JP5308252B2 - Solidifying agent and solidification processing method - Google Patents

Solidifying agent and solidification processing method Download PDF

Info

Publication number
JP5308252B2
JP5308252B2 JP2009157351A JP2009157351A JP5308252B2 JP 5308252 B2 JP5308252 B2 JP 5308252B2 JP 2009157351 A JP2009157351 A JP 2009157351A JP 2009157351 A JP2009157351 A JP 2009157351A JP 5308252 B2 JP5308252 B2 JP 5308252B2
Authority
JP
Japan
Prior art keywords
parts
calcium aluminosilicate
cement composition
cao
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009157351A
Other languages
Japanese (ja)
Other versions
JP2011011943A (en
Inventor
泰一郎 森
隆行 樋口
崇 佐々木
秀朗 石田
亮悦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009157351A priority Critical patent/JP5308252B2/en
Publication of JP2011011943A publication Critical patent/JP2011011943A/en
Application granted granted Critical
Publication of JP5308252B2 publication Critical patent/JP5308252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、硝酸塩液の固化に使用する固化剤、硝酸塩液の固化処理方法、それを用いて処理した固化体に関する。   The present invention relates to a solidifying agent used for solidifying a nitrate solution, a method for solidifying a nitrate solution, and a solidified body treated using the solidifying agent.

原子力発電所や核燃料再処理工場等原子力施設内から発生する硝酸塩を含む放射性廃液は、ドラム缶へ充填し、セメントと混合し、固化した後に、専用施設で埋設処分される。セメント固化処理方法としては、例えば、放射性廃棄物をアルカリで処理した後に高炉スラグを混合して固化する方法、高炉水砕スラグ及び/又は転炉スラグ、超微粉状物質、分散剤を含有してなる固化材を使用して固化する方法、高炉水砕スラグ、シリカフューム、ウォラストナイト、消石灰からなる固化材を使用して固化する方法が知られている(非特許文献1、特許文献1、特許文献2、特許文献3参照)。セメント固化体の流動性は、15打点フロー値で250mm以上、圧縮強度は材齢28日で10N/mm2以上を示すことが必要と言われている(非特許文献1参照)。 Radioactive liquid waste containing nitrates from nuclear facilities such as nuclear power plants and nuclear fuel reprocessing plants is filled into drums, mixed with cement, solidified, and then buried in a dedicated facility. The cement solidification treatment method includes, for example, a method in which radioactive waste is treated with alkali and then solidified by mixing blast furnace slag, granulated blast furnace slag and / or converter slag, ultrafine powder material, and dispersant. There is known a method of solidifying using a solidified material, a method of solidifying using a solidified material consisting of blast furnace granulated slag, silica fume, wollastonite, slaked lime (Non-patent Document 1, Patent Document 1, (See Patent Document 2 and Patent Document 3). It is said that the fluidity of the cement solid body is required to be 250 mm or more at a 15-point flow value, and the compressive strength is 10 N / mm 2 or more at a material age of 28 days (see Non-Patent Document 1).

佐々木忠志、沼田守、鈴木泰康、久保美和、セメント固化材の比較評価試験、核燃料サイクル開発機構 契約業務報告書、JNC TJ8430 2002-002(2003.2)Tadashi Sasaki, Mamoru Numata, Yasuyasu Suzuki, Miwa Kubo, Comparative evaluation test of cement solidified material, Nuclear Fuel Cycle Development Organization Contract Report, JNC TJ8430 2002-002 (2003.2)

特開昭63-205600号公報JP 63-205600 A 特開昭62-238499号公報JP-A-62-238499 特開平8-179095号公報Japanese Patent Laid-Open No. 8-179095

しかしながら、以下本発明の特徴については、記載がない。本願発明は、強アルカリ性を示す水酸化ナトリウムや消石灰を使用しないため、取り扱い時に作業員が水酸化ナトリウムや消石灰に触れて薬傷を起こす危険性がない。本発明は、水溶液とする際に加水しなくても良いため、専用タンクの設置が不要であり、放射性廃棄物の処理能力が向上する。特に水酸化ナトリウムは潮解性を示すために長期の貯蔵が難しく、使用に際しては予め水溶液にする使用があるため、一材化の固化剤とすることが難しい。   However, the features of the present invention are not described below. Since the present invention does not use sodium hydroxide or slaked lime that exhibits strong alkalinity, there is no risk that an operator touches sodium hydroxide or slaked lime during handling to cause chemical injury. In the present invention, since it is not necessary to add water when preparing an aqueous solution, it is not necessary to install a dedicated tank, and the processing capacity of radioactive waste is improved. In particular, sodium hydroxide is difficult to store for a long time because it exhibits deliquescence, and it is difficult to use it as a solidifying agent because it is used in advance as an aqueous solution.

本発明は、下記(1)〜(4)の特徴を有する固化剤であり、
(1)固化剤が、水硬性組成物100部とポリカルボン酸塩系減水剤0.5〜8部とショ糖0.05〜0.5部を含有するセメント組成物を含有すること。
(2)セメント組成物が、カルシウムアルミノシリケートを含有すること。
(3)カルシウムアルミノシリケートの化学組成が、CaO、Al2O3、SiO2の合計中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部であること。
(4)固化剤の用途が硝酸塩液の固化であること。
(2)セメント組成物が、カルシウムアルミノシリケート100部に対して1〜30部のシリカフュームを含有する該固化剤であり、(2)セメント組成物が、カルシウムアルミノシリケート100部に対して50〜300部のスラグを含有する該固化剤であり、硝酸塩液の固形分濃度が15〜40%であり、セメント組成物の水粉体比が30〜120%である該固化剤であり、更に、水硬性組成物100部に対して固形分換算で0.05〜45部の硬化剤を含有する該固化剤であり、化学組成が、CaO、Al2O3、SiO2の合計中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部であるカルシウムアルミノシリケートを含有する水硬性組成物100部とポリカルボン酸塩系減水剤0.5〜8部とショ糖0.05〜0.5部を含有するセメント組成物を、硝酸塩液と混合して、固化してなる固化処理方法であり、化学組成が、CaO、Al2O3、SiO2の合計中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部であるカルシウムアルミノシリケートを含有する水硬性組成物100部とポリカルボン酸塩系減水剤0.5〜8部とショ糖0.05〜0.5部を含有するセメント組成物と硬化剤を、硝酸塩液と混合して、固化してなる固化処理方法であり、セメント組成物が、カルシウムアルミノシリケート100部に対して1〜30部のシリカフュームを含有する該固化処理方法であり、セメント組成物が、カルシウムアルミノシリケート100部に対して50〜300部のスラグを含有する該固化処理方法であり、硝酸塩液の固形分濃度が15〜40%であり、セメント組成物の水粉体比が30〜120%であり、硬化剤の使用量が、水硬性組成物100部に対して固形分換算で0.05〜45部である該固化処理方法であり、カルシウムアルミノシリケートのガラス化率が70%以上である該固化処理方法であり、カルシウムアルミノシリケートのブレーン比表面積が2000cm2/g以上である該固化処理方法であり、該固化処理方法により固化してなる固化体である。
The present invention is a solidifying agent having the following features (1) to (4):
(1) The solidifying agent contains a cement composition containing 100 parts of a hydraulic composition, 0.5-8 parts of a polycarboxylate-based water reducing agent, and 0.05-0.5 parts of sucrose .
(2) The cement composition contains calcium aluminosilicate.
(3) the chemical composition of the calcium aluminosilicate, CaO, in the sum of Al 2 O 3, SiO 2, CaO is 35-55 parts Al 2 O 3 is 20 to 45 parts of a SiO 2 5 to 30 parts about.
(4) The solidifying agent is used for solidifying nitrate solution.
(2) The cement composition is the solidifying agent containing 1 to 30 parts of silica fume with respect to 100 parts of calcium aluminosilicate , and (2) the cement composition is 50 to 300 with respect to 100 parts of calcium aluminosilicate. a solidifying agent comprising a part of the slag, the solid concentration of the nitrate solution is 15 to 40% water powder ratio of the cement composition is a solid agent is 30 to 120%, more water It is the solidifying agent containing 0.05 to 45 parts of a curing agent in terms of solid content with respect to 100 parts of the hard composition , and the chemical composition is CaO, Al 2 O 3 , SiO 2 in the total, CaO is 35 to 55 part, Al 2 O 3 is 20 to 45 parts, hydraulic composition 100 parts of SiO 2 contains calcium aluminosilicate 5 to 30 parts of polycarboxylate-based water reducing agent 0.5-8 parts sucrose 0.05 the cement composition containing 0.5 parts of mixed nitrates solution, a solidification method comprising solidified, chemical group But, CaO, in the sum of Al 2 O 3, SiO 2, CaO is 35-55 parts, Al 2 O 3 is 20 to 45 parts, SiO 2 is hydraulic composition containing calcium aluminosilicate 5 to 30 parts A cement composition containing 100 parts of a product, polycarboxylate-based water reducing agent 0.5-8 parts and 0.05-0.5 parts of sucrose and a curing agent, mixed with a nitrate solution and solidified, The cement composition is the solidification method containing 1 to 30 parts of silica fume with respect to 100 parts of calcium aluminosilicate , and the cement composition contains 50 to 300 parts of slag with respect to 100 parts of calcium aluminosilicate. The solid content concentration of the nitrate solution is 15 to 40%, the water-powder ratio of the cement composition is 30 to 120%, and the amount of the curing agent used is the hydraulic composition 100. a solid treatment method is 0.05 to 45 parts in terms of solid content relative to the parts, the calcium a A vitrification ratio of amino silicate is 70% or more solid processing method, Blaine specific surface area of the calcium aluminosilicate is solid treatment method is 2000 cm 2 / g or more, and solidified by solid treatment method It is a solidified body.

本発明の効果は、硝酸塩を含む放射性廃液の処理能力が大きい固化剤を提供できることである。本発明の効果は、硝酸塩を含む放射性廃液の処理能力が大きい放射性廃棄物のセメント固化処理方法を提供できることである。   The effect of the present invention is to provide a solidifying agent having a large treatment capacity for radioactive liquid waste containing nitrate. The effect of the present invention is to provide a cement solidification treatment method for radioactive waste having a large treatment capacity for radioactive waste liquid containing nitrate.

以下、本発明を詳細に説明する。なお、本発明における部や%は特に規定しない限り質量基準で示す。   Hereinafter, the present invention will be described in detail. In the present invention, “parts” and “%” are based on mass unless otherwise specified.

本発明の固化剤は、セメント組成物を含有する。本発明の固化剤は、必要に応じて硬化剤や硬化剤溶液も含有する場合がある。本発明のセメント組成物は、水硬性組成物を含有する。本発明のセメント組成物は、必要に応じて分散剤や糖類も含有する場合がある。本発明の水硬性組成物は、カルシウムアルミノシリケートを含有する。本発明の水硬性組成物は、必要に応じてスラグやシリカフュームも含有する場合もある。   The solidifying agent of the present invention contains a cement composition. The solidifying agent of the present invention may contain a curing agent and a curing agent solution as necessary. The cement composition of the present invention contains a hydraulic composition. The cement composition of this invention may also contain a dispersing agent and saccharides as needed. The hydraulic composition of the present invention contains calcium aluminosilicate. The hydraulic composition of the present invention may contain slag and silica fume as necessary.

本発明でいうカルシウムアルミノシリケートとは、CaO、Al2O3、SiO2を主成分とし、キルンや電気炉で熱処理をして得られる自硬性を有する物質の総称である。次にカルシウムアルミノシリケートの製造方法を記載する。 The term “calcium aluminosilicate” as used in the present invention is a general term for self-hardening substances that are mainly composed of CaO, Al 2 O 3 , and SiO 2 and are obtained by heat treatment in a kiln or an electric furnace. Next, a method for producing calcium aluminosilicate will be described.

カルシウムアルミノシリケートの製造に使用するCaO原料は特に限定されないが、例えば生石灰(CaO)、消石灰(Ca(OH)2)、石灰石(CaCO3)等が挙げられる。 The CaO raw material used for the production of calcium aluminosilicate is not particularly limited, and examples thereof include quick lime (CaO), slaked lime (Ca (OH) 2 ), limestone (CaCO 3 ) and the like.

Al2O3原料は特に限定されないが、例えば、アルミナ、ボーキサイト、ダイアスポア、長石、粘土等が挙げられる。 The Al 2 O 3 raw material is not particularly limited, and examples thereof include alumina, bauxite, diaspore, feldspar, and clay.

SiO2原料は特に限定されないが、例えば、ケイ石、ケイ砂、石英、ケイ藻土等が挙げられる。 The SiO 2 raw material is not particularly limited, and examples thereof include quartzite, quartz sand, quartz, diatomaceous earth, and the like.

これらの原料を所定の割合で配合した後、電気炉、高周波炉、キルン炉等で溶融し、急冷却し、ガラス化することにより、カルシウムアルミノシリケートを製造する。溶融温度は1500℃以上が好ましく、1600〜1800℃がより好ましい。1500℃未満だと原料の溶融が不十分であったり、急冷却によりガラス化できなかったりする場合がある。   After blending these raw materials in a predetermined ratio, calcium aluminosilicate is produced by melting in an electric furnace, a high-frequency furnace, a kiln furnace, etc., rapidly cooling, and vitrifying. The melting temperature is preferably 1500 ° C. or higher, and more preferably 1600 to 1800 ° C. If it is lower than 1500 ° C, the raw material may not be sufficiently melted or vitrification may not be possible due to rapid cooling.

カルシウムアルミノシリケートのガラス化率は70%以上が好ましく、80%以上がより好ましく、90%以上が最も好ましい。ガラス化率が70%未満だと十分な水和活性が得られない場合がある。ガラス化率の測定方法は、下記に示すX線回折リートベルト法により行った。粉砕した試料に酸化アルミニウムや酸化マグネシウム等の内部標準物質を所定量添加し、メノウ乳鉢で十分混合したのち、粉末X線回折測定を実施する。測定結果を定量ソフトで解析し、ガラス化率を求める。定量ソフトには、Sietronics社製の「SIROQUANT」等を用いることができる。   The vitrification rate of calcium aluminosilicate is preferably 70% or more, more preferably 80% or more, and most preferably 90% or more. If the vitrification rate is less than 70%, sufficient hydration activity may not be obtained. The vitrification rate was measured by the X-ray diffraction Rietveld method shown below. A predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to the crushed sample, and after sufficient mixing in an agate mortar, powder X-ray diffraction measurement is performed. Analyze the measurement results with quantitative software to determine the vitrification rate. As the quantitative software, “SIROQUANT” manufactured by Sietronics can be used.

本発明のカルシウムアルミノシリケートは、クリンカーを粉砕することにより製造される。カルシウムアルミノシリケートは、化学組成がCaO、Al2O3、SiO2の合計100部中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部を含有することが好ましく、CaOが38〜52部、Al2O3が25〜41部、SiO2が10〜25部を含有することがより好ましい。この範囲外だと十分な流動性、強度発現性、寸法安定性が得られなかったり、水和発熱が大きくなったりする場合がある。 The calcium aluminosilicate of the present invention is produced by grinding a clinker. Calcium aluminosilicate has a chemical composition of CaO, Al 2 O 3 , SiO 2 total 100 parts, CaO 35-55 parts, Al 2 O 3 20-45 parts, SiO 2 5-30 parts Preferably, CaO contains 38 to 52 parts, Al 2 O 3 contains 25 to 41 parts, and SiO 2 contains 10 to 25 parts. Outside this range, sufficient fluidity, strength development, and dimensional stability may not be obtained, or hydration exotherm may increase.

本発明のカルシウムアルミノシリケートの特性を損なわない範囲内で、未反応のCaO(遊離酸化カルシウム)、未反応のAl2O3、ダイカルシウムシリケート(2CaO・SiO2)、ゲーレナイト(2CaO・Al2O3・SiO2)を少量含有することも可能である。 As long as the properties of the calcium aluminosilicate of the present invention are not impaired, unreacted CaO (free calcium oxide), unreacted Al 2 O 3 , dicalcium silicate (2CaO · SiO 2 ), gehlenite (2CaO · Al 2 O) It is also possible to contain a small amount of 3 · SiO 2 ).

カルシウムアルミノシリケートクリンカーの粉砕方法は特に限定されないが、例えば、ローラーミル、ジェットミル、チューブミル、ボールミル、振動ミル等の粉砕機を使用する方法が挙げられる。   The method for pulverizing the calcium aluminosilicate clinker is not particularly limited, and examples thereof include a method using a pulverizer such as a roller mill, a jet mill, a tube mill, a ball mill, and a vibration mill.

これらの粉砕機により粉砕して得られるカルシウムアルミノシリケートの粒度は、ブレーン比表面積で2000cm2/g以上が好ましく、4000cm2/g以上がより好ましく、6000cm2/gが最も好ましい。2000cm2/g未満だと、水和活性が不十分で強度が不足したり、混練物を調製したときにブリージングが生じたりする場合がある。 The particle size of the calcium aluminosilicate obtained by pulverizing these mills is preferably from 2000 cm 2 / g or more in Blaine specific surface area, more preferably at least 4000cm 2 / g, 6000cm 2 / g being most preferred. If it is less than 2000 cm 2 / g, the hydration activity may be insufficient and the strength may be insufficient, or breathing may occur when a kneaded product is prepared.

本発明は、強度と流動性が向上する点で、スラグを含有することもできる。   The present invention can also contain slag in terms of improving strength and fluidity.

スラグとは、鉱物質原料の溶融によって生ずる非金属物質をいう。スラグとしては、高炉スラグや転炉スラグ等が挙げられる。これらの中では、効果が大きい点で、高炉スラグが好ましい。スラグの粒度は、ブレーン比表面積で2000cm2/g以上が好ましく、4000cm2/g以上がより好ましく、6000cm2/gが最も好ましい。2000cm2/g未満だと、水和活性が不十分で強度が不足したり、混練物を調製したときにブリージングが生じたりする場合がある。 Slag refers to a non-metallic substance produced by melting mineral raw materials. Examples of the slag include blast furnace slag and converter slag. Among these, blast furnace slag is preferable because of its great effect. The particle size of the slag, preferably 2000 cm 2 / g or more in Blaine specific surface area, more preferably at least 4000cm 2 / g, 6000cm 2 / g being most preferred. If it is less than 2000 cm 2 / g, the hydration activity may be insufficient and the strength may be insufficient, or breathing may occur when a kneaded product is prepared.

スラグの使用量は、カルシウムアルミノシリケート100部に対して50〜300部が好ましく、40〜250部がより好ましく、80〜150部が最も好ましい。50部未満だとカルシウムアルミノシリケートの組成によっては凝結時間が短くなる場合があり、300部を超えると凝結時間が長くなったり、長期強度が向上しなかったりする場合がある。   The amount of slag used is preferably 50 to 300 parts, more preferably 40 to 250 parts, and most preferably 80 to 150 parts with respect to 100 parts of calcium aluminosilicate. If it is less than 50 parts, the setting time may be shortened depending on the composition of the calcium aluminosilicate, and if it exceeds 300 parts, the setting time may be long, or the long-term strength may not be improved.

本発明は、長期強度が向上する点で、シリカフュームを含有することができる。   The present invention can contain silica fume in that the long-term strength is improved.

シリカフュームとは、シリコン、フェロシリコン、シリコン合金等を製造する過程で発生する廃ガス中に含まれるガラス質シリカの球状超微粒子をいう。シリカフュームの粒度は、BET比表面積で100000cm2/g以上が好ましく、130000cm2/g以上がより好ましい。100000cm2/g未満だと、水和活性が不十分で強度が不足したり、混練物を調製したときにブリージングが生じたりする場合がある。 Silica fume refers to spherical ultrafine particles of vitreous silica contained in waste gas generated in the process of producing silicon, ferrosilicon, silicon alloy and the like. The particle size of the silica fume is preferably 100000 2 / g or more in BET specific surface area, 130000cm 2 / g or more is more preferable. If it is less than 100000 cm 2 / g, the hydration activity may be insufficient and the strength may be insufficient, or breathing may occur when a kneaded product is prepared.

シリカフュームの使用量は、カルシウムアルミノシリケート100部に対して1〜30部が好ましく、5〜15部がより好ましい。1部未満だと強度が伸びない場合があり、30部を超えると初期強度の発現性が小さくなる場合がある。   The amount of silica fume used is preferably 1 to 30 parts, more preferably 5 to 15 parts, per 100 parts of calcium aluminosilicate. If the amount is less than 1 part, the strength may not be increased. If the amount exceeds 30 parts, the initial strength may be reduced.

本発明は、硝酸を含む廃液中で、カルシウムアルミノシリケート、スラグ、シリカフュームの分散性が向上する点で、分散剤を使用することができる。   In the present invention, a dispersant can be used in that the dispersibility of calcium aluminosilicate, slag, and silica fume is improved in a waste liquid containing nitric acid.

分散剤とは、水中で粒子を個々に分散させる作用をする薬剤をいう。分散剤としては、ナフタレン系分散剤、メラミン系分散剤、アミノスルホン酸系分散剤、ポリカルボン酸系分散剤、ポリエーテル系分散剤等が挙げられる。これらの中では、効果が大きい点で、ポリカルボン酸塩系減水剤が好ましい。   A dispersing agent refers to an agent that acts to individually disperse particles in water. Examples of the dispersant include a naphthalene-based dispersant, a melamine-based dispersant, an aminosulfonic acid-based dispersant, a polycarboxylic acid-based dispersant, and a polyether-based dispersant. In these, a polycarboxylate type water reducing agent is preferable at a point with a big effect.

分散剤の使用量は、水硬性組成物100部に対して0.1〜8部が好ましく、0.5〜5部がより好ましく、1〜2部がより好ましい。0.1部未満だと分散性が向上せず、充填率が低下する場合があり、8部を超えると凝結が遅延する場合がある。   The amount of the dispersant used is preferably 0.1 to 8 parts, more preferably 0.5 to 5 parts, and more preferably 1 to 2 parts with respect to 100 parts of the hydraulic composition. If it is less than 0.1 part, the dispersibility may not be improved and the filling rate may decrease, and if it exceeds 8 parts, the setting may be delayed.

本発明は、凝結時間を調整する点で、糖類を使用することができる。   In the present invention, saccharides can be used in terms of adjusting the setting time.

糖類とは、炭水化物であり、単糖類、二糖類、多糖類等をいう。糖類としては、単糖類の果糖、ブドウ糖、脳糖、二糖類のショ糖、麦芽糖、乳糖等が挙げられる。これらの中では、効果が大きい点で、ショ糖が好ましい。   Saccharides are carbohydrates and refer to monosaccharides, disaccharides, polysaccharides, and the like. Examples of the saccharide include monosaccharide fructose, glucose, brain sugar, disaccharide sucrose, maltose, and lactose. Among these, sucrose is preferable because of its great effect.

糖類の使用量は、水硬性組成物100部に対して0.05〜0.5部が好ましく、0.1〜0.3部がより好ましい。0.05部未満だと凝結が早くなる場合があり、0.5部を超えると凝結が遅延する場合がある。   The amount of saccharide used is preferably 0.05 to 0.5 part, more preferably 0.1 to 0.3 part with respect to 100 parts of the hydraulic composition. If it is less than 0.05 part, the setting may be accelerated, and if it exceeds 0.5 part, the setting may be delayed.

本発明は、強度が向上する点で、硬化剤を含有することができる。   The present invention can contain a curing agent in that the strength is improved.

硬化剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属水酸化物が挙げられる。これらの中では、効果が大きい点で、アルカリ金属水酸化物が好ましい。   Examples of the curing agent include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide. Among these, alkali metal hydroxides are preferable because they are highly effective.

硬化剤は、水に溶解させた硬化剤溶液として使用できる。例えば、予め混合した硬化剤溶液を、セメント組成物と混合する。硬化剤溶液の固形分濃度は、5〜15%が好ましく、8〜12%がより好ましい。5%未満だと充填率が低下する場合があり、15%を超えると混練時に瞬結する場合がある。   The curing agent can be used as a curing agent solution dissolved in water. For example, a premixed hardener solution is mixed with the cement composition. The solid content concentration of the curing agent solution is preferably 5 to 15%, more preferably 8 to 12%. If it is less than 5%, the filling rate may decrease, and if it exceeds 15%, there may be a momentary setting during kneading.

硬化剤の使用量は、水硬性組成物100部に対して固形分換算で0.05〜45部が好ましく、0.5〜10部がより好ましく、0.8〜5.0部がさらに好ましく、1.5〜3.0部が最も好ましい。0.05部未満だと圧縮強度が向上しない場合があり、45部を超えると瞬結する場合がある。   The amount of the curing agent used is preferably 0.05 to 45 parts, more preferably 0.5 to 10 parts, further preferably 0.8 to 5.0 parts, and most preferably 1.5 to 3.0 parts in terms of solid content with respect to 100 parts of the hydraulic composition. . If it is less than 0.05 parts, the compression strength may not be improved, and if it exceeds 45 parts, there may be a momentary setting.

本発明は、セメント組成物と、硝酸塩液と、必要に応じて硬化剤を混合するものである。これらの混合により、硝酸塩液を固化できるものである。   In the present invention, a cement composition, a nitrate solution, and a curing agent are mixed as necessary. By mixing these, the nitrate solution can be solidified.

硝酸塩液とは、硝酸塩を含有する液をいう。硝酸塩液としては、硝酸塩を含む放射性廃液、半導体製造工場等から発生する硝酸廃液等が挙げられる。硝酸塩としては、硝酸ナトリウム、硝酸カリウム等のアルカリ金属硝酸塩等が挙げられる。これらの中では、効果が大きい点で、アルカリ金属硝酸塩が好ましい。   The nitrate solution refers to a solution containing nitrate. Examples of the nitrate solution include a radioactive waste solution containing nitrate, a nitric acid waste solution generated from a semiconductor manufacturing factory, and the like. Examples of the nitrate include alkali metal nitrates such as sodium nitrate and potassium nitrate. Among these, alkali metal nitrates are preferable because they are highly effective.

硝酸塩液の固形分濃度は、15〜40%が好ましく、17〜37%がより好ましい。15%未満だとブリージングが多く、かつ圧縮強度が低くなる場合があり、40%を超えるとフロー値が低くなる場合がある。   The solid concentration of the nitrate solution is preferably 15 to 40%, and more preferably 17 to 37%. If it is less than 15%, there are cases where there is a lot of breathing and the compression strength is low, and if it exceeds 40%, the flow value may be low.

セメント組成物の水粉体比は、効果が大きい点で、120%以下が好ましく、100%以下がより好ましく、85%以下が最も好ましい。水粉体比の下限値は30%以上が好ましく、45%以上がより好ましく、60%が最も好ましい。ここで、水は、硝酸塩液中の水を含有する。ここで、粉体は、水硬性組成物をいう。水粉体比の水には、硬化剤溶液に由来する水を含むものである。   The water-powder ratio of the cement composition is preferably 120% or less, more preferably 100% or less, and most preferably 85% or less from the viewpoint of great effect. The lower limit of the water powder ratio is preferably 30% or more, more preferably 45% or more, and most preferably 60%. Here, water contains the water in nitrate solution. Here, the powder refers to a hydraulic composition. The water / powder ratio water contains water derived from the curing agent solution.

本発明の固化処理方法には、ポルトランドセメント、減水剤、高性能減水剤、AE減水剤、流動化剤、増粘剤、防錆剤、防凍剤、収縮低減剤、凝結調整剤、シリカ、アルミナ、石灰石微粉末、コレマナイト、ジルコニア、ボロンカーバイド、ベントナイト等の粘土鉱物及びハイドロタルサイト等のアニオン交換体、ビニロン繊維、アクリル繊維、炭素繊維等の繊維状物質のうち一種又は二種以上を本発明の目的を阻害しない範囲で使用することができる。   The solidification treatment method of the present invention includes Portland cement, water reducing agent, high performance water reducing agent, AE water reducing agent, fluidizing agent, thickening agent, rust preventive agent, antifreezing agent, shrinkage reducing agent, setting modifier, silica, alumina , Limestone fine powder, colemanite, zirconia, boron carbide, bentonite and other clay minerals, hydrotalcite and other anion exchangers, vinylon fiber, acrylic fiber, carbon fiber and other fibrous materials such as one or more of the present invention Can be used as long as the purpose of the above is not impaired.

表1に示す組成のカルシウムアルミノシリケートを調製した。カルシウムアルミノシリケート、スラグ、シリカフューム、分散剤、糖類を表2に示す量混合してセメント組成物を調製した。セメント組成物と表2に示す組成の硬化剤溶液を混合してセメント固化体を調製した。硬化剤溶液は、硬化剤と水を予め混合したものを、セメント組成物と混合した。結果を表2に示す。   Calcium aluminosilicates having the compositions shown in Table 1 were prepared. A cement composition was prepared by mixing calcium aluminosilicate, slag, silica fume, dispersant, and sugar in the amounts shown in Table 2. A cement solidified body was prepared by mixing the cement composition and the hardener solution having the composition shown in Table 2. The hardener solution was prepared by mixing a hardener and water in advance with a cement composition. The results are shown in Table 2.

(使用材料)
カルシウムアルミノシリケートa1〜c6:表1中a1〜c6の組成となるようにCaO原料、Al2O3原料、SiO2原料を混合して混合粉砕した後、白金皿に入れて1650℃で1時間溶融した。溶融後、サンプルの入った白金皿をウォーターバス上に入れて急冷却し、サンプルを調製した。サンプルは、粉砕機を用いてブレーン比表面積6000cm2/gに粉砕した。
CaO原料:CaO、関東化学社製、試薬特級
Al2O3原料:Al2O3、関東化学社製、試薬特級
SiO2原料:SiO2、関東化学社製、試薬特級
スラグ:高炉スラグ、市販品、ブレーン比表面積6000cm2/g、高炉水砕スラグ
シリカフューム:市販品、ブレーン比表面積130000cm2/g
硬化剤:水酸化ナトリウム、関東化学社製、試薬特級
分散剤:ポリカルボン酸塩系減水剤、市販品
糖類:関東化学社製、試薬、ショ糖
模擬廃液:純水100部と硝酸ナトリウム45部を混合、溶解して調製した模擬廃液
硝酸ナトリウム:関東化学社製、試薬特級
(Materials used)
Calcium aluminosilicates a1 to c6: After mixing and crushing CaO raw material, Al 2 O 3 raw material and SiO 2 raw material so as to have the composition of a1 to c6 in Table 1, put them in a platinum dish at 1650 ° C for 1 hour Melted. After melting, the platinum dish containing the sample was placed on a water bath and rapidly cooled to prepare a sample. The sample was pulverized to a brain specific surface area of 6000 cm 2 / g using a pulverizer.
CaO raw material: CaO, manufactured by Kanto Chemical Co., Ltd., reagent grade
Al 2 O 3 raw material: Al 2 O 3 , manufactured by Kanto Chemical Co., Ltd., reagent grade
SiO 2 raw materials: SiO 2, manufactured by Kanto Chemical Co., Inc., special grade reagent slag: blast furnace slag, a commercially available product, Blaine specific surface area of 6000cm 2 / g, granulated blast furnace slag silica fume: a commercially available product, Blaine specific surface area 130000cm 2 / g
Hardener: Sodium hydroxide, manufactured by Kanto Chemical Co., Ltd., reagent grade dispersant: Polycarboxylate-based water reducing agent, commercially available saccharides: manufactured by Kanto Chemical Co., Inc., reagent, sucrose simulated waste liquid: 100 parts of pure water and 45 parts of sodium nitrate Simulated waste liquid sodium nitrate prepared by mixing and dissolving: Kanto Chemical Co., reagent grade

(測定方法)
ブレーン比表面積:JIS R 5201に規定するブレーン空気透過装置を用いて測定した。
フロー試験:JIS R 5201-1997「セメントの物理試験方法」に準じて混練物を作製し、練り上り直後の15打点フロー値を測定した。
圧縮強度試験:JIS R 5201-1997「セメントの物理試験方法」に準じて40mm×40mm×160mmのモル供試体を作製し、ビニール袋へ入れて封かんした後、90℃で1日養生後、28日まで20℃で養生した。その後、28日目の圧縮強度を測定した。
充填率::セメント組成物、硬化剤溶液、模擬廃液の混合物を、内径5cm、深さ10cmの円筒容器中に充填した。下記式により、混合物の質量を円筒容器の容積で除した値を百分率で表した値を充填率とした。
充填率(%)=(模擬廃液の質量部)/(セメント組成物の質量部+硬化剤溶液の質量部+模擬廃液の質量部)×100(%)
(Measuring method)
Blaine specific surface area: measured using a Blaine air permeation device specified in JIS R 5201.
Flow test: A kneaded material was prepared according to JIS R 5201-1997 “Cement physical test method”, and the 15-point flow value immediately after kneading was measured.
Compressive strength test: According to JIS R 5201-1997 “Cement physics test method”, a 40 mm x 40 mm x 160 mm molar specimen was prepared, sealed in a plastic bag, cured at 90 ° C for 1 day, and 28 Cured at 20 ° C until day. Thereafter, the compressive strength on the 28th day was measured.
Filling ratio: A mixture of cement composition, hardener solution and simulated waste liquid was filled into a cylindrical container having an inner diameter of 5 cm and a depth of 10 cm. According to the following formula, a value obtained by dividing the mass of the mixture by the volume of the cylindrical container as a percentage was defined as a filling rate.
Filling rate (%) = (mass part of simulated waste liquid) / (mass part of cement composition + mass part of curing agent solution + mass part of simulated waste liquid) × 100 (%)



表1に示すように、本発明の固化剤を使用する際、カルシウムアルミノシリケートの化学組成を適切な範囲にすることで、水酸化ナトリウムの使用量を低減しても、水酸化ナトリウムを使用しなくても、流動性や強度発現性に優れるセメント固化体が得られることがわかる。   As shown in Table 1, when the solidifying agent of the present invention is used, even if the amount of sodium hydroxide used is reduced by setting the chemical composition of the calcium aluminosilicate to an appropriate range, sodium hydroxide is used. Even without this, it can be seen that a solidified cement having excellent fluidity and strength can be obtained.

表2中の実験No.1-1で、カルシウムアルミノシリケートの種類とガラス化率を変化したこと以外は、実施例1と同様にして固化体を製造した。結果を表3に示す。   In Experiment No. 1-1 in Table 2, a solidified body was produced in the same manner as in Example 1 except that the type of calcium aluminosilicate and the vitrification rate were changed. The results are shown in Table 3.


表3に示すように、本発明の固化剤を使用する際、カルシウムアルミノシリケートのガラス化率を適切な範囲にすることで、水酸化ナトリウムを使用することなく、流動性、強度発現性に優れるセメント固化体が得られることがわかる。   As shown in Table 3, when the solidifying agent of the present invention is used, by making the vitrification rate of calcium aluminosilicate within an appropriate range, it is excellent in fluidity and strength development without using sodium hydroxide. It turns out that a cement solidified body is obtained.

表2中の実験No.1-1で、カルシウムアルミノシリケートのガラス化率を変化したこと以外は、実施例1と同様にして固化体を製造した。結果を表4に示す。   A solidified body was produced in the same manner as in Example 1 except that the vitrification rate of calcium aluminosilicate was changed in Experiment No. 1-1 in Table 2. The results are shown in Table 4.


表4に示すように、本発明の固化剤を使用する際、カルシウムアルミノシリケートのブレーン比表面積を適切な範囲にすることで、水酸化ナトリウムを使用することなく、流動性、強度発現性に優れるセメント固化体が得られることがわかる。   As shown in Table 4, when the solidifying agent of the present invention is used, it is excellent in fluidity and strength development without using sodium hydroxide by adjusting the Blaine specific surface area of calcium aluminosilicate to an appropriate range. It turns out that a cement solidified body is obtained.

本発明の固化剤は、硝酸塩を含む放射性廃液のセメント固化処理方法、それを用いて処理したセメント固化体に利用することができる。本発明の固化剤は、例えば、強アルカリ性を示す水酸化ナトリウムや消石灰の使用量を低減しても、強アルカリ性を示す水酸化ナトリウムや消石灰を使用しなくても、効果を有するので、安全性が高い。   The solidifying agent of the present invention can be used for a cement solidification treatment method of radioactive liquid waste containing nitrate and a cement solidified body treated using the method. The solidifying agent of the present invention has an effect even if, for example, the amount of sodium hydroxide or slaked lime showing strong alkalinity is reduced, or sodium hydroxide or slaked lime showing strong alkalinity is not used. Is expensive.

Claims (13)

下記(1)〜(4)の特徴を有する固化剤。
(1)固化剤が、水硬性組成物100部とポリカルボン酸塩系減水剤0.5〜8部とショ糖0.05〜0.5部を含有するセメント組成物を含有すること。
(2)セメント組成物が、カルシウムアルミノシリケートを含有すること。
(3)カルシウムアルミノシリケートの化学組成が、CaO、Al2O3、SiO2の合計中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部であること。
(4)固化剤の用途が硝酸塩液の固化であること。
A solidifying agent having the following features (1) to (4).
(1) The solidifying agent contains a cement composition containing 100 parts of a hydraulic composition, 0.5-8 parts of a polycarboxylate-based water reducing agent, and 0.05-0.5 parts of sucrose .
(2) The cement composition contains calcium aluminosilicate.
(3) the chemical composition of the calcium aluminosilicate, CaO, in the sum of Al 2 O 3, SiO 2, CaO is 35-55 parts Al 2 O 3 is 20 to 45 parts of a SiO 2 5 to 30 parts about.
(4) The solidifying agent is used for solidifying nitrate solution.
(2)セメント組成物が、カルシウムアルミノシリケート100部に対して1〜30部のシリカフュームを含有する請求項1に記載の固化剤。 (2) The solidifying agent according to claim 1, wherein the cement composition contains 1 to 30 parts of silica fume with respect to 100 parts of calcium aluminosilicate . (2)セメント組成物が、カルシウムアルミノシリケート100部に対して50〜300部のスラグを含有する請求項1又は2に記載の固化剤。 (2) The solidifying agent according to claim 1 or 2, wherein the cement composition contains 50 to 300 parts of slag with respect to 100 parts of calcium aluminosilicate . 硝酸塩液の固形分濃度が15〜40%であり、セメント組成物の水粉体比が30〜120%である請求項1〜3のいずれか1項に記載の固化剤。The solidifying agent according to any one of claims 1 to 3, wherein a solid content concentration of the nitrate solution is 15 to 40%, and a water powder ratio of the cement composition is 30 to 120%. 更に、水硬性組成物100部に対して固形分換算で0.05〜45部の硬化剤を含有する請求項1〜4のいずれか1項に記載の固化剤。 Furthermore, the hardening | curing agent of any one of Claims 1-4 which contains 0.05-45 parts hardening | curing agent in conversion of solid content with respect to 100 parts of hydraulic compositions . 化学組成が、CaO、Al2O3、SiO2の合計中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部であるカルシウムアルミノシリケートを含有する水硬性組成物100部とポリカルボン酸塩系減水剤0.5〜8部とショ糖0.05〜0.5部を含有するセメント組成物を、硝酸塩液と混合して、固化してなる固化処理方法。 Water containing calcium aluminosilicate having a chemical composition of CaO, Al 2 O 3 , SiO 2 , CaO 35-55 parts, Al 2 O 3 20-45 parts, SiO 2 5-30 parts A solidification method comprising solidifying a cement composition containing 100 parts of a hard composition, 0.5-8 parts of a polycarboxylate-based water reducing agent and 0.05-0.5 parts of sucrose with a nitrate solution. 化学組成が、CaO、Al2O3、SiO2の合計中、CaOが35〜55部、Al2O3が20〜45部、SiO2が5〜30部であるカルシウムアルミノシリケートを含有する水硬性組成物100部とポリカルボン酸塩系減水剤0.5〜8部とショ糖0.05〜0.5部を含有するセメント組成物と硬化剤を、硝酸塩液と混合して、固化してなる固化処理方法。 Water containing calcium aluminosilicate having a chemical composition of CaO, Al 2 O 3 , SiO 2 , CaO 35-55 parts, Al 2 O 3 20-45 parts, SiO 2 5-30 parts A solidification method comprising solidifying a cement composition containing 100 parts of a hard composition, 0.5 to 8 parts of a polycarboxylate-based water reducing agent and 0.05 to 0.5 part of sucrose and a nitrate solution. セメント組成物が、カルシウムアルミノシリケート100部に対して1〜30部のシリカフュームを含有する請求項6又は7に記載の固化処理方法。 The solidification processing method according to claim 6 or 7, wherein the cement composition contains 1 to 30 parts of silica fume with respect to 100 parts of calcium aluminosilicate . セメント組成物が、カルシウムアルミノシリケート100部に対して50〜300部のスラグを含有する請求項6〜8のいずれか1項に記載の固化処理方法。 The solidification processing method according to any one of claims 6 to 8, wherein the cement composition contains 50 to 300 parts of slag with respect to 100 parts of calcium aluminosilicate . 硝酸塩液の固形分濃度が15〜40%であり、セメント組成物の水粉体比が30〜120%であり、硬化剤の使用量が、水硬性組成物100部に対して固形分換算で0.05〜45部である請求項7〜9のいずれか1項に記載の固化処理方法。The solid content concentration of the nitrate solution is 15 to 40%, the water-powder ratio of the cement composition is 30 to 120%, and the use amount of the curing agent is in terms of solid content with respect to 100 parts of the hydraulic composition. It is 0.05-45 parts, The solidification processing method of any one of Claims 7-9. カルシウムアルミノシリケートのガラス化率が70%以上である請求項6〜10のいずれか1項に記載の固化処理方法。 The vitrification rate of calcium aluminosilicate is 70% or more, The solidification processing method of any one of Claims 6-10. カルシウムアルミノシリケートのブレーン比表面積が2000cm2/g以上である請求項6〜11のいずれか1項に記載の固化処理方法。 The solidification processing method according to any one of claims 6 to 11, wherein the calcium aluminosilicate has a specific surface area of 2000 cm 2 / g or more. 請求項6〜12のいずれか1項に記載の固化処理方法により固化してなり、流動性は15打点フロー値で250mm以上、圧縮強度は材齢28日で10N/mm 2 以上を示す固化体。 Ri Na solidified by solidification method according to any one of claims 6-12, fluidity 250mm or more 15 RBI flow value, the compressive strength is solidified showing a 10 N / mm 2 or more at an age of 28 days body.
JP2009157351A 2009-07-01 2009-07-01 Solidifying agent and solidification processing method Active JP5308252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157351A JP5308252B2 (en) 2009-07-01 2009-07-01 Solidifying agent and solidification processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157351A JP5308252B2 (en) 2009-07-01 2009-07-01 Solidifying agent and solidification processing method

Publications (2)

Publication Number Publication Date
JP2011011943A JP2011011943A (en) 2011-01-20
JP5308252B2 true JP5308252B2 (en) 2013-10-09

Family

ID=43591205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157351A Active JP5308252B2 (en) 2009-07-01 2009-07-01 Solidifying agent and solidification processing method

Country Status (1)

Country Link
JP (1) JP5308252B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543237B (en) * 2012-02-21 2014-12-24 浙江大学 Glass solidified body and preparation method thereof
CN107892495A (en) * 2017-12-08 2018-04-10 攀枝花钢城集团有限公司 The method that aluminate cement is prepared using high alumina pre-melted slag
CN114664471B (en) * 2022-03-17 2023-11-10 中国原子能科学研究院 Method for solidifying cement by using radioactive solid waste
CN115159920B (en) * 2022-07-05 2023-06-16 中国核电工程有限公司 Formula and method for solidifying cement by radioactive waste liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781566B2 (en) * 1988-05-02 1998-07-30 株式会社日立製作所 Cement solidification method and solidified body of radioactive waste
JPH08285995A (en) * 1995-04-19 1996-11-01 Hitachi Ltd Method for solidification process of radioactive waste
JP5388411B2 (en) * 2006-06-05 2014-01-15 電気化学工業株式会社 Low activation cement and method for producing the same
JP4612591B2 (en) * 2006-07-13 2011-01-12 株式会社東芝 Method and apparatus for solidifying radioactive waste

Also Published As

Publication number Publication date
JP2011011943A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
Hajimohammadi et al. Dissolution behaviour of source materials for synthesis of geopolymer binders: A kinetic approach
Han et al. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures
Haha et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3
Samarakoon et al. Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization
Kim et al. Development of geopolymer waste form for immobilization of radioactive borate waste
Shi et al. Effects of activator content on properties, mineralogy, hydration and microstructure of alkali-activated materials synthesized from calcium silicate slag and ground granulated blast furnace slag
Ye et al. Preparation and properties of sintered glass–ceramics containing Au–Cu tailing waste
JP5308252B2 (en) Solidifying agent and solidification processing method
Huang et al. Using hazardous barium slag as a novel admixture for alkali activated slag cement
Huang et al. Properties of alkali-activated slag with addition of cation exchange material
Luo et al. Effect of TiO2 on crystallization kinetics, microstructure and properties of building glass-ceramics based on granite tailings
JP2001264488A (en) Solidifying material for concentrated boric acid aqueous solution and neutron absorber
JP4730976B2 (en) Low activation hydraulic composition, low activation cement, and production method thereof
JP5442944B2 (en) Injection material and injection method
Yu et al. Influence of the degree of crystallinity of added nano-alumina on strength and reaction products of the CaO-activated GGBFS system
Wang et al. Preparation of one-part alkali-activated nickel slag binder using an optimal ball milling process
JP5388411B2 (en) Low activation cement and method for producing the same
JP5711556B2 (en) Method for producing hydraulic solidified material and method for producing acid-resistant concrete
Wu et al. Preparation and performance of slag-based binders for the cementation of fine tailings
Wang et al. Enhancement of pozzolanic activity of high-magnesium nickel slag via phase separation by adding CaO
CN111056789B (en) Method for solidifying radioactive waste residues
KR20120089881A (en) Manufacture of fine powder for concrete from fe-ni slag by mechanochemical treatment
Hujova et al. New glass‐based binders from engineered mixtures of inorganic waste
Li et al. High immobilizing capacity of natural granite as glass-ceramic matrix to simulated trivalent actinide waste
Lima et al. Mechanical, microstructural and energetic evaluation of conventional and one-part alkali-activated mixtures with raw sugarcane bagasse ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R151 Written notification of patent or utility model registration

Ref document number: 5308252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250