JP5307489B2 - Method for producing three-dimensional cell structure - Google Patents

Method for producing three-dimensional cell structure Download PDF

Info

Publication number
JP5307489B2
JP5307489B2 JP2008241029A JP2008241029A JP5307489B2 JP 5307489 B2 JP5307489 B2 JP 5307489B2 JP 2008241029 A JP2008241029 A JP 2008241029A JP 2008241029 A JP2008241029 A JP 2008241029A JP 5307489 B2 JP5307489 B2 JP 5307489B2
Authority
JP
Japan
Prior art keywords
cells
cell structure
dimensional cell
producing
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008241029A
Other languages
Japanese (ja)
Other versions
JP2010068766A (en
Inventor
洋子 一丁田
剛 田崎
仁志 鶴田
始弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2008241029A priority Critical patent/JP5307489B2/en
Publication of JP2010068766A publication Critical patent/JP2010068766A/en
Application granted granted Critical
Publication of JP5307489B2 publication Critical patent/JP5307489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for producing a high-density three-dimensional cell structure having a uniform diameter. <P>SOLUTION: The method for producing a three-dimensional cell structure includes a process (A) for concentrating and separating a cell population having a survival rate of &ge;70% by a density gradient centrifugation method, a process (B) for seeding the cell population obtained by the process (A) on a substrate having a small region with an effective bottom area of 0.01-0.1 mm<SP>2</SP>and a process (C) for culturing the cell seeded by the process (B). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、動物細胞の培養物に関する。   The present invention relates to animal cell cultures.

組織から単離した細胞を試験、検査に用いる手法は、バイオテクノロジー関連分野では欠かせない方法となっている。疾病、病態の診断、新薬の探索および薬効の判定、あるいは動物検査、植物検査、環境汚染物質の試験などに幅広く用いられている。単離した細胞は、直ちに試験に用いられる場合もあるが、多くは細胞培養の方法により培養 皿や試験管のなかで培養が行われている。この培養系のなかで種々の検査が行われる。   Techniques for testing and examining cells isolated from tissues are indispensable in biotechnology-related fields. It is widely used for diagnosing diseases and pathological conditions, searching for new drugs and determining their efficacy, animal testing, plant testing, and testing for environmental pollutants. The isolated cells may be used immediately for testing, but many are cultured in culture dishes or test tubes by the cell culture method. Various tests are performed in this culture system.

これらのアッセイは、通常均一な培養系を設定し、評価する薬物等の量、濃度などを変えてその効果を見るものである。その際に用いられる細胞は、生体から分離した初代細胞、また、セルバンクや細胞販売企業から入手される。この細胞は、種々の培地及び培養器内に播種された後、検査が行われる。   In these assays, a uniform culture system is usually set, and the effect is observed by changing the amount and concentration of the drug to be evaluated. The cells used at that time are obtained from primary cells separated from the living body, cell banks and cell sales companies. The cells are seeded in various media and incubators and then examined.

薬物の検査などに使用される培養法としては、非特許文献1に示した、コラーゲンをコートした細胞培養容器を用いて培養する方法、コラーゲンとマトリゲルを用いてサンドイッチ状に培養する単層培養方法が知られている。   Examples of the culture method used for drug inspection include the method of culturing using a cell culture vessel coated with collagen, as shown in Non-Patent Document 1, and the monolayer culture method of culturing in a sandwich form using collagen and Matrigel. It has been known.

この様に、広く利用されている細胞培養技術ではあるが、従来の細胞培養法(単層培養法)には、細胞が生体内で有している特異的な機能を長期間維持することができないという問題点があった。   As described above, although it is a widely used cell culture technique, the conventional cell culture method (monolayer culture method) can maintain a specific function of cells in a living body for a long period of time. There was a problem that it was not possible.

これらの問題点を解決するための培養方法として、三次元培養法が、近年、非常に注目を集めている。三次元培養によって得られた三次元細胞構造体は、単層培養法と比較して、細胞の特異的な機能を長期間維持でき、かつ、生体内と類似した構造体を作ることができる。このような特性を活かし、薬物等の検査への利用を目的に、三次元細胞構造体形状の三次元細胞構造体に関する研究開発が活発に行われている。例えば、特許文献1には均一な直径を有する三次元細胞構造体の作製方法が提案されている。また、特許文献2には均一な直径を有する三次元細胞構造体を培養する方法が提案されている。   As a culture method for solving these problems, a three-dimensional culture method has attracted much attention in recent years. Compared with the monolayer culture method, the three-dimensional cell structure obtained by three-dimensional culture can maintain a specific function of cells for a long period of time and can produce a structure similar to that in vivo. Taking advantage of these characteristics, research and development on three-dimensional cell structures in the shape of three-dimensional cell structures has been actively conducted for the purpose of use for examination of drugs and the like. For example, Patent Document 1 proposes a method for producing a three-dimensional cell structure having a uniform diameter. Patent Document 2 proposes a method for culturing a three-dimensional cell structure having a uniform diameter.

特開2001−226293公報JP 2001-226293 A 特開平05−227006号公報JP 05-227006 A 抽出ヒト組織・細胞を用いた非臨床研究 株式会社エス・アール・シー出版 pp261−279Non-clinical research using extracted human tissues / cells SRC Publishing Co., Ltd. pp261-279

しかしながら、上記の方法によっても次のような課題があり、解決が望まれていた。
特許文献1に記載された方法は、実質細胞と、さらに1種類以上の細胞を用いて共培養し、三次元細胞構造体を得る方法であるが、培養に際し2種類以上の細胞を準備する必要があることから、多くの手間を要するだけでなく、肝細胞以外の細胞による薬物等の検査への影響が懸念される。
However, the above method has the following problems, and a solution has been desired.
The method described in Patent Document 1 is a method of obtaining a three-dimensional cell structure by co-culturing with a parenchymal cell and one or more types of cells, but it is necessary to prepare two or more types of cells for the culture Therefore, not only a lot of labor is required, but there is a concern about the influence of cells other than hepatocytes on the examination of drugs and the like.

特許文献2に記載された方法は、高粘度の培養液を使用し、回転培養法、還流培養法及び、浮遊培養法で培養する方法である。そのため、高粘度の培養液を使用するため、培地交換時の操作性に劣る、さらに、特殊な装置が必要になるという欠点があり、万人が用いることは困難である、   The method described in Patent Document 2 is a method of culturing by a rotary culture method, a reflux culture method, and a suspension culture method using a high-viscosity culture solution. Therefore, because it uses a high-viscosity culture solution, it is inferior in operability at the time of medium exchange, and further has a disadvantage that a special device is required, which is difficult for everyone to use.

したがって、本発明は、これら欠点を解消する簡便な方法で、均一な大きさを有する三次元細胞構造体を提供することを目的とする。   Therefore, an object of the present invention is to provide a three-dimensional cell structure having a uniform size by a simple method for eliminating these drawbacks.

本発明にかかる細胞培養方法は、(A)生存率が70%以上の細胞集団を密度勾配遠心法により濃縮、分離する工程から得られた細胞集団を、(B)有効底面積が0.01〜0.1mmの小領域を有する支持体に播種し、(C)培養する工程である。前記工程(B)において、密度勾配遠心法は遠心力が100×g以下であるのが好ましい。 In the cell culture method according to the present invention, a cell population obtained from the step of (A) concentrating and separating a cell population having a survival rate of 70% or more by density gradient centrifugation, (B) having an effective bottom area of 0.01 It is a step of seeding on a support having a small region of ˜0.1 mm 2 and culturing (C). In the step (B), the density gradient centrifugation method preferably has a centrifugal force of 100 × g or less.

本発明の工程(C)は、
(i);細胞を接着させるために培養する工程と、
(ii);非接着性細胞を除去する工程と、
(iii);三次元細胞構造体を形成させるために培養する工程とからなっていても良い。
ここで、「細胞を接着させるために培養する工程(i)」の時間は、細胞を接着させることができればよく、用いられる細胞に応じて選択することができ、その時間は限定されるものではない。
Step (C) of the present invention comprises:
(I); culturing to attach the cells;
(Ii); removing non-adherent cells;
(Iii); a step of culturing in order to form a three-dimensional cell structure.
Here, the time of “the step of culturing for attaching cells (i)” is not limited as long as the cells can be attached and can be selected according to the cells used. Absent.

本発明の工程(B)においては、細胞の播種密度が1×10個から1×10個/cmであるのが好ましい。また、前記小領域の表面の全体又は一部が、有機膜又は無機膜を備えたものであるのが好ましい。 In the step (B) of the present invention, the seeding density of the cells is preferably 1 × 10 4 to 1 × 10 6 cells / cm 2 . Moreover, it is preferable that the whole or part of the surface of the small region is provided with an organic film or an inorganic film.

さらに、本発明における前記細胞集団は、ヒト肝実質細胞であるのが好ましい。   Furthermore, the cell population in the present invention is preferably human hepatocytes.

本発明により、均一な大きさを有する高密度な三次元細胞構造体を簡便な方法で得ることができる。   According to the present invention, a high-density three-dimensional cell structure having a uniform size can be obtained by a simple method.

以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得ることは言うまでもない。また、以降の図における各部材の材料、サイズや比率は、一例であり、これに限定されるものではない。   Hereinafter, an example of an embodiment to which the present invention is applied will be described. It goes without saying that other embodiments may also belong to the category of the present invention as long as they match the gist of the present invention. Moreover, the material, size, and ratio of each member in the following drawings are merely examples, and the present invention is not limited thereto.

本発明で培養する細胞集団は、三次元細胞構造体を形成するものであれば特に制限はないが、有用性の観点から、実質細胞であるのが好ましく、特に肝細胞であるのが好ましく、さらにはヒトの肝実質細胞であるのが好ましい。   The cell population cultured in the present invention is not particularly limited as long as it forms a three-dimensional cell structure, but from the viewpoint of usefulness, it is preferably a parenchymal cell, particularly preferably a hepatocyte, Furthermore, human hepatocytes are preferable.

生存率が70%以上の細胞集団の由来は、生体から分離した初代細胞でもよく、生体から分離した後に凍結したものを融解して得られた初代細胞でもよく、これらを継代した培養細胞でもよく、市販されている株化細胞を継代した培養細胞でもよいが、生体外から分離された直後から、細胞の機能は低下または変化することが知られているため、より生体内に近い機能を有する三次元細胞構造体を得るには、生体から分離した直後の初代細胞または生体から分離した後凍結したものを融解して得られた初代細胞の方が好ましく、生体から分離した直後の初代細胞がより好ましい。   The origin of a cell population having a survival rate of 70% or more may be a primary cell isolated from a living body, a primary cell obtained by thawing a frozen product after being separated from a living body, or a cultured cell passaged from these cells. Well, it may be a cultured cell that has been subcultured from a cell line that is commercially available, but it is known that the function of the cell is reduced or changed immediately after it is isolated from outside the body. In order to obtain a three-dimensional cell structure having a primary cell, a primary cell immediately after separation from a living body or a primary cell obtained by thawing a frozen product after separation from a living body is preferable. Cells are more preferred.

本発明に用いられる細胞の生存率は70%以下の細胞集団の場合、生存している細胞であっても、表面の膜タンパクなど損傷を受け、細胞播種後の細胞接着性に劣ることから少なくとも70%以上必要であり、密度勾配遠心法による前処理による細胞回収効率の観点から、80%以上がより好ましい。初期の細胞集団の生存率が70%以下のときは、70%以上の生存率に精製した後に本発明に供すればよい。細胞を精製する方法としては、細胞の比重を利用して分離する方法、または、例えば細胞を標識しマイクロビーズやセルソータなどを用いて分離する方法などが挙げられるが、これらに限定されるものではない。   In the case of a cell population of 70% or less, the viability of the cells used in the present invention is at least because even the surviving cells are damaged by surface membrane proteins and the like and inferior in cell adhesion after cell seeding. 70% or more is necessary, and 80% or more is more preferable from the viewpoint of cell recovery efficiency by pretreatment by density gradient centrifugation. When the survival rate of the initial cell population is 70% or less, it may be used for the present invention after purification to a survival rate of 70% or more. Examples of the method for purifying cells include a method of separating using the specific gravity of cells, or a method of labeling cells and separating them using microbeads or cell sorters, but is not limited thereto. Absent.

工程()における密度勾配遠心法に用いられる溶液は、例えば、Percoll(G
Eヘルスケアバイオサイエンス社製)(PercollはGEヘルスケアバイオサイエン
ス社の登録商標)、Iodixanol溶液(Axis−Shield社製)などが市販
されているがこれらに限定されるものではない。
また、工程()において密度勾配遠心法は、細胞が受けるダメージの観点から遠心力
が100×g以下で行うことが好ましく、50×g以下で行うことがより好ましい。遠心
力の下限値は特に制限はないが、処理時間の観点から20×g以上で行うことが好ましい

The solution used for the density gradient centrifugation in the step ( A ) is, for example, Percoll (G
E Healthcare Bioscience (Percoll is a registered trademark of GE Healthcare Bioscience), Iodixanol solution (Axis-Shield) and the like are commercially available, but are not limited thereto.
In the step ( A ), the density gradient centrifugation is preferably performed at a centrifugal force of 100 × g or less, more preferably 50 × g or less, from the viewpoint of damage to the cells. The lower limit of the centrifugal force is not particularly limited, but is preferably 20 × g or more from the viewpoint of processing time.

ここで、工程(C)における(i)細胞を接着させるために培養する工程について説明する。この工程は、播種した細胞が接着すればよく、30分以下の場合、未接着の細胞が(ii)の工程で除かれてしまい、細胞数が減少する。24時間以上の場合、細胞の内部液が培地中に漏出するため、正常な細胞の細胞死を招く恐れがあることから、30分以上24時間以内が好ましく、1時間から8時間がより好ましい。   Here, (i) the step of culturing to adhere the cells in step (C) will be described. In this step, the seeded cells only have to adhere, and in the case of 30 minutes or less, unattached cells are removed in the step (ii), and the number of cells decreases. In the case of 24 hours or more, the internal fluid of the cell leaks into the medium, which may lead to cell death of normal cells. Therefore, it is preferably 30 minutes or more and 24 hours or less, and more preferably 1 to 8 hours.

用いられる培地は、血清を含む血清を含んだ培地や、栄養分を添加した無血清培地等が挙げられるがこれらに限定されるものではない。   Examples of the medium used include, but are not limited to, a medium containing serum containing serum and a serum-free medium supplemented with nutrients.

本発明の(A)、(B)、(C)の各工程で用いる培地は、全て同じ種類の培地を用いてもよく、例えば(A)では無血清培地、(B)では血清入りの培地、(C)では無血清培地、といった、各工程で異なる培地を組合せてもよく、または、(A)では無血清培地、(B)、(C)では無血清培地のように組合せてもよく、培地の組合せはこれらに限定されるものではない。   The medium used in each step (A), (B), or (C) of the present invention may be the same type of medium. For example, (A) is a serum-free medium, and (B) is a serum-containing medium. , (C) serum-free medium may be combined with different media in each step, or (A) serum-free medium, (B), (C) may be combined as serum-free medium. The combination of media is not limited to these.

次いで、小領域の形状について図1、2を用いて説明する。図1は、小領域を有する支持体の構成を示す平面図であり、図2は図1のX−X’断面図である。図1に示すように、小領域を有する支持体は、マイクロ容器11、側壁12、開口部13を備える。小領域を有する支持体の10の培養面には、複数の側壁12が網目状に形成されており、この側壁12に四方を囲われた空間がマイクロ容器11となる。また、各マイクロ容器11の四辺に形成された側壁12の各辺の中央部に、開口部13が形成されている。   Next, the shape of the small area will be described with reference to FIGS. FIG. 1 is a plan view showing a configuration of a support having a small region, and FIG. 2 is a cross-sectional view taken along the line X-X ′ of FIG. 1. As shown in FIG. 1, the support having a small region includes a micro container 11, a side wall 12, and an opening 13. A plurality of side walls 12 are formed in a mesh shape on the culture surface of the support 10 having a small region, and a space surrounded on all sides by the side walls 12 is a micro container 11. Moreover, the opening part 13 is formed in the center part of each edge | side of the side wall 12 formed in the four sides of each micro container 11.

図1において、マイクロ容器11の底部の幅a、マイクロ容器11を区画するための側壁12の幅b、高さc、隣接するマイクロ容器11が互いに連通するための開口部13の幅dを示した。本発明における底部面積とは、マイクロ容器開口水平面(側壁12上面と同一面)に垂直方向に上方から容器底へ平行光を照射した際の投影面積のことをいう。例えば、マイクロ容器の底がU字形状である場合、その開口面に垂直方向な上方より底に入射した平行光が投影する形状が底部面積となる。投影底部の長径及び短径とは、円及び楕円の場合、その重心を通る長軸及び短軸と円周との交点の各軸上の距離を長径及び短径といい、多角形の場合、その多角形の面積との差が最小となり各頂点を通る外挿円又は外挿楕円の長径および短径をいい、各頂点を通る外挿円又は外挿楕円を描けない場合は、最も多くの頂点を通る近似円又は楕円の長径および短径をいう   In FIG. 1, the width a of the bottom part of the micro container 11, the width b and the height c of the side wall 12 for partitioning the micro container 11, and the width d of the opening 13 for the adjacent micro containers 11 to communicate with each other are shown. It was. The bottom area in the present invention refers to a projected area when parallel light is irradiated from above to the bottom of the container in the direction perpendicular to the horizontal surface of the micro container opening (the same surface as the upper surface of the side wall 12). For example, when the bottom of the micro container is U-shaped, the shape projected by parallel light incident on the bottom from above in the direction perpendicular to the opening surface is the bottom area. The major axis and minor axis of the projected bottom are, in the case of circles and ellipses, the distance on each axis at the intersection of the major axis and minor axis and the circumference passing through the center of gravity, called the major axis and minor axis. The difference between the area of the polygon and the extrapolated circle or ellipse that passes through each vertex is the longest and shortest axis. The major and minor axes of an approximate circle or ellipse passing through the vertex

支持体の小領域の底面積及び高さは、所望する三次元細胞構造体の直径に応じて種々の大きさを選択することが可能であるが、細胞間相互作用観点から細胞少なくとも、1小領域当たり最小2個〜最大10個、三次元細胞構造体の大きさで50μm〜150μmの直径の範囲が好ましい。そのため、小領域の直径または一辺は、70μm〜300μmの範囲で小領域の高さは、20μm〜50μmが好ましい。 The bottom area and height of the small region of the support can be selected in various sizes depending on the desired diameter of the three-dimensional cell structure, but at least one cell is small from the viewpoint of cell-cell interaction. A minimum diameter of 2 to a maximum of 10 6 per region, with a three-dimensional cell structure size range of 50 μm to 150 μm in diameter is preferred. Therefore, the diameter or one side of the small region is preferably in the range of 70 μm to 300 μm, and the height of the small region is preferably 20 μm to 50 μm.

マイクロ容器11の水平面と側壁12とがなす角度は、細胞が乗り上げない角度でなければならないため、側面の上部から50%以上の部分は80〜90°が好ましく、特に、85°〜90°であることが好ましい。   Since the angle formed between the horizontal surface of the micro container 11 and the side wall 12 must be an angle at which cells do not ride, the portion of 50% or more from the upper part of the side surface is preferably 80 to 90 °, particularly 85 to 90 °. Preferably there is.

図3において、隣接するマイクロ容器11を互いに連通するための開口部13の幅dは、培養細胞が最初に播種されたマイクロ容器11から隣接するマイクロ容器11に移動できない程度であればよい。1個の細胞の直径が10〜20μmであることから、この直径より小さい5〜15μmであることが好ましい。なお、開口部13は必須ではなく、図3及び図4に示すように、マイクロ容器11の四辺が側壁12により完全に囲まれていてもよい。ここで、図3は、本実施の形態に係る小領域を有する支持体の構成を示す平面図であり、図4は図1のY−Y’断面図である。   In FIG. 3, the width d of the opening 13 for communicating adjacent microcontainers 11 with each other only needs to be such that the cultured cells cannot move from the microcontainer 11 seeded first to the adjacent microcontainer 11. Since the diameter of one cell is 10 to 20 μm, it is preferably 5 to 15 μm smaller than this diameter. The opening 13 is not essential, and the four sides of the micro container 11 may be completely surrounded by the side walls 12 as shown in FIGS. 3 and 4. Here, FIG. 3 is a plan view showing the configuration of the support having the small region according to the present embodiment, and FIG. 4 is a cross-sectional view taken along the line Y-Y ′ of FIG. 1.

小領域を有する支持体の作製方法は、モールドを用いた転写成形、3次元光造形、精密機械切削、ウェットエッチング、ドライエッチング、レーザー加工、放電加工等が挙げられるが、精度、コストの面から、モールドを用いた転写成型が好ましい。   Examples of the method for producing a support having a small region include transfer molding using a mold, three-dimensional stereolithography, precision machine cutting, wet etching, dry etching, laser processing, electric discharge machining, and the like, from the viewpoint of accuracy and cost. Transfer molding using a mold is preferred.

モールドを用いる転写成形方法の具体例としては、金属構造体を型として樹脂成形で小領域を形成する方法が挙げられる。この方法は金属構造体の形状を高い転写率で樹脂に小領域を再現することが可能であり、また汎用の樹脂材料を使用することにより材料コストを低くできるので好ましい。このような金属構造体の型を用いる方法は、低コストであり、高い寸法精度を満足できる点で優れている。   A specific example of the transfer molding method using a mold is a method of forming a small region by resin molding using a metal structure as a mold. This method is preferable because the shape of the metal structure can be reproduced in a small area on the resin with a high transfer rate, and the material cost can be reduced by using a general-purpose resin material. The method using such a metal structure mold is excellent in that it is low in cost and can satisfy high dimensional accuracy.

上記金属構造体の製造方法としては、例えば、フォトリソグラフィによって作製されたレジストパターンや3次元光造形によって作製された樹脂パターンへのメッキ処理、精密機械切削、ウェットエッチング、ドライエッチング、レーザー加工、放電加工等が挙げられる。用途、要求される加工精度、コスト等から、フォトリソグラフィによって作製されたレジストパターンへのメッキ処理が好ましい。   Examples of the method for manufacturing the metal structure include plating treatment on a resist pattern produced by photolithography and a resin pattern produced by three-dimensional stereolithography, precision mechanical cutting, wet etching, dry etching, laser processing, electric discharge. Processing etc. are mentioned. From the application, required processing accuracy, cost, etc., the plating process to the resist pattern produced by photolithography is preferable.

上記で得られた金属構造体を型として用いて樹脂へ小領域を成形する方法として例えば、射出成形、プレス成形、モノマーキャスト成形、溶剤キャスト成形、ホットエンボス成形、押出成形によるロール転写等の方法を挙げることができる。生産性及び型転写性の観点から射出成形を採用することが好ましい。   Examples of methods for molding a small region into a resin using the metal structure obtained above as a mold include, for example, injection molding, press molding, monomer cast molding, solvent cast molding, hot emboss molding, roll transfer by extrusion molding, etc. Can be mentioned. It is preferable to employ injection molding from the viewpoint of productivity and mold transferability.

小領域を有する支持体を構成する材料としては、コスト面から合成樹脂のほうが好ましく、培養時の細胞形態観察の面から、透過性の高い合成樹脂が好ましい。このような合成樹脂としては、ポリメタクリル酸メチル、メタクリル酸メチル−スチレン共重合体等のアクリル系樹脂、ポリスチレン等のスチレン系樹脂、シクロオレフィン等のオレフィン系樹脂、ポリエチレンテレフタレート、ポリ乳酸等のエステル系樹脂、ポリジメチルシロキサン等のシリコン系樹脂、ポリカーボネート樹脂等が挙げられるが、コスト、透明性の面から、アクリル系樹脂またはスチレン系樹脂がより好ましい。   As a material constituting the support having a small region, a synthetic resin is preferable from the viewpoint of cost, and a synthetic resin having high permeability is preferable from the viewpoint of observing cell morphology during culture. Examples of such synthetic resins include acrylic resins such as polymethyl methacrylate and methyl methacrylate-styrene copolymers, styrene resins such as polystyrene, olefin resins such as cycloolefin, and esters such as polyethylene terephthalate and polylactic acid. Examples of the resin include silicone resins such as polydimethylsiloxane, polycarbonate resins, and the like. From the viewpoints of cost and transparency, acrylic resins or styrene resins are more preferable.

小領域を有する支持体の表面は、細胞親和性の観点から、改質やコーティング処理がなされている方が好ましい。これらに用いられる物質としては、ガラスなどの無機物質、ポリ−L−リシンやポリエチレングリコール(PEG)などの合成物質、コラーゲンやフィブロネクチンといった細胞外マトリクス等が挙げられるが、コスト、操作性の観点から、ポリ−L−リシンやPEGなどの合成物質がより好ましい。より好ましくは、合成樹脂の場合、細胞親和性物質を均一にコートするために、ガラスなどにより表面を親水化した方がよく、コート物質としては、コストの観点から、ポリ−L−リシンやPEGなどの親水性の合成物質が良い。   The surface of the support having a small region is preferably modified or coated from the viewpoint of cell affinity. Substances used for these include inorganic substances such as glass, synthetic substances such as poly-L-lysine and polyethylene glycol (PEG), and extracellular matrices such as collagen and fibronectin. From the viewpoint of cost and operability. Synthetic substances such as poly-L-lysine and PEG are more preferred. More preferably, in the case of a synthetic resin, it is better to hydrophilize the surface with glass or the like in order to uniformly coat the cytophilic substance. As the coating substance, poly-L-lysine or PEG is preferable from the viewpoint of cost. A hydrophilic synthetic substance such as is preferable.

本発明者らは、鋭意研究した結果、(A)生存率が70%以上の細胞集団を密度勾配遠心法により濃縮、分離する工程から得られた細胞集団を(B)有効底面積が0.01〜0.1mmの小領域を有する支持体に播種する工程と、(C)培養する工程を含む、三次元細胞構造体の作製方法を提供するに至った。以下に本発明の実施例を示す。 As a result of diligent research, the present inventors have found that (A) a cell population obtained by concentrating and separating a cell population having a survival rate of 70% or more by density gradient centrifugation (B) has an effective bottom area of 0. and a step of seeding the support having a small area 01~0.1mm 2, the step of culturing (C), led to provide a method for manufacturing a three-dimensional cell structure. Examples of the present invention are shown below.

<小領域を有する支持体の作製>
図3に示す凹凸パターン形状であって、a=200μm、b=20μm、c=50μm
のパターンをフォトリソグラフィにより作製し、Ni電解メッキを行い、対応する凹凸形状を有する金型を得た。その金型を用い、ホットエンボス成形によりポリスチレン上に凹凸パターン形状の転写を行い、前記寸法の樹脂基材を作製した。その樹脂基材表面へ真空蒸着により二酸化ケイ素膜を100nm形成させ、γ線滅菌を行い、小領域を有する支持体を得た。この支持体を24ウェルプレート(FALCON社製)の各ウェルに、培養表面を上にしてセットした。0.01%のポリ−L−リシン(SIGMA社製)を300μLづつ添加した後、4℃で24時間インキュベートする。24時間後、リン酸緩衝液(GIBCO社製)で3回洗浄した。
<Preparation of a support having a small region>
FIG. 3 shows a concavo-convex pattern shape in which a = 200 μm, b = 20 μm, and c = 50 μm.
The pattern was prepared by photolithography and Ni electrolytic plating was performed to obtain a mold having a corresponding uneven shape. The mold was used to transfer the concavo-convex pattern shape onto polystyrene by hot embossing to produce a resin substrate having the above dimensions. A silicon dioxide film having a thickness of 100 nm was formed on the surface of the resin substrate by vacuum deposition, and γ-ray sterilization was performed to obtain a support having a small region. This support was set in each well of a 24-well plate (manufactured by FALCON) with the culture surface facing up. After adding 300 μL of 0.01% poly-L-lysine (manufactured by SIGMA), incubation is performed at 4 ° C. for 24 hours. After 24 hours, the plate was washed 3 times with a phosphate buffer (GIBCO).

<細胞数及び生存率の測定>
トリパンブルー(GIBCO社製)を用いて死細胞を染色し、総細胞数(死細胞数と生細胞数)および死細胞の数を計数して、総細胞数に占める生細胞数の割合を生存率とした。生細胞数の数を細胞数とした。
<Measurement of cell number and viability>
Stain dead cells using trypan blue (GIBCO), count the total number of cells (number of dead cells and number of living cells) and the number of dead cells, and survive the ratio of the number of living cells to the total number of cells. Rate. The number of living cells was taken as the number of cells.

<細胞の採取>
6週例、オスのウィスターラットから、2段階コラゲナーゼ灌流法により肝細胞を分離した。具体的には次のようにして行なった。ウィスターラットは麻酔下で開腹し、門脈よりカニューレを入れ、37度に加温した前還流液(0.01M HEPES(DOJINDO社製)、0.5mM EGTA(DOJINDO社製)、ペニシリン−ストレプトマイシン(GIBCO社製)、1g/L グルコース(和光純薬社製)を含むカリウム及びカルシウム不含リン酸緩衝液)を、25mL/分の流速で流しはじめると同時に、肝動脈を切断した。前還流液150mLを流す。次に、37度に加温したコラゲナーゼ溶液(0.5g/L コラゲナーゼ(和光純薬社製)、0.05g/L トリプシンインヒビター(GIBCO社製)、0.01M HEPES(DOJINDO社製)、ペニシリン−ストレプトマイシン(GIBCO社製)を含むカルシウム含有リン酸緩衝液)を30mL/分で50mL流した後、30mL/分で100mL流す。ラットから肝臓を切除し、10mLのDMEM(GIBCO社製)を入れた直径10cmのシャーレに入れた後、メスで肝臓を細かく切断した後、ガーゼで濾過した後、濾液と90mLのDMEMを45μmの金属製メッシュで濾過した。濾液を50mLの遠心チューブ(FALCON社製)2本に分注し、30×gで90秒間遠心処理をした。上澄みを廃棄し、再度DMEM溶液をそれぞれ40mL加え、攪拌した後、30×gで90秒間遠心処理をした。上澄みを廃棄し、DMEM/F12溶液をいれて、0.1×10個/mLの濃度の細胞懸濁液を作製した。このときの生存率は90±5%であった。
<Collection of cells>
Six weeks, hepatocytes were isolated from male Wistar rats by a two-stage collagenase perfusion method. Specifically, it was performed as follows. Wistar rats were laparotomized under anesthesia, cannulated from the portal vein, pre-refluxed solution (0.01 M HEPES (manufactured by DOJINDO), 0.5 mM EGTA (manufactured by DOJINDO), penicillin-streptomycin ( Gibco) and potassium and calcium-free phosphate buffer containing 1 g / L glucose (manufactured by Wako Pure Chemical Industries) were started to flow at a flow rate of 25 mL / min, and at the same time, the hepatic artery was cut. Flow 150 mL of pre-reflux liquid. Next, a collagenase solution (0.5 g / L collagenase (manufactured by Wako Pure Chemical Industries), 0.05 g / L trypsin inhibitor (manufactured by GIBCO), 0.01 M HEPES (manufactured by DOJINDO), penicillin, heated to 37 ° C. -After flowing 50 mL of streptomycin (a calcium-containing phosphate buffer solution containing GIBCO) at 30 mL / min, flow 100 mL at 30 mL / min. The liver was excised from the rat, placed in a petri dish with a diameter of 10 cm containing 10 mL of DMEM (GIBCO), and then the liver was finely cut with a scalpel and filtered with gauze, and then the filtrate and 90 mL of DMEM were added to 45 μm. Filter through a metal mesh. The filtrate was dispensed into two 50 mL centrifuge tubes (manufactured by FALCON) and centrifuged at 30 × g for 90 seconds. The supernatant was discarded, and 40 mL of each DMEM solution was added again and stirred, followed by centrifugation at 30 × g for 90 seconds. The supernatant was discarded and a DMEM / F12 solution was added to prepare a cell suspension having a concentration of 0.1 × 10 7 cells / mL. The survival rate at this time was 90 ± 5%.

<細胞培養>
培地は、播種培地(10%FBS、2mM L−グルタミン、10mM ニコチンアミド、50μM 2−メルカプトエタノール(SIGMA社製)、0.1μM デキサメタゾン(SIGMA社製)、26mM アスコルビン酸(SIGMA社製)、5mM HEPES(DOJINDO社製)、0.1μM インスリン(和光純薬社製)を含むDMEM/F12(SIGMA社製)溶液)と、維持培地(20ng/mL EGF(SIGMA社製)を含む播種培地)を使用した。細胞を含む播種培地を、それぞれのウェルに300μLづつ入れ、37度、二酸化炭素濃度が5%に制御されたインキュベータ内に入れ4時間インキュベートした後、非接着細胞を播種培地と共に吸い取り、新たに、維持培地をそれぞれ300μL入れ、37度、二酸化炭素濃度が5%に制御されたインキュベータ内に入れ5日間培養した。培地は2日に1回行い、5日間培養した。
<Cell culture>
The medium is a seeding medium (10% FBS, 2 mM L-glutamine, 10 mM nicotinamide, 50 μM 2-mercaptoethanol (manufactured by SIGMA), 0.1 μM dexamethasone (manufactured by SIGMA), 26 mM ascorbic acid (manufactured by SIGMA), 5 mM. HEPES (manufactured by DOJINDO), DMEM / F12 (manufactured by SIGMA) containing 0.1 μM insulin (manufactured by Wako Pure Chemical Industries), and maintenance medium (seeding medium containing 20 ng / mL EGF (manufactured by SIGMA)). used. Place 300 μL of the seeding medium containing the cells in each well, and incubate for 4 hours in an incubator at 37 ° C. with a carbon dioxide concentration controlled to 5%. Then, suck the non-adherent cells with the seeding medium, Each 300 μL of the maintenance medium was placed in an incubator controlled at 37 ° C. and 5% carbon dioxide concentration, and cultured for 5 days. The medium was performed once every two days and cultured for 5 days.

<観察>
透過型倒立顕微鏡(オリンパス社製)で、支持体の培養表面の全体を観察し、(a)50〜100μmの直径をもつ三次元細胞構造体と(b)50μm未満、150μm以上の直径をもつ三次元細胞構造体の数を測定した。1mmの三次元細胞構造体の個数を三次元細胞構造体密度とした。
<Observation>
The entire culture surface of the support was observed with a transmission inverted microscope (Olympus), and (a) a three-dimensional cell structure having a diameter of 50 to 100 μm and (b) a diameter of less than 50 μm and a diameter of 150 μm or more. The number of three-dimensional cell structures was measured. The number of 1-mm 2 three-dimensional cell structures was defined as the three-dimensional cell structure density.

[実施例] 密度勾配遠心法による処理群
DMEM/F12溶液をいれて、細胞懸濁液を25mL、90%Percollを含むHBSS溶液(90% Percoll(GEヘルスケアバイオサイエンス株式会社製)、5.33mM KCl(和光純薬社製)、0.441mM KHPO(和光純薬社製)、4.17mM NaHCO(和光純薬社製)、137.9mM NaCl(和光純薬社製)、0.338mM NaHPO(和光純薬社製)、5.56mM D−Glucose(和光純薬社製)、0.0266mM フェノールレッド(和光純薬社製))24mLを混合し密度勾配遠心法用の溶液を作製した。得られた密度勾配遠心法用の溶液に対し転倒混和を5回行なった後、50×gで10分間遠心処理をし、上澄みを廃棄した(密度勾配遠心操作)。次に、DMEM/F12溶液を30mL加え、攪拌した後、50×gで1分間遠心処理をし、上澄みを廃棄した(洗浄操作)。この洗浄操作を合計2回行い、播種培地を用いて細胞数が、4×10個になるようにした後、培養を行なった。
[Example] Treatment Group by Density Gradient Centrifugation Method A DMEM / F12 solution is added, and the cell suspension is 25 mL, and an HBSS solution containing 90% Percoll (90% Percoll (manufactured by GE Healthcare Biosciences)). 33 mM KCl (manufactured by Wako Pure Chemical Industries, Ltd.), 0.441 mM KH 2 PO 4 (manufactured by Wako Pure Chemical Industries, Ltd.), 4.17 mM NaHCO 3 (manufactured by Wako Pure Chemical Industries, Ltd.), 137.9 mM NaCl (manufactured by Wako Pure Chemical Industries, Ltd.), 0.338 mM NaHPO 4 (manufactured by Wako Pure Chemical Industries, Ltd.), 5.56 mM D-Glucose (manufactured by Wako Pure Chemical Industries, Ltd.), 0.0266 mM phenol red (manufactured by Wako Pure Chemical Industries, Ltd.)) 24 mL were mixed for density gradient centrifugation. A solution was made. The resulting solution for density gradient centrifugation was mixed by inversion 5 times, and then centrifuged at 50 × g for 10 minutes, and the supernatant was discarded (density gradient centrifugation operation). Next, 30 mL of the DMEM / F12 solution was added and stirred, and then centrifuged at 50 × g for 1 minute, and the supernatant was discarded (washing operation). This washing operation was performed twice in total, and the number of cells was adjusted to 4 × 10 5 using a seeding medium, followed by culturing.

[比較例] 密度勾配遠心未処理群
細胞懸濁液10mLを50mLの遠心チューブに入れた後、50×gで1分間遠心処理をした後、上澄みを廃棄し(洗浄操作)、播種培地で、4×10個/mLになるように調製した後培養した。このときの生存率は90±5%であった。
[Comparative Example] Density gradient centrifugation untreated group After 10 mL of cell suspension was put into a 50 mL centrifuge tube, centrifuged at 50 × g for 1 minute, and then the supernatant was discarded (washing operation). The cells were cultured after being adjusted to 4 × 10 5 cells / mL. The survival rate at this time was 90 ± 5%.

表1に実施例と比較例の5日後三次元細胞構造体の密度を示した。実施例は比較例の約2倍の密度を示した。また、実施例では、三次元細胞構造体のほとんどが、直径50〜100μmの三次元細胞構造体であった。一方、比較例では、直径50μm未満、100μm以上の三次元細胞構造体が多く存在しておりその密度は、実施例の約2倍であった。   Table 1 shows the densities of the three-dimensional cell structures after 5 days of the examples and comparative examples. The example showed about twice the density of the comparative example. In the examples, most of the three-dimensional cell structures were three-dimensional cell structures having a diameter of 50 to 100 μm. On the other hand, in the comparative example, there are many three-dimensional cell structures having a diameter of less than 50 μm and 100 μm or more, and the density was about twice that of the example.

図5に実施例と比較例の三次元細胞構造体密度の経時変化を示した。実施例では、培養2日後から三次元細胞構造体の形成が確認されたが、比較例では、ほとんど観察されなかった。一方、比較例では、2日後ではほとんど三次元細胞構造体が形成されていなかった。3日後〜5日後にかけて実施例は比較例の2倍以上の三次元細胞構造体密度となった。   FIG. 5 shows changes with time in the density of the three-dimensional cell structures of the example and the comparative example. In the examples, formation of a three-dimensional cell structure was confirmed after 2 days of culture, but was hardly observed in the comparative examples. On the other hand, in the comparative example, almost no three-dimensional cell structure was formed after 2 days. From 3 days to 5 days later, the example had a three-dimensional cell structure density more than twice that of the comparative example.

図6に実施例と比較例の3日後及び5日後の形態写真を示した。三次元細胞構造体を矢印で示した。実施例では、培養3日後にきれいな球状の三次元細胞構造体が確認され、5日目には、ほとんどの小領域できれいな球状の三次元細胞構造体が確認できた。比較例では、3日後及びに三次元細胞構造体が確認されるものの、三次元細胞構造体形状のものは、実施例より格段に少なかった。   FIG. 6 shows morphological photographs of the example and the comparative example after 3 days and after 5 days. Three-dimensional cell structures are indicated by arrows. In Examples, clean spherical three-dimensional cell structures were confirmed after 3 days of culture, and clean spherical three-dimensional cell structures were confirmed in almost all small areas on the fifth day. In the comparative example, the three-dimensional cell structure was confirmed after 3 days, but the number of the three-dimensional cell structure was much less than that of the example.

三次元細胞構造体の密度が、2倍以上であるため、比較例で約2cmの底面積を有する24ウェルで試験を実施した場合、実施例では、その約半分の面積である1cmの底面積を有する48ウェルでの試験が可能となる。すなわち、試験可能なサンプル数が2倍となり、本発明は、薬物試験の効率を大幅に向上させることができる。 Since the density of the three-dimensional cell structure is more than twice, when the test is performed in 24 wells having a bottom area of about 2 cm 2 in the comparative example, in the example, about 1 cm 2 , which is about half of the area, Tests in 48 wells with a bottom area are possible. That is, the number of testable samples is doubled, and the present invention can greatly improve the efficiency of drug tests.

実施例に係る小領域を有する支持体の構成を示す平面図である。It is a top view which shows the structure of the support body which has a small area | region which concerns on an Example. 実施例に係る小領域を有する支持体を示す断面図である。It is sectional drawing which shows the support body which has a small area | region which concerns on an Example. 実施例に係る小領域を有する支持体を示す平面図である。It is a top view which shows the support body which has a small area | region which concerns on an Example. 実施例に係る小領域を有する支持体を示す断面図である。It is sectional drawing which shows the support body which has a small area | region which concerns on an Example. 実施例と比較例に係る三次元細胞構造体密度を示す図である。It is a figure which shows the three-dimensional cell structure density which concerns on an Example and a comparative example. 実施例と比較例に係る三次元細胞構造体の形態を示す図である。It is a figure which shows the form of the three-dimensional cell structure which concerns on an Example and a comparative example.

符号の説明Explanation of symbols

10 肝細胞培養容器
11 マイクロ容器
12 側壁
13 開口部
10 Hepatocyte culture vessel 11 Micro vessel 12 Side wall 13 Opening

Claims (8)

(A);生存率が70%以上の細胞集団を密度勾配遠心法により濃縮、分離する工程と、
(B);工程(A)で得られた細胞集団を有効底面積が0.01〜0.1mmの小領域を有する支持体に播種する工程と、
(C);工程(B)で播種された細胞を培養する工程と
を含む、三次元細胞構造体の作製方法。
(A); a step of concentrating and separating a cell population having a survival rate of 70% or more by density gradient centrifugation;
(B); seeding the cell population obtained in step (A) on a support having a small region having an effective bottom area of 0.01 to 0.1 mm 2 ;
(C); a method for producing a three-dimensional cell structure, comprising a step of culturing the cells seeded in the step (B).
前記工程(A)における密度勾配遠心法の遠心力が、100×g以下である請求項1に記載の三次元細胞構造体の作製方法。 The method for producing a three-dimensional cell structure according to claim 1, wherein the centrifugal force of the density gradient centrifugation in the step (A) is 100 xg or less. 前記(C)の培養工程が、
(i);細胞を接着させるために培養する工程と、
(ii);非接着性細胞を除去する工程と、
(iii);三次元細胞構造体を形成させるために培養する工程と
からなる請求項1に記載の三次元細胞構造体の作製方法。
The culture step of (C)
(I); culturing to attach the cells;
(Ii); removing non-adherent cells;
(Iii): The method for producing a three-dimensional cell structure according to claim 1, comprising a step of culturing to form the three-dimensional cell structure.
前記工程(B)において、細胞の播種密度が1×10個から1×10個/cmである請求項1に記載の三次元細胞構造体の作製方法。 2. The method for producing a three-dimensional cell structure according to claim 1, wherein in the step (B), a seeding density of cells is 1 × 10 4 to 1 × 10 6 cells / cm 2 . 前記工程(B)における前記小領域の表面の全体又は一部が、有機膜又は無機膜を備えたものである請求項1に記載の三次元細胞構造体の作製方法。 The method for producing a three-dimensional cell structure according to claim 1, wherein the whole or part of the surface of the small region in the step (B) is provided with an organic film or an inorganic film. 前記細胞集団が実質細胞である請求項1〜5のいずれか1項に記載の三次元細胞構造体の作製方法。 The method for producing a three-dimensional cell structure according to any one of claims 1 to 5, wherein the cell population is a parenchymal cell. 前記実質細胞が肝細胞である請求項6に記載の三次元細胞構造体の作製方法。 The method for producing a three-dimensional cell structure according to claim 6, wherein the parenchymal cells are hepatocytes. 前記肝細胞がヒト、サル、チンパンジー、ラット、マウス、ハムスター、ウシ、ブタ、ヒツジ若しくはこれらのキメラ動物である請求項7に記載の三次元細胞構造体の作製方法。 The method for producing a three-dimensional cell structure according to claim 7, wherein the hepatocytes are human, monkey, chimpanzee, rat, mouse, hamster, cow, pig, sheep or a chimeric animal thereof.
JP2008241029A 2008-09-19 2008-09-19 Method for producing three-dimensional cell structure Active JP5307489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008241029A JP5307489B2 (en) 2008-09-19 2008-09-19 Method for producing three-dimensional cell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008241029A JP5307489B2 (en) 2008-09-19 2008-09-19 Method for producing three-dimensional cell structure

Publications (2)

Publication Number Publication Date
JP2010068766A JP2010068766A (en) 2010-04-02
JP5307489B2 true JP5307489B2 (en) 2013-10-02

Family

ID=42201136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008241029A Active JP5307489B2 (en) 2008-09-19 2008-09-19 Method for producing three-dimensional cell structure

Country Status (1)

Country Link
JP (1) JP5307489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167966A (en) * 2019-04-04 2020-10-15 大日本印刷株式会社 Method for producing cell culture substrate, cell culture substrate, cell culture substrate with cells, cell culture container, and cell culture container with cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032508A (en) * 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
WO2003102134A2 (en) * 2002-05-28 2003-12-11 Becton, Dickinson And Company Pancreatic acinar cells into insulin producing cells
JP2004208692A (en) * 2002-12-17 2004-07-29 Toray Ind Inc Substrate for culturing three-dimensional cell and production method of cell preparation
JP2005204523A (en) * 2004-01-20 2005-08-04 National Institute Of Advanced Industrial & Technology Mesenchymal cell-containing erythrocyte fraction, method for separating mesenchymal cell and method for producing transplantation tissue

Also Published As

Publication number Publication date
JP2010068766A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
US20200239854A1 (en) Adherent cell culture method
US10836996B2 (en) Cell culture kit, screening method, and method of manufacturing cell culture kit
Gupta et al. Lab-on-a-chip devices as an emerging platform for stem cell biology
US8415157B2 (en) Cell culture container and cell culture method
CA2789761C (en) Array of micromolded structures for sorting adherent cells
CN106459925B (en) Culture method and cell pellet
JP5676265B2 (en) Cell storage method and cell transport method
US20120156777A1 (en) Cell carrier, associated methods for making cell carrier and culturing cells using the same
JP2020036621A (en) Cell culture support, cell culture device, cell culture kit, and cell sheet
Wang et al. A 3D construct of the intestinal canal with wrinkle morphology on a centrifugation configuring microfluidic chip
CN104703698A (en) Cell culture
JPWO2008130025A1 (en) Hepatocyte culture vessel and hepatocyte culture method
US20140065659A1 (en) Culture method, group of mature adipocytes, drug screening method
Huang et al. Spherical microwell arrays for studying single cells and microtissues in 3D confinement
US9290735B2 (en) Mammary gland epithelial cell culture
JP2017212952A (en) Production method of cell aggregate
JP5307489B2 (en) Method for producing three-dimensional cell structure
Hoess et al. Co‐cultures of primary cells on self‐supporting nanoporous alumina membranes
JP2024524769A (en) Stackable plates for culturing tissue models
Tartagni Advanced cell culture platforms: methods for drug testing with microfluidics and microstructured devices
Takeuchi et al. Three dimensional multi-cell spheroids assembly using thermoresponsive Gel probe
JP2019037151A (en) Production methods of cell aggregate
LAIYI Studying Multicellular Dynamics with Single-cell Micropattern Clusters
George et al. Use and manipulation of microporous membranes in mammalian cell cultures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Ref document number: 5307489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250