A JP5308280B2 (en) 2009-08-30 2009-08-30 Static pressure gas bearing

Publications (2)

Publication Number Publication Date
JP2011047512A JP2011047512A (en) 2011-03-10
JP5308280B2 true JP5308280B2 (en) 2013-10-09

Family

ID=43834039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199122A Expired - Fee Related JP5308280B2 (en) 2009-08-30 2009-08-30 Static pressure gas bearing

Country Status (1)

Country Link
JP (1) JP5308280B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475368B2 (en) * 2009-08-30 2014-04-16 株式会社タンケンシールセーコウ Sheet material guide roll device
CN102248406B (en) * 2011-03-23 2014-08-06 西安交通大学 Z-axis part for high-precision aspheric surface machine tool
JP5857537B2 (en) * 2011-08-30 2016-02-10 日本精工株式会社 Air spindle
KR200469260Y1 (en) * 2011-09-08 2013-09-30 엘엔케이 주식회사 An Air Spindle having poriferous Air-plate
JP2018123927A (en) * 2017-02-03 2018-08-09 株式会社テクノリンク Rotary actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204022U (en) * 1985-06-12 1986-12-22
JPS6368301A (en) * 1986-09-11 1988-03-28 Toshiba Mach Co Ltd Spindle bearing structure
JPH0639145Y2 (en) * 1988-02-05 1994-10-12 三菱重工業株式会社 Gas bearing
JP2594110Y2 (en) * 1992-06-30 1999-04-19 エヌティエヌ株式会社 Hydrostatic gas bearing spindle device
JPH08219159A (en) * 1995-02-08 1996-08-27 Nippon Seiko Kk Static pressure gas bearing
JP2007170534A (en) * 2005-12-21 2007-07-05 Ntn Corp Gas bearing spindle

Also Published As

Publication number Publication date
JP2011047512A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5308280B2 (en) Static pressure gas bearing
US20070248293A1 (en) Bearing assembly and centering support structure therefor
US9651086B2 (en) Brush damper rings for radial fluid bearing
JP6444512B2 (en) Foil segment bearing, method for adjusting the gap geometry of a foil segment bearing, and corresponding manufacturing method
US10947974B2 (en) Vacuum scroll pump
JPS6148611A (en) Bearing assembly and damper spring composite
JPH1054208A (en) Bearing support member for high speed rotation
US6409390B1 (en) Compact, precision duplex bearing mount for high vibration environments
JP2006322581A (en) Divided cage and divided type bearing provided with it
JP2008519954A (en) Radially adjustable linear bearing assembly
JP2017096413A (en) Planetary roller type transmission, and assembling method and mounting method thereof
US20200040941A1 (en) Wind turbine
JP5922809B1 (en) Tilting pad bearing and rotating machine
US20140064650A1 (en) Bearing arrangement with a back-up bearing, in particular for mountnig a rapidly rotating shaft
JP4525476B2 (en) Preloading method for double row tapered roller bearing unit
US20110129177A1 (en) Spacers for rolling bearings with adjusted lengths
JP2011021514A (en) Bearing device for tappet roller
TW201410981A (en) Vacuum pump
KR102316120B1 (en) Rotary machines, journal bearings
KR20210060347A (en) Hybrid Fluid Film Bearing
US11655851B2 (en) Bearing device and rotating device
KR100514650B1 (en) journal bearing for shaft's uneccentric rotation
JP5475368B2 (en) Sheet material guide roll device
JP2019173888A (en) Angular contact ball bearing
JP2015010697A (en) Rolling bearing device and spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Ref document number: 5308280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees