JP5307689B2 - Drift tube linear accelerator - Google Patents

Drift tube linear accelerator Download PDF

Info

Publication number
JP5307689B2
JP5307689B2 JP2009246505A JP2009246505A JP5307689B2 JP 5307689 B2 JP5307689 B2 JP 5307689B2 JP 2009246505 A JP2009246505 A JP 2009246505A JP 2009246505 A JP2009246505 A JP 2009246505A JP 5307689 B2 JP5307689 B2 JP 5307689B2
Authority
JP
Japan
Prior art keywords
base
drift tube
pedestal
linear accelerator
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009246505A
Other languages
Japanese (ja)
Other versions
JP2011096389A5 (en
JP2011096389A (en
Inventor
和男 山本
博光 井上
貴久 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009246505A priority Critical patent/JP5307689B2/en
Publication of JP2011096389A publication Critical patent/JP2011096389A/en
Publication of JP2011096389A5 publication Critical patent/JP2011096389A5/ja
Application granted granted Critical
Publication of JP5307689B2 publication Critical patent/JP5307689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

本発明は、真空の円筒共振器に高周波電力を供給し、円筒共振器内の棒(ステム)により支持された電極(ドリフトチューブ)同士間に発生する電界で荷電粒子を加速するドリフトチューブ線形加速器に関するものである。   The present invention provides a drift tube linear accelerator that supplies high-frequency power to a vacuum cylindrical resonator and accelerates charged particles with an electric field generated between electrodes (drift tubes) supported by rods (stems) in the cylindrical resonator. It is about.

ドリフトチューブ線形加速器は、円筒共振器内に中空円筒状のドリフトチューブを加速方向に沿って複数個配列して構成される。円筒共振器内に高周波電力が供給され、ドリフトチューブ間に発生する高周波電界が荷電粒子(たとえば、陽子など)を加速方向に沿って加速する。ドリフトチューブの配列は、高周波電界の向きが加速方向と逆向きのときに荷電粒子がドリフトチューブ内にいるように設計される。   The drift tube linear accelerator is configured by arranging a plurality of hollow cylindrical drift tubes in a cylindrical resonator along the acceleration direction. A high frequency power is supplied into the cylindrical resonator, and a high frequency electric field generated between the drift tubes accelerates charged particles (for example, protons) along the acceleration direction. The arrangement of the drift tubes is designed so that charged particles are in the drift tubes when the direction of the high-frequency electric field is opposite to the acceleration direction.

円筒共振器内に発生する電磁界モードはTMモード(円筒共振器長手方向に電界が発生)とTEモード(円筒共振器長手方向に磁界が発生)の2種類ある。TMモードを用いたドリフトチューブ線形加速器にはアルバレ型ドリフトチューブ線形加速器がある。このアルバレ型ドリフトチューブ線形加速器においては、円筒共振器内の電磁界モードをそのままドリフトチューブ間に発生する加速電界に用いるため、ドリフトチューブは円筒共振器から吊り下げるようにステムにより支持される。一方、TEモードを用いたドリフトチューブ線形加速器にはIH(Interdigital-H)型ドリフトチューブ線形加速器等がある。IH型ドリフトチューブ線形加速器では、円筒共振器内の電磁界モードはそのままでは加速電界に用いることができないため、ドリフトチューブを支持するステムを円筒共振器上下(もしくは左右)から交互に配列し誘導電流により間接的にドリフトチューブ間に加速電界を発生させる。   There are two types of electromagnetic field modes generated in the cylindrical resonator: TM mode (electric field is generated in the longitudinal direction of the cylindrical resonator) and TE mode (magnetic field is generated in the longitudinal direction of the cylindrical resonator). The drift tube linear accelerator using the TM mode includes an Alvara type drift tube linear accelerator. In this Alvare type drift tube linear accelerator, since the electromagnetic field mode in the cylindrical resonator is used as it is for the acceleration electric field generated between the drift tubes, the drift tube is supported by the stem so as to be suspended from the cylindrical resonator. On the other hand, drift tube linear accelerators using the TE mode include IH (Interdigital-H) type drift tube linear accelerators. In the IH drift tube linear accelerator, the electromagnetic field mode in the cylindrical resonator cannot be used for the acceleration electric field as it is, so the stems supporting the drift tube are alternately arranged from the top and bottom (or left and right) of the cylindrical resonator to induce the induced current. Indirectly generates an accelerating electric field between the drift tubes.

TEモードを用いるドリフトチューブ線形加速器にとって、ドリフトチューブ設置位置精度はとくに重要である。なぜなら、ドリフトチューブ間に発生する加速電界強度はドリフトチューブの設置位置に依存するからである。さらにAPF(Alternating Phase Focused)自己収束法を適用する場合、ドリフトチューブ間に発生する加速電界を荷電粒子の収束にも用いる為、加速電界強度をさらに高精度に調整する必要がある。そのため、従来のドリフトチューブ線形加速器のドリフトチューブ支持方法として提案されてきた円筒共振器にステムを差込み、その境界部にRFコンタクトを使用する方法を用いる事は得策ではない。   For the drift tube linear accelerator using the TE mode, the drift tube installation position accuracy is particularly important. This is because the acceleration electric field strength generated between the drift tubes depends on the installation position of the drift tubes. Furthermore, when an APF (Alternating Phase Focused) self-convergence method is applied, the acceleration electric field generated between the drift tubes is also used for the convergence of charged particles. Therefore, it is necessary to adjust the acceleration electric field intensity with higher accuracy. Therefore, it is not a good idea to insert a stem into a cylindrical resonator that has been proposed as a drift tube support method for a conventional drift tube linear accelerator and use an RF contact at the boundary.

そこで、ドリフトチューブにはステムのほかに設置固定するための台座を設け、さらに円筒共振器内には台座を固定する土台を設ける構造が用いられている。ドリフトチューブの円筒共振器内への設置固定は、土台上のドリフトチューブ配列位置に設けられたネジ穴と、台座に設けられた貫通穴を使用してネジにより行われる。その結果、ドリフトチューブ配列位置の高精度アライメントはネジ穴と貫通穴の径方向の許容分にて実施できる。(例えば、特許文献1、特許文献2)   Therefore, a structure is used in which the drift tube is provided with a pedestal for installation and fixing in addition to the stem, and a base for fixing the pedestal is provided in the cylindrical resonator. The drift tube is installed and fixed in the cylindrical resonator by screws using a screw hole provided at the drift tube arrangement position on the base and a through hole provided in the base. As a result, the high-precision alignment of the drift tube arrangement position can be performed with the allowable amount in the radial direction of the screw hole and the through hole. (For example, Patent Document 1 and Patent Document 2)

特開2007-157400号公報(図8)Japanese Patent Laying-Open No. 2007-157400 (FIG. 8) 特開2006−351233号公報(図5)JP 2006-351233 A (FIG. 5)

従来のドリフトチューブ線形加速器では、RFコンタクトを台座と土台間に挿入すると高周波電流の経路により台座と土台間に電位差が生じ放電するという問題があった。
この発明は、上述のような課題を解決するためになされたもので、台座と土台間での放電を抑止し、安定した運転が可能となるドリフトチューブ線形加速器を得ることを目的としている。
The conventional drift tube linear accelerator has a problem that when an RF contact is inserted between the pedestal and the base, a potential difference is generated between the pedestal and the base due to a high-frequency current path, causing discharge.
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a drift tube linear accelerator capable of suppressing discharge between a pedestal and a base and enabling stable operation.

本発明のドリフトチューブ線形加速器は、円筒共振器と、この円筒共振器に固定された土台と、円筒共振器の円筒軸方向に直線状に配列された複数のドリフトチューブとを備え、複数のドリフトチューブのうち少なくとも1個のドリフトチューブは、台座を有するステムにより支持され、このステムにより支持されたドリフトチューブの設置位置が調整可能となるよう、台座は土台に固定されるとともに、台座と土台との間にRFコンタクトが挿入されたドリフトチューブ線形加速器において、台座と土台との間であってRFコンタクトよりも外周部に電気的な接触部がない隙間を有するようにしたものである。   A drift tube linear accelerator according to the present invention includes a cylindrical resonator, a base fixed to the cylindrical resonator, and a plurality of drift tubes arranged linearly in the cylinder axis direction of the cylindrical resonator, and includes a plurality of drift tubes. At least one drift tube of the tubes is supported by a stem having a pedestal, and the pedestal is fixed to the base so that the installation position of the drift tube supported by the stem can be adjusted. In the drift tube linear accelerator in which the RF contact is inserted between the pedestal and the base, there is a gap between the pedestal and the base and there is no electrical contact portion in the outer peripheral portion of the RF contact.

この発明によれば、RFコンタクトよりも外周部の台座と土台間に隙間を有することで電位差により発生する電界強度を低減させる、放電を抑止することができ、安定した運転が可能なドリフトチューブ線形加速器を提供できる。   According to the present invention, there is a gap between the pedestal and the base of the outer peripheral part than the RF contact, thereby reducing the electric field strength generated by the potential difference, suppressing the discharge, and enabling the stable operation of the drift tube linear Accelerator can be provided.

本発明の実施の形態1によるドリフトチューブ線形加速器を示す外力断面図である。It is external force sectional drawing which shows the drift tube linear accelerator by Embodiment 1 of this invention. 本発明の実施の形態1によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by Embodiment 1 of this invention. TEモードが励起したドリフトチューブ線形加速器内のモードを示す模式図である。It is a schematic diagram which shows the mode in the drift tube linear accelerator which TE mode excited. 本発明の実施の形態1によるドリフトチューブ線形加速器の台座と土台間での誘導電流経路図である。FIG. 5 is an induced current path diagram between a pedestal and a base of the drift tube linear accelerator according to the first embodiment of the present invention. 本発明の実施の形態2によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by Embodiment 2 of this invention. 本発明の実施の形態2の変形例によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by the modification of Embodiment 2 of this invention. 本発明の実施の形態3によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by Embodiment 3 of this invention. 本発明の実施の形態4によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by Embodiment 4 of this invention. 本発明の実施の形態4の変形例によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by the modification of Embodiment 4 of this invention. 本発明の実施の形態5によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by Embodiment 5 of this invention. 本発明の実施の形態5の変形例によるドリフトチューブ線形加速器の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the drift tube linear accelerator by the modification of Embodiment 5 of this invention.

実施の形態1.
図1はこの発明の実施の形態1におけるドリフトチューブ線形加速器の要部を示す概略断面図である。図1の右側の図は側面の断面の右側の一部を省略した側面断面図、左側の図は正面断面図で、右側の図のA−A位置での断面が左側の図、左側の図のB−B位置での断面が右側の図となっている。図1において、1は、加速方向に伸びた真空容器となっ
ている円筒共振器で、この円筒共振器1がドリフトチューブ線形加速器を構成する。円筒共振器1内には加速方向に伸びた上下一対の土台2が設けられる。土台2はTEモードにより加速方向に発生する磁界が円筒共振器1端部まで発生する為のものである。必ずしも上下一対である必要は無いが、本実施の形態1では円筒共振器1内の対称性を考慮して、上下一対の同形状の土台2を設置している。
Embodiment 1 FIG.
1 is a schematic cross-sectional view showing a main part of a drift tube linear accelerator according to Embodiment 1 of the present invention. 1 is a side cross-sectional view in which a part of the right side of the side cross-section is omitted, the left-side view is a front-side cross-sectional view, the cross-section at the AA position in the right-side view is the left-side view, and the left-side view. The cross section at the B-B position is a diagram on the right side. In FIG. 1, 1 is a cylindrical resonator which is a vacuum vessel extending in the acceleration direction, and this cylindrical resonator 1 constitutes a drift tube linear accelerator. A pair of upper and lower bases 2 extending in the acceleration direction are provided in the cylindrical resonator 1. The base 2 is for generating a magnetic field generated in the acceleration direction by the TE mode up to the end of the cylindrical resonator 1. In the first embodiment, a pair of upper and lower bases 2 having the same shape are installed in consideration of the symmetry in the cylindrical resonator 1.

円筒共振器1の空胴形状、および土台2の高さ、幅、長さ、断面形状は、円筒共振器1内に発生する電磁界分布および共振周波数に影響を与える為、隣り合うドリフトチューブ4間に発生する加速電界強度が所望の値になるように3次元電磁界解析により決定される。本実施の形態1では、土台2の断面形状を台形として円筒共振器1側が下底となるよう設置して設置強度を強化させている。   Since the cavity shape of the cylindrical resonator 1 and the height, width, length, and cross-sectional shape of the base 2 affect the electromagnetic field distribution and resonance frequency generated in the cylindrical resonator 1, the adjacent drift tubes 4. It is determined by a three-dimensional electromagnetic field analysis so that the acceleration electric field strength generated between them has a desired value. In the first embodiment, the cross-sectional shape of the base 2 is a trapezoid, and the cylindrical resonator 1 side is installed as a lower bottom to enhance the installation strength.

土台2上にはステム3により支持された中空円筒状のドリフトチューブ4が加速方向に一対以上、すなわち複数配列される。円筒共振器1の加速方向の両端部(図1において右側端は省略)にはエンドドリフトチューブ5が円筒共振器1の端板に直接とりつけられ、エンドドリフトチューブ5の支持のためのステムは必要としない。上記ステム3は加速方向に順に円筒共振器1の上下から交互に配置される。ステム3には、ドリフトチューブ4が取り付けられる反対側端部に台座6が設けられる。   On the base 2, a pair of hollow cylindrical drift tubes 4 supported by the stem 3 are arranged in the acceleration direction, that is, a plurality of them. End drift tubes 5 are directly attached to end plates of the cylindrical resonator 1 at both ends in the acceleration direction of the cylindrical resonator 1 (the right end is omitted in FIG. 1), and a stem for supporting the end drift tube 5 is necessary. And not. The stems 3 are alternately arranged from the top and bottom of the cylindrical resonator 1 in order in the acceleration direction. The stem 3 is provided with a pedestal 6 at the opposite end to which the drift tube 4 is attached.

TEモードを用いたドリフトチューブ線形加速器では、誘導電流が円筒共振器1内壁、土台2、ステム3、ドリフトチューブ4と流れるため、それぞれの接触部での接触抵抗が供給電力量に大きく影響する。したがって、本実施の形態1におけるドリフトチューブ線形加速器として、本発明の効果が大きいIH型ドリフトチューブ線形加速器を例に説明する。   In the drift tube linear accelerator using the TE mode, the induced current flows through the inner wall of the cylindrical resonator 1, the base 2, the stem 3, and the drift tube 4, so that the contact resistance at each contact portion greatly affects the amount of power supplied. Therefore, as an example of the drift tube linear accelerator in the first embodiment, an IH type drift tube linear accelerator having a great effect of the present invention will be described.

図2はこの発明の実施の形態1におけるドリフトチューブ線形加速器の台座6と土台2の設置固定面の拡大断面図である。ここで、ステム3は円柱状の棒形状、台座6は円板形状であって、図2の断面方向において、台座6は土台2上面の幅と同値以下の幅を持つ。これは、不要な不連続面による表面抵抗の増加やエッジ部での無用の放電を避けるためである。本実施の形態1ではステム径D1をφ30mm、台座径D5をφ60mm、土台が
台座と対向する側の面、すなわち土台上面幅W1を60mmとした例にて説明する。台座6には土台2とネジ10で設置固定する為の貫通穴11と、貫通穴の中心、すなわち貫通穴加工位置(Pitch Circle Diameter ;P.C.D.)D2より台座6外周側にRFコンタクト13を設置するための溝14を設けている。溝外周D4から外側に連続して台座6と土台2間にギャップを設けるための隙間16を有するように、溝14よりも外側となる台座6の周辺部の厚みを薄くしている。
FIG. 2 is an enlarged cross-sectional view of the installation fixing surface of the pedestal 6 and the base 2 of the drift tube linear accelerator according to the first embodiment of the present invention. Here, the stem 3 has a cylindrical bar shape and the pedestal 6 has a disk shape, and the pedestal 6 has a width equal to or less than the width of the upper surface of the base 2 in the cross-sectional direction of FIG. This is to avoid an increase in surface resistance due to unnecessary discontinuous surfaces and unnecessary discharge at the edge. In the first embodiment, an example in which the stem diameter D1 is φ30 mm, the pedestal diameter D5 is φ60 mm, and the surface on the side where the base faces the pedestal, that is, the base upper surface width W1 is 60 mm will be described. The base 6 is provided with a through hole 11 for fixing with the base 2 and the screw 10 and an RF contact 13 on the outer periphery side of the base 6 from the center of the through hole, that is, a through hole machining position (Pitch Circle Diameter; PCD) D2. A groove 14 is provided. The thickness of the peripheral portion of the pedestal 6 on the outer side of the groove 14 is made thin so as to have a gap 16 for providing a gap between the pedestal 6 and the base 2 continuously from the groove outer periphery D4.

貫通穴加工位置(P.C.D.)D2をφ40mm、溝内周D3をφ51.2mm、溝外周D5をφ53.6mm、溝高さd2を1.2mm、隙間高さd1を0.5mmとした例にて説明する。本発明においては、溝外周D4から連続して、すなわちRFコンタクト13よりも台座6の外周側に、台座6と土台2間にギャップを設けるための隙間16を有し、この間で台座6と土台2が電気的に接触しないことに特徴がある。さらに言えば、隙間高さd1を台座6や土台2の表面の表面粗さ以上、望ましくは機械加工精度以上、例えば30μm以上とするものである。   In an example in which the through hole machining position (PCD) D2 is φ40 mm, the groove inner periphery D3 is φ51.2 mm, the groove outer periphery D5 is φ53.6 mm, the groove height d2 is 1.2 mm, and the gap height d1 is 0.5 mm. explain. In the present invention, there is a gap 16 for providing a gap between the pedestal 6 and the base 2 continuously from the groove outer periphery D4, that is, on the outer peripheral side of the pedestal 6 with respect to the RF contact 13, and between the pedestal 6 and the base in between. 2 is not in electrical contact. Further, the gap height d1 is set to be equal to or higher than the surface roughness of the surface of the base 6 or the base 2, preferably higher than the machining accuracy, for example, 30 μm or higher.

なお、不要の熱集中や放電を発生させないために、ネジ10にはキャップスクリューを採用し、台座6上面からはみ出ず、さらに銀メッキ等を施し導電率を向上させたものを使用する。また、台座6と土台2間を設置固定する為にはネジ10である必要はなく、後加工によるピン等でもよい。一方、円筒共振器1と土台2間、ステム3とドリフトチューブ4間、ステム3と台座6間には製作後の後調整が必要ないため、それぞれの設置固定面で
の接触抵抗の発生を防止するよう、一体物から切削加工する、もしくは電子ビーム溶接などで固定される。
In order not to cause unnecessary heat concentration and discharge, a cap screw is used as the screw 10 so that it does not protrude from the upper surface of the pedestal 6 and is further subjected to silver plating to improve conductivity. Moreover, in order to install and fix between the base 6 and the base 2, it is not necessary to be the screw 10, and a post-processed pin or the like may be used. On the other hand, no post-adjustment after fabrication is required between the cylindrical resonator 1 and the base 2, between the stem 3 and the drift tube 4, and between the stem 3 and the pedestal 6, thus preventing the occurrence of contact resistance on the respective installation fixing surfaces. In order to do so, it is cut from an integrated object or fixed by electron beam welding or the like.

図3はTEモードが励起したドリフトチューブ線形加速器内での発生磁界方向20、および誘導電流方向21を示したモードの模式図である。高周波電源からドリフトチューブ線形加速器にTEモードを励起させるように供給する。すると、加速方向に磁界が発生する。その磁界に誘起された誘導電流がドリフトチューブ4、円筒共振器1内壁、土台2、台座6、ステム3と流れ、隣り合うドリフトチューブ4間に加速電界が発生する。   FIG. 3 is a schematic diagram of a mode showing a generated magnetic field direction 20 and an induced current direction 21 in the drift tube linear accelerator excited by the TE mode. A high frequency power supply is supplied to excite the TE mode from the drift tube linear accelerator. Then, a magnetic field is generated in the acceleration direction. The induced current induced by the magnetic field flows through the drift tube 4, the inner wall of the cylindrical resonator 1, the base 2, the base 6, and the stem 3, and an accelerating electric field is generated between the adjacent drift tubes 4.

図4は台座6と土台2間での誘導電流の経路の詳細図である。誘導電流は高周波電流である為、一定の周期で流れる向きは反転するが、ここでは土台2から台座6に向かって誘導電流が流れる場合にて説明する。誘導電流は高周波電流である為表皮効果があり、導体の電流密度jは深さδに対して、次の数式(1)のように減少する。   FIG. 4 is a detailed view of the path of the induced current between the base 6 and the base 2. Since the induced current is a high-frequency current, the direction in which it flows at a constant period is reversed. Here, the case where the induced current flows from the base 2 to the base 6 will be described. Since the induced current is a high-frequency current, there is a skin effect, and the current density j of the conductor decreases as shown in the following equation (1) with respect to the depth δ.

Figure 0005307689

ここでdは表皮深さで、電流が表面電流の1/e(約0.37)になる深さであり数式(2)で表される。
Figure 0005307689

Here, d is the skin depth, which is the depth at which the current becomes 1 / e (about 0.37) of the surface current, and is expressed by Equation (2).

Figure 0005307689

ここで、ρは導体の電気抵抗、ωは電流の角周波数、μは導体の透磁率である。
一般的にIH型ドリフトチューブ線形加速器で用いられる運転周波数200MHz、導体として銅を例にとると、数式(1)、数式(2)より、表面から30μmの深さでは表面電流密度の1000分の1程度になり、導体表面でしか流れない事がわかる。
Figure 0005307689

Here, ρ is the electrical resistance of the conductor, ω is the angular frequency of the current, and μ is the permeability of the conductor.
In general, the operating frequency of 200 MHz used in the IH drift tube linear accelerator and copper as an example of conductor are 1000 minutes of the surface current density at a depth of 30 μm from the surface according to Equations (1) and (2). It becomes about 1 and it turns out that it flows only on the conductor surface.

この現象を踏まえて図4を説明すると、土台2の表面を流れてきた誘導電流21はRFコンタクト13を経由して台座6に移り、ステム3、ドリフトチューブ4へと流れていく。誘導電流が導体の内部を経由して土台2から台座6に移ることはない。その結果、土台2と台座6間の接触はRFコンタクト13により確実にされ、接触抵抗が低く、無用の熱発生が無い。このようにして、貫通穴11に尤度を持たせた台座6をネジ10により土台2に固定するためドリフトチューブ4位置の微調整が可能で、高精度アライメントができる構造において、供給電力量を低減できる効果がある。   4 will be described based on this phenomenon. The induced current 21 flowing on the surface of the base 2 moves to the base 6 via the RF contact 13 and flows to the stem 3 and the drift tube 4. The induced current does not move from the base 2 to the base 6 via the inside of the conductor. As a result, the contact between the base 2 and the base 6 is ensured by the RF contact 13, the contact resistance is low, and no unnecessary heat is generated. In this way, since the pedestal 6 having the likelihood of the through hole 11 is fixed to the base 2 with the screws 10, the position of the drift tube 4 can be finely adjusted, and the power supply amount can be reduced in a structure capable of high-precision alignment. There is an effect that can be reduced.

誘導電流の大半は上述の通り、土台2表面を流れ、台座6に設けられた接触抵抗が低いRFコンタクト13を経由して台座6に移り、ステム3、ドリフトチューブ4へと流れていく。ここで、誘導電流は高周波電流である為、表面にしか流れないことを鑑みると、RFコンタクト13まで往復することで特に台座6端部と土台2間には電位差が発生する。この電位差により誘発される電界強度は次の数式(3)で表現できる。   As described above, most of the induced current flows on the surface of the base 2, moves to the base 6 via the RF contact 13 having a low contact resistance provided on the base 6, and flows to the stem 3 and the drift tube 4. Here, in consideration of the fact that the induced current is a high-frequency current and flows only to the surface, a potential difference is generated between the end of the base 6 and the base 2 by reciprocating to the RF contact 13. The electric field strength induced by this potential difference can be expressed by the following formula (3).

Figure 0005307689

ここで、Vは台座6と土台2間の電位差、Eは台座6と土台2間の電界強度、dは台座6と土台2間のギャップ長である。
Figure 0005307689

Here, V is a potential difference between the base 6 and the base 2, E is an electric field strength between the base 6 and the base 2, and d is a gap length between the base 6 and the base 2.

もし、隙間16を有しない設計にした場合、台座6と土台2間は表面粗度による微小のギャップが開くことになる。ギャップが表面粗度程度(数μm)しか開いていない場合には、微小の電位差であっても発生電界強度は高く、放電が発生する問題があった。つまり、高周波電流は導体表面しか流れず、しかもRFコンタクト13を経由するため、台座6と土台2間に電位差が発生し、かつ台座6と土台2間のギャップが表面粗度レベルに極端に狭い為、電界強度が高くなり放電が発生することがわかった。そのため、本実施の形態1では、RFコンタクト13までの往復距離を短くして発生電位差を小さくするため、RFコンタクト13を設置するための溝14を貫通穴設置位置(P.C.D)D2より台座6の外側に設けると共に、台座6と土台2間に隙間16を設けることにより、隙間での電界強度が弱まるため放電を抑止することができる。   If the design does not include the gap 16, a minute gap due to the surface roughness is opened between the base 6 and the base 2. When the gap is only open to the extent of surface roughness (several μm), the generated electric field strength is high even with a small potential difference, and there is a problem that discharge occurs. That is, since the high-frequency current flows only on the conductor surface and passes through the RF contact 13, a potential difference is generated between the base 6 and the base 2, and the gap between the base 6 and the base 2 is extremely narrow to the surface roughness level. For this reason, it was found that the electric field strength increased and discharge occurred. Therefore, in the first embodiment, in order to shorten the reciprocating distance to the RF contact 13 and reduce the generated potential difference, the groove 14 for installing the RF contact 13 is formed on the base 6 from the through hole installation position (PCD) D2. By providing the gap 16 between the pedestal 6 and the base 2 while being provided outside, the electric field strength in the gap is weakened, so that the discharge can be suppressed.

また、RFコンタクト13までの往復距離が長いと、高周波電流の経路が電磁界設計時とは異なる共振器動作となる問題があった。ドリフトチューブ線形加速器の電磁界解析を、メッシュを用いた電磁界解析ソフトを使用して行った。解析上、台座6と土台2間に隙間16はまったく無く、また接触抵抗はないものと仮定する(表面抵抗は考慮する)為、誘導電流は台座6と土台2間に進入せず、土台2表面から台座6表面にそのまま移る。したがって、RFコンタクト13までの往復距離がもともとの高周波電流経路長に比べ無視できない長さになると設計時とは異なった共振器動作となり、製作されたドリフトチューブ線形加速器の共振周波数および加速電界強度が設計値と異なる問題があった。高周波電流経路とドリフトチューブ線形加速器の共振周波数の関係を下記に説明する。   Further, when the reciprocating distance to the RF contact 13 is long, there is a problem that the path of the high-frequency current becomes a resonator operation different from that in the electromagnetic field design. Electromagnetic field analysis of the drift tube linear accelerator was performed using electromagnetic field analysis software using a mesh. In the analysis, it is assumed that there is no gap 16 between the pedestal 6 and the base 2 and there is no contact resistance (considering surface resistance), so the induced current does not enter between the pedestal 6 and the base 2 and the base 2 It moves from the surface to the surface of the base 6 as it is. Therefore, when the reciprocating distance to the RF contact 13 becomes a length that cannot be ignored compared to the original high-frequency current path length, the resonator operation differs from the design time, and the resonance frequency and acceleration electric field strength of the manufactured drift tube linear accelerator are reduced. There was a problem different from the design value. The relationship between the high-frequency current path and the resonance frequency of the drift tube linear accelerator will be described below.

ドリフトチューブ線形加速器の共振周波数は次の数式(4)で表現される。

Figure 0005307689

ここで、fはドリフトチューブ線形加速器の共振周波数、Lはインダクタンス成分、Cはキャパシタンス成分である。Cは主にドリフトチューブ4間に発生するキャパシタンスである。Lは一般のコイルの考え方を適用すると理解しやすく、コイルに発生するインダクタンスは次の数式(5)で表現される。 The resonance frequency of the drift tube linear accelerator is expressed by the following equation (4).
Figure 0005307689

Here, f is a resonance frequency of the drift tube linear accelerator, L is an inductance component, and C is a capacitance component. C is a capacitance mainly generated between the drift tubes 4. L can be easily understood by applying a general coil concept, and the inductance generated in the coil is expressed by the following equation (5).

Figure 0005307689

ここで、μは空芯の場合は1.0であり、nは巻き数、Sはコイルの断面積、aはコイル
で囲まれる断面積の半径である。
ドリフトチューブ線形加速器でも数式(5)の考え方で説明する事ができ、この場合の断面積は、高周波電流の経路により囲まれる断面積とみなす事ができる。したがって、高周波電流経路長(circle)と共振周波数の関係は次の数式(6)として考える事ができ、共振周波数と高周波電流経路は反比例の関係にある。
Figure 0005307689

Here, μ is 1.0 in the case of an air core, n is the number of turns, S is a sectional area of the coil, and a is a radius of a sectional area surrounded by the coil.
The drift tube linear accelerator can also be explained by the concept of Expression (5), and the cross-sectional area in this case can be regarded as a cross-sectional area surrounded by a high-frequency current path. Therefore, the relationship between the high frequency current path length (circle) and the resonance frequency can be considered as the following formula (6), and the resonance frequency and the high frequency current path are in an inversely proportional relationship.

Figure 0005307689

次に、高周波電流経路とドリフトチューブ4間に発生する電界強度の関係を下記に説明する。ドリフトチューブ4間に発生する電界強度は、次の数式(7)で表されるファラデーの法則に従う。
Figure 0005307689

Next, the relationship between the electric field strength generated between the high-frequency current path and the drift tube 4 will be described below. The electric field strength generated between the drift tubes 4 follows Faraday's law expressed by the following equation (7).

Figure 0005307689

ここで、lはドリフトチューブ4間長、EDTはドリフトチューブ4間に発生する電界
強度、Bはドリフトチューブ線形加速器内に発生する磁界強度、ドットは時間微分を示し、Sは高周波電流の経路により囲まれる断面積である。
したがって、高周波電流経路長(circle)と加速電圧(数式(7)左辺)の関係は数式(8)として考える事ができ、加速電界強度(加速電圧)と高周波電流経路は2乗に比例する関係がある。
Figure 0005307689

Here, l is the length between the drift tubes 4, E DT is the electric field strength generated between the drift tubes 4, B is the magnetic field strength generated in the drift tube linear accelerator, the dots indicate time differentiation, and S is the path of the high-frequency current Is a cross-sectional area surrounded by.
Therefore, the relationship between the high-frequency current path length (circle) and the acceleration voltage (left side of Formula (7)) can be considered as Formula (8), and the relationship between the acceleration electric field strength (acceleration voltage) and the high-frequency current path is proportional to the square. There is.

Figure 0005307689

本実施の形態1において円筒共振器1内径を一般的な値であるφ320mmとすると、高周波電流経路の長さは、図2の本発明のRFコンタクト13の設置方法では3%の増加にとどめることができ、設計値からの誤差を小さくする効果がある。
Figure 0005307689

When the inner diameter of the cylindrical resonator 1 in the first embodiment is φ320 mm, which is a general value, the length of the high-frequency current path is limited to 3% in the installation method of the RF contact 13 of the present invention shown in FIG. It is possible to reduce the error from the design value.

そして、隙間16を設けない場合、溝14内にガスが残留し、台座6と土台2間の微小ギャップから少しずつ排気される為、円筒共振器1の真空度が劣化する問題があったが、本実施の形態1で記すドリフトチューブ線形加速器は、隙間16を設けたので溝14内にガスが残留せず、真空度の劣化を防ぐ効果がある。   If the gap 16 is not provided, the gas remains in the groove 14 and is exhausted little by little from the minute gap between the pedestal 6 and the base 2, so that the degree of vacuum of the cylindrical resonator 1 deteriorates. In the drift tube linear accelerator described in the first embodiment, since the gap 16 is provided, no gas remains in the groove 14, and the effect of preventing the deterioration of the degree of vacuum is obtained.

実施の形態2.
実施の形態1においては、隙間16の形状は隙間が一定となるよう、隙間16を形成するための台座6の面を平らで土台2の面と平行となる形状にしたが、C面取りやR面取りとした構成にしてもよい。図5は、本発明の実施の形態2によるドリフトチューブ線形加速器の台座部分の拡大断面図であり、台座6の、隙間16を形成する部分、すなわち周辺
部分の形状をC面取り23の形状にしている。C面取りだけではなく、図6で示すように、丸みを有するR面取り24で構成しても良い。このように、C面取り又はR面取りの形状とすること、すなわち、外周部に向かって隙間16の寸法が大きくなるようにすることで、実施の形態1と同様の効果があるとともに、台座端部22での放電の可能性をさらに低減できるという効果がある。つまり、台座6と土台2間に発生する電位差は厳密には一定ではなく、電流経路が長くなる台座6端部にいくほど電位差は大きくなる。したがって、R面取りやC面取りを施すことで台座端部22での隙間16の寸法をより大きくし、さらには電界集中を緩和することで、発生電界強度を抑え、放電をより防止することができる。
Embodiment 2. FIG.
In the first embodiment, the shape of the gap 16 is such that the surface of the base 6 for forming the gap 16 is flat and parallel to the surface of the base 2 so that the gap is constant. A chamfered configuration may be used. FIG. 5 is an enlarged cross-sectional view of the pedestal portion of the drift tube linear accelerator according to the second embodiment of the present invention. The portion of the pedestal 6 where the gap 16 is formed, that is, the shape of the peripheral portion is changed to the shape of the C chamfer 23. Yes. You may comprise not only C chamfering but R round chamfer 24 which has roundness as shown in FIG. As described above, by making the shape of C chamfering or R chamfering, that is, by increasing the size of the gap 16 toward the outer peripheral portion, the same effect as in the first embodiment can be obtained, and the pedestal end portion can be obtained. There is an effect that the possibility of discharging at 22 can be further reduced. That is, the potential difference generated between the pedestal 6 and the base 2 is not strictly constant, and the potential difference increases toward the end of the pedestal 6 where the current path becomes longer. Accordingly, by performing R chamfering or C chamfering, the size of the gap 16 at the pedestal end 22 can be further increased, and further, by reducing the electric field concentration, the generated electric field strength can be suppressed and discharge can be further prevented. .

実施の形態3.
図7は、本発明の実施の形態3によるドリフトチューブ線形加速器の台座部分を示す拡大断面図である。本実施の形態3においては、図7に示すように、溝の形状を蟻溝25、すなわち溝の開口寸法よりも溝底部の寸法が大きい溝とした。蟻溝25で構成しても実施の形態1や2と同様の効果があるとともに、台座6を土台2上に設置固定するさいにRFコンタクト13の落下を防止する効果がある。RFコンタクト13は高い導電性があるため、不用意にRFコンタクト13の落下防止に一般の接着剤を使用すると導電性が失われ接触抵抗が増加し、供給電力量が増加する問題が生じることを防止する事ができる。
Embodiment 3 FIG.
FIG. 7 is an enlarged cross-sectional view showing a pedestal portion of the drift tube linear accelerator according to the third embodiment of the present invention. In the third embodiment, as shown in FIG. 7, the groove shape is a dovetail groove 25, that is, a groove having a groove bottom dimension larger than the opening dimension of the groove. Even when the dovetail 25 is configured, the same effects as those of the first and second embodiments are obtained, and the RF contact 13 is prevented from dropping when the base 6 is installed and fixed on the base 2. Since the RF contact 13 is highly conductive, if a general adhesive is used to prevent the RF contact 13 from being dropped carelessly, the conductivity is lost, the contact resistance increases, and the amount of supplied power increases. It can be prevented.

実施の形態4.
図8は、本発明の実施の形態4によるドリフトチューブ線形加速器の台座部分の拡大断面図である。図8に示すように、RFコンタクト13を挟むための切り欠き141の高さ寸法d2よりも隙間16の高さ寸法d1が大きくなるようにしても良い。このようにすることで、隙間16での電界強度をさらに低減でき、放電が発生し難くなる効果がある。
また、図9は、隙間16にセラミックなどの誘電体物質17を挟んだ本実施の形態4の変形例によるドリフトチューブ線形加速器の台座部分の拡大断面図である。隙間16の高さ寸法d1が大きくなることで電界強度は低減し誘電体表面での沿面放電は発生しないため、隙間16に誘電体物質を挟み、RFコンタクトの設置性が向上する効果がある。
Embodiment 4 FIG.
FIG. 8 is an enlarged cross-sectional view of the pedestal portion of the drift tube linear accelerator according to the fourth embodiment of the present invention. As shown in FIG. 8, the height dimension d1 of the gap 16 may be larger than the height dimension d2 of the notch 141 for sandwiching the RF contact 13. By doing in this way, the electric field strength in the gap 16 can be further reduced, and there is an effect that discharge is hardly generated.
FIG. 9 is an enlarged cross-sectional view of a pedestal portion of a drift tube linear accelerator according to a modification of the fourth embodiment in which a dielectric material 17 such as ceramic is sandwiched between gaps 16. As the height dimension d1 of the gap 16 is increased, the electric field strength is reduced and creeping discharge does not occur on the surface of the dielectric, so that there is an effect that the dielectric material is sandwiched in the gap 16 and the RF contact placement is improved.

実施の形態5.
図10は、本発明の実施の形態5によるドリフトチューブ線形加速器の台座部分を示す拡大断面図である。これまでの実施の形態においては、RFコンタクトを設置するため、台座6に溝14や切り欠き141を設けたが、図10のように、土台2側に溝14を設けた構成にしてもよい。また、図11は、本発明の実施の形態5の変形例によるドリフトチューブ線形加速器の台座部分を示す拡大断面図である。図11では、溝14を土台2側に設けるとともに、溝14の周囲を削ることにより、隙間16を形成したものである。図10や図11で示した土台2側に溝14を設け、台座6あるいは土台2のRFコンタクトよりも外周となる部分を削って隙間16を形成するようにしても、これまでの実施の形態と同様の効果があるとともに、RFコンタクト13の設置固定性が安定し、台座6を土台2上に設置固定するさい容易になるという効果もある。
Embodiment 5 FIG.
FIG. 10 is an enlarged cross-sectional view showing the pedestal portion of the drift tube linear accelerator according to the fifth embodiment of the present invention. In the embodiments so far, the groove 14 and the notch 141 are provided in the base 6 in order to install the RF contact. However, the groove 14 may be provided on the base 2 side as shown in FIG. . FIG. 11 is an enlarged cross-sectional view showing a pedestal portion of a drift tube linear accelerator according to a modification of the fifth embodiment of the present invention. In FIG. 11, the groove 14 is provided on the base 2 side, and the gap 16 is formed by cutting the periphery of the groove 14. Even if the groove 14 is provided on the base 2 side shown in FIG. 10 and FIG. 11 and the outer periphery of the base 6 or the base 2 is cut away from the RF contact, the gap 16 is formed. In addition, the RF contact 13 can be installed and fixed stably, and the base 6 can be easily installed and fixed on the base 2.

以上説明したように、本発明は、ドリフトチューブを支持するステムの台座と土台との電気的接触を確実にするために台座と土台との間にRFコンタクトを設けるとともに、RFコンタクトよりも外側で台座と土台が電気的に接触しないように、この部分に隙間を設けたものであり、隙間は、望ましくは30μm以上としたものである。   As described above, the present invention provides an RF contact between the base and the base to ensure electrical contact between the base of the stem supporting the drift tube and the base, and is provided outside the RF contact. A gap is provided in this portion so that the pedestal and the base do not make electrical contact, and the gap is desirably 30 μm or more.

1:円筒共振器 2:土台
3 ステム 4:ドリフトチューブ
6:台座 10:ネジ
13:RFコンタクト 14:溝
16:隙間 23:C面取り部
24:R面取り部 25:蟻溝
d1:隙間高さ
1: Cylindrical resonator 2: Base 3 Stem 4: Drift tube 6: Base 10: Screw 13: RF contact 14: Groove 16: Gap 23: C chamfer 24: R chamfer 25: Dovetail d1: Gap height

Claims (3)

円筒共振器と、この円筒共振器に固定された土台と、上記円筒共振器の円筒軸方向に直線状に配列された複数のドリフトチューブとを備え、上記複数のドリフトチューブのうち少なくとも1個のドリフトチューブは、台座を有するステムにより支持され、このステムにより支持されたドリフトチューブの設置位置が調整可能となるよう、上記台座は上記土台に固定されるとともに、上記台座と上記土台との間にRFコンタクトが挿入されたドリフトチューブ線形加速器において、上記台座と上記土台との間であって上記RFコンタクトよりも外側部分全体に電気的な接触部がない隙間を有し、この隙間の寸法が外側に向かって大きくなっていることを特徴とするドリフトチューブ線形加速器。 A cylindrical resonator; a base fixed to the cylindrical resonator; and a plurality of drift tubes arranged linearly in a cylindrical axis direction of the cylindrical resonator, and at least one of the plurality of drift tubes. The drift tube is supported by a stem having a pedestal, and the pedestal is fixed to the base so that the installation position of the drift tube supported by the stem can be adjusted, and between the pedestal and the base. In the drift tube linear accelerator in which the RF contact is inserted, there is a gap between the pedestal and the base and there is no electrical contact portion in the entire outer portion of the RF contact, and the dimension of the gap is outside. Drift tube linear accelerator characterized by becoming larger toward 円筒共振器と、この円筒共振器に固定された土台と、上記円筒共振器の円筒軸方向に直線状に配列された複数のドリフトチューブとを備え、上記複数のドリフトチューブのうち少なくとも1個のドリフトチューブは、台座を有するステムにより支持され、このステムにより支持されたドリフトチューブの設置位置が調整可能となるよう、上記台座は上記土台にネジにより固定されるとともに、上記台座と上記土台との間にRFコンタクトが挿入されたドリフトチューブ線形加速器において、上記台座と上記土台との間であって上記RFコンタクトよりも外側部分全体に電気的な接触部がない隙間を有し、上記RFコンタクトが上記ネジより外側に設けられたことを特徴とするドリフトチューブ線形加速器。 A cylindrical resonator; a base fixed to the cylindrical resonator; and a plurality of drift tubes arranged linearly in a cylindrical axis direction of the cylindrical resonator, and at least one of the plurality of drift tubes. The drift tube is supported by a stem having a pedestal, and the pedestal is fixed to the base with screws so that the installation position of the drift tube supported by the stem can be adjusted, and between the pedestal and the base. In the drift tube linear accelerator having an RF contact inserted between the base and the base, there is a gap between the base and the entire outer portion of the RF contact , and the RF contact A drift tube linear accelerator provided outside the screw . 円筒共振器と、この円筒共振器に固定された土台と、上記円筒共振器の円筒軸方向に直線状に配列された複数のドリフトチューブとを備え、上記複数のドリフトチューブのうち少なくとも1個のドリフトチューブは、台座を有するステムにより支持され、このステムにより支持されたドリフトチューブの設置位置が調整可能となるよう、上記台座は上記土台に固定されるとともに、上記台座と上記土台との間に、上記台座または上記土台のいずれかに設けられた溝にRFコンタクトが挿入されたドリフトチューブ線形加速器において、上記台座と上記土台との間であって上記RFコンタクトよりも外側部分全体に電気的な接触部がない隙間を有し、この隙間の寸法が、上記溝の深さよりも小さいことを特徴とするドリフトチューブ線形加速器。 A cylindrical resonator; a base fixed to the cylindrical resonator; and a plurality of drift tubes arranged linearly in a cylindrical axis direction of the cylindrical resonator, and at least one of the plurality of drift tubes. The drift tube is supported by a stem having a pedestal, and the pedestal is fixed to the base so that the installation position of the drift tube supported by the stem can be adjusted, and between the pedestal and the base. In a drift tube linear accelerator in which an RF contact is inserted into a groove provided on either the pedestal or the base, the entire portion outside the RF contact is electrically connected between the pedestal and the base. a gap no contact portion, the dimensions of this gap, the drift tube linac, wherein less than the depth of the groove
JP2009246505A 2009-10-27 2009-10-27 Drift tube linear accelerator Active JP5307689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246505A JP5307689B2 (en) 2009-10-27 2009-10-27 Drift tube linear accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246505A JP5307689B2 (en) 2009-10-27 2009-10-27 Drift tube linear accelerator

Publications (3)

Publication Number Publication Date
JP2011096389A JP2011096389A (en) 2011-05-12
JP2011096389A5 JP2011096389A5 (en) 2011-12-15
JP5307689B2 true JP5307689B2 (en) 2013-10-02

Family

ID=44113120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246505A Active JP5307689B2 (en) 2009-10-27 2009-10-27 Drift tube linear accelerator

Country Status (1)

Country Link
JP (1) JP5307689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936909A (en) * 2019-04-02 2019-06-25 清华大学 A kind of fixed structure and interdigital drift tube accelerator of drift tube

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692905B2 (en) * 2010-12-06 2015-04-01 タイム株式会社 RF cavity, linear accelerator and buncher cavity
JP5911414B2 (en) * 2012-06-12 2016-04-27 三菱電機株式会社 Drift tube linear accelerator
JP6833355B2 (en) * 2016-06-13 2021-02-24 株式会社東芝 Ion injection device and particle beam therapy device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963700A (en) * 1982-10-04 1984-04-11 三菱重工業株式会社 Electrode structure for particle accelerator
JP3328088B2 (en) * 1995-01-17 2002-09-24 株式会社東芝 Drift tube accelerator stem mounting device
JP3946466B2 (en) * 2001-07-03 2007-07-18 日本バルカー工業株式会社 Sealing material for dovetail
JP2007157400A (en) * 2005-12-01 2007-06-21 Sumitomo Heavy Ind Ltd Linear accelerator
JP2009205939A (en) * 2008-02-28 2009-09-10 Hitachi Ltd Drift-tube accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109936909A (en) * 2019-04-02 2019-06-25 清华大学 A kind of fixed structure and interdigital drift tube accelerator of drift tube
CN109936909B (en) * 2019-04-02 2020-09-04 清华大学 Fixing structure of drift tube and interdigital drift tube accelerator

Also Published As

Publication number Publication date
JP2011096389A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5592129B2 (en) Plasma processing equipment
JP5307689B2 (en) Drift tube linear accelerator
KR20180095097A (en) High performance induction plasma torch
US9131594B2 (en) RF resonator cavity and accelerator
WO2013122880A2 (en) Mass spectrometer having an ion guide with an axial field
TWI766477B (en) Resonator, and resonator of ion implanter
JP2011192911A (en) Electrode, and plasma processing apparatus
WO2023043567A1 (en) Stiffened rf linac coil inductor with internal support structure
JP2006156394A (en) Electromagnetic induction accelerator with coil winding number adjustment
JP5823397B2 (en) HF resonator cavity and accelerator
US5430359A (en) Segmented vane radio-frequency quadrupole linear accelerator
JP6147177B2 (en) Antenna cover and plasma generator using the same
JPH0746588B2 (en) Microwave ion source
JP3804574B2 (en) High frequency inductively coupled plasma generating apparatus and plasma processing apparatus
JP4038883B2 (en) High frequency type accelerator tube
CN110754023A (en) Multilayer electrode assembly
Masaki et al. Design optimization of button-type bpm electrode for the SPring-8 upgrade
US7215695B2 (en) Discharge excitation type pulse laser apparatus
US7548026B2 (en) Magnetron
KR20160034347A (en) Magnetron
JP2010225551A (en) H-mode type drift tube linear accelerator
JP2004063441A (en) Magnetron
JP2010153095A (en) Ion gun
CN114361798B (en) High-power radio frequency ion source antenna
CN1302506C (en) Magnetron for microwave oven

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R151 Written notification of patent or utility model registration

Ref document number: 5307689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250